Verification of Communication Protocols Using Data Flow Analysis *

Gleb N. Naumovich, Lori A. Clarke, and Leon J. Osterweil
April 29, 1996

email: {naumovic|clarke|ljo}@cs.umass.edu
Laboratory for Advanced Software Engineering Research
Computer Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

Abstract

In this paper we demonstrate that data flow analysis is an effective approach for verifying requirements
of communication protocols. Communication protocols are responsible for establishing the communica-
tion patterns between different processes within a distributed computer system. Data flow analysis is a
static analysis method for increasing confidence in the correctness of software systems by automatically
verifying that a given software artifact (e.g., design or code) must behave consistently with a specified
requirement. In this case study, we apply the FLAVERS data flow analysis tool to pseudocode designs of
the three way handshake connection establishment protocol and of the alternating bit protocol and prove
that the behavior of the pseudocode is consistent with protocol behavioral requirement specifications. In
addition, we show how assumptions about the environment in which a software system is executed can be
incorporated into the analysis, using message losses as an example. We present experimental results and
derive some guidelines about the classes of protocol requirement specifications that may be amenable to
verification using FLAVERS.

*This work was supported in part by the Air Force Materiel Command, Rome Laboratory, and the Advanced Research
Projects Agency under Contract F30602-94-C-0137.

1 Introduction

In this paper we demonstrate the applicability of an incremental accuracy improving flow analysis ap-
proach [DC94] to the verification of properties of communication protocols. We undertake a small case
study where we examine two protocols and verify several properties about them. We illustrate the effective-
ness of the approach and demonstrate how it can be used to support modeling of the imperfect environment
in which communication protocols must operate.

Communication protocols are software systems that are responsible for establishing and maintaining
well-defined communication patterns between processes in a distributed system. Various techniques have
been employed to assure these patterns of behaviors are correctly captured in design and code artifacts. In
this work, we demonstrate the use of static dataflow analysis and argue that this is a particularly effective
technique because it is computationally inexpensive, requires minimal human interaction, and is a general
and flexible approach that can ensure the consistency of software artifacts, specifically design and code
artifacts, to the communication behaviors dictated by communication protocols. Moreover, we demonstrate
how it can be extended to incorporate assumptions about the execution environment.

Some features of communication protocols seem to make them particularly appealing subjects for anal-
ysis. Foremost they have clearly articulated rules about their behavior that can serve as the basis for
verification. Protocol designs and implementations seem to concentrate upon effectively modularizing their
communication mechanisms, thereby reducing the size of the representations that verification tools must
analyze and helping to concentrate the attention of the verifier. In addition, the variables used to control
communications in protocols tend to have finite domains, which also facilitates analyses.

On the other hand, protocols have some features that make them difficult to analyze. The need to
reliably exchange messages through unreliable communication media that may create network faults, such
as loss, duplication, insertion, reordering or corrupting of messages, requires protocols to use error-recovery
algorithms, whose complexity complicates analyses. We demonstrate, using message losses as an example,
how these network faults can be modeled and then incorporated into the data flow analysis.

In this work we apply the data flow approach to communication protocol verification, using the FLAVERS
(Flow Analysis for Verifying Specifications) tool [DC94]. We evaluate the ability of FLAVERS to specify
protocol requirements specifications as event sequences. We then verify that proposed pseudocode designs
must adhere to these requirements even in the presence of the possibility of network faults. We evaluate the
effectiveness of FLAVERS in the verification of two specific communication protocols: the alternating bit
data transfer protocol and the three way handshake connection establishment protocol. A restricted class of
message losses is modeled for each protocol. Specifically, we set an upper limit on the number of consecutive
losses that can happen in each communication medium before a message is passed without loss. We describe
how we can conclusively verify that a specific pseudocode design for each protocol satisfies a number of
non-trivial requirements, both under the assumption of fault-free communications and of communications
with the possibility of message losses.

The results that have been obtained are encouraging, showing the power of both the basic data flow
technique and of incremental techniques directed at improving the accuracy of the analysis. Not surprisingly,
verifications of protocols with the possibility of network faults prove to be tractable but considerably more
expensive in terms of resource requirements.

The next section of this paper describes approaches that have been applied to the verification of dis-
tributed programs, in general, and networks, in particular. Section 3 gives a high-level overview of the
FLAVERS data flow analysis approach and the way it can be used to improve analysis accuracy. Section 4
describes our approach for modeling network faults. Section 5 contains descriptions of the protocol design
pseudocode used in this case study, each requirement checked, and results from the analysis. In addition,
this section summarizes the overall results. Finally, section 6 offers some conclusions based on the results
and also indicates directions for future work.

2 Related Work

Olender and Osterweil [0090] suggest that there are two fundamental approaches to increasing confidence
in software: detection (and removal) of errors and demonstration of the absence of errors. Both entail de-
termining if a given software artifact (e.g., design or code) is consistent with specified properties. Testing
concentrates on detecting errors, whereas formal methods and static analysis both detect errors and demon-
strate their absence. In this section we review applications of testing and formal methods to communication
protocols only briefly and concentrate on reviewing static analysis approaches, as that work is closest to our
own.

Testing [ABC82] executes a program to determine whether its actual behaviors conform to its expected
behaviors. Since the number of possible program executions is usually excessively large, it is impractical to
use testing to demonstrate the absence of errors. Testing has been extensively applied to communication
protocols [SL89, BP94], but we believe this work should be complemented by work aimed at demonstrating
the absence of errors.

Formal verification systems [Hoa69, Pnu77] employ mathematical systems with rules of inference to prove
the absence of errors by showing analytically, without actual execution of the program, that a program
satisfies or contradicts a given property. Formal verification can formulate and prove intricate properties
but are largely manual or semi-automated, and hence expensive, human intensive, and error prone. As
such they may be useful for verifying small, critical systems, such as the kernel of life-critical distributed
software, but the application of formal verification to larger, less critical systems is usually prohibitively
expensive. Examples of the application of formal verification to the analysis of communication protocols
are numerous. Kurose and Yemini [KY82] use temporal logic [Pnu77] to prove properties of a reliable
connection establishment protocol, Sabnani and Schwartz [SS82] build the proof of properties of a multi-
destination message transfer protocol using temporal logic, and Yodaiken and Ramamritham [YR92] prove
some properties of a fault-tolerant broadcast protocol using functional specifications and relations semantics.

