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Abstract

VBR compressed video is known to exhibit significant, multiple-time-scale rate variability. A number of
researchers have considered transmitting stored video from a server to a client using smoothing algorithms to
reduce this rate variability. These algorithms exploit client buffering capabilities and determine a "smooth" rate
transmission schedule, while ensuring that a client buffer neither overflows nor underflows.

In this paper, we investigate how video smoothing impacts the statistical multiplexing gains availablewith such
traffic and show that a significant amount of statistical multiplexing gain can be still be achieved. We then examine
the implication of these results on network resource management and call admission control when transmitting
smooth stored video using variable-bit-rate (VBR) service and statistical Quality-of-Service (QoS) guarantees.
Specifically, we present a call admission control scheme based on a Chernoff bound method that uses a simple,
novel traffic model requiring only a few parameters. This scheme provides an easy and flexible mechanism for
supporting multiple VBR service classes with different QoS requirements. We evaluate the efficacy of the call
admission control scheme over a set of MPEG video traces.

1 Introduction

Support of Quality-of-Service (QoS) guarantees for real-time transport of stored video over high-speed networks
is crucial for the success of many distributed digital multimedia applications, including video on-demand server
systems, digital libraries, distance learning, and interactive virtual environments. Video, which is typically stored
and transmitted in compressed format, can exhibit significant rate variability, often spanning multiple time scales
and in some cases demonstrating self-similar behavior [9]. The highly bursty nature of VBR compressed video
makes network call admission control and resource management a particularly difficult and complicated task. Hence
techniques for reducing the burstiness (rate variability) of video are of significant interest.

A number of researchers have considered using video smoothing algorithms to reduce the variability in trans-
mitting stored video from a server to a client across a high-speed network [23, 24, 8, 20, 19, 27]. These algorithms
exploit client buffering capabilities to determine a "smooth" rate transmission schedule, while ensuring that a client
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buffer neither overflows nor underflows. Such video smoothing techniques can achieve significant reduction in rate
variability. For example, over a set of MPEG video traces, the smoothing technique in [27] is shown to reduce the
peak and standard deviation of the transmitted bit rate by approximately 70%-85%, when smoothed into a 1 MB
client buffer.

In this paper, we study several aspects of the problem of supporting stored video with variable-bit-rate (VBR)
service and statistical QoS guarantees. First, we investigate the extent to which video smoothing reduces the
amount of potential statistical multiplexing gain. Statistical multiplexing is an important feature that distinguishes
packet-switched networks from their circuit-switched counterparts. VBR network service allows the network to
exploit statistical multiplexing gain, since bandwidth is shared dynamically among all traffic streams within a service
class. This is in contrast to constant-bit-rate (CBR) service, which provides the abstraction of a fixed-bandwidth
pipe to each network user. CBR service is a natural choice for supporting hard, deterministic guarantees, but may
result in low network utilization since the network must allocate sufficient bandwidth to accommodate the user’s
peak traffic rate. Because of the significant peak rate reduction, video smoothing can clearly improve the network
utilization under CBR service [24, 20, 27]. In this paper, we explore the possibility of improving network utilization
by exploiting statistical multiplexing gain with VBR service.

At first glance, there might appear to be only minimal statistical multiplexing gain available with smoothed VBR
video traffic, since video smoothing can achieve tremendous reduction in rate variability. However, we find that
long-term, slow-time rate variability is still apparent in most smoothed video streams, particularly when client buffers
are relatively small. As a consequence, statistical multiplexing gain can still be exploited even after smoothing, thus
offering the possibility of reducing the bandwidth required to support a call at a given QoS level, thereby improving
network utilization.

In order for VBR service to be a viable alternative to CBR service for real-time video transport, however, it must
employ relatively simple, robust resource management and control mechanisms so that the complexity and cost will
not offset the utilization gain. A major contribution of this paper is thus to present a call admission control scheme
based on a Chernoff bound method [3, 1, 22, 2, 6, 11, 10] that uses a simple, novel traffic model requiring only a
few parameters. The Chernoff bound method is shown to provide an effective and robust technique for estimating
the potential statistical multiplexing gain and predicting the aggregate bandwidth needed to satisfy a given level of
QoS. The traffic model consists of only five parameters that can be easily gathered from a video trace. Our proposed
call admission control scheme, coupled with this traffic model, provides an easy and flexible mechanism to support
multiple levels of VBR service classes with different QoS requirements.

The remainder of the paper is organized as follows. In Section 2, we study the impact of video smoothing on
the statistical characteristics of video traces. In Section 3, the impact of smoothing on statistical multiplexing gain is
investigated. We look at call admission control issues for VBR service with statistical QoS guarantees in Section 4.
Related work is discussed in Section 5 and the paper is concluded in Section 6.

2 VideoSmoothing and its Impact onStatisticalCharacteristics of SmoothedVideo

Many multimedia applications transmit stored video streams from a server to a client across a high-speed network.
For each stream, the server retrieves data from its video storage system and transfers it onto the high-speed network
according to a transmission schedule. The client decodes and periodically displays the data it receives from the
server. Data arriving ahead of its playback time is stored in a client buffer. In order to ensure continuous playback
at the client, the server must transmit the video stream in a manner that ensures the client buffer neither underflows
nor overflows.
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Figure 1: Optimal smoothing of a 2-hour MPEG-1 encoding of Star Wars latency.
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Figure 2: Impact of the Optimal Smoothing on the Marginal Distributions

Various video smoothing algorithms have been developed [23, 24, 8, 20, 19, 27] that exploit client buffering
capabilities to reduce the rate variability existing in VBR-compressed video, while ensuring that a client buffer
neither overflows nor underflows. The issue of minimizing buffer requirements for video streams transmitted in a
CBR or piece-wise CBR manner is studied in [20, 19]. The authors in [8] examine the issue of minimizing the
number of rate changes in a server transmission schedule. In [23, 24], video smoothing using client decoder buffer
together with a startup delay is studied in a on-line video conferencing setting, and the shortest Euclidean distance
algorithm of [16] is used to produce smoothed server transmission schedules under the assumption that frame sizes
of the video conference trace are known a priori. In [27], a smoothing algorithm is developed that achieves maximal
reduction in rate variability for stored video, producing the “smoothest” possible server transmission schedules. The
intuitive notion of “smoothness” is formalized using the concept of majorization [18], and the optimality of the
smoothing algorithm is formally established. Among other things, the optimal smoothing algorithm in [27] produces
a transmission schedule that has minimal peak rate and variance for a given client buffer size. Because it reduces
rate variability, we will use this algorithm as the smoothing technique in this paper.

Figure 1 visually demonstrates the effect of video smoothing by plotting the transmission sizes (i.e., number of
bits per frame time unit, at 24 frames/s), over a two-hour MPEG-1 encoding of Star Wars [9]. Both the unsmoothed
transmission schedule (a) as well as the smoothed schedules for client buffer sizes of 256 KB (b) and 1 MB (c) are
shown. Figure 2 shows the corresponding histograms of the schedules, plotted with 100 bins (note the different
scales in the axes). These figures indicate that smoothing significantly reduces the range of transmission sizes –
from 0-200 Kb per frame time unit in the unsmoothed schedule, down to 5-30 Kb per frame time unit with a 256
KB client, and 6-24 Kb per frame time unit in the case of 1 MB client buffer. This is a strong indication that rate
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Figure 3: Impact of the Optimal Smoothing on Autocorrelation Structures

variability has been significantly reduced. Note that the transmission schedule in the 1 MB case contains a relatively
small number of long, constant rate segments. Furthermore, note that the histogram of a smoothed schedule looks
very different from that of the unsmoothed schedule. In particular, the tail distribution of these histograms have
very different forms: the long, heavy “tail” of the unsmoothed Star Wars trace is transformed into disconnected,
conspicuously outstanding “spikes” after smoothing into a 1 MB client buffer.

This drastically altered marginal distribution of smoothed video streams has important consequences for traffic
modeling. For example, the traffic modeling techniques presented in [9, 15, 25] that characterize the “heavy-tailed”
marginal distributions are not applicable to the smoothed video traces . Different techniques are needed for modeling
smoothed video traces. In Section 4, we present a simple technique for characterizing the marginal distribution that
is applicable for both smoothed and unsmoothed video streams. The technique is developed for the purpose of call
admission control.

The autocorrelation functions of the unsmoothed and smoothed video traces are shown in Figure 3. Due to
the MPEG encoding scheme, the unsmoothed trace demonstrates strong periodic correlation. In Figures 3 (b) and
(c) this periodicity has been removed by video smoothing. However, the slowing decaying correlations at large
time lags indicate that the traces are still highly correlated. This is because the smoothed video traces consist of
many relatively long CBR segments. In the frequency domain, the power spectrums of the video traces (figures
of which are not included here due to space limitations) indicate that the variability that still exists is due mostly to
slow-time scale variations, while the fast-time scale variability has essentially been removed. This observation can
also be visually verified from Figure 1, where we see that the smoothed video streams consist of relatively long CBR
segments.

The reduction or removal of fast-time scale rate variability has implications on network resource management,
especially buffer allocation within the network. The study in [12, 17] has shown that buffering is only effective
in reducing losses due to variability in the high frequency domain, and is not effective for handling variability in
low frequency domain. To accommodate low-frequency variability, sufficient bandwidth must be allocated in order
to maintain the targeted QoS guarantee. This is particularly true in the case of smoothed video streams: because
the streams are highly correlated, insufficient bandwidth at one point is likely to lead to consecutive losses over a
relatively long period of time, thus greatly affecting the QoS of a client. Consequently, in supporting transport of

In the rest of the paper, we will refer to the smoothed transmission schedule of a video trace as the smoothed video trace. It is a sequence
of transmission sizes (number of bits per frame time unit) produced by the optimal smoothing algorithm.

The autocorrelation function, , , of a stationary discrete random process is defined as
, where denotes expectation, is the mean of , and is the variance of .

Power spectrum of a stationary process is the Fourier transform of its autocorrelation function.
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Figure 4: Statistical Multiplexing gain: Unsmoothed and Smoothed Streams, No Loss

smoothed video streams with QoS guarantees, network bandwidth allocation becomes especially critical. At the
same time, the amount of buffer space needed within the network can be greatly reduced (i.e., to the amount needed
in a network switch for temporarily storing data to be forwarded).

Two advantages are realized with minimal buffer allocation in the network. First, queueing delay jitter introduced
by buffering within the network is greatly reduced. Therefore, less client buffer space needs to be set aside
to accommodate the network jitter, thus achieving greater reduction in rate variability [27]. From the client’s
perspective, this also means reduced latency in playback. Second, minimal buffering at the network limits the
effect of the autocorrelation structure of the user’s traffic on the overall average loss rate. Hence, the difficult task
of characterizing the correlation structure of the user traffic is much less important, suggesting that only marginal
distribution information (e.g., Figure 2) is needed in traffic specification. For these reasons, we model a network
switch as a bufferless multiplexer in the remainder of the paper.

3 Statistical Multiplexing of Smoothed Video Streams

As shown in the previous section, slow-time scale variability still exists in smoothed video streams, particularly with
relatively small client buffers. In this section, we empirically determine the amount of statistical multiplexing gain
that can be realized when smoothed video streams are aggregated at a network switch or router.

An important assumption underlying most analyses of statistical multiplexing gain is that traffic from different
sources are independent of each other. We first evaluate the potential statistical multiplexing gain of smoothed video
streams under this independent source assumption, and then investigate the effect of correlated arrivals. Finally, we
discuss the implication of this statistical multiplexing gain on network service models and QoS guarantees.

3.1 Independent Arrivals

To investigate the statistical multiplexing gain, we use a simple simulation model. We consider a bufferless
multiplexer with independent video streams. For a given QoS requirement (say a loss rate of ), we perform
500 independent runs of a simulation to empirically obtain the minimum bandwidth needed to satisfy the given QoS
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Figure 5: Aggregate Homogeneous Video Streams under Various Arrival Patterns

requirement. For each run, we compute the minimum bandwidth required to support the given network load without
violating the specified QoS requirement. The maximum value among all runs is used as an indication of bandwidth
needed to achieve the target QoS.

In simulating independent arrivals, we assume that the video streams arriving at the multiplexer are randomly
displaced from each other. In other words, for each video stream, the starting frame is equally likely to be any one
of the video frames, with appropriate “wrap-around” to ensure that the video streams are of the same length.

To quantify the statistical multiplexing gain, we use the formula as its formal definition, where
is the aggregate bandwidth required to satisfy a given QoS requirement (say no loss) for all video streams in the

simulation and is the peak rate of the aggregate load (which is the sum of the peak rate of the individual streams).
Hence, the statistical multiplexing gain thus defined represents the fractional reduction in aggregate bandwidth
requirement needed in the simulation in comparison to peak rate allocation. It thus quantifies the potential utilization
improvement that can be realized by VBR service over CBR service with peak rate allocation.

Figure 4 shows the statistical multiplexing gain as a function of number of sources for smoothed video streams
with various client buffer sizes, as well as for the unsmoothed video streams. In case (a), all sources are homogeneous,
and are generated from the same Star Wars trace. In case (b), sources are generated from 10 different video traces.
The number of sources from each type of video are increased uniformly. Hence an aggregation of 100 sources
consists of 10 sources from each type. The QoS requirement for this example is that no loss occurs at the multiplexer
during the entire transmission of the aggregated video streams. The figure indicates that for unsmoothed video
streams, a potential statistical multiplexing gain of 70%-80% is realizable with VBR service over CBR service with
peak rate allocation, while for smoothed streams with various client buffer sizes, a potential statistical multiplexing
gain of 10%-60% is realizable. Thus, there are significant statistical multiplexing gains to be exploited by VBR
service when individual streams are smoothed, especially when client buffers are relatively small.

In Appendix A, we show that under the independent arrival assumptions, the optimal smoothing algorithm
developed in [27] is most likely to yield the smoothest aggregate stream in terms of the peak rate and variability.
Hence the statistical multiplexing gains observed when using the optimal smoothing algorithm should, in practice,
be lower bounds on the expected statistical multiplexing gains when using other smoothing algorithms.
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Figure 6: Aggregate Heterogeneous Video Streams under Various Arrival Patterns

3.2 Correlated Arrivals

The independent arrival assumption may sometimes be violated in practice. For example, in a video-on-demand
system, it is possible that many users may start watching videos within a short time span, thus resulting in correlated
arrivals. We next investigate the impact of correlated arrivals on the statistical multiplexing gain.

To investigate this question, we consider scenarios in which all video streams are constrained to begin (i.e., a
request for a video playout arrives) within a short time span (i.e., a time span of 1 minute). Within this one minute
interval, start times are uniformly, independently and identically distributed. In simulation, this corresponds to
randomly choosing the start of a video stream from the first 1 minute segment of the video trace.

Figure 5 illustrates the aggregation of 10 and 100 Star Wars sources (smoothed with 1 MB client buffers) under
various arrival patterns, where the aggregate instantaneous bandwidth requirement per frame time unit is plotted over
the entire duration of the video. The solid line depicts a sample path of the aggregate video stream with independent
arrivals, while the two dotted lines depict sample paths of aggregation of video streams when all sources arrive
within 1 minute or 10 minutes respectively. From the figure, we note that when all sources are homogeneous, the
aggregate stream under correlated arrivals is remarkably burstier and has a considerably larger peak rate than under
independent arrivals.

Figure 6 illustrates the aggregation of 10 and 100 sources from 10 different video traces (all smoothed with 1 MB
client buffers) under the same arrival patterns. In case (a), 10 sources from 10 different video traces are aggregated.
In this case, due to the heterogeneous mix of sources, there is little difference in the aggregate streams corresponding
to correlated arrivals and independent arrivals. The effect becomes more visible when the number of video sources
from the same video traces increases, as shown in case (b), where a total of 100 sources, 10 from each video trace, are
aggregated. The maximum aggregate bandwidth requirement in the 1 minute correlated arrival case is considerably
larger that that in the independent arrival case (compare the peak of the fine dotted line and that of the solid line).
However, the difference between the two cases is less visible in comparison with the homogeneous case consisting
only of Star Wars streams.

The impact of correlated arrivals on statistical multiplexing gain is shown in Figure 7 where video streams
are smoothed into a 1 MB client buffer. Clearly, correlated arrivals have an enormous impact on aggregation of
homogeneous sources, leaving almost no statistical multiplexing gain to be exploited. On the other hand, there is a
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Figure 7: Statistical Multiplexing gain under Correlated Arrivals: Smoothed Video Streams, No Loss

much less severe impact when heterogeneous streams are aggregated and the same number of sources are uniformly
dispersed among all types of video streams. In this case, the heterogeneity of the video streams helps alleviate the
adverse impact of correlated arrivals on the statistical multiplexing gain.

3.3 Statistical Multiplexing and its Implications on Network Service Models and QoS Guarantees

As shown in section 3.1, VBR service can significantly improve network utilization by exploiting the potential
statistical multiplexing gains available with inherently bursty network traffic. However, the potential statistical
multiplexing gain can be diminished by correlated arrivals. This observation illustrates an important dimension of
network service models — the robustness of network services with QoS guarantees. For a network service model
that aims to provide VBR service with statistical QoS guarantees by explicitly exploiting statistical multiplexing
gain, the term statistical takes on two meanings: one at the call level, another at the service level. At the call level,
statistical QoS guarantees means that QoS fluctuations may occur so long as they remain within the tolerance level
specified by the user (e.g., a cell loss rate of at most ), during the call. This is opposed to deterministic QoS
guarantees, where the QoS (e.g., no cell loss) is hard guaranteed throughout the duration of the call. At the service
level, statistical guarantees permits the network to fail in providing the promised QoS, for example, in the rare event
that the users produce correlated traffic. This is in contrast to guaranteed services, where as long as the user complies
with its traffic specification, the network promises to deliver its QoS guarantee upon which it has agreed with the
user. In order to ensure user compliance, traffic specification for guaranteed services must be enforceable and traffic
policing and reshaping may be needed within the network.

From the network’s perspective, in order to provide for the diverse needs of users, a range of service classes with
different levels of service robustness should be provided. By doing so, the network can exploit, to various degrees,
potential statistical multiplexing gains and thus increase network utilization while still maintaining the targeted QoS
service level. In the next section, we propose a call admission control mechanism that has the flexibility of providing
a range of QoS service levels with varying robustness. The tradeoff between the robustness of a network service with
QoS guarantees and the realization of statistical multiplexing gain needs to be investigated further and is beyond the
effort of this paper.
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4 Call Admission Control for Smoothed Video

In the previous section, we demonstrated the potential statistical multiplexing gains available for both smoothed
and unsmoothed video streams, and argued for the need to provide a range of QoS guarantee service classes with
varying degrees of service robustness. In order to effectively realize the potential statistical multiplexing gains,
relatively simple, robust call admission control mechanisms should be employed so that the complexity and cost will
not offset the utilization gain. In this section we present a Chernoff-bound-based call admission control scheme and
study methods for characterizing the sources’ marginal distribution. We propose a simple traffic model with only
five parameters. We show that the proposed call admission control scheme, combined with the simple traffic model,
provides an easy, effective and flexible mechanism to support multiple levels of VBR service classes with different
QoS requirements.

4.1 Chernoff-bound-based Call Admission Control

Consider a bufferless multiplexer where the channel capacity is . Suppose there are types of sources, and there
are sources of type , . At any time , the amount of traffic arriving from source of type is

. For each type , we assume that has a stationary distribution given by a -state discrete random
variable which takes the values . In particular, . In other words, with
probability , the source is in state , and while in this state, generates amount of traffic. Hence the total
amount of traffic at a random time is . Given that are all independent, the loss probability at
the multiplexer can be estimated by the following well-known Chernoff Bound [3, 6] approximation:

(1)

where

and (2)

and is the moment generating function of .
As with , , the Chernoff Bound (1) can be further refined [22, 2, 1, 6, 10] by

adding a prefactor:

(3)

where is the solution to . and are the first and second derivatives of .
The Chernoff bound can be used to estimate the aggregate bandwidth that is needed to satisfy a given loss

probability bound at the multiplexer, . The estimated bandwidth is given by the following
expression

(4)

where is the solution to the following equation

(5)

For the sake of simplicity and practicality, we consider only discrete random variables.
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Figure 8: Chernoff Bound Estimation with Histogram: Unsmoothed Streams, Loss Rate

As the peak rate of the aggregate stream is , the statistical multiplexing gain estimated using the
Chernoff bound method is .

A generic call admission control algorithm based on the Chernoff bound operates as follows. Suppose a new
call of source type arrives. It is accepted if the new aggregate bandwidth estimate , computed using (4) with
replaced by , is less than , the channel capacity of the multiplexer.

The cost of the call admission algorithm lies mainly in the computation of the marginal moment generating
function for each source and the solution to the nonlinear equation (5). The latter can generally be solved
very fast using the standard Newton-Bisection method. The major cost is associated with the computation of
and its first and second derivatives used in (4) and (5). The marginal moment generating function is computed from
source marginal distribution information , , provided by the user and maintained
by the network.

Clearly, using as few parameters as possible to capture the marginal distribution will not only reduce the
computational cost of network call admission control but also the network cost for maintaining relevant state.
Therefore, characterizing the marginal distribution of a smoothed or unsmoothed video trace in a manner that
permits it to provide sufficient information for the network to exploit statistical multiplexing gains, while at the same
time minimizing the associated network cost, is a key question. This will be the focus of the remainder of the paper.
This question is particularly challenging, as we have shown that video smoothing drastically alters the marginal
distribution of video traces.

4.2 Characterization of Marginal Distribution using Histograms

The histogram method is a standard method for providing a discrete representation of a source marginal distribution.
In this section, we evaluate the Chernoff-bound-based call admission control algorithm using the histogram method.

The marginal distribution of a video trace can be characterized using a -bin histogram as follows. Let be
the peak rate of the given trace. We divide the range into equal intervals of width (i.e., bins for
histogram). The empirical marginal distribution is then collected by counting number of transmission sizes that fall
into each of the bins. In other words, the marginal distribution is described by a -state random variable

10
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Figure 9: Chernoff Bound Estimation with Histogram: 512 KB Smoothed Streams, Loss Rate

with a distribution specified by a set of pairs. For , the probability that is in state is
, where denotes the cardinality of a set, denotes the transmission size at frame time

and is the length of the video, and is the amount of traffic generated in this state .
We evaluate the performance of the Chernoff-bound-based call admission control algorithm using histogram

characterization of source marginal distributions as follows. For a given loss rate, we compare the bandwidth
estimated by the Chernoff bound method using (4) with simulation. The simulation set-up is the same as in Section 3.
We perform 500 independent runs, and for each run, compute the minimal bandwidth required to satisfy the given
QoS level. The maximum over all 500 runs is taken as the aggregate bandwidth that is needed to satisfy the given
QoS level in most cases .

The results are shown in Figure 8 for the unsmoothed video streams, and in Figure 9 for the smoothed video
streams (with 512 KB client buffers). In both figures, sources in case (a) are homogeneous (generated from the
Star Wars trace), whereas sources in case (b) are generated from 10 different video traces with an equal number of
sources of each type. In all cases, we see that as the number of bins used for describing the marginal distributions
increases, the bandwidth requirements estimated by the Chernoff bound method approach the simulation results.
This is because with more bins, the marginal distributions of the video traces are more accurately characterized.

Using the same number of bins, the marginal distribution of smoothed video streams can be captured more
accurately than that of the unsmoothed video streams, because the smoothed video streams are much less bursty. For
example, using for the smoothed Star Wars streams (assuming 512 KB client buffers), the Chernoff bound
method predicts that a bandwidth of 183 Kb per frame time unit is needed to transmit 100 smoothed Star Wars sources
with a loss rate of as opposed to 239 Kb by peak rate allocation, resulting in a statistical multiplexing gain of
23.6% over the peak rate allocation. The simulation result indicates that a bandwidth of 172 Kb per frame time unit
is required, which gives a statistical multiplexing gain of 28.9%. Hence, the Chernoff bound method produces an

Choosing this way results in a histogram that generally has larger mean than the original video trace but the same peak rate. can
also be chosen as the mean of all transmission sizes in bin . This results in a histogram that has the same mean as the original one, but
generally with a smaller peak rate.

Another set of independent runs are performed to test the robustness of the aggregate bandwidth thus obtained. For stringent loss rates
such as or (the latter loss rate essentially yields a lossless transmission), we see almost zero service failure rate. In other words,
the maximum bandwidth obtained from the first set of 500 runs is typically sufficient to satisfy the given QoS for the second set of 500 runs.
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Figure 10: Comparison of Chernoff Bound Estimation for the Unsmoothed and Smoothed Streams: Loss Rate

estimate which is only % more than obtained by the simulation. In comparison, using for the
unsmoothed Star Wars streams, the Chernoff bound method predicts that a bandwidth of 3647 Kb per frame time unit
is needed to transmit 100 unsmoothed Star Wars sources with a loss rate of as opposed to 18526 Kb by peak rate
allocation, resulting in a statistical multiplexing gain of 71.3% over the peak rate allocation. The simulation result
indicates that a bandwidth of 2750 Kb per frame time unit is required, which gives a statistical multiplexing gain of
75.2%. However, in this case, the Chernoff bound method produces an estimate which is about %
more than obtained by the simulation. Therefore, for a given number of bins, the Chernoff bound method produces
more accurate bandwidth estimates for smoothed video streams than for unsmoothed video streams, when compared
to the simulation results.

In Figure 10, the ratios of the aggregate bandwidth estimated by the Chernoff bound to the aggregate mean rate are
shown for unsmoothed and smoothed video streams (with 512 KB client buffers), along with the peak rate allocation
and the simulation result. Since the mean bit rate for both smoothed video streams and unsmoothed video streams
is the same, comparison of (a) and (b) (note the different scales in y-axes) demonstrates the tremendous impact of
video smoothing on bandwidth reduction. Video smoothing greatly reduces the bandwidth required to support a
given level of QoS under VBR service, thus improving network utilization. This improvement of network utilization
can be effectively realized by using a call admission control algorithm that estimates bandwidth requirement using
the Chernoff bound method.

A -bin histogram requires the specification of parameters by a source: the peak rate , and the probabilities
of the bins, . By appropriate choice of , the network can define different levels of service classes with
varying robustness of QoS guarantees. For example, by choosing , the network is making rather conservative
assumption about the user behaviors, in terms of allocating more bandwidth to provide the requested service to the
users. By choosing , or , or larger, the network makes more optimistic and aggressive assumptions
about the independent user behaviors (see Figures 8 and 9). Therefore, greater statistical multiplexing gains can be
realized, but with the risk of increasing the likelihood of service failure. Larger values of also result in more
overhead and complexity for the network to maintain state and perform call admission control, diminishing the
benefits resulting from higher network utilization.

12



4.3 Parsimonious Bounding Models for Marginal Distribution Characterization

In this section we take a very different approach to the problem of characterizing the sources’ marginal distributions
for the purpose of call admission control. Consider the following problem: given a user traffic specification described
by a set of parameters such as the mean and the peak rate of a source, how should the network construct a marginal
distribution that matches the given user parameters? Clearly there are many possible such distributions. Traffic
models that make a priori assumptions about the user marginal distribution, e.g., that it can be captured by a Gamma
or Lognormal or Pareto distribution, have limited applicability. This is particularly true in the light of the impact
of video smoothing on the marginal distribution of video traces. Since the network does not have knowledge about
the user’s marginal distribution beyond the specified user parameters, what assumption should the network make
in order to satisfy its QoS? We take a bounding approach in answering this question, and assume that the network
should make the most conservative assumption so as to account for the “worst-case” marginal distribution that a
user may have. This leads to the construction of a marginal distribution such that the bandwidth estimated using the
Chernoff bound method yields an upper bound on the bandwidth required by any user with any marginal distribution
that matches the given set of user-specified parameters.

To address this the problem, we turn to the theory of stochastic ordering. Given two random variables and
with respective distributions and , we say is smaller than under increasing convex ordering (denoted

or ), or informally, is stochastically less variable than , if for all
increasing, convex functions . It can be shown (see, e.g., p.271 of [26]) that if and are nonnegative such
that , then if and only if for all convex . This ordering is called
variability ordering in [26]. Intuitively, means that is less variable than in the sense that gives
more weight to the extreme values. In particular, we have that and where
is the essential supremum of a random variable, defined as .

With this notion of stochastic variability, the following theorem provides a basis for constructing a worst-case
distribution. Informally, the theorem states that among all random variables that have the same user-specified
parameters, the random variable that has the worst-case distribution is the one that is stochastically most variable.

Theorem 1 Consider a bufferless multiplexer with channel capacity . For , , let denote a
random variable with the stationary marginal distribution of source of type , and let be a corresponding random
variable representing the marginal distribution chosen by the network which matches the user specified parameters.
In particular, we assume that , i.e., the mean of the marginal distribution specified by the user is
matched by the random variable chosen by the network. Define , and . Then,
a sufficient condition for the network to provide an upper bound on the loss probability a user may experience, i.e.,

, as estimated by the Chernoff bound (1), is that for all and .

Proof: From (1), it suffices to show that , or . From (2), this is equivalent to

(6)

Clearly, (6) holds if for all .
Recall that and . Since is a convex function in and

, we have that for all .

Intuitively, the essential supremum of a random variable is the “peak”, or maximal value of . If denotes a bounded stationary random
arrival rate process, then is the peak rate of the process.

Since the exponential term in (3) is the dominant term when the number of sources are large, we ignore the prefactor term (i.e., we use
(1) instead) in this argument.
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Remarks
1. Define and . In other words, is a random variable representing the
amount of loss a user may experience at a given time, and the amount of loss estimated by the network. Then the
fact that for all and implies that . Since is an
increasing convex function in , we have that . Therefore, the average loss experienced by a user is
always upper-bounded by that estimated by the network.
2. Theorem 1 can be strengthened in the following manner. Given that , it can be shown that there exists
a such that for , . Hence for , . Note that
this statement does not require that the loss probability be estimated using the Chernoff bound, as in Theorem 1.
On the other hand, as , the Chernoff bound provides an asymptotically very tight approximation to the loss
probability. Hence the two results are consistent.

4.3.1 Simple Parsimonious Models

Based on Theorem 1, we proceed to construct two simple bounding models which requires only a small number of
parameters (i.e., parsimonious models). Moreover, these parameters are easy to compute from a video trace.

Perhaps the simplest way to characterize the marginal distribution of a video is to use a model with only two
parameters: the peak rate, , and the mean rate, . Among all random variables with the same mean and peak
rate, the most stochastically variable one, denoted , takes two values: with probability and
with probability . has the marginal distribution of a two-state on-off model: it assumes two extreme behaviors
of a source, either transmitting at peak rate with probability , or not transmitting. Thus intuitively, has the
“burstiest” behavior. This fact can be easily established formally using the theory of stochastic ordering, the proof
of which is relegated to Appendix B.

As we shall see, the two-state model based only on the mean and the peak rate of a source generally does not
provide sufficient information about the marginal distribution of the source, therefore resulting in rather conservative
bandwidth estimate by the Chernoff bound method. In the following, we thus present a simple “three-state” model
to characterize the marginal distribution of a video: in addition to the two parameters representing the mean and
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Figure 12: Comparison of Marginal Distribution Models: Unsmoothed Streams, Loss Rate

the peak of the marginal distribution, we introduce three more parameters to characterize the “tail” of the marginal
distribution. Let be the random variable that has the empirical marginal distribution of a video trace. The three
new parameters, , and , are defined by the following relations.

and (7)

Intuitively, defines the rate at which the tail starts, is the probability that a transmission unit comes from the
tail, and specifies how “heavy” the tail is (while is the “tip” of the tail, and the center of the mass). The
relationship of these parameters is represented visually in Figure 11. The three parameters can be easily computed
from a video trace.

Given these parameters, the discrete random variable with the worst-case distribution, , is defined as follows.
For ,

with probability
with probability
with probability
with probability

(8)

where and . As
. Hence . We refer to as a “three-state variable” since and can be

essentially treated as a single state of in practice .
In the cases or , the three-state model degenerates into the two-state model described earlier.
It is easy to check that , , and . We can establish that

this 3-state model has the most stochastically variable marginal distribution among all discrete random variables
such that , , and . The proof can be found in Appendix B.

In practice, is generally very large. Hence the difference between and is negligible. The separation of the two in the definition
of is purely due to a technical reason.
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Figure 13: Comparison of Marginal Distribution Models: Smoothed Streams, Loss Rate

4.3.2 Evaluation

We now examine the performances of the two-state model and the three-state model as the parameter is varied.
Figure 12 shows the performance for unsmoothed video traces, and in Figure 13, smoothed video streams with
512 KB client buffers. For comparison, the performances of the histogram-based method with 5 and 10 bins are also
shown in the figures. For , the bandwidth estimated by the Chernoff bound method is close to the bandwidth
seen by the simulation. As varies from 0.5 to 0.05 in both figures, the bandwidth estimated using the three-state
model approaches the bandwidth estimated using the two-state model. Similar results are obtained by varying from
to instead of varying . Due to space limitation, these results are not shown here.
In contrast to the histogram based method, the three-state model can provide comparable, if not better, bandwidth

estimates with an appropriate choice of . This is achieved without requiring additional parameters in contrast to the
histogram-based method. Therefore, without any extra overhead, the three-state model is able to provide bandwidth
estimates that range from fairly optimistic (say, by choosing or so) to rather conservative (say,
or smaller). This property of the three-state model can be employed by the network to define different levels of
service classes. For example, the network can define three different levels of services by choosing ,
and . The user can choose the appropriate service class depending on the level of service robustness
required. Since the parameters needed for the traffic specification are fixed and identical for all service classes, the
Chernoff-bound-based call admission algorithm has the same implementation.

Two additional examples are shown in Figure 14, where a more diverse mix of video streams is considered. In
Example 1, eight of the ten video traces are smoothed using 512 KB client buffers, whereas one trace (Star Wars)
is smoothed using a 1 MB client buffer, and another trace (Wizard of Oz) is smoothed using a 256 KB client buffer.
In Example 2, each pair of the ten video traces are smoothed using client buffers of sizes 256 KB, 512 KB, 1 MB,
2 MB and 4 MB respectively . The number of sources of each video type in both cases are not evenly distributed.
For eight of the video traces (other than Star Wars and Wizard of Oz), the number of sources of each type increases
gradually from 1 to 5, while the number of Star Wars sources increases from 1 to 40 and the number of Wizard of
Oz sources increases from 1 to 20. To illustrate the need to provide different service levels to account for possible
correlated user behaviors, we also consider a scenario of correlated arrivals. In this scenario (the curve labeled “Sim:
Correlation” in the figures), the Star Wars sources all arrive within a period of 10 minutes, and the Wizard of Oz

16



0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

20 40 60 80 100

Ag
gr

eg
at

e 
Ba

nd
w

id
th

 (b
its

 p
er

 fr
am

e 
un

it)

No. of Sources

Peak Rate
2-State Chern. Bd

3-State Chern. Bd: p~=0.05
3-State Chern. Bd: p~=0.25

3-State Chern. Bd: p~=0.5
5-Bin Chern. Bd

Sim: Independent
Sim: Correlated

Mean Rate

(a) Example 1

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

20 40 60 80 100

Ag
gr

eg
at

e 
Ba

nd
w

id
th

 (b
its

 p
er

 fr
am

e 
un

it)

No. of Sources

Peak Rate
2-State Chern. Bd

3-State Chern. Bd: p~=0.05
3-State Chern. Bd: p~=0.25

3-State Chern. Bd: p~=0.5
5-Bin Chern. Bd

Sim: Independent
Sim: Correlated

Mean Rate

(b) Example 2

Figure 14: Comparison of Marginal Distribution Models: Mixed Smoothed Streams, Loss Rate

sources within a period of 1 minute.
In this example, the correlated arrivals significantly increase the actual aggregate bandwidth needed to satisfy

the desired QoS service level of loss rate of . Using and for bandwidth estimation in the
Chernoff bound method underestimates the bandwidth requirement under such correlated arrivals, thus leading to
service failures. The histogram method with 5 bins provides a bandwidth estimation that is barely sufficient. On
the other hand, the bandwidth estimated using or by the two-state model is sufficient to accommodate the
correlated arrivals with the targeted QoS service level, while still realizing 10%-15% statistical multiplexing gain.

Clearly there is a tradeoff between the robustness of a network service and the amount of statistical multiplexing
gain realized. The three-state model we propose here provides a mechanism to balance these two concerns.
Appropriate choice of the parameters used in the three-state model plays a critical role in determining the robustness
of the QoS guarantees provided by the network. In addition to call admission control, other provisions may be made
by either the network or by users to ensure the QoS guarantees can be successfully met. For example, in a video
on-demand system, batching [5] of video requests for hot videos that arrive within a short period of time, or playback
of hot videos at fixed intervals, can be used to alleviate the impact of correlated arrivals.

5 Related Work

There is a vast volume of literature on issues related to statistical multiplexing and call admission control. We will
discuss some of the recent work that is most relevant to our work.

The Chernoff bound is a well-known method that has been applied to call admission control with statistical
QoS [11, 6, 10, 30]. In [6], a combination of effective bandwidths and the Chernoff bound (called the Chernoff-
Dominant Eigenvalue method) is proposed for call admission control at a network multiplexer with shared buffers.
The method is evaluated using video-conferencing traces. A DAR(1) model is employed to specify the source traffic.
However, due to its high burstiness, a DAR(1) model is not appropriate for MPEG compressed video trace. A
histogram-based call admission control scheme is proposed in [28], and the loss probability of the aggregate traffic
at a network switch is computed using convolution, incurring formidable computational costs when the number of
sources is large. In [24], the issue of statistical multiplexing gain is briefly studied using a simple two-parameter
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model and a call admission control scheme that uses the binomial distribution to estimate loss probability. When the
number of sources is large, the computation of the binomial distribution becomes very cumbersome. In this case,
the Chernoff bound provides a very good estimate. In [7], a new approach to determining the admissibility of VBR
traffic in buffered multiplexers is developed where sources are subject to leaky-bucket regulation. The effectiveness
of statistical multiplexing gain for such VBR traffic is then studied.

Recently, several new network services have been proposed which rely on the implicit exploitation of statistical
multiplexing gain by adding a renegotiation feature to CBR service [10], and to VBR service with deterministic
QoS guarantees [29]. In [10], the entire rate change profile of a renegotiated CBR (RCBR) stream is characterized
by a Markovian model and the Chernoff bound method is used for call admission control to limit the probability of
service failure. From the call admission control perspective, we can treat an RCBR stream as a VBR stream. When a
very small service failure probability is desired, our experience shows that the Chernoff-bound-based call admission
control algorithm usually provides a bandwidth estimation that is sufficiently conservative that no renegotiation is
actually needed on a per-stream basis to provide the target service level. Hence, VBR service may be likewise
employed for such video streams without requiring any explicit renegotiation.

In [4] predictive service is proposed for the future Internet. Predictive service is most appropriate for applications
that require QoS guarantees but can tolerate QoS fluctuations. Measurement-based call admission control is proposed
and evaluated for predictive service in [13]. Such an approach is an important alternative to the analytic-model-based
call admission control proposed in our paper. We believe reduction of variability in video traffic can help the network
obtain more stable measurements. However, there are still many issues that remain to be resolved. A key question
in measurement-based call admission control is what performance metric to measure, at what time scale to monitor
traffic, and how much past history should be taken into consideration. These questions are important in the context of
real-time transport of video, due to the slow-time-scale variability and generally long duration of video connections.

Our work, with appropriate modification, can also be applied to predictive service. For example, instead of asking
users to provide the parameters used in our simple traffic model, the network can gather, by on-line measurement,
the mean and the tail distribution information and with an appropriately chosen . The measured values can
be used by the network to explicitly take advantage of statistical multiplexing gain.

Several methods have been used in characterizing the “heavy-tailed” marginal distribution of unsmoothed video
traces. For example, in [9] a hybrid model combining Gamma and Pareto distributions is proposed for characterizing
the marginal distribution of the JPEG-encoded Starwars trace. In particular, the Pareto distribution is used to model
the long heavy tail. In [15, 25], the marginal distributions of I, P, B frames are characterized separately using the
lognormal distribution. As we have seen, these methods are not applicable to the characterization of the marginal
distribution of smoothed video streams.

6 Conclusion

In this paper, we have studied the problem of real-time transport of stored video using variable-bit-rate (VBR) service
with statistical QoS guarantees. In particular, we have investigated the impact of video smoothing on statistical
multiplexing gain and its implication in network resource management and call admission control. We started
by investigating the issue of statistical multiplexing gain when streams are smoothed and showed how statistical
multiplexing gain can be exploited to improve network utilization. We then looked at the issues of call admission
control to support VBR service with statistical QoS guarantees. We presented a Chernoff-bound-based call admission
control algorithm method that provides an effective mechanism for realizing potential statistical multiplexing gain.
We also proposed a simple three-state, five-parameter model for traffic specification. The combined scheme provides
a promising, effective and flexible mechanism to support different levels of predictive service with statistical QoS
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guarantees. We evaluated the efficacy of the scheme over a set of MPEG traces.
In summary, our work supports the contention that by explicitly exploiting multiplexing gain, VBR service with

statistical QoS guarantees can provide a viable alternative to CBR service with deterministic QoS guarantees in
supporting real-time transport for stored video.

Our work is only an initial study of the problem of real-time transport of stored video; there are still many aspects
of the problem that must be investigated. In terms of call admission control, our scheme needs to be further validated
in a more complex and dynamic environment. Extending the scheme to incorporate certain measurement-based
features is another interesting topic of future research.
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A Appendix

In this appendix, we are interested in answering the following question:

Given (not necessarily all different) video streams, for each video stream , let be the transmission
schedule produced by the optimal smoothing algorithm [27], denoted by , and be any feasible
transmission schedule produced by an arbitrary smoothing algorithm, denoted by . Which algorithm
is more likely to produce a smoother aggregated stream with a lower peak rate under the independent
arrival assumption when the streams are aggregated at a multiplexer?

This question can be addressed using the stochastic variability ordering introduced in Section 4.3. Recall that
given two random variables and with respective distributions and , we say is smaller than under
increasing convex ordering (denoted or ), or informally, is stochastically less variable than
, if for all increasing, convex functions . One important property of increasing convex

ordering is the following

Proposition 2 If are independent and are independent, and , , then

for all increasing convex functions .

If and , , are all nonnegative, then implies that since
is an increasing convex function in each .

To apply the increasing convex ordering to the question posed above, we look at the marginal distribution of
a smoothed video stream, or equivalently, the corresponding transmission schedule. For each , , let

be the optimally smoothed video stream produced by , where is the length of the
video stream . For simplicity, we assume that the video stream is stationary. Then its stationary marginal distribution

can be computed empirically as follows:

By a feasible transmission schedule, we mean a transmission schedule according to which the server never overflows nor underflows the
client buffer.
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where denotes the cardinality of a set.
Similarly, let be the smoothed video stream produced by an arbitrary feasible schedule

. We define its marginal distribution in exactly the same manner.
Let and be two random variables with the distributions and respectively. We claim that .

In [27], it is established that is majorized by , ,. Hence we have
, for any convex function . This, together with Proposition 2, yields the following result.

Theorem 3 For , let and denote two random variable with the marginal distributions and
respectively. Then . Consequently, if are independent, and are

independent, then .

The above theorem gives a precise mathematical formulation of the question posed in the beginning of this appendix.
It states that if we statistically multiplex independent video streams produced by and by , then at any random
point in time, . Thus the aggregate stream under is less variable than the aggregate
stream under an arbitrary smoothing algorithm . In particular, the aggregate stream under has smaller variance
and lower peak rate.

A consequence of Theorem 3 is that if video streams are fed to a bufferless statistical multiplexer with a fixed
capacity , then the average loss suffered by video streams smoothed using the optimal smoothing algorithm
is smaller than that suffered by video streams smoothed using an arbitrary smoothing algorithm . This follows
easily from Theorem 3: let (resp. ) be the random variable representing the amount of the loss suffered by
the streams smoothed by the optimal smoothing algorithm (resp. an arbitrary smoothing algorithm ), then

, as is an increasing convex
function in .

B Appendix

In this appendix, we establish that the random variables constructed by the two-state model and the three state-model
have the “worst-case” distribution among all the distributions that match the given user parameters.

Theorem 4
(1) If is an arbitrary nonnegative random variable such that and , and is defined by

and , then .
(2) If is an arbitrary nonnegative discrete random variable such that , ,
and , and is defined as in (8), then .

Before we prove the theorem, we first state an important property of the increasing convex ordering, and then
establish a useful lemma using this fact.

Lemma 5 Let and be two nonnegative random variables with the cumulative distributions and respectively.
Then if and only if for any ,

(9)

where and .

See [27] for the definition of majorization and its application to video smoothing.
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For a proof, see Proposition 8.5.1 of [26].

Lemma 6 Let and , , be two pairs of nonnegative random variables such that and
. Define two new random variables , as follows:

with probability ,
with probability

where . Then .

Proof: For , let , and be the cumulative distributions of , and respectively. By the definition
of , it is clear that for any , . Then from Lemma 5, it is easy to see that

and implies that .

Proof of Theorem 4:
(1) Let and denote the cumulative distributions of and . Note that for and
when . From Lemma 5, it suffices to show that for any ,

(10)

Define . For any , if , then , and for ,
. Hence for any , . Hence

For any , if , then . Hence

Therefore,

where in the above we have used the fact that .
(2) Let be a discrete random variable with the distribution . Then

and . Let be a random variable with the distribution and
. Then and . From (1), we see that , thus .

Similarly, let be a discrete random variable with the distribution . Then
and . Let be a random variable with the distribution
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and . Then and . Using the same argument as in (1), we can prove
that .

As, for any ,
, and , from Lemma 6, we

have that .

Remarks:
1. In [21], a result to the same effect of Theorem 4 (1) is proved using a different approach.
2. We can extend the three-state model to a K-state model by specifying the following parameters in addition to the
mean rate and the peak rate : , , where

and . Based on an extension of Lemma 6, the “worst-case” distribution for this K-state model can
be constructed likewise.
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