A MIXED-INITIATIVE PLANNING APPROACH
TO EXPLORATORY DATA ANALYSIS

A Dissertation Presented

by

ROBERT A. ST. AMANT

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial
fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 1996

Department of Computer Science

© Copyright by Robert A. St. Amant 1996

All Rights Reserved

ACKNOWLEDGMENTS

I have become indebted to many people in many different ways on the long road
to a Ph.D. .

Bill LaRoe, Mike Webb, Charles Chapoton, and Joe O’Rourke helped me to get
started in graduate school, and I wouldn’t have been able to take the first step without
their encouragement and support.

Much of the breadth of my dissertation is due to the interest and encouragement
of the members of my thesis committee. Mike Sutherland acted as my mentor in
the sometimes complex world of statistics. Arny Rosenberg set high standards for
intellectual rigor, skill in making complex ideas accessible, and interest in empirical
computer science. Victor Lesser’s eye for detail is wonderfully balanced by a view of
the broad horizons of AI research. The depth of his familiarity with AI made our
conversations both exciting and challenging.

Paul Cohen, who chaired my committee and advised me through five years of
research, shares credit for most of the ideas in this dissertation. When I ﬁrst came to
UMass, Paul explained that entering graduate school is in many ways like entering into
an apprenticeship. At the time I didn’t realize that this entails serious responsibilities
for both parties. Now, looking back, it’s clear that Paul has been an exceptional
mentor. Whatever skills I have in identifying an interesting problem, carrying out a
research plan, recognizing and conveying the significance of a result—in shoft, being
a scientist—have arisen from his instruction and guidance.

Pve also been aided by two generations of high-caliber graduate students in
the Experimental Knowledge Systems Laboratory. The old guard, including Adele
Howe, Scott Anderson, Cindy Loiselle, and Paul Silvey, introduced me to the hectic,

interactive research life of a grad student. Current members of the EKSL, Marc Atkin,

Dawn Gregory, and Tim Oates, have continued to provide a creative, supportive
working environment. Dave Hart and Peggy Weston, who manage the lab, have
helped in keeping my thoughts and schedule organized.

Like many computer science dissertations, my 200-odd pages reflect a large soft-
ware System, AIDE. It would not have bee;l possible to build AIDE without Norm
Carver, whose work supported initial prototypes of AIDE. I also relied heavily on
the system design skills of David Westbrook and the programming expertise of Matt
Schmill. For the evaluation of AIDE I am grateful to Marc Atkin, Lisa Ballesteros,
Alan Garvey, Dawn Gregory, David Jensen, Tim Oates, Matt Schmill, Tom Wagner,
and David Westbrook, for their willingness in acting as subjects and in advising me
how to improve the system.

And because balance (though some would say “juggling”) is an essential part of a
graduate student’s life, I have to thank those who made my time outside the research
lab worthwhile. These include my volleyball-playing friends, my beer-brewing/beer-
drinking friends, and especially my foreign-travel friends, Bill and Rowena LaRoe
and Mike and Jackie Webb. Special thanks go to Martin and Ellen Herbordt, who
shared almost every aspect of my graduate student career. They are great friends I
can commiserate with during the bad times, celebrate with during the good times,
and relax with during the times in between.

Finally, I have been lucky enough to reach this point accompanied by my won-
derful wife, Luellen Brochu. We’ve gone through a great deal together. Describing
the ways in which Luellen has supported my efforts and enriched my life would make
this section twice as long as it is now.

Thank you all.

vi

ABSTRACT
A MIXED-INITIATIVE PLANNING APPROACH
TO EXPLORATORY DATA ANALYSIS
SEPTEMBER 1996
ROBERT A. ST. AMANT
B.S., JouNs HoPKINS UNIVERSITY
PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Paul R. Cohen

Exploratory data analysis (EDA) has come to play an increasingly important role
in statistical analysis. Modern computer-based statistics packages contain a rich set
of operations, suitable for almost any EDA application. One can fit lines and higher
order functions to relationships, identify and describe clusters, transform and reduce
data to meet the specific requirements of a domain, among many other possibilities,
in seeking to understand patterns in data.

Unfortunately, EDA can be difficult. Conventional statistics packages offer the
user hundreds of operations, which must often be combined in lengthy sequences to
produce useful results. In addition, the application of these operations often depends
on the user’s knowledge of what the data mean. In other words, EDA is too large a
- problem for a human analyst to solve alone, but complete automation of the process
is not feasible either because domain-specific knowledge is required.

This dissertation describes an assistant for intelligent data exploration called
AIDE. AIDE is mixed-initiative, autonomously pursuing its own goals, but always
allowing the user to review and possibly override its decisions. AIDE’s design as a

knowledge-based planning system allows it to detect and evaluate suggestive features

vil

in the data, identify appropriate strategies for extracting the patterns, apply the
strategies incrementally, and combine the results in a coherent whole.

An experimental evaluation compared the performance of human subjects an-
alyzing data with and without AIDE’s assistance. Although the subjects worked
- with AIDE f.';n'. <'>n1y a couple of bhours, each, it clearly influenced the efficiency and
coherencevof their explorations. Analysis of the experimental results turned up
suggestive evidence that AIDE facilitates data analysis primarily by helping users
navigate through the space of relations among variables.

This research provides a novel look at automated support for data analysis.
Conventional systems tend to take over the task completely, or rely on the user
for every step of the analysis. AIDE’s mixed-initiative planning approach provides an
alternative in which control changes hands flexibly between the user and the system.
This arrangement capitalizes on the strengths of both: the system takes over low-level
search and statistical computations, while the user remains responsible for strategic,

knowledgeable guidance of the process.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS i it i e e i eean v

ABS T RAC T ... e e e e e e vii

LIST OF TABLES i e ettt xiii

LIST OF FIGURES i i e e et ie e xiv
CHAPTER

1. INTRODUCTION et e e e e 1

1.1 TheProblem i 4

1.2 AProposed Solution 7

1.3 Contributions 8

14 ARoadMap 9

2. EXPLORING DATAttt 12

2.1 PHOENIX e e e e e 12

22 NETWORTH 19

23 Summary e e e e e e 24

3. RELATED WORK e 28

3.1 REX . .. e e e 29

3.2 TESS e e 30

33 IDES e e 32

3.4 IMACS e 33

35 Explora e e e e e e e e e e e 35

36 OtherSystems ueuneene.. 35

3.7 Summary e e 37

4. FORMULATING THEEDAPROBLEMcovvuueen... 38

41 EDA Primitives, 39

4.2 Applying the Primitives 42

43 Related Work, 43

44 Summary e e e e e e 45

5. PLANNING AND EDA e ian, 47

51 EDAasPlanning 48
5.2 EDA as Partial Hierarchical Planning 53
53 ThePlanner v i i i et i, 57
531 QGoals e e e et e e e e e ettt 58
5.3.2 Plal_ls 59
5.3.3 Actions e 60
534 Sequencing e 62
5.3.6 Conditionalization, 62
5.3.6 Iteration @ i, 63
5.3.7 Conjunction and Disjunction 63

54 Comtrol e e e e e 64
54.1 ComtrolRuleso..... 66
54.2 FocusPoints i i 67
543 Meta-Planning 69

55 Related Work e 71
5.5.1 IncrementalPlanning 72
5.5.2 PRS e e 73
5.5.3 PHOENIX e e it i 74
5.54 RESUN. i e e e, 76
555 Classical Planners 'uu.... 78
5.5.6 Partial-Order Causal Link Planners 80

56 Summary e 81
6. STATISTICAL STRATEGIES . ..ottt 83
6.1 Strategies for Fitting Lines 83
6.1.1 A Simple Regression Strategy e e e e e e e e e 84
6.1.2 A Weighted Regression Strategy 86
6.1.3 A Resistant Line Strategy 87
6.14 Control e e 88

6.2 Straightening Strategies e e 89
6.2.1 Conmtrol e e e e e 90
6.2.2 Related Work v uuunuuenuen.. 91

6.3 Reducing Transformations 92
6.3.1 Conmtrol e 93

6.4 Clustering and Classification 93
6.41 Control e e e e 94
642 Related Workuuuieeo... 94

6.5 Modeling e e 96
6.5.1 A Causal ModelingPlan 96
6.5.2 A Cluster ModelingPlan 98
6.5.3 A Multiple Regression Modeling Plan 100
6.5.4 A Default ModelingPlan 101

6.6 Related Strategies 101
6.6.1 Regression: Daniel and Woods 102
6.6.2 Regression: Gale and Pregibon 103
6.6.3 Regression: Faraway 104
6.6.4 Other Strategies 104

6.7 Summary e e e e e e e e e . 105

7. COLLABORATIVE EDA, .. ittt ieeieeeenn. 106

7.1 Comcepts o . i i it e e e e e e e 107

7.2 Interactingwith AIDE 113
7.2.1 The AIDE Interaction Frame 113
7.2.2 The AIDE Navigation Frame 119

73 ADialog e e e 121

74 Related Work 130

T8 Summary e e e e e e e e e e 132

8. EVALUATION i e 134

8.1 ExperimentDesign 135
811 Measurements0.... 135
812 Designlssues. 136
813 Hypotheses 139
814 TestData 142

82 Results 143
8.2.1 Assessing Performance 144
8.2.2 ExtendingtheResults. 150
8.2.3 Explaining Subject Performance 152
8.2.4 Explaining AIDE’s Behavior 156
8.25 BehaviorTraces 160

83 Discussion 161

84 Summary e 164

9. CONCLUSION . ..ottt e e e e e 168

9.1 Revisiting the Contributions 168

9.2 Limitations, 170

93 FutureWork 173

94 AFinal Word 174

APPENDICES

A. AIDE TEST DATASETS. ... oo ittt e, 176

B. AIDE PLANS........ e e e ettt e e e e e e 177

C. MENU COMMANDS . . . ot ot e e e s 180
C1l General Commandso, 180
C.2 Select Commands 180
C.3 Partition Commands vuuunin.. .. 181
C.4 Transform Commands v vvnnn. .. 181
C.5 Describe Commandso v v v i 182
C6 Model Commands0 iuuuununii. .. 183
C7 TestsCommandso innmnmnuni.. 184
C.8 Display Commands0.00uuuuuuunon. 185

REFERENCES ittt e e e e e et 187

LIST OF TABLES

Table
2.1 Clustered and non-clustered FirelineBuilt for successful trials

2.2 Median Duration by WindSpeed and PlanType for clustered data .

2.3 Functional relationships in NETWORTH
81 pand kppersubject
82 Cupersubject
8.3 Cp per subject, for correct and incorrect observations
8.4 The effect of Condition and Contextonpand kp
8.5 The effect of Condition and Contextonzand bz
86 zand kipersubject
8.7 Revised Cpr per subject, for correct and incorrect observations
8.8 Cu per subject, for informed and uninformed observations
8.9 Summary of operations selected, per subject
8.10 Counts of Suggestionand O;
811 Countsof Opand O;u...
8.12 Counts of Suggestionand O,

8.13 Functional relationships in MODEL A

....................