Static analysis, like formal verification, can demonstrate the absence of certain classes of errors from
distributed systems without actually executing them. Unlike formal verification, they often entail little or
no human intervention, making them less costly and less error-prone. Static analysis of distributed systems
spans such approaches as reachability analysis, constrained expressions, and data flow analysis.

Reachability analysis enumerates possible program execution paths as possible global states, which form
a state space that can then be searched for sequences of states that satisfy or violate a specified property.
The number of reachable states often causes a so-called state explosion, where reachability space size exceeds
the processing power or the memory capacity of the machine. Taylor [Tay83] shows that generating all
reachable states for a program with a fixed number of communicating tasks is exponential in the number
of tasks. Reif and Smolka [RS88] demonstrate the undecidability of generating all reachable states for an
arbitrary distributed program. Reachability analysis has been a popular technique for statically analyzing
small protocols (e.g. [VHC86, BNY86]), but we are concerned that the inherent exponential nature of this
approach will prevent it from scaling up to the analysis of larger, more complex protocols.

A variation of reachability analysis, called model checking, applies to programs where distributed pro-
cesses can be modeled as communicating finite state automata [CES86]. With model checking, properties
are formulated as temporal logic formulas and compared to the logical representation of the program, rep-
resented by a reachability graph with temporal logic propositions assigned to the nodes. Properties can be
formulated more flexibly than with other reachability approaches, but model checking still suffers from the
state space explosion problem. XESAR [RRSV87] is an example of a protocol-specific tool that employs
model checking. Several approaches have been suggested for decreasing reachability analysis space require-
ments [BCM 190, Hol87, GW91, Val91l, HGP92]. These approaches significantly improve the feasibility of
reachability methods, but in general are still prohibitively expensive to use with most distributed systems.

The constrained expression approach is not based on reachability analysis [ABCT91]. Given a specified
pattern of program events in the form of Finite State Automata (FSA), this technique attempts to see
if the regular language of an FSA corresponds to some execution of the system. The conditions (e.g.,

maintaining the same number of send and receive events for all communication channels) that characterize
all possible program executions are expressed as a system of linear inequalities. The given pattern of program
events is also represented in the form of linear inequalities. Integer linear programming is used to solve the
resulting system of inequalities. The implementation of this technique has been successfully applied to some
distributed systems [ABC*91, Cor92]. However, it also has exponential worst-case bounds. To the best of
our knowledge, this approach has not been applied to the analysis of protocols.

Data flow analysis [Hec77] captures static information about a system by computing fixed point data and
control dependency information over an annotated flow graph. Data flow analyses have been formulated with
low-order polynomial execution time and storage bounds [MR90]. Data flow based approaches for distributed
systems have been used to verify both program-independent properties, such as deadlock freedom [MR91],
detecting unreachable program statements and determining the values of program expressions [RS90], and
concurrent def-use faults (e.g., referencing an undefined variable or defining an unused variable) [TO80], as
well as program specific properties [DC94, HS96].

As noted earlier, protocol entities must inevitably communicate through unreliable communication media,
which can cause messages to be lost, duplicated, inserted, or corrupted. Protocols describe only the behavior
of the logical entities, and provide no information about the medium itself. We propose to verify that
protocols will necessarily have desired properties when they communicate through unreliable media. We
do this by modeling assumptions about the communication media in the form of finite state automata
that constrain the data flow analysis. Cécé, Finkel and Iyer [CFI94] have addressed this with reachability
techniques incorporating models of assumptions about network faults into a single FSA built for a protocol.
A disadvantage of this approach is that assumptions about the protocol environment and protocol execution
behaviors protocol are combined into a single model that must be rebuilt every time the assumptions about
either change. Pachl [Pac87] uses state automata to model communication channels during reachability
analysis with separate FSAs representing distributed processes and the assumptions about communication
channels. We adopt this approach in our own data flow analysis.

In this paper, demonstrate that data flow analysis can be applied efficiently to verification of commu-
nication protocol properties. Unlike formal verification, which requires intensive human expertise, the data
flow approach is primarily automated. Also, unlike other analysis approaches, which are computationally
intractable, data flow analysis is relatively efficient. We show that the efficiency of data flow analysis, com-
bined with techniques for improving its accuracy and for capturing assumptions about the medium, is an
effective verification approach for communication protocols.

3 Overview of the Approach

In this section we describe FLAVERS, our use of Ada as a pseudocode protocol design language, and
quantified regular expressions (QRESs) as a requirements specification language.

3.1 FLAVERS

The FLAVERS static analysis tool performs data flow analysis to verify explicitly stated event sequence
properties of distributed systems. Human analysts define sets of program events of interest and formulate
properties to be checked as sequences of those events. FLAVERS translates property specifications into
FSAs, whose transitions are responses to the events. Given a design or implementation of a distributed
system and a property to which that system must adhere, FLAVERS determines whether the property holds
on all system executions. FLAVERS models possible executions with a Trace Flow Graph (TFG), whose
nodes are annotated with the events of interest.

The TFG representation is the basis for inferring a set of observable system execution behaviors, while
the FSA representation of a property is the basis for inferring a set of expected execution behaviors. The
state propagation algorithm compares the sets of observable and expected behaviors and displays the results
of this comparison to the user. Figure 1 gives a high-level view of the major components of FLAVERS.

Property

Property FSA builder|

FSA for the
property

State Propagation

Software
system

TFG builde:

Results

Figure 1: FLAVERS components. Boxes represent tools and ellipses represent generated internal repre-
sentations. Arrows show data flow relations among the tools.

The analysis may report three possible kinds of results. It may demonstrate conclusively that the set of
observable behaviors of the system is a subset of expected behaviors, which means that the property holds
on all executions of the system. The analysis may demonstrate conclusively that observable and expected
behaviors are disjoint, which means that the property holds on no executions of the system. Finally, the
analysis may fail to demonstrate that the set of observable behaviors is either a subset of, or disjoint from,
the expected behaviors, which means that the property may hold on some executions. In this latter case
we say that the analysis result is inconclusive. This can occur either when the property really holds on some,
but not all, executions of the system, or if the analysis is imprecise. Imprecision generally results when it is
difficult to draw completely correct inferences about executability from the TFG model, which in order to
be conservative over-estimates the executable behaviors of the system. Thus an inconclusive result may be
spurious in that the property holds only on unexecutable TFG paths.

Imprecision is inherent in static analysis techniques as information is elided to yield representations of
reasonable size. FLAVERS supports the refinement of analysis accuracy by allowing human analysts to
incrementally add execution details in the form of feasibility constraints, represented by additional FSAs.to
the TFG. When well chosen, these constraints eventually succeed in producing conclusive results or in

Property

Property FSA builder

FSA for the

property Conclusive
Result
Software TFG for -
system TFG builder State Propagation
Inconclusive
Result
Augmented 3
set of feasibility I
|
constraint FSAs |
I
|
|
|
|
Feasibility s Voo . ‘
Constraint << ----- -+ Add constraints |
I I

Augmento

Figure 2: Incrementally improving accuracy of the FLAVERS analysis

convincing the analyst that the property does not hold on all system executions. Two common types of
feasibility constraints are variable automata, which model the execution behavior of selected variables in the
system, and task automata, which model all possible orders of events allowed by the control flow in a single
process. In general, however, any system execution behaviors that can be represented by an FSA can be
used as a feasibility constraint. Figure 2 demonstrates the principle of incremental accuracy improvement.

3.2 Protocol Design Language

A number of protocol specification and design languages have been proposed, the most prominent being
CCS [Mil80], Z [Spi92], LOTOS [BB87], SDL [BH89], Estelle [BD87], and Promela [Hol91]. Our choice
of Ada as a protocol design language was suggested by some positive experience with it [YGH82, CDG85]
and by the fact that the current implementation of FLAVERS can process only Ada. The protocol design
pseudocode used in our case studies defines each distributed process and each communication medium as
a task, thereby simulating asynchronous message passing between protocols. To validate these choices we
also represented the design of the alternating bit protocol in Promela and manually constructed its TFG
representation. The result seemed essentially equivalent to the TFG representation of the Ada design. We
believe that such equivalence would hold between Ada and Promela representations for other protocol designs
as well.

3.3 Property Specification Language

FLAVERS uses Quantified Regular Expressions (QRE), first used in the property specification language
CECIL [0090], to specify the event sequences to which communication protocol designs must adhere. A
QRE represents a property as a regular language over the set of events used to define the protocol design.
QREs have three components: an event alphabet, a quantifier, and the regular expression. The all quantifier
indicates that all protocol executions must generate event sequences that belong to the specified regular lan-
guage. The none quantifier indicates that no generated event sequence should belong to the language. Most
protocol event sequence properties are easy to represent in regular form, which makes QREs a convenient
property specification language. Property QREs are then translated into FSAs.

4 Modeling the Message Passing Environment

Active-to-Passive

medium

Passive-to-Active
medium

Figure 3: Components of the Three Way Handshake and Alternating Bit Protocols

Figure 3 shows the configuration of communicating processes, Active and Passive, and the media used for
our case study. Each medium transfers messages in one direction only, and each may be subject to such faults
as message losses, corruptions, delays, insertions, and duplications. Communication protocols should be able
to recover from such faults. We represent user assumptions about the communication media by encoding a
general skeleton design of each medium in a separate task, enhanced by one or more feasibility constraints
that restrict the medium’s behavior. The medium tasks encode only the identities points where messages
can be either passed to, or received by, the medium. The feasibility constraints model the communications

over the medium as event sequences over the access points. This approach allows us to use the same task to
model both media in figure 3, as well as us to explore different assumptions about their behaviors.

There are two categories of behaviors encapsulated by the media feasibility constraints: fault-free behav-
iors and various faulty behaviors. Fault-free behaviors represent the basic service a medium provides (e.g. a
FIFO queue with buffer size five). Faulty behaviors represent network faults. This differentiation encourages
a hierarchical approach to constructing media feasibility constraints: once fault-free behaviors are encoded
as feasibility constraints, they can be augmented with faulty behaviors. This approach seems valuable when
analyzing protocol code under varying assumptions about medium behavior.

We now describe the fault-free behaviors of the point-to-point communication media used in our case
study and show how to augment these fault-free behaviors with assumptions about message losses in the
medial.

4.1 Modeling Fault-free Media

task Medium is task body Medium is
entry In_Message; begin
entry Out_Message; loop

end Medium; select

accept In_Message;

Transfer_Message;
or

accept Out_Message;
end select;
end loop;
end Medium;

Figure 4: Modeling Media by Ada Tasks

Figure 4 shows a typical task for a medium with two connection points, defined by accept statements
In_Message and Out_Message. A message is received by a medium when an In_Message entry call
occurs and is passed when an Out_Message entry call occurs. This representation alone is not sufficient
for a meaningful implementation of connection patterns between distributed processes. Some examples
of additional information that could be represented as feasibility constraints to define a more accurate
specification of a point-to-point connection are

e specific rules that the medium must follow when passing messages, for example, specifying that it is
necessary for a message to be received by the medium before the medium can pass it on.

e the size of the medium buffer;

o the kinds of messages (DATA, ACK, etc.) that the medium can handle and information associated
with them (e.g. sequence numbers).

Figure 5 shows two feasibility constraints for a medium that can accept two different kinds of messages.
Figure 5(a) shows a medium that can hold at most one message at a time, and figure 5(b) shows a FIFO
medium that can hold at most two messages at a time.

L Although our approach to modeling communications between distributed processes is general enough to model various kinds
of media, in this case study we restrict ourselves to point-to-point message passing

no message 2
message 1
messages passed

message 1 message
no received received message
m 2 F ki
messages message 1/ essz;ge message | of kind 2 message 2
S passe assed
message 1 message 2 passed P passed

passed

message
of kind 2

(a) (b)

message 2
received
message
received

message 1 message 2
received received

Figure 5: Modeling Media

4.2 Modeling Message Losses

We picked message losses as an example of faulty behavior exhibited in real networks. Other faulty behaviors,
such as message corruptions, duplications, and insertions can be modeled analogously. Figure 6 shows how
the possibility of message losses can be modeled. The medium task in 6(a) was obtained from the medium
task in figure 4 by inserting an if statement on one branch of which the event Lose_Message occurs. If
the value of boolean NotSuccessful cannot be predetermined to be always false, then data flow analysis
must assume that every time a message is obtained (In_Message accepted), a loss is possible. A medium
FSA with buffering capacity of one that can pass messages of two kinds is shown in figure 6(b). In that
medium FSA, the occurrence of a Lose_Message event triggers a transition to the state No Messages,
meaning that no messages can be obtained from the medium at that point. When the branch containing
Lose_Message is not taken, the message is assumed not to be lost and can be obtained from the medium.

The resulting model of media behaviors is gratifyingly simple, but also models some unfortunate behav-
iors, such as indefinite repetitions, where all messages in the system are always lost. This behavior causes a
livelock, with one protocol entity sending messages that are always lost by the medium, causing the entity
to resend them indefinitely. To exclude such worst-case scenarios from consideration, fairness assumptions
about the medium are usually made. For example, Kurose and Yemini [KY82] state that a medium is fair
with respect to a message m if it can lose, corrupt or duplicate m at most a finite number of times before
passing it without a fault. A medium is fair if it is fair with respect to any message it receives. We ap-
proximate this notion of a fair medium by bounding the number of times a medium can lose, duplicate, or
corrupt a given message before passing it through correctly. Figure 7 demonstrates the FSA for a medium
with buffer size one that can pass two different kinds of messages with at most one message loss. In our case
study, each property was checked assuming up to the maximal number of consecutive message losses in the
media.

5 Experiments

This section presents the experimental results of running FLAVERS on the three-way handshake connection
establishment protocol (3WHS) [KY82] and the alternating bit data transfer protocol (AB) [BSW69]. We
chose these case studies for a variety of reasons. Both protocols are popular and well known, and each has
been the subject of numerous verification techniques. The protocols come from different classes, the AB

task Medium is
entry In_Message;
entry Out_Message;

end Medium;
task body Mediumis Jace emmmmeee_ o N e——mm—— oo lose
sk body Medium is lose T - - -~~~ message
begin message - no message N
\
loop K message 2 \

passed

select /
accept In_Message; h
if NotSuccessful then \
Lose_Message;
else \
Transfer_Message; \

end if} \

message 1

or \
message 2
accept Out_Message; ' received : &
end select; message received
end loop; of kind
end Medium;

Figure 6: Modeling Losses

is a data transfer protocol, and the 3WHS is a connection establishment protocol. In addition, both are
straightforward to implement, yet non-trivial. Also, both protocols provide error-checking mechanisms to
allow recovery from network faults.

For each protocol we present a description of the protocol, the assumptions made about the communica-
tion media, and each requirement specification that we verified with FLAVERS, as well as a short discussion
of subjective issues involved in checking the requirement. We were able to verify conclusively all specifications
that we analyzed, although the number of constraints required depended on the protocol and requirement.
For each protocol and requirement specification, the analysis results are given in a tabular form that lists
the execution time taken by FLAVERS, the number of nodes and edges in the protocol TFG, and the data
flow lattice size, which is exponential in the product of the number of states of all feasibility constraint and
requirement FSAs. The time taken by the property checker is a sum of the application time (the processor
clock time) and the system time (operating system overhead) as measured by the UNIX time command
on a DEC Alpha Station 200 4/233 with 128 megabytes of physical memory. We also include the number
of TFG nodes visited during analysis. The lattice size and number of visited nodes serve as metrics of the
complexity of the analysis. At the end of the section we summarize our results and venture some guidelines
on using FLAVERS for the analysis of communication protocols.

5.1 The Three Way Handshake Connection Establishment Protocol

5.1.1 Description

This protocol defines a sequence of messages exchanged by two communicating protocol entities to establish
a connection. One of the communicating entities initiates the connection and is called Active. The other
accepts the connection request and is called Passive. The entities are connected by half-duplex commu-
nication media (channels) as shown in figure 3. Active initiates a session by sending a SYN message and
entering a synsent state. Passive is initially in the listening state, which changes to the synrcvd state
upon receiving the SYN message. Passive then responds with a SYNACK message that acknowledges the
receipt of the SYN message. Having received the SYNACK message, Active acknowledges the fact by
sending an ACK message and enters an established state. When Passive receives the ACK message it

no
messages /<

message 2
passed

message 1
received

message 2

received message

message
passed

Figure 7: Modeling Fair Losses

also enters its established state. The connection is considered established when both entities are in their
established states at the same time. This completes the basic connection establishment protocol.

The basic protocol does not reliably assure connection establishment when the protocol entities com-
municate via an unreliable medium. For example, the basic protocol will not perform as designed when a
SYNACK message is corrupted, causing Active to receive an ACK message. The protocol can be made
more robust by having both protocol entities choose an initial sequence number for the current session’s
messages (to distinguish them from previous or future session messages). The protocol assures that both
entities learn the initial sequence number of their correspondent remote entity, and that each entity main-
tains counts for the messages it sends and for the messages it receives. If at any time during the connection
establishment procedure the sequence number of a received message is not the sequence number expected,
the entity assumes that the message was not sent during the current session, and either ignores it or resets
the connection as described below. Active generates its initial sequence number before sending the SYN
message. Having received the SYN message, Passive learns about the initial sequence number of Active
and thus knows the correct sequence number of the next incoming message. At this point Passive generates
its own initial sequence number and passes it to Active with the SYNACK message. If at some point during
the connection establishment procedure an entity is not in its established state and an incoming message
has an unexpected sequence number or type, the entity sends a RESET message. If the entity is in its
established state, and receives a message with an incorrect sequence number, only an ACK message is sent.
In this case the remote entity decides whether it can fix the problem by resending some of the messages sent
previously or if the RESET message must be sent. When a RESET message is received by Active, it starts
a new session by generating a new initial sequence number and sending a SYN message. When Passive
receives a RESET message, it assumes that the session will be restarted by Active and waits for a SYN
message.

All of these behavioral specifications should be verified for any proposed design or implementation of this
protocol. FLAVERS could verify these by expressing them as QREs. We illustrate this by first verifying what
we call the correct sequence numbers requirement, which states that the 3WHS protocol guarantees that,
on all executions where both entities eventually enter their established states, each entity expects a message
with a correct sequence number. In addition we formulate and verify two more behavioral specifications,
passive states and seniority.

5.1.2 Assumptions about the Media

We analyzed our 3WHS protocol design under two different assumptions about the media: a fault-free
medium and a medium that can lose no more than one message of each kind in a row. This means, for
example, that having lost an ACK message once, the medium will necessarily pass the next ACK. This is
an interpretation of the fairness assumption discussed in section 4. In both cases we assume that message
delays are not significant enough to cause timeouts in either entity, and that the only cause of a timeout is
a message loss.

5.1.3 Requirements Verified

Correct Sequence Numbers

This requirement specifies that once both Active and Passive entities have reached their established
states, the sequence number of the next message sent by one entity is always equal to the sequence number
of the next message to be received by the other. Kurose and Yemini [KY82] verified this requirement for
3WHS design pseudocode by manually constructing a formal proof. This requirement must hold on all
possible executions of the protocol. Its FSA representation, given in figure 8, is written in terms of four

active
mcorrect

passive
incorrect
passive

active
correct

active
ncorrect

passive

ncorreg
active
active correct
incorrect
passive

passive
incorrect

active 1ncorre
ncorrect

assive
orrect

passive
i correct
active
correct

active assive
correct orrect

Figure 8: FSA for correct sequence numbers

events with which the protocol design pseudocode must be annotated: passive correct (active correct),
which represents an event of the expected sequence number of Passive (Active) becoming correct with
respect to the current Active (Passive) sequence number; and passive incorrect (active incorrect),
which represents an event of the expected sequence number of Passive (Active) becoming corrupted as a
consequence of a message loss.

To accurately annotate our pseudocode design, we had to model only whether or not the expected
sequence number is correct with respect to the sequence number of the next message to be sent by the
remote entity. In addition, to achieve desired accuracy, we incrementally added FSAs modeling the current
state of Active (initial, synsent or established); the current state of Passive (listening, synrcvd or
established); a global variable termination that is set to true when both Active and Passive are in their
respective established states to indicate that the connection is established; and task automata for both
Active and Passive. To support modeling the possibility of message losses, a variable that stores the last
message sent by an entity was modeled for both entities.

10

The following table presents the empirical data for the FLAVERS data flow analysis of the correct
sequence numbers requirement of the 3WHS protocol.

| | fault-free | one loss at a time |
TFG nodes 128 160
TFG edges 4108 5364
log, (lattice size) 111,488,400 | 31,948 860,000
application + system analysis time (sec.) | 328.80 2121.47
visited nodes 1403 4538

It was not hard for the human verifier to set up FLAVERS to analyze this requirement. Task automata
represent a standard accuracy improving technique used by FLAVERS, and their creation is fully automated.
It was quite clear that the variables representing states of Active and Passive and the variable termina-
tion affected the requirement and had to be modeled to improve the analysis accuracy. Identifying the places
in the pseudocode where the events associated with a sequence number becoming correct or incorrect was
only slightly more time-consuming. This required knowledge of the protocol design. Given that many com-
munication protocols use message sequence numbers to provide reliable message passing, special techniques
for automatically detecting these kinds of events and inserting the annotations would prove worthwhile and
appear quite doable.

Passive States

This behavioral requirement maintains that on no protocol executions does the Passive entity go to the
synrcvd state directly from the established state, without passing through the listening state first. The
FSA representation of the logical complement for this requirement is given in figure 9. This requirement is

passive

; : tosynrevd .
passive Passive passive passive ¥ passive
to 11 ste, to synrcvd . to estab to listen to estab

passive
to listen

3
passive Q
to synrcvd

Figure 9: FSA for passive states

passive
to estab

written in terms of three events: passive_to_estab, passive_to_listen, and passive_to_synrcvd.

For this requirement, only the variable representing the states of the Passive entity had to be modeled
to constrain the analysis for both the fault-free and possible media losses cases. The empirical data for this
requirement are presented in the following table:
| | fault-free | one loss at a time |

TFG nodes 49 55
TFG edges 205 227
log, (lattice size) 16 16
application + system analysis time (sec.) | 3.33 3.80
visited nodes 377 425

Note that since the same requirement and constraint were used for both kinds of media, the lattice size does
not change, and thus the slight increase in running time for the faulty media is due solely to the increased
number of visited nodes.

Of all requirements specifications verified, this one was the easiest for a human verifier to check with
FLAVERS, mainly because only a small number of events needed to be specified and because only one
variable had to be modeled to ensure conclusive results. The pseudocode was annotated only at places

11

where this variable was modified, again suggesting the possibility of automatic annotation.
Seniority

This requirement states that on all executions of the protocol, the Passive entity never goes to the
established state if Active is not in its established state. Figure 10 shows the FSA representation of this
requirement.

assive i . active passive
{)0 synrevd Dassive passive to synsent to synrcvd
Y to listen . to listen) assive
passive ~active passive active passive active P f
to estab to estab to synrcvd to synsent to estab to estab to listen

active
to estab

passive @
to estab

Figure 10: FSA for seniority

active
to synsent

To achieve the desired analysis accuracy, we had to add task automata for both Active and Passive as
well as FSAs for the current state of Active, the current state of Passive, and a global variable termination.
In addition, as was the case with our verification of the correct sequence numbers requirement, it was
necessary to model variables that store the last message sent by an entity in order to model the possibility
of message losses.

The empirical data for this requirement are
| | fault-free | one loss at a time |

TFG nodes 102 134

TFG edges 2118 3042

log, (lattice size) 4,536,000 | 1,517,322,000
application + system analysis time (sec.) | 398.29 1844.69

visited nodes 1941 3718

Setting up the FLAVERS analysis for this requirement was very straightforward. Similar to the passive
states requirement, annotations of the design pseudocode with events were obvious. Deciding which variables
to model to ensure the desired analysis accuracy required only a brief examination of the design pseudocode.

5.2 Alternating Bit Protocol
5.2.1 Description

Here we describe our experiments with the alternating bit data transfer protocol. To simplify the design
pseudocode, we considered half-duplex, rather than full-duplex transmissions, assuming that connection
establishment preceded the data transfer phase and unambiguously identified one of the entities as Active
and the other as Passive. With this protocol, Active sends only DATA messages and Passive sends only
ACK messages acknowledging DATA messages received. Figure 3 shows a high-level design of the network
described by the protocol. Note that the same network configuration can use both 3WHS and AB protocols
— 3WHS can be used first to establish a connection session between the two entities, and then AB can be
used to exchange DATA messages.

The AB protocol specifies that each DATA message sent by Active is assigned the alternation bit used
for simple error checking. Having sent a DATA message with the alternating bit set, Active waits until
either an ACK message has been received from the remote entity or a timeout has occurred. In the case of
a timeout, the last data message is resent. When an ACK message is received by Active, its alternating
bit is checked. If it is the same as the alternating bit of the last DATA message sent, it is assumed that the

12

message has been received correctly by Passive, and the next DATA message can be sent. Otherwise, if
the alternating bits of the DATA and ACK messages differ, it is assumed that an error has occurred during
a corrupted transmission, and the last DATA message is resent. Passive does no error checking and only
replies to each DATA message it receives with an ACK message carrying the same alternating bit as the
DATA message.

5.2.2 Assumptions about the Media

We analyzed a pseudocode design of the AB protocol under three different assumptions about the media:
fault-free media, media that can lose at most one message in a row, and media that can lose at most two
messages in a row. In all cases the model assumed that message delays do not cause timeouts in either entity,
which means that the only cause of a timeout can be a message loss.

5.2.3 Requirements Verified

We verified that our design conformed to three requirements specifications: wait for acknowledgment,
message reception, and number of repetitions. To save space, we do not give FSA representations for
these requirements.

Wait for Acknowledgment

This requirement states that for each DATA message sent by Active with an alternating bit set to 0, an
ACK message with the alternating bit set to 0 must eventually be received by Active before it sends any
DATA messages with the alternating bit set to 1.

Message Reception

This requirement verifies the rules of message reception for the Passive entity. It states that if a DATA
message d is sent by Active, then no other DATA messages are sent until d is either lost or acknowledged
by Passive.

Number of Repetitions

This requirement has different formulations depending on the number of losses modeled by each medium.
If no message losses are possible, Active (not surprisingly) never sends the same DATA message twice in
a row. In the presence of no more than one message loss in each medium, we can show that Active may
have to repeat the same DATA message with an alternating bit 0 up to four, but never five times in a row.
When up to two messages in a row can be lost by each medium, Active may have to repeat the same DATA
message with an alternating bit 0 no more than 9, but never ten times in a row.

To conclusively verify these three requirements, we had to incrementally add task automata for both
Active and Passive as well as model a global variable termination that is set to true when both Active
and Passive are in their respective established states at the same time, a variable that stores the alternating
bit of the last DATA message sent by Active, and a variable that stores the alternating bit of the last ACK
message sent by Passive.

The empirical data for the cases of fault-free media, one loss media, and two losses media are as follows:

Wait for acknowledgment

| | fault-free | one loss at a time | two losses at a time |

TFG nodes 53 67 67

TFG edges 181 332 332

log, (lattice size) 295,488 1,080,000 2,116,800
application + system analysis time (sec.) | 52.90 547.11 1238.96
visited nodes 1002 2103 2658

Message Reception

13

fault-free | one loss at a time | two losses at a time

TFG nodes 53 67 67

TFG edges 181 332 332

log, (lattice size) 492,840 1,800,000 3,528,000
application + system analysis time (sec.) | 53.76 544.58 1279.05
visited nodes 1010 2103 2658

Number of Repetitions

fault-free | one loss at a time | two losses at a time

TFG nodes 53 67 67

TFG edges 181 332 332

log, (lattice size) 393,984 | 2,520,000 8,467,200
application + system analysis time (sec.) | 55.61 741.28 3463.33
visited nodes 1002 2295 3729

We noted similar levels of human effort to perform FLAVERS analysis for all three requirements. For
all three the same event sets and feasibility constraints were used, and annotations were needed only at
the clearly identifiable sites of message sends, receives and losses, for which FLAVERS has an automatic
annotator. These similarities make it possible to run all three FLAVERS analyses simultaneously. We opted
for separate verifications to assure that our measured empirical data were consistent with other 3SWHS data.

5.3 Some Observations

For nearly all requirements verified on both protocols, it was surprisingly easy to identify the variables needed
to constrain the control flow in the problem. The only exception was the need for modeling termination
variables because of a current limitation of FLAVERS when checking liveness properties. For the majority
of requirements it was very easy to annotate the source code with the events used by the requirements.
Only in the case of the correct sequence numbers requirement, checked on the 3WHS protocol, was a
more thorough subjective scrutiny of the pseudocode needed to determine precisely where to put expected
sequence numbers annotations. Task automata were used as a standard technique to improve the accuracy
of the analysis. They were required in all cases except when checking the passive states requirement of
the 3WHS protocol. Creating task automata is fully automated, thus requiring no modeling effort from the
human verifier.

We determined lattice sizes to estimate the complexity of each data flow problem solved. This size
depends on the number of, and the number of states in, feasibility constraints needed to achieve the desired
analysis accuracy. Execution time was shown to correlate with lattice size, indicating that it is desirable to
limit the size and number of feasibility constraints where possible. It appears that a requirement should be
specified first, and then protocol specification variable dependencies analyzed, so that only variables affecting
events in the requirement are modeled. Another observed dependency is a positive correlation between the
number of TFG nodes and edges and the number of pseudocode annotations. Since the size of a TFG
depends on the number of annotations, reducing the number and size of feasibility constraints can lead to
reductions in the size of the TFG representation. A smaller TFG representation for a protocol design reduces
the number of TFG nodes and edges that must be evaluated by FLAVERS.

Although the number of requirements and protocols examined is very modest, comparing timings for
different requirements suggests some interesting tendencies. For example, verifying the passive states
requirement on the 3WHS protocol confirms the hypothesis that FLAVERS analysis cost is influenced by
the degree to which a requirement is centralized [Dwy95]. We call a requirement centralized when it is
specified in terms of events from only a small group of distributed processes in a protocol specification.
Centralized requirements are usually easier to check than non-centralized ones because fewer variables have
to be modeled. For example, the passive states requirement refers only to events local to the Passive
entity, making it easier to check than the seniority requirement, which refers to events from both Passive

14

and Active entities. This notion of centrality suggests a compositional approach to the analysis of protocols.
It is quite likely that even very complex requirements formulated for a protocol as a whole can be decomposed
into a number of more trivial requirements, each referring to only a subset of the distributed processes defined
by the protocol.

As expected, we found it much harder to verify protocols in the presence of network faults. Although
our modeling of losses is very restricted, it is nevertheless clear that for most of the examples considered,
the analysis of a system in the presence of losses is at least an order of magnitude more expensive than
the analysis of the system with no losses possible. From the human verifier’s perspective, however, adding
the possibility of faulty behaviors to the analysis was very easy. In most cases it required only the addition
of the media feasibility constraints. Checking correct sequence numbers and seniority requirements of
the 3WHS protocol also required modeling an additional variable that stores the most recent message sent
by Active, but this was immediately evident and straightforward. This shows that, although the analysis
of protocols in the presence of possibility of losses requires much more computational resources than when
network faults are not taken into account, very little additional effort is required from the human verifier to
incorporate these faulty behaviors into the FLAVERS analysis.

6 Conclusions

Data flow analysis is a powerful static analysis technique. We have shown that the data flow approach
can be used to verify that non-trivial communication protocols requirements specifications are satisfied
by pseudocode designs. A number of requirements specifications for the three way handshake connection
establishment and the alternating bit data transfer protocols have been formulated as event sequences and
conclusively verified using the FLAVERS data flow analysis tool. The time spent by the human verifier in
preparing the analyses and incrementally adding feasibility constraints was reasonable, ranging from a few
hours for the most difficult requirement, correct sequence numbers, to a few minutes for passive states.
This, in conjunction with the fact that all requirements were verified conclusively, leads us to believe that
incremental accuracy improving flow analysis is a powerful and practical approach to verifying communication
protocol requirements specifications. The actual analysis times seem to us to be more interesting as relative,
not absolute, measures. They give a useful notion of the increase in the analysis complexity when faulty
behaviors of the media are modeled. We expect to refine FLAVERS to achieve significant reductions in the
analysis time in future work with this system.

A number of directions for improving the current implementation of FLAVERS have been uncovered
by the experiments. The ability to handle liveness conditions would allow verification of a broader class
of protocol requirements specifications. One of the ways to address this problem is to introduce anchored
quantified regular expressions [O090], which allow the analysis to be restricted to a particular part of the
TFG. Another drawback of the FLAVERS implementation is its limitation in supporting variable model-
ing. Only boolean variables can now be modeled automatically. Automated support for creating variable
automata should significantly reduce the effort required from the human verifier to prepare analyses. The
rapid increase in the analysis time for communication models that allow for the possibility of message losses
might be an indicator of the need for a more effective state propagation algorithm when the lattice for a
problem becomes large. Efficiency of the analysis is closely related to the size and connectedness of the TFG
for a given protocol specification. Optimization techniques aimed at reducing the number of TFG edges
should increase the efficiency of the analysis significantly. Also, by automating the decomposition of proto-
cols and requirements, we can employ a hierarchical approach to the analysis of complicated requirements;
by representing a requirement as a conjunction of a number of simpler requirements, the analysis time can
be reduced if the time that it takes to prove each of the simpler requirements is significantly less than the
time to prove the complex requirement.

Overall, the results presented in this paper are encouraging in showing the applicability of the incremental
accuracy improving flow analysis technique to the verification of communication protocols. We consider this
an extremely promising approach for the protocol domain as well as other domains where event sequences

15

capture some of the behavior requirements.

7 Acknowledgments

The authors gratefully acknowledge the assistance of Jim Kurose in providing background and insights into
communications protocols, and the support of Matt Dwyer, Tim Chamillard, George Avrunin in understand-
ing, applying and interpreting the results of FLAVERS.

References

[ABC82]

[ABCT91]

[BB87]

[BCM*90]

[BDS?7]
[BHS9)
[BN'Y86)]
[BP94]
[BSW69]

[CDG85]

[CESS36]

[CF194]

[Cor92]

[DC94]

[Dwy95]

[GW91]

W. Richards Adrion, M.A. Branstad, and J.C. Cherniavski. Validation, Verification, and Testing of
Computer Software. ACM Computing Surveys, 14(2):159-192, June 1982.

George S. Avrunin, Ugo A. Buy, James C. Corbett, Laura K. Dillon, and Jack C. Wileden. Automated
Analysis of Concurrent Systems with the Constrained Expression Toolset. IEEE Transactions on Software
Engineering, 17(11):1204-1222, November 1991.

T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS. Computer
Networks and ISDN Systems, North-Holland, 14:25-59, 1987.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic Model Checking: 10%°
States and Beyond. In Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science,
pages 428-439, 1990.

S. Budkowski and P. Dembinski. An introduction to Estelle: A specification language for distributed
systems. Computer Networks and ISDN Systems, North-Holland, 14:3—23, 1987.

F. Belina and D. Hogrefe. The CCITT-specification and description language SDL. Computer Networks
and ISDN Systems, 16, 4:311-341, 1989.

Naser Barghouti, Nihal Nounou, and Yechiam Yemini. An integrated protocol development environment.
Proc. 6th int. symp. on protocol specification, testing and verification, June 10-13, 1986, 1986.

Gregor Bochmann and Alexandre Petrenko. Protocol testing: Review of methods and relevance for
software testing. In Proc. 1994 International Symposium on Software Testing and Analysis, August 1994.

K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A note on reliable full-duplex transmission over
half-duplex lines. Comm. of the ACM, 12(5):260-265, 1969.

R. Castanet, A. Dupeux, and P. Guitton. Ada, a well suited language for specification and implementation
of protocols. Proc. 5th int. symp. on protocol specification, testing and verification, June 10-13, 1985,
1985.

E. M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic Verification of Finite-State Concurrent Sys-
tems Using Temporal Logic Specifications. ACM Transactions on Programming Languages and Systems,
8(2):244-263, April 1986.

Gérard Cécé, Alain Finkel, and S. Purishothaman Iyer. Duplication, insertion and lossiness errors in
unreliable communication. In Proc. of the Second ACM SIGSOFT Symposium on Foundations of Software
Engineering, December 1994.

James C. Corbett. Verifying General Safety and Liveness Properties with Integer Programming. In
Proceedings of the Fourth Workshop on Computer Aided Verification, pages 337-348, 1992.

Matthew Dwyer and Lori Clarke. Data Flow Analysis for Verifying Properties of Concurrent Programs,.
In ACM SIGSOFT’94 Software Engineering Notes, Proceedings of the Second ACM Sigsoft Symposium
on Foundations of Software Engineering, v. 19, n. 5, pages 62-75, December 1994.

Matthew Dwyer. Data Flow Analysis for Verifying Correctness Properties of Concurrent Programs. PhD
thesis, University of Massachussetts, Amherst, 1995.

Patrice Godefroid and Pierre Wolper. Using partial orders for the efficient verification of deadlock freedom
and safety properties. In Proceedings of the Third Workshop on Computer Aided Verification, pages 417—
428, July 1991.

16

[Hec77]
[HGP92]
[Hoa69]
[Hol87]

[Hol91]
[HS96]

[KY82]
[Mil80]
[MR90]

[MR91]

[0090]
[Pac87]
[Pnu77]
[RRSV87]
[RS88]
[RS90]
[SL89]
[Spi92]
[5582]
[Tay83]
[TO80]

[Val91]

[VHCS6]

M.S. Hecht. Flow Analysis of Computer Programs. North-Holland, New York, 1977.

G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction strategies for reachabil-
ity analysis. In Proc. 12th Int. Conf on Protocol Specification, Testing, and Verification, INWG/IFIP,
Orlando, F1., June 1992.

C.A.R. Hoare. An Axiomatic Basis of Computer Programming. Communications of the ACM, 12(10):576—
583, October 1969.

Gerard J. Holzmann. On limits and possibilities of automated protocol analysis. Protocol Specification,
Testing and Verification VII, IFIP 1987, pages 339-344, 1987.

Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall Software Series, 1991.
W. E. Howden and G. M. Shi. Linear and structural event sequence analysis. In ISSTA, 1996.

James F. Kurose and Yechiam Yemini. The specification and verification of a connection establishment
protocol using temporal logic. Proc. 2nd int. workshop on protocol specification, testing and verification,
May 17-20, 1982.

Robin Milner. A Calculus of Communicating Systems, Lecture Notes in Computer Science, Vol.92.
Springer-Verlag, Berlin, 1980. Appeared as vol. 92, Lecture Notes in Computer Science.

T. J. Marlowe and B. G. Ryder. Properties of Data Flow Frameworks. Acta Informatica, (28):121-163,
1990.

S.P. Masticola and B.G. Ryder. A Model of Ada Programs for Static Deadlock Detection in Polynomial
Time. In Proceedings of the Workshop on Parallel and Distributed Debugging, pages 97-107. ACM, May
1991.

Kurt M. Olender and Leon J. Osterweil. Cecil: A Sequencing Constraint Language for Automatic Static
Analysis Generation. IEEE Transactions on Software Engineering, 16(3):268-280, March 1990.

Jan Pachl. Protocol description and analysis based on a state transition model with channel expressions.
Protocol Specification, Testing and Verification VII, IFIP 1987, pages 207-219, 1987.

Amir Pnueli. The Temporal Logic of Programs. In Proceedings of the Eighteenth Symposium on Founda-
tions of Computer Science, Providence, 1977, pages 46-57, 1977.

J. L. Richier, C. Rodriguez, J. Sifakis, and J. Voiron. Verification in Xesar of the sliding window protocol.
Protocol Specification, Testing and Verification VII, IFIP 1987, pages 235248, 1987.

J. Reif and S. Smolka. The Complexity of Reachability in Distributed Communicating Processes. Acta
Informatica, 25(3):333-354, 1988.

John H. Reif and Scott A. Smolka. Data flow analysis of distributed communicating processes. Interna-
tional Journal of Parallel Programming, 19(1), 1990.

Deepinder P. Sidhu and Ting-Kau Leung. Formal methods for protocol testing: A detailed study. IEEFE
Transactions on Software Engineering, 15(4):413-426, April 1989.

J. M. Spivey. The Z Notation A Reference Manual. Prentice Hall, International Series in Computer
Science, 1992.

Krishan Sabnani and Mischa Schwartz. Verification of a multidestination protocol using temporal logic.
Proc. 2nd int. workshop on protocol specification, testing and verification, May 17-20, 1982.

Richard N. Taylor. Complexity of Analyzing the Synchronization Structure of Concurrent Programs.
Acta Informatica, 19:57-84, 1983.

Richard N. Taylor and L. J. Osterweil. Anomaly Detection in Concurrent Software by Static Data Flow
Analysis. IEEE Transactions on Software Engineering, 6(3):265-278, May 1980.

A. Valmari. A Stubborn Attack on State Explosion. In Edmund M. Clarke and R.P. Kurshan, editors,
Computer-Aided Verification 90, pages 25—41. American Mathematical Society, Providence RI, 1991.
Number 3 in DIMACS Series in Discrete Mathematics and Theoretical Computer Science.

Son T. Vuong, Daniel D. Hui, and Don D. Cowan. Valira — a tool for protocol validation via reachability
analysis. Proc. 6th int. symp. on protocol specification, testing and verification, June 10-13, 1986, 1986.

17

[YGH82] Larry Yelowitz, Susan Gerhart, and G. Hilborn. Modeling a network protocol in affirm and ada. Proc.
2nd int. workshop on protocol specification, testing and verification, May 17-20, 1982, 1982.

[YR92] V. Yodaiken and Krithi Ramamritham. Verification of a Reliable Net Protocol. In Formal Techniques
in Real-Time and Fault-Tolerant Systems, Lecture Notes in Computer Science No. 571, pages 193-215.
Springer-Verlag,, 1992.

18