8.14 Functional relationships in MODEL B

xiii

BT

LIST OF FIGURES

Figure Page
2.1 FirelineBuilt versus Duration 13
2.2 Sorted Duration values for failed trials 14
2.3 Linear fit of FirelineBuilt versus Duration, successful trials 15
2.4 Clusters in FirelineBuilt versus Duration, successful trials 16
2.5 Clusters in FirelineBuilt versus Duration, by WindSpeed 17
2.6 Causal relationships in the NETWORTH dataset 20
2.7 NETWORTH causal relationships determined by IC 21
2.8 WeeklyNet versus WeeklyRate0.o...... 23
2.9 Linear fit of WeeklyNet versus WeeklyRate 24
2.10 WeeklyNet versus WeeklyRateresiduals 25
5.1 FirelineBuilt versus Duration 50
5.2 Linear fit of FirelineBuilt versus Duration, successful trials 51
5.3 Clusters in FirelineBuilt versus Duration, successful trials 52
5.4 Pseudo-code for resistant fit procedure 53
55 Toplevelplanningloop.................. 00 'eu.. 57
56 Plantofitarelationship e e e 59

Action of extractingresiduals 61
58 A stép in the planning i)rocess 64
5.9 Revised top level planningloop 68
5.10 Branches in the planning process 68
511 Twooplans i e e e 79

6.1
6.2
6.3
6.4
7.1
7.2
7.3
7.4
7.5
8.1
8.2
8.3
8.4
8.5
8.6
8.7

Regression residual plots 86

A partial strategy for regression (Daniel and Woods) 102
A partial strategy for regression (Gale and Pregibon) 103
Strategy components for regression (Faraway) e e ... 104
AIDE’s main interaction frame e e 114
AIDE’s navigation frame, 120
Focus point network state at variable selection time 124
Focus point network state at plan selection time 126
Focus point network state at residual exploration time 128
Relationships (actual and renamed) in the MODEL A dataset 143
Relationships (actual and renamed) in the MODEL B dataset 143
Performance of subjects in both conditions 146
Model of operation countst 155
Model of operation counts, plus performance 155
Initial model of performance relationships 159
Revised model of performance relationships o 160

Xv

CHAPTER 1

INTRODUCTION

We have plenty of information technology—what is perhaps needed
now is more intelligence technology, to help us make sense of the growing
volume of information stored in the form of statistical data, documents,
messages, and so on. For example, not many people know that the
infamous hole in the ozone layer remained undetected for seven years
as a result of infoglut. The hole had in fact been identified by a US
weather satellite in 1979, but nobody realised this at the time because the
information was buried—along with 3 million other unread tapes—in the
archives of the National Records Centre in Washington DC. It was only
when British scientists were analysing the data much later in 1986 that
the hole in the ozone was first “discovered”. — Tom Forester [Forester,
1989, p. 23]

Statistical data analysis plays an important role in empirical scientific research.
Faced with questions about complex behavior—of physical systems, biological pro-
cesses, ecological relationships, even computer systems—our most effective approach
is often to observe the phenomena that interest us and try to understand what the
data tell us.

Data analysis relies heavily on understanding the underlying processes that gen-
erate the data. Sometimes, however, our background knowledge, our theories and
models, cannot account for patterns we encounter. Some patterns may be only slight
deviations from what we expect to find, but others may be novel and completely
unforeseen. In Forester’s example, scientists did not initially set out to decide whether
a hole exists in the ozone layer. Rather, in this case as in others, suggestive patterns
in data can take an analysis in new directions, leading to significant results unrelated
to the initial goals of the analysis. This kind of opportunism is characteristic of data

exploration.

2

Exploring data is not easy. The difficulties have led some to describe aspects
of the work as data dredging, data mining, data archaeology, even data torturing.!
Some patterns may be so deeply hidden in the data that they can only be teased out
through great effort. Other patterns may be easier to detect but hard to characterize.
Unexpected interactions between patterns may be difficult to account for. Data
exploration requires skill and often a good deal of insight to produce useful results.

Exploring data is as important as it is difficult. While all results may not be
as dramatic or far-reaching as the ozone example, exploration has led to significant
(and often unexpected) findings in satellite data analysis [Mallows, 1979), air pol-
lution analysis [Cleveland et al., 1974], medical imaging [Diaconis, 1985], artificial
intelligence [Cohen, 1995], and many other scientific domains [Tanur et al., 1972].

The statistical subfield of ezploratory data analysis, or EDA, was established
in the late 1960s by statisticians seeking to understand and extend techniques for
describing data.? Proponents of EDA include John Tukey, Frederick Mosteller, I. J.
Good, and many others. Good views the goal of EDA as facilitating the generation of
hypotheses to explain patterns in data [Good, 1983]. In contrast to the view that data
analysis should be mainly concerned with hypothesis testing, EDA involves examining
a dataset with as few assumptions as is practical, letting interpretation be guided by
the data, rather than by preconceptions about its structure. Exploration of a dataset
is thus initially guided by general principles rather than specific questions. In his
seminal textbook, Ezploratory Data Analysis, Tukey writes,

~ A basic problem about any body of data is to make it more easily and
effectively handleable by minds—our minds, her mind, his mind. To this
general end:

e anything that makes a simpler description possible makes the de-
scription more easily handleable.

Taking an optimistic view, Savage comments, “If you torture the data long enough, eventunally
it will confess.” [Good, 1983, p. 284]

2Paul Velleman holds that EDA’s philosophical roots go back to Francis Bacon’s Novum Or-
ganum (1620), while Edward Tufte traces some of its methods to the charts of William Playfair in
the late 1700s [Tufte, 1983].

e anything that looks below the previously described surface makes the
description more effective.

So we shall always be glad (a) to simplify description and (b) to describe
one layer deeper [Tukey, 1977, p.v).

EDA works by simplifying descriptions so that they can be easily handled, and
extending descriptions through an incremental deepening process. Drawing on the
work of Tukey and others [Velleman and Hoaglin, 1981; Hoaglin et al., 1983}, we
have developed a categorization of EDA procedures into four classes: description,
simplification, deepening, and extension.

Descriptive procedures produce summaries of data. These may be simple sum-
mary statistics, such as means and medians. They may be more comprehensive,
taking the form of a schematic box plot or a regression line. Description is the
generation of results that; can be directly interpreted by the user.

A log transform that straightens a curved relationship is an example of simplifi-
cation. Irregularities such as outliers are more easily detected in linear relationships
than in nonlinear ones; a change in density can often enhance patterns in data; many
statistical operations, even ones as simple as Pearson’s correlation coefficient, rely on
linearity. A straightening procedure simplifies in that it enhances our observation,
manipulation, and evaluation—in a word, our description—of the data.

EDA deepens descriptions in detail, accuracy, and precision, in the way a mi-
croscope enhances observation by trading a global perspective for local detail. An
~example is the common practice of examining the residuals of a linear fit. The
examination itself is carried out by simplification and description procedures. In
this case it can bring to light structure in the data not captured by the line, such as
clustering, unequal variance in residuals, or local deviations from linearity.

One further aspect of the process is ertension, which includes building simple
models of data. With descriptive, simplifying, and deepening capabilities, EDA

attacks data within a limited scope, building descriptions of single variables, bivariate

4

relationships, tables, partitions and clusters. Local descriptions can have non-local,
often wide-spread implications, however; these are examined by extension procedures.
When clusters are observed in the values of a variable z, for example, and similar
clusters are observed in y, then an extension procedure prompts the examination of
the relationship (z,y).

EDA can be viewed as the intelligent application of these procedures. Descriptions
of data are established where applicable, supported by simplification procedures,
which facilitate description by transforming data into more appropriate forms, deep-
ening procedures, which refine descriptions to increasing levels of detail, and extension
procedures, which incrementally widen the scope of the descriptions. The entire
process is sensitive both to patterns in the data and to knowledge about what these

patterns may mean.

1.1 The Problem

Early EDA techniques involved pencil-and-paper analysis; rather than poring
over columns of numbers, the analyst drew scatter plots and numerical and graphical
summaries to gain closer contact with the data. Data analysts bring much more
to the table than knowledge about statistical procedures and tests. They are also
aware of the meaning of variables, patterns that should be present in the data and
those that are novel or surprising, and how to follow suggestive clues to identify and
describe these patterns. Interactive handling of the data, even through laborious
manual techniques, makes good use of these abilities. _

Modern systems for EDA l;a.ve greatly reduced the manual effort of data.-ex-
ploration. A single mouse click or typed command will generate a histogram for a
batch of variable values or a scatter plot and regression line for a relationship. These
operations and an enormous array of others are implemented in general statistical
computing environments. Further, some tasks are completely automated, relying on

machine learning or statistical modeling techniques, so that the analyst only views

5

a set of results, rather than watching over the entire process. By taking over the
more mechanical tasks, a good statistical environment lets the analyst concentrate
on selecting the data to examine and deciding how to describe its structure.
Imagine that we are given an unfamiliar dataset and are asked, “What can you
tell me about the data?” We may have some notions about what the w;a.riable names
mean—perhaps it is a census dataset—and how they might be be related to one
another, but nothing that we could immediately formalize as a hypothesis test. What
can we do? We can explore. For a single variable density we might construct a
histogram, to get a better idea of its distribution—where its central mass lies, whether
it is homogeneous or perhaps falls into clusters, if there are unusual observations
or unexpected relationships between the observations. In looking at a relationship
between two variables density and area, we might decide that it is approximately
linear, or perhaps that its functional form is given by a particular form, such as
density = k/area. Both observation of the data and knowledge of context influence
our decision. If we fit a function to the data and then examine the residuals, we
might find patterns in the data that can be traced to the effects of a third variable,
tncome. There may be clusters in the residuals of (density, area), for example, that
correspond to specific groups of values in income. Knowledge of context again comes
into play. Eventually, step by step, we build a better understanding of the data.
Unfortunately EDA is much more difficult than this description may lead us to
believe. Even if we are adept at building descriptions, it can be difficult to decide
which relationships, in a dataset of twenty or fifty or two hundred variables, are
worth examining in the first place. The descriptions themselves may be complex,
incorporating free parameters or involving lengthy transformations of the original
data. EDA is an enormous problem, both in the amount of data to be explored
and in the complexity of the techniques needed to perform the exploration. This

dissertation concentrates on two aspects of the problem.

6

The first aspect involves the limitations of human cognition. Problems often
require that enormous amounts of data be processed, far more than can be managed
with direct human supervision. Forester’s ozone case is one example; other domains
that process massive datasets include astronomy, medical imaging, earth sciences,
and molecular biology, to name just a few. Realizing that a pattern in one relation-
ship interacts with a different pattern in one of hundreds of other relationships is
often beyond our ability. Exacerbating this problem is that many modern analysis
techniques generate data, rather than reduce it [Pregibon, 1991] (e.g., Monte Carlo
sampling, cross-validation, the bootstrap, and the jackknife). Human analysts can be
overwhelmed simply by the amount of data to be explored.

We might think that this problem can be solved by additional computing power.
A statistical system, perhaps using Al techniques, might be able to handle the huge
amounts of data required, generating descriptions and finding subtle relationships
between distantly related variables. Unfortunately, this leads to the second aspect
of the EDA problem: such a system has built-in limitations in its lack of contextual
knowledge. Subject-matter knowledge is essential in interpreting the importance of
results. An automated data-mining program might browse through weather satellite
data, finding statistically significant relationships between variables measuring tem-
perature, wind patterns, and so forth, but how is it to know that discovering a hole in
the ozone layer has greater implications than, say, discovering that local temperatures
change with the seasons?

Work in data exploration tends to address one of these problems without consid-
ering the other. Each new version of an interactive statistical package gives the user
a bigger, more powerful set of tools—but the user must still directly supervise even
the simplest tasks, rather than let them be handled by the system. In contrast, new
systems developed in machine learning, knowledge discovery in databases, statistics,

and other areas try to solve exploratory problems without involving the user at all.

7

The former approach regards direct human control of the problem-solving process as
sacrosanct, while the latter attempts to automate everything that can be automated,
letting the user handle whatever remains [Rouse et al., 1987). Neither approach is an

adequate solution.

1.2 A Proposed Solution

These two aspects of the EDA problem form the central motivation for my
research. The goal is to build an automated assistant that helps human analysts
explore data. I have chosen the term “assistant”, rather than “tool” or “interface”,
with a specific distinction in mind. Two properties let us call a system an assistant
rather than a sophisticated tool or interface. First, an assistant is at least partially
autonomous. We can give an assistant gehera.l instructions and let it make its own
decisions about how to carry them out. Second, an assistant responds to guidance
as it works. An automated system will inevitably make mistakes from time to time,
so its reasoning process (past decisions as well as current ones) must be available
to the user for approval or modification. A responsiveness to the guidance provided
by human knowledge of context has been termed “accommodation” [Lubinsky and
Pregibon, 1988]. An accommodating system takes advantage of human knowledge
to augment its own necessarily limited view of the world. The combination of
autonomy and accommodation lets the human data analyst shift some of the routine
or search-intensive aspects of exploré,tion to an automated system, without giving up
the ability to review and guide the entire process.

I ha;ve designed and implemented AIDE, an Assistant for Intelligent Data Ex-
ploration, to play this role. AIDE is a knowledge-based planning system that in-
crementally explores a dataset, guided by user directives and its own evaluation of
suggestive indications in the data. Its plan library contains a varied set of strategies
for generating and interpreting indications in data, building appropriate descriptions

of data, and combining results in a coherent whole. The system is mixed-initiative,

8

autonomously pursuing high- and low-level goals while still allowing the user to inform

or override its decisions.

1.3 Contributions

AIDE’s design is founded on a strong, heretofore umecﬁgnized relationship be-
tween data exploration and planning. Researchers in machine learning [Biswas et
al., 1991; Fisher and Langley, 1986], statistical expert systems [Oldford and Pe-
ters, 1986; Thisted, 1986; Lubinsky and Pregibon, 1988], knowledge discovery in
databases [Zytkow and Zembowicz, 1993], and other areas have taken advantage of
Al techniques by viewing data analysis as a search problem. We can gain further
advantage by casting EDA as a planning problem. EDA techniques rely on abstrac-
tion, hierarchical problem decomposition, and procedural knowledge: these properties
make it amenable to planning.

AIDE is a partial hierarchical planner, a specialized type of planner that can
represent sophisticated types of control knowledge. Control knowledge is necessary in
the representation of statistical strategies, or descriptions of the actions and decisions
involved in applying statistical tools to a problem [Hand, 1986]. Representation of
statistical strategies has posed a difficult problem for the builders of statistical expert
systems. Planning is a novel and general solution.

AIDE’s most important contribution is to show that a mixed-initiative approach
to data exploration can be effective. AIDE is guided not only by its own evaluation of
patterns in the data, but also by user directives. When the system sees a clear path for
its actions, it can proceed without substantive guidance from the user; nevertheiess the
user can take over at any point to direct the exploration toward appropriate context-
dependent goals. AIDE’s planning representation, in addition to being appropriate
for representing statistical strategies, turns out to be well-suited in many ways to

mixed-initiative interaction with users as well.

9

Finally, research with AIDE makes a methodological contribution: evaluation of
statistical systems that address tasks like exploration has been relatively limited.
Because of the complexity of the exploration task, and because of the need for human
involvement, developers of such systems generally concentrate on explaining their
design decisiqns and showing how the system treats specific examples [Pregibon, 1991;
Kloesgen, 1992; Brachman et al., 1992; Goldstein and Roth, 1994; Roth et al., 1994].
The effectiveness of these systems is not in question, but our research tries to supply
a better means of demonstrating it. Research with AIDE takes on the empirical task
of (a) showing that its approach is feasible and (b) determining how and why it is
effective. While we have not always been completely successful, our experiments are

a step in the right direction.

1.4 A Road Map

In this introduction we have briefly discussed what EDA is, why it is difficult, and
why it is important. We have also described how people currently go about exploring
data, and proposed a way to improve this process. The remainder of this dissertation
will go into greater detail on these points.

We can most easily illustrate EDA techniques through examples. Chapter 2
describes datasets from different domains. We explore each dataset, pointing out
patterns of interest, while explaining common exploratory tephniques and strategies.
This chapter gives a brief, hands-on introduction to EDA techniques and how they

are applied.
o In Chapter 3 we discuss several systems designed to solve problems that involve
exploration. AIDE’s design reflects many of the considerations that early researchers
have found to be important. In addition, AIDE’s design is based on research in
planning, statistical analysis, and human-computer interaction. Related work in these

other areas is discussed in the appropriate context, in Chapters 5, 6, and 7.

10

A basic grasp of EDA techniques lets us move to the next issue, which involves
bringing an automated system into the process. In Chapter 4 we characterize EDA as
a search problem, defining a set of primitive operations that combine to implement a
wide range of EDA techniques. Chapter 5 then explains why planning is appropriate
for EDA. We focus on partial hierarchical planning, which is well-suited to represent-
ing procedural knowledge about EDA. We describe how exploration is carried out
by planning operations and discuss the planning algorithm, the plan language, and
related planners that strongly influenced the development of the AIDE planner.

Chapter 6 describes AIDE’s plans. While much of AIDE’s intelligent behavior
can be attributed to the planning representation itself, AIDE’s performance depends
strongly on the specific statistical strategies implemented in the representation. We
discuss strategies for fitting lines, straightening curves, clustering, classification, as
well as a few simple modeling techniques. We also discuss statistical expert systems
and machine learning systems that have addressed problems related to exploration.

In Chapter 7 we bring the user back into the picture, discussing AIDE as an
interactive system. We describe the look-and-feel of the system and how it interacts
with the user in a detailed example. We give an overview of work in mixed-initiative
planning and human-computer interaction, areas that have contributed many of the
concepts underlying AIDE’s design.

Chapter 8 describes our evaluation of AIDE’s performance. The basic issue is
simple: users should be able to perform EDA better with AIDE’s help than without it.
We describe an experiment design that gives us a way of comparing performance under
these two conditions. Our experimental results tell us that AIDE does indeed improve
exploration; further analysis points out where and why AIDE gives an advantage.

Chapter 9 summarizes the work, pulling all the threads—statistical strategies,
planning, and human-computer interaction—together. This chapter ends with a

discussion of future work: how the user interface might be improved, how new

11

strategies might be learned automatically, and potential challenges in extending AIDE
to other statistical domains.

Each of the chapters above, except for the conclusion, ends with a brief summary
of one or two paragraphs. To gain an overview of this work, one might browse through

Jjust these concluding summaries:

Chapter 2, Exploring data, on page 24,

Chapter 3, Related work, on page 37,

Chapter 4, Formulating the EDA problem, on page 45,
Chapter 5, Planning and EDA, on page 81,

Chapter 6, Statistical strategies, on page 105,

Chapter 7, Collaborative EDA, on page 132, and
Chapter 8, Evaluation, on page 164.

CHAPTER 2

EXPLORING DATA

This chapter explores two different datasets to give the flavor of EDA. The first
dataset comes from an experiment with PHOENIX, a simulation in which agents
interact with their environment in complex ways. The second dataset, NETWORTH,
was artificially generated as the source data for an EDA assignment in a statistical
methods course. All of the results reported in this chapter can be produced through
interaction with AIDE, though most of them were originally generated through a
conventional statistical interface. AIDE has been applied to many datasets in addition

to these; a partial listing is given in Appendix A.
2.1 PHOENIX

The first dataset is taken from an experiment with PHOENIX, a simulation of
forest fires and fire-fighting agents in Yellowstone National Park [Cohen et al., 1989).
The experiment involved setting a fire at a fixed location and specified time, and
observing the behavior of the fireboss (the planner) and the bulldozers (the agents
that put out the fire). Variability between trials is due to randomly changing wind
speed and direction, non-uniform terrain and elevation, and the varying amounts of
time agents take in executing primitive tasks. In this experiment forty variables were
collected over the course of some 340 PHOENIX trials, including measurements of the
wind speed, the outcome (success or failure), the type of plan used, and the number of
times the system needed to replan. We became interested in the relationship between
the time it takes the planner to put out a fire (Duration) and the amount of fireline
built during the trial (FirelineBuilt). Figure 2.1 shows a scatter plot of these two

variables.

13

Clearly the relationship can be partitioned into two subsets: a vertical set of points
at zero on the Duration axis and a separate, approximately linear set of points. An
examination of other variables shows that the vertical points correspond to trials in
which the outcome was Failure—PHOENIX was unable to put out the fire. Figure 2.2
shows a row-line plot of Duration values (i.e., all Duration values plotted in sorted
order) for failed trials. Duration values are relatively continuous except for three
flat areas at 120, 150, and 200. A moment of thought gives the reason for this
behavior. When PHOENIX fails, it may in some cases stop the simulation; in other
cases, however, PHOENIX may continue to fight a losing battle indefinitely. The
experimenters have decided that when a trial runs for 120, 150, or 200 time units
it is effectively a failure. These values were instituted as cut-off points. Why the

experimenters used three separate cutoff values is a mystery.

200 °
° o
g 1 s
o
&
g I 0 (-4 © o
a © °° &
- —
B 100 8 oo ° .
3. °
2] 4 < ° o° %
§ Lo, 89
o ° o ©9°
] . °°83 . B
°
o g ?&"‘b o
’ °°€§ ° 08
g oog 8 $
J 3 R g
0 T T T T T v] T T T |
0 10000 20000 30000 40000 50000
Fireline Built

Figure 2.1. FirelineBuilt versus Duration

14

The correlation of points in the Success partition is positive, as expected from the
scatter plot and from our intuitive understanding of the relationship between measures
of duration and the expenditure of resources. Two outliers may be important, but
are set aside for now.

The “approximately linear” pattern in the Success partition can be more pre-
cisely described by a least-squares or resistant line, as shown in Figure 2.3. The resid-
uals of the fit—the degree to which the data are not explained by the description—are
then generated by subtracting the actual value of Duration, for each value of Fire-
lineBuilt, from the value predicted by the regression line. There are no indications of
further structure, such as curvature, that would render the description incorrect, and

thus we tentatively accept the linear description.

200]
g 150
o
-
43
o i
Y]
a
—~ -
8 100 X
H x
50 7 X
¥
X
X
s
0 | | T T l | T T | I I I
0 10 20 30 40 50 60 70 80 90 100 110 120 130

Observation

Figure 2.2. Sorted Duration values for failed trials

15

A closer look at the Success partition shows small, vertical clusters in the lower
range of FirelineBuilt. Figure 2.4 highlights these points. One of the outliers,
mentioned earlier, belongs to a vertical cluster. In a histogram or kernel density
estimate of FirelineBuilt, these would appear as small peaks. A better view of the
generai pattern of clustering is given by each cluster’s central location, its median
FirelineBuilt and Duration value. Once the clusters have been reduced to a set of
representative values, they can be described in turn. These points also follow a linear
pattern, with a slope slightly less than that of the line fitting the entire partition.

Because not all points fall into the vertical clusters, it becomes appropriate to
generate a binary variable to encode this difference in behavior. A comparison of this
variable with other relevant possibilities (i.e., other discrete experiment variables)

shows that the clustered data correspond to trials in which the planner did not need

- o
o]
S 100
s}
8 -
a i
-t
o J
-
H -
3]
0 T | T T T T J T T |
0 10000 20000 30000 40000 50000

Fireline Built

Figure 2.3. Linear fit of FirelineBuilt versus Duration, successful trials

16

to replan. This is shown in in the contingency table in Table 2.1: observatiogs fall
into clusters when # Replans = 0, and usually not otherwise.

A more detailed way to characterize the clusters involves assigning unique identi-
fiers to points in different clusters. Another search through relevant variables produces
WindSpeed and PlanType, which together provide moderately good prediction of
cluster membership. That is, each cluster corresponds to a different combination

of WindSpeed and PlanType values. The experiment varied WindSpeed over three

. a}
. ° o °
) i oo &
S 100 o
o] o o °
g i ° ° ° o
o
- . Bo 8o
! > © ° ° X3
= 1 ° G»O <
90° & o °
] & So Lo
P g B % °
E f% ° e 3 ?
i [E (B o
0 ! | ! | ! | ! | ' I
0 10000 20000 30000 40000 50000
Fireline Built

Figure 2.4. Clusters in FirelineBuilt versus Duration, successful trials

Table 2.1. Clustered and non-clustered FirelineBuilt for successful trials

Replans = 0 1 2 3 5
clustered FirelineBuilt 121 3 0 0 0
non-clustered FirelineBuilt 4 63 20 2 2

17

distinct values (3, 6, and 9 mph), and there were also three different types of plans
applied. Figure 2.5 plots the clustered points, using a different marker for each
wind speed. The scale of the axes has been changed to give a more detailed view
of the clusters. The triangles are for WindSpeed = 3, X’s for WindSpeed = 6,
.and Z’s for WindSpeed = 9. The higher wind speeds correspond to trials that take
longer to complete and entail building more fire line. Comparable descriptions of the
effectiveness of plans in different conditions can be derived through an analysis of the
clusters by PlanType.

Finally, one way to summarize these relationships, given what we have discovered,
is shown in Table 2.2. Each cell contains the median Duration value for a different
combination of PlanType and WindSpeed values. Interactions can be identified by

observing that the row values change at different rates in each column, as do column

80
60 7
=]
S z
©
v Z
3
a 40
—
2
.8 ¥
B f g i
Y
¥
20 2 $2 ¥
Y
0 T | T I
5000 15000 25000
Fireline Built

Figure 2.5. Clusters in FirelineBuilt versus Duration, by WindSpeed

18

values across rows. Possibilities for proceeding include extracting the rows or columns
and overlaying their line plots, or applying median-polishing techniques [Hoaglin et
al., 1983]. However, we will stop here.

At this point we have quite a refined view of the behavior of the planner as wind
speed and plan type change. The final table, Table 2.2, represents the behavior of

five different dataset variables:

e WindSpeed (columns);

¢ PlanType (rows);

e Duration (cells);

e Outcome (table contains only successful trials);

o Replans (table contains only trials that succeeded on the first try).

Additionally, there is an implicit dependence on the variable FirelineBuilt; if not for
the gap in its distribution, along with the vertical clustering, we might never have
pursued this line of exploration.

The results of the exploration include the partition of the relationship, observa-
tions about cutoff values in failed trials, observations about the behavior of vertical
clusters, and descriptions of all the relationships these patterns have with other
variables. These results can be combined in an informal model of the behavior of

PHOENIX. Our findings let us draw direct connections between variables such as

Table 2.2. Median Duration by WindSpeed and PlanType for clustered data

WindSpeed = Low Medium High
PlanType = X 11.0 15.5 18.8
PlanType = Y 14.5 26.7 22.1
PlanType = Z 19.5 29.9 29.7

19

Outcome and FirelineBuilt, links that can be annotated with appropriate descriptions.
As we build a model, our context knowledge often suggests that we examine specific
relationships and possibilities for describing them. A more detailed account of the
application of these procedures to the PHOENIX data is given in Empirical Methods
in Artiﬁcz'dl Intelligeng:e [Cohen, 1995).

2.2 NETWORTH

Dawn Gregory developed the NETWORTH dataset as a homework problem for a
course on empirical methods. The advantage of using artificial data is that exploratory
findings can be tested against a “true” model.

The data generator works in a straightforward manner. A set of variables is
defined, each variable classified as exogenous or endogenous. The values of an ex-
ogenous variable are determined by sampling from a specified probability distribu-
tion. For example, V, might be defined as an exogenous variable with a uniform
distribution of U(500). The values of an endogenous variables are determined by
a functional combination of exogenous and other endogenous variable values, plus
a noise function. For example, V, could be defined as 25V, + N(0,1), where V; is
defined as before and N(0,1) is a standard normal distribution. Variables can be
categorical and can rely on conditional tests in computing their values. The variables
and their definitions constitute a model. One way to look at a model is as a graph
in which nodes correspond to variables and groups of arcs correspond to functional
relationships between variables. A single observation is generated by sampling from
the distributions of the exogenous variables, and “pushing” these values through the
graph of the model, until all values have been generated for all variables. A dataset
is generated by repeatedly generating new observations.

The dataset we consider here is the NETWORTH dataset, the direct relationships

of which are shown in Figure 2.6. The input to the data generator for this dataset is

20

given at the end of this chapter in Table 2.3. The patterns that appear in the data
are comparable to those in the PHOENIX dataset.

In this section our exploration will take a different tack. In addition to the
operations discussed so far, we will apply modeling heuristics to build a model directly
from the data, rather than only through the results of the exploration. The descriptive
EDA techniques that have served well up to this point have their limitations. With
exploratory descriptions we can answer questions such as, “Do low values of variable
z correspond to low values of variable y?” and, “Can we reasonably group these
observations?” But we eventually will want to ask questions about predictiveness
and causation: “If ¢ changes, what will happen to y?” or “What can I do to make
the values of y increase?” Modeling techniques can help answer these questions.

Pearl’s IC (Inductive Causation) algorithm [Pearl and Verma, 1991] is typical
of many causal modeling techniques in the literature. IC begins by assuming that
all variables are directly related. From a complete graph of variables, IC iteratively

WeeklyRate JobType (LotteryWinnings)
>

HouseCost WeeklyNet CarCost

MortgageType l
\'
HousePayment CarPayment
Groceries
Utilities
\ ! /
Expenses
MonthlyProfit

Figure 2.6. Causal relationships in the NETWORTH dataset

21

removes arcs until only “true,” direct relationships remain. The key decision for IC
is determining whether variables a and b are conditionally independent, 1.e., whether
changes to a can affect b if we hold some set of other variables constant. IC uses a
simple partial correlation test for conditional independence.!

BS' setting IC’s various parameters to different levels, we can generate different
causal models of the NETWORTH data. For one set of parameter values, the model
in Figure 2.7 is generated. IC identifies four relationships, but is unable to determine
directionality. While the results of the modeling procedure are correct, as far as
they go, they are also disappointing. With different parameter settings, IC can at
best identify about half of the direct relationships, but to do this it also identifies
many incorrectly. Why are the remaining relationships so difficult to find? As with

many modeling algorithms (e.g. standard regression, classification, and clustering

1Causal modeling algorithms and heuristics are described in more detail in Section 6.5.1.

WeekiyRate JobType (LotteryWinnings)

HouseCost WeeklyNel CarCost
MortgageType

HousePayment CarPayment
Grocerles
Utilities
Expenses
MonthlyProfit

Figure 2.7. NETWORTH causal relationships determined by IC

22

algorithms), IC relies on assumptions about the types of patterns present in the data;
specifically, IC’s heuristics are designed to detect conditional independence between
variables that are linearly related. One could argue that the modeling algorithm,
as implemented, is inadequate, but one could as easily hold that it was improperly
applied, that the fault lay in its application to a dataset for which it was not designed.

Exploration techniques can address this problem. Let’s take an example, one
suggested by our notions about plausible patterns in the data as well as by IC’s
model—the relationship between the variables WeeklyNet and WeeklyRate.? These
variables are concerned in some way with income, though it is not immediately clear
what they represent. If our intuitions are correct, though, there should be a high,
positive correlation between the two factors. The scatter plot in Figure 2.8 shows
that this is correct.

The scatter plot also shows that the relationship is approximately linear. The
rightmost group of points, though far from the central mass of the data, appears to lie
along the line that characterizes the rest of the relationship. A reasonable description
of the relationship might then be given by a least-squares line, as in Figure 2.9. The
line fits the data very well, with an R? of 0.974. However, the residuals in Figure 2.10,
show two distinct patterns, or indications. First, note that the residuals do not seem
to be evenly distributed around zero on the x-axis, but rather seem to be sloping
downward toward the right. Perhaps we should revisit our choice of a least-squares
line to consider other possibilities, such as a resistant line, that might be less sensitive
to the lack of smoothness in the distribution of the data.

Second, there are clear outliers in the upper part of the plot. In the linear fit
of Figure 2.9, these points belong in a group at roughly WeeklyRate = 1000. These
observations correspond to people for whom the value of WeeklyNet is proportionally
higher than the value of WeeklyRate. Separating these points out and searching for

#Thanks to David Jensen for this example, generated during a practice session with AIDE.

23
other variables in the dataset to account for the pattern shows these to be observations
for which JobType is Consultant—in other words, consultants take home more of
their weekly income.

This latter result gives us a direct relationship between JobType and WeeklyNet,
which can be added to initial causal model generated by IC. The modeling algo-
rithm can then (potentially) use this new information to extend its results further.
Even if many of the functional and structural relationships between the variables in
NETWORTH turn out to be too subtle for the conditional independence heuristics to
capture, exploration can uncover and describe these relationships. This is one example
of a common kind of interaction between exploration and modeling. Decisions about
which modeling algorithm is most appropriate, about which data are relevant and how
the data should be formatted, and about how results should be interpreted generally

3500

3000

2500 7

2000 T

WeeklyNet
<
S

1500 °
1000 o

500 038

0 T T T T T
0 500 1000 1500 2000 2500 3000
WeeklyRate

Figure 2.8. WeeklyNet versus WeeklyRate

24

lie outside the purview of modeling; however, exploration can take responsibility for

these activities [Hoaglin et al., 1983).
2.3 Summary

The two datasets explored in this chapter, PHOENIX and NETWORTH, help to
illustrate the variety of EDA techniques and the flexible, opportunistic ways in which
they are commonly applied. These techniques encompass fitting lines and higher
order functions, detecting clusters and identifying variables predictive of clustering,
reducing data to enhance patterns, and so forth. Individual results, usually interesting
in their own right, can often also act as signposts pointing the way to further results.

EDA techniques are driven both by patterns in the data and by our contextual

knowledge. Note the use of indications in the analysis. Indications are suggestive

3500

3000 7

2500 =

2000

1500

WeeklyNet

1000 7

500 T

0 | 1 | I T
0 500 1000 1500 2000 2500 3000
WeeklyRate

Figure 2.9. Linear fit of WeeklyNet versus WeeklyRate

25
characteristics of the data, most often involving evaluation of a statistic or descrip-
tive structure [Mosteller and Tukey, 1977]. In the PHOENIX dataset, a gap in the
distribution of FirelineBuilt indicates that a partition is an appropriate description;
clusters in Fireline Built indicate that another factor may influence its behavior. In
general, indications help us move from simple, surface descriptions to more focused
descriptions, as we gradually extract more detail from the data.

Contextual knowledge also contributes to the process. Our interest in the re-
lationship (FirelineBuilt, Duration) was prompted by our expectation that patterns
in the relationship between measures of duration and the expenditure of resources
might prove enlightening. Our interpretation of outliers in the residuals of the
functional relationship between WeeklyNet and WeeklyRate was aided by knowledge
that JobType can be a relevant factor.

400
x
X
X
300 7
X
§ 200]
>
-~
S
2 100 o °
o ¢
3 ° &
- I GO
B o0 e%°g oo
(+4 8 o °
° oo
o ® 4 % o
-1001° o ° °
o0 °
°
-200 | | | I |
0 500 1000 1500 2000 2500 3000
WeeklyRate

Figure 2.10. WeeklyNet versus WeeklyRate residuals

26

Thus exploration is partly driven by indications, in bottom-up fashion, and partly

by user knowledge and with sensitivity to context, in top-down fashion. These two
aspects break the responsibility for EDA into two natural parts. AIDE is responsible
for detecting and following up on indications in the data, while the user is responsible
for high level strategic guidance of the process. The separation of responsibilities is
not strict; AIDE can be trusted with some strategic decision-making, and often the
user must work at the detailed level to produce the best results. In general, however,
the strategic/tactical distinction describes the respective roles of the user and the

system.

Table 2.3. Functional relationships in NETWORTH

| Variable | Computation |
LotteryWinnings | Pr = 90/100 o -0]
. Pr = 5/100 20
Pr = 4/100 100
| Pr = 1/100 1000
JobType Pr =5/100 — Executive
Pr = 15/100 — Consultant
Pr =20/100 — Engineer
Pr = 60/100 — Worker
WeeklyRate Job = Executive — 2500
Job = 1Consultant — 1500
Job = Engineer — 500 + U(50)
Job = Worker - 500
WeeklyNet Job = Executive — Lottery + (Rate)(0.9)
Job = Consultant — Lottery + (Rate)(0.65)
Job = Engineer — Lottery + (Rate)(0.75)
Job = Worker — Lottery + (Rate)(0.75)
HouseCost Job = Executive — (Rate/2)?
Job = Consultant — (Rate/2)®
Job = Engineer — 200000
Job = Worker — 150 Rate
MortgageTerm | Pr =2/10 — short
Pr =3/10 — medium
Pr =5/10 — long
HousePayment | Mortgage = short — (HouseCost)(1.7/180)
Mortgage = medium — (HouseCost)(2.0/240)
Mortgage = long — (HouseCost)(2.5/360)
CarCost Job = Executive — 50000 + U (50000)
Job = Consultant — 25000 + U(15000)
Job = Engineer — 16000
Job = Worker and Pr=1/4 — 0
Job = Worker and Pr = 3/4 — 3000 + U(7000)
CarPayment Pr=1/3 — CarCost/24 + CarCost/100
Pr=1/3 — CarCost/48 + CarCost/100
Pr=1/3 — CarCost/60 + CarCost/100
Utilities 50 4 U(150)
Groceries 150 + U(250)
Expenses HousePayment + CarPayment + Utilities + Groceries

| MonthlyProfit | (4)(WeeklyNet) - Expenses

CHAPTER 3

RELATED WORK

AIDE incorporates research from several disparate fields: in statistics, the rep-
resentation of expert statistical knowledge for EDA; in artificial intelligence, partial
hierarchical planning, mixed-initiative planning, and areas of machine learning; in
human-computer interaction, collaborative systems for data exploration. Because of
this, and because of the generality of the task addressed by AIDE, it is difficult to
draw a unified picture of related work.

We can nevertheless identify several systems that cross the boundaries between
research areas, systems that have in many ways influenced AIDE’s design and devel-
opment. They are distinguished by their emphasis on the following points:

o Exploration is a coherent process of related actions, in which results are pro-

duced incrementally and often opportunistically.
e Some exploratory activities can be automated.

¢ Evaluation of exploratory findings must involve human judgment.

The systems also attempt to give users a general set of statistical or analytical
tools, using only weak domain knowledge. These characteristics rule out autonomous
machine learning systems, user-driven statistical programming environments, domain-
specific visualization systems, and most of the tightly targeted systems common in
the knowledge discovery in databases literature.

Much of our discussion of related work will be deferred until later chapters, where

relevant details can be fit into the appropriate context.

29

3.1 REX

REX, the Regression EXpert system, advises a user in regression analysis prob-
lems [Gale, 1986]. It generates a regression for a dataset—something almost any
statistical package can vdo—but then extends the analysis by testing assumptions and
suggesting solutions when assumptions are violated. REX performs its analysis inter-
actively, producing graphical displays and textual explanations, giving justifications
for its actions, and halting the analysis when a decision based on external context is
required. REX was designed as a front end to a statistics system, playing the role of
intermediary between the user and an underlying package of statistical functions.

The contribution of REX lies in its implementation of an explicit statistical
strategy. Such representations are almost completely lacking in the statistical lit-
erature [Lubinsky and Pregibon, 1988]. The strategy is encoded as a hierarchy of
frames, with relevant rules associated with each frame—in effect, as a static decision
tree. As REX executes each step in its analysis, it tests the data to ensure that
assumptions are met and that results are consistent with the assumptions. These
tests guide REX along a path down the tree. If the rules indicate a problem, REX
generates a set of possible ways to deal with it, and asks the user to choose between
them. When the data are clean, interaction is minimal; otherwise the user is queried
to address each problem. Without guidance, REX does not continue.

In a retrospective of the work [Pregibon, 1991], Daryl Pregibon made these
observations: First, REX’s interaction with the user was flexible, depending on the
data. If there were no problems with the data (e.g., no outliers, no curvature, no
skew, approximate linearity) REX could proceed without help from the user. Only on
reaching a problem would REX stop to ask for help. This stands in strong contrast
to the usual menu-based or programming interaction users ordinarily face.

Second, users differed in their acceptance of REX’s analysis. Non-statisticians

were entirely willing to let REX proceed on its own, accepting its answers, even learn-

30

ing from its explanations. Statisticians, on the other hand, sometimes disagreed with
REX’s decisions, and some actually disliked the system. While REX’s interactions
with the user depended on the data, it always made the same decisions at each point.
REX was thus not responsive to any special knowledge the user might have that could
guide the analysis in one direction or another.

Third, REX was not successful as an environment in which statisticians might
develop their own strategies. Formulating strategies is a difficult task, whether or
not it is supported by an appropriate computational environment. We can partially
attribute REX’s problems in this area to its rule-based design—it is often difficult to
represent procedural knowledge in rule form.

REX was an ambitious system. It was built not only to automate difficult
statistical procedures, but also to provide a kind of playground for statisticians, an
environment in which they could explore their own analysis strategies and perhaps
develop new ones. REX was significant as an exploratory prototype, whose design

decisions could be evaluated for their use in future systems.

3.2 TESS

TESsS, the Tree-based Environment for Statistical Strategy, is a successor to REX
and the related Student system [Gale, 1986]. TESS produces hierarchies of data
descriptions in a semi-automated way [Lubinsky and Pregibon, 1988]. TESS views
human knowledge of context as essential to the task. Thus rather than incorporating
a limited, machine-based representation of context into its processing, it “accommo-
dates context” by providing for close user interaction in deciding which paths should
be explored. From the sets of data descriptions TESS generates, the user can select
the ones most appropriate for the analysis.

TESS casts the description of data as a search problem, where description is a
process of generating an explanatory hierarchical decomposition of data. A single

description of a dataset is a path through the resulting forest of trees. Descriptions

31

are evaluated on two counts: accuracy and parsimony. The accuracy measure in
TEss is based on Mallows’s theory of data description [Mallows, 1983], in which the
accuracy of a description of a dataset y is measured by counting the number of datasets
that are similar to y that produce an identical description. The parsimony measure
is directly obtained from the hierarchical representation of descriptions. The most
accurate description of a bivariate 'relationship, for example, is a list of all its data
points. This, the root node in a tree of descriptions of the dataset, is naturally the
least parsimonious description possible. The relationship might be further described
as bivariate normal in one subtree, its variables individually described in further
detail in related subtrees, residuals from a linear fit described in still another subtree,
and so forth. At the leaves we find reductions to single statistics, which give the
most parsimonious but also the least accurate descriptions of the relationship. Good
descriptions trade off accuracy and parsimony, in the way estimators trade off variance
and bias.

TESss’s expertise lies in the handling of data manipulation operations in a re-
gression setting; problems of variable selection, which is strongly affected by context-
sensitive goals, remain the user’s responsibility. Nevertheless in TESS we see the first
elements of a mixed-initiative approach to data analysis. To produce its descriptions,
TESS uses a pre-determined set of search control mechanisms, which can be selected
by the user. For example, the user can say, “Find the best description using a search
with a maximum depth of six,” or “Find the ten best descriptions possible within the
next five minutes.” The geriera.l idea is that TESS’s search will result in a set of high
accuracy, high parsimony descriptions, which are given to the user. The user can
select among these intermediate results and cause the system to extend the search
from that point. In other words, the user, relying on external knowledge of context,
can tell TESS to refocus its attention on different areas of the search space. Control

is thus shared, in a limited but important way, between the user and the system.

32

3.3 IDES

IDEs, the Interactive Data Exploration System, is one component of SAGE-
TooLs [Goldstein and Roth, 1994; Roth et al., 1994]. SAGETOOLS treats data
exploration as a problem to be solved by heuristic knowledge, and relies heavily
on human judgment in its processing. The system grew out of research in automatic
presentation systems, which are intended to relieve users of the need for graphical
design and display knowledge. Exploring a dataset in the SAGETOOLS environment,
the user can concentrate on relationships and patterns in the data, rather than
graphical presentation details.

SAGETOOLS breaks data exploration techniques into three categories: data vi-
sualization techniques, which include designing and generating effective graphical
displays; data manipulation techniques, which include selecting data, focusing on
particular attributes, and grouping observations; and data analysis techniques, which
are the standard tools of statistical testing and analysis. These categories are inter-
dependent and somewhat overlapping.

IDES is concerned with data manipulation. Its implementation concentrates on
data in the form of objects, such as cars or houses, with attributes, such as asking
price, age, size, and so forth. In IDES, data manipulation techniques fall into three
general types. The first controls the scope of the data, restricting or expanding the
amount of data one wishes to view. One might change the scope in a housing dataset
by specifying, for example, that only house objects with asking-price greater than
$100,000 should be considered. One might also merge subsets to expand the scope.
The second type of technique involves choosing the level of detail of the data, or
changing the granularity of the data. This is managed by grouping and reducing
numerical-valued properties of a set of objects. For example, we might group houses
in our dataset by neighborhood, aggregate their asking-price values, and reduce

them to derive a mean or median asking-price for houses in each neighborhood.

33

The third technique involves selecting the focus of attention. Selecting the focus,
in the simplest case, involves choosing the attributes of the dataset one wishes to
manipulate with other operations. For example, one might focus on the attributes
asking-price and neighborhood to gain some understanding of the relationship
between them. Deriving new attributes from old ones is also considered a form of
attention focusing.

IDES provides a powerful interactive environment for data exploration. In contrast
to REX and TEss, IDES concentrates on data presentation, rather than statistical
analysis. The result is an environment that supports flexible data manipulation with
immediate, sophisticated graphical feedback. While IDES displays far less autonomy
than REX and TESS, it can be effective in solving many kinds of data exploration

problems.

3.4 IMACS

IMAcs, the Interactive Market Analysis and Classification System, is aimed at
the task of “data archaeology” [Brachman et al., 1992]. Data archaeology is distinct
from data mining, in which an autonomous statistical or machine learning algorithm
searches a large database for implicit patterns. Data archaeology recognizes that
results do not emerge in a single pass over the data, but rather evolve in an iterative
process that requires constant human interaction. IMACS aims to improve current
data analysis technology by increasing the flexibility of data representation, improv-
ing complex and error-prone access methods, supporting iterative exploration, and
managing work over time. The prototypical IMACS application is a large commercial
database, such as a department store’s customer information database.

Representational flexibility is provided by the formal knowledge representation
language Classic [Brachman et al., 1990]. Classic contains three kinds of objects:
individuals, which represent objects in the domain of interest; concepts, which are po-

tentially complex descriptions of individuals; and roles, which are two-place predicates

34

relating individuals. The representation gives users more flexibility than provided by
a relational database representation. Because datasets must be mapped into the
Classic representation to be accessible to IMACS, however, a significant part of an

IMACs application is the definition and generation of a domain knowledge base.

IMACs gives the user a variety of ways to access and manipulate data. A query
language allows direct, SQL-style queries, augmented to take advantage of the knowl-
edge representation features of Classic. The user may also create templates, or forms,
to represent common queries, which can then be filled in appropriately for different
situations. The user can also interact directly with a graphical or tabular display of
the data.

IMACS supports a particular type of exploration, that of segmenting data into
interesting subsets. In commercial databases one can often find patterns hidden in
large, pre-determined categories; for example, the set of all customers includes those
who buy expensive items only during sales. Its access and manipulation methods are
geared toward identifying interesting patterns in subsets, aiding segmentation, and

defining Classic concepts to record significant new groupings of objects.

The contribution of IMACS is the recognition that data archaeology (and by
extension data exploration) is an iterative process that requires human gunidance, and
that AI knowledge representation techniques can significantly extend the conventional
data analysis environment. IMACS (like IDES) is somewhat limited in its view of data
as relationships between objects with attributes as well as in its view of exploration
as segmenting data. IMACS’s strength lies in its conceptual framework rather than
its internal processing; again like IDES, IMACS generally displays little autonomy.

IMACS is a representative example of several systems for knowledge discovery in
databases, including IDEA [Kellogg and Livezey, 1992], The Knowledge Discovery
Workbench [Matheus et al., 1993], and RECON [Simoudis et al., 1994]. These
systems are comparable to IMACS in their goals, scope, and limitations, and we will

not discuss them further.

35

3.5 Explora

The Explora system [Kloesgen, 1992; Kloesgen, 1993] searches for statistical
patterns in numerical data. Explora provides a large, fixed set of pattern templates,
wh.iéh the user fills in to create hypotheses. The system attempts to verify these
hypotheses by evaluating their strength or coverage in the data.

Explora concentrates largely on finding subsets of a dataset for which specific
distributional properties hold. For example, a pattern that Explora might Jjudge to
be interesting is “a subset of variable z in which the mean is significantly smaller
or larger than in the entire population.” The user can specify constraints on the
variables considered and the range of data examined.

Given these user constraints, Explora generates a set of significant patterns,
which it evaluates with various heuristics and statistical tests. Rules for reduction,
generalization, and selection then process the patterns to generate results that are
presented to the user. The user may at this point revise the current search constraints

and activate further exploration by the system.

Explora has many of the characteristics we require of a system for exploration.
It provides a reasonable set of pattern templates, a variety of search techniques,
and mechanisms for the user to influence its processing. It supports the incremental,
opportunistic EDA style. As with IMACS and IDES, Explora adopts a question-answer
style of user interaction, requiring a good deal of user input concerning the types of

patterns, statistical tests, and search strategies it should consider in its processing.

3.6 Other Systems

Exploration is addressed in one form or another by a great many systems in
machine learning, scientific discovery, and knowledge discovery in databases. Few

address the issues we have tackled in AIDE, however.

Machine learning systems are autonomous by nature. They often perform tasks

similar to that of AIDE, but without accounting for the knowledge-rich, opportunistic

36

aspects of the process. Conceptual clustering systems (e.g., COBWEB [Fisher,
1987], CLASSIT [Gennari et al., 1989], ITERATE (Biswas et al., 1991]) attempt
to extract plausible groups or hierarchies of groups from data. Classification systems
(e.g., ID3 and C4.5 [Quinlan, 1993]) try to predict classes of one variable based
on the values of other variables. Constructive induction systems [Fawcett, 1993]
generate new variables, which are viewed as concepts, to better explain patterns
in data. Traditional scientific discovery systems (e.g., BACON [Langley et al.,
1987], ABACUS [Falkenhainer and Michalski, 1986], E* [Schaffer, 1990]) attempt
to generate theories, or functional relationships, from data. All these systems are
limited both in the types of patterns they can identify and the kinds of input data
they can process. For example, E*, the most successful function-finding system of its
kind, can discover only six classes of functional relationships. Its output is simply an
equation, dispensing with observations of outlying values, skewed variables, and other
potentially significant properties of the data. Modern classification algorithms are
sophisticated and robust, but it is not clear how they would fare given, say, a simple
regression problem. Constructive induction and clustering systems deal mainly with
categorical variables, which imposes strong constraints on the types of structure that
can be found [Fisher and Langley, 1986].

Matheus et al. [Matheus et al., 1993], in a comprehensive review of techniques for
knowledge discovery in databases, raise a philosophical issue: they assert that devel-
opers of KDD systems face an inevitable tradeoff between autonomy and versatility.
In their eyes, the ideal system would be able to handle all of the data access tasks, the
selection of analysis procedures, and the evaluation of results entirely autonomously,
while still being applicable across many domains. Most existing systems tend to fall
near one endpoint or the other in this tradeoff. Unfortunately, this perspective misses
the point that human involvement is an essential part of the exploratory process.

A completely autonomous system can have little notion of the significance of its

37

findings—but this is exactly the kind of knowledge that informs the selection of data,
analysis methods, and evaluation techniques.

Machine learning and KDD systems are very good at performing the specific
tasks for which they have been designed; AIDE can be viewed, from one perspective,
as an aftempt to incorporate their techniques in a more comprehensive framework
for exploration. Due to time and effort constraints, AIDE can only implement a
representative sampling of the various possibilities. It is enough nevertheless to

suggest the promise of the approach.

3.7 Summary

The systems discussed in this chapter, REX, TESS, IDES, IMACS, and Explora,
share a view of data exploration as a coherent, incremental process, amenable only to
partial automation. Brachman’s description of IMACS as a system for data archaeology
(in contrast to data mining) is insightful: results do not emerge in a single pass over
the data, but rather evolve in an iterative process that requires constant human
interaction.

These systems are similar to AIDE in several ways. They are aimed at difficult
data analysis tasks related to exploration; they concentrate on giving a human analyst
appropriate tools, rather than providing black box solutions; judgments about the
significance or interestingness of results is left in the hands of the analyst. Some
systems (IDES and IMACS) even use a representation of primitive operations that is
functionally equivalent to AIDE’s. Nevertheless, except for TESS, none of the systems
concentrates on mamta.lmng a flexible balance between autonomy and accommoda-

tion. As discussed in the next chapters, this balance is central to AIDE’s processing.

CHAPTER 4

FORMULATING THE EDA PROBLEM

EDA can be difficult. For example, as part of the evaluation of AIDE, datasets
were generated to test the system’s performance. Checking whether the generated
patterns could be reconstructed in practice took several hours, even with the knowl-
edge of which patterns to expect. EDA techniques are not difficult to apply; however,
there are a great many of them, they are heavily parameterized, and they can often
be reasonably applied to any subset of the data. From a problem-solving standpoint,
EDA is difficult because it involves search.

Consider the analysis of the PHOENIX data in Section 2.1. To derive the summary

of median Duration by WindSpeed and PlanType, we needed to make these decisions:

o Select relationship (FirelineBuilt, Duration).

e Observe indication of gap in FirelineBuilt distribution.
e Search dataset; find variable Qutcome.

o Partition (FirelineBuilt, Duration) by Outcome.

o Select partition of successes.

o Select description operation: linear fit.

® Select linear fit operation: resistant fit.

e Explore resistant fit. ..

) Backtfack.

e Observe vertical clusters.

e Search dataset; find variable # Replans.

39
o Partition (FirelineBuilt, Duration) [success partition] by # Replans. ‘
o Backtrack.
e Search dataset; find variables WindSpeed and PlanType.

e Partition (FirelineBuilt, Duration) [success partition] by WindSpeed and Plan-

Type.
o Select statistic to describe clusters: median.
o (Apply statistic.)

This sequence can be viewed as a path through a relatively small decision tree,
going about ten levels deep. In many situations EDA decision trees will be much
deeper, and very branchy. Now imagine a user generating this analysis with the
help of a statistical user interface for data exploration. Even the simplest packages
provide on the order of fifty ope;.rations, while the more sophisticated packages provide
hundreds. This informal characterization gives us a search space containing on the

order of 10%°

states that we need to consider in constructing one partial result, the
table of medians.

The search space for the exploration of the entire dataset is enormous. Fortu-
nately, reformulation can reduce the search space. Our reformulation will be based

on a new set of operations discussed in the next section.

4.1 EDA Primitives

We define three types of basic operations: reduction, transformation, and de-
composition. These operations are second-order functions that take functions and
data as input. They constitute a; language for manipulating exploratory structures,
in the same sense that the relational algebra constitutes a language for manipulation

of relations in a database [Stemple and Sheard, 1989).

40

We can think of these operations as analogous to functions that operate on
matrices. The determinant of a matrix generates a scalar value from an m x m

matrix:

det [Tu D12] .

T21 T22

The multiplication of an » X m matrix by a scalar generates another n X m matrix:

a- Zn Zi2 | _ | 4Tnn GT)2
T21 T22 arzy aTz2
The “splitting” of a » X m matrix can result in several smaller matrices that if merged

would contain all the original data:

solit L11 T12 — T11 and 212
P 221 T22 T2 z22 |’
or

split l 11 P12 T13] - [T11 T12]and [Ti12 T33])

T21 T22 T23 T21 T22 T22 T23

These operations are analogous to reductions, transformations, and decompositions,
respectively, in the way that they alter the structure of the input data to generate
a result. A reduction generates a scalar value from a variable or multivariate rela-
tionship (the determinant); a transformation generates a variable or relationship of
the same structural form as its input (scalar/matrix multiplication); a decomposition
generates a new set of variables or relationships, which contain subsets of the original
data (matrix splitting).

These operations act on datasets represented as relations, a common approach
in the literature of statistical software [Chambers, 1977]. Vaiiél;les correspond to
relation attributes, while observations correspond to relation tuples. Bivariate and
multivariate relationships are relations with two or more attributes. A variable may
be considered either an attribute of a relation or a relation consisting of a single
attribute. In contrast to the usual relational database conventions, the domain of an

attribute may contain other relations as well as atomic values.

41

Reductions map relations to atomic elements. A reduction takes a function and
a relation as input. Computing the mean of a sequence of numbers is an example of
a reduction of a relation whose single attribute has a numeric domain. Letter values
(i.e., media.nsz fourths, eighths, etc. [Tukey, 1977)) are reductions, as is the correlation
between two sequences of numbers. All statistical summaries of this type fall into
the class of reduction operations. In this dissertation we use the notation (reduce
(function mean) ?sequence Poutput) where ?sequence is a batch of numbers

and (function mean) is the function called on the data.

A transformation operation maps a function over the tuples of a relation. A
transformation takes a function f and a relation R as input. The operation generates
a new relation S, such that for each tuple r; over the attributes in R, S contains a
corresponding tuple s; = f(r;). Taking logs of a batch of numbers is a simple example

of transformation: (transform (function log) ?sequence).

A decomposition operation breaks a dataset down into smaller datasets. A decom-
position takes a relationship R and a mapping function M as input. The mapping
function is applied to individual tuples and returns a subset of 1,...,k for each
tuple. This set of integers can be viewed as a set of assignments of the tuple
to a newly generated relation. The decomposition of R by M generates a new
relation S, of cardinality k, with a single attribute whose values are new relations
themselves. The contents of the ith relation in S are those tuples r; in R such
that M(r;) = i. Decompositions may partition a dataset or generate overlapping
subsets. Separating a dataset into clusters is a decomposition, as is isolating outliers
in a relationship. For decompdsitions we write (decompose (function mapping)
?dataset Poutput). Successive decompositions of a dataset leads to an implicit

tree of increasingly refined subsets of the data.

This conceptual breakdown of EDA operations is comparable that of IDES [Gold-
stein and Roth, 1994], IMACS [Brachman et al., 1992], and related systems, but differs

in the details. Controlling the scope of data in IDES corresponds to decomposing

42

a dataset and selecting one subset in AIDE. Choosing the level of detail in IDES
means decomposing a dataset, transforming each partition by applying a reduction,
and potentially further transforming the result. Selecting the focus of attention in
IDES is a higher level activity in AIDE. The mapping of IMACS concepts to AIDE
representational constructs is similarly direct.

The effectiveness of the IDES and IMACS representation depends strongly on their
view of data as objects with attributes. AIDE takes a less restrictive (i.e. conceptually
weaker) view, which gives more flexibility, especially for bottom-up processing. For
example, in IDES’s object-based representation it is easy to say, “Treat houses with
the property Cost > = as a separate group; call them ‘expensive houses’.” This is
possible to do in AIDE, but without built-in support for the representation of typed
objects. On the other hand, in AIDE we can say, “Partition observations into ten
equally-spaced bins,” and then manipulate the resulting relation of subsets. In IDES’s
object-based representation we would create ten new objects representing groups of
observations, perhaps calling them “Bin-1 objects” through “Bin-10 objects,” plus
another object grouping the ten new objects, and then we would manipulate this
aggregate object. The object-based approach can grow cumbersome when data
manipulation results in groups of observations and values that have no intuitive
interpretation as objects. For our purposes, AIDE’s more flexible representation is

preferable.
4.2 Applying the Primitives

Combinations of these three types of‘operations capture most, if not all, common
exploratory procedures. More importantly, by representing procedures in terms of
these types of operations, shared structure in the procedures becomes apparent.

Consider a simple procedure for building a histogram, for a discrete-valued vari-
able z: divide the range of the variable into its unique values; break the variable

into subsets, one subset per unique value; count the number of elements in each

43

subset. The resulting counts are the bar heights of the histogram, each bar associated
with a different value of z. In other words, we decompose the variable, which
generates a new relation with an attribute that contains the subsets. We then apply a
transformation, with an embedded reduction, which maps each subset relation to a
single value, the “count” statistic of the subset. Now consider a procedure for building
a contingency table for a relationship between z and some other discrete-valued
variable y. We divide the relationship into subsets, one corresponding to each unique
combination of z and y values. We record the number of observations in each subset,
associating each count with a different z,y combination. The resulting values are
the cell counts for the contingency table. A contingency table can thus be seen as a
two-dimensional analog of a histogram.

Such similarities between statistical procedures are not unusual. Constructing a
table of median Duration values for the PHOENIX dataset, for example, is similar to
constructing a histogram or contingency table as above. Different types of resistant
line construction share the same procedural structure. A procedure for kernel density
estimation has the same structure as the histogram procedure, but uses different
decomposition and reduction functions. Kernel density estimators also share structure
with the more complex procedures of robust regression [Fox and Long, 1990]. In the
next two chapters we will discuss more complex and more flexible combinations of

primitive operations.
4.3 Related Work

Other Al researchers, especially in machine learning, have taken a more direct ap-
proach to the problem of EDA. In the end, the application of exploratory operations is
aimed at uncovering potentially interesting relationships between variables and group-
ings of observations. It might seem that machine learning should be well-equipped to
solve this problem. In fact, some researchers have argued that their machine learning

techniques do encompass EDA, if EDA is defined as “discovering stable structure and

44

groupings in a large database of objects described as attribute value pairs”—in other
words, as a kind of clustering [Biswas et al., 1991, p. 591]. Nevertheless, other aspects
of EDA are equally useful: descriptions of functional relationships, transformations
to improve the clarity of patterns, hierarchical reductions of groups of observations,
and so forth. More importantly, even though machine learning techniques can carry
out some parts of an exploratory analysis, they have built-in limitations, due mainly

to their lack of subject-matter knowledge—knowledge of what the data mean.

Consider a sampling of comments associated with datasets in the machine learning
repository at the University of California, Irvine [Murphy and Aha, 1993]. The

comments highlight the need for human involvement in the exploration process.

o “This database contains 76 attributes, but all published experiments refer to
using a subset of 14 of them. ... Experiments with the Cleveland database have
concentrated on simply attempting to distinguish presence [of heart disease]

(values 1, 2, 3, 4) from absence (value 0).” [Dataset 31-34 (heart-disease)]

e “The non-standard set of attributes have been converted to a standard set of
attributes according to the rules that follow... A property such as age > 60 is
represented as a boolean attribute with values f and ¢.” [Dataset 3-4 (audiol-
ogy)]

e “BILIRUBIN is [a] continuous attribute ...however, [its values] represent so

called ‘boundary’ values; according to these ‘boundary’ values the attribute can
be discretized.” [Dataset 35 (hepatitis)]

e “In line with the use by Ross Quinlan (1993) in predicting the attribute ‘mpg’,
8 of the original instances were removed because they had unknown values for

the ‘mpg’ attribute.” [Dataset 5 (auto-mpg)]

o “37 cases (5%) had one or more missing values. .. These were replaced by the
mode of the attribute (categorical) or the mean of the attribute (continuous).

[Dataset 72.1 (australian)]

45

 “The next-to-last y value appears clearly to be a transcription error, especially
since the change of a single character—the initial 2—would be enough to bring
it in accord with the smooth relationship of the figure...” [Schaffer, 1990, p.
122

¢ “If we are willing to accept the absolute temperature T as observable, however,
the relationship simplifies to y = k,e*/T. .. Moreover, if we are willing to accept
the reciprocal absolute temperature as a fundamental observable—on the basis
of its common occurrence in physical formulas—then the relationship reduces

to a simple exponential.” [Schaffer, 1990, p. 126]

This is a selection from dozens of examples. While autonomous algorithms
often perform very well given specific tasks, human judgment and knowledge of
subject matter context play an indispensable role in refining problems, selecting and

parameterizing algorithms, and evaluating results.

4.4 Summary

Most EDA procedures can be represented by combinations of three simple, heavily
parameterized operations. Reductions simplify variables and relationships by boiling
them down to a single number, or a small set of numbers. A common example
of a reduction is the mean. Tra.nsformations apply a function to a variable or
relationship, generating another data structure containing appropriately transformed
values. The log transform is a familiar transformation. Decompositions break a
variable or relationship into subsets, as when we bin a variable for histogramming, or
‘when we decompose a relationship into constituent clusters.

These operations have surprising power in representing common EDA proce-
dures. Unfortunately, this power comes at a price: searching directly through the
space of primitive operations poses an intractable problem. Existing techniques for

autonomous search offer a partial solution, but have clear limitations. An effective

46

solution will involve restructuring the search space to reduce its size and incorporating

human knowledge in the generation and evaluation of results.

CHAPTER 5

PLANNING AND EDA

If we were to generate exploratory results by searching through the space of
primitive operators defined in Chapter 4, we would face an enormous, intractable
problem. Fortunately, we have another possibility: we can cast EDA as a planning
problem. Humans make use of abstraction, problem decomposition, and procedures
in exploring data; these are exactly the sources of power Al planners rely on to attack
large search problems. There is a close correspondence between EDA and planning,
one we can capitalize on in building an automated assistant.

AIDE is designed around a partial hierarchical planner. Partial hierarchical
planners are a type of reactive planner, designed for complex, rapidly changing
environments. In many ways the EDA search space can be viewed as such an
environment: we can’t plan every conceivable action in advance; each new nugget
of information can change our view of the problem; a course of action we initially
thought appropriate may suddenly become useless. Partial hierarchical planners have
properties designed to help them cope with such environments. They can exhibit
complex behavior, relying on pre-compiled, often hand-constructed plans to guide
their actions. They are responsive to changes in the environment; they generate
plans on the fly, rather than elaborating a plan to completion before executing it.

Plan structures can be modified opportunistically in response to new information.

The exploration process, in the planning framework, becomes a matter of plans
executing to satisfy goals. At the top level, a goal is established to explore a dataset.
Plans are activated to accomplish this task. These plans establish more specific,
detailed goals in their execution, goals of building models and describing individual

relationships.

48

The planner that carries out this process has a very simple model of execution.
The basic data structure is a stack of control units. Goals, plans, actions, and control
constructs for sequencing, conditionalization, iteration, and so forth, are specialized
types of control units. Control unit execution is controlled and guided by meta-level
mechanisms '-t‘:o activate plans, bind variables, and switch between the most promising

courses of action as the exploration proceeds.

The design of AIDE planner draws heavily on existing systems, especially RE-
SUN [Carver and Lesser, 1993] and PHOENIX [Cohen et al., 1989]. The AIDE planner
is nevertheless significant in its own right: it provides a simple, powerful execution
model for partial hierarchical planning; its plan language provides features that
existing planners have largely neglected (e.g. plans and control constructs as first-class
objects); its representation of procedural knowledge is sufficiently general to be useful
in domains other than EDA..

5.1 EDA as Planning

Planners formulate problems in terms of states, goals, and combinations of ac-
tions to achieve goals. A planner solves a problem by constructing a step-by-step
specification of actions that move from the initial conditions (the start state) through
intermediate states to the desired conclusions (the goal state). The construction can
be complicated by constraints on the application of actions, uncertainty about the
effects of actions, and unforeseen interactions between goals, among other difficulties.
Planners rely on task decomposition to solve complex problems, using knowledge
about states, actions, and goals to structure the search at different levels of abstrac-
tion [Russell and Norvig, 1995]. The simplest planners work by backward-chaining.
Given a goal state, a planner begins by examining those actions that achieve the goal
state. By treating the preconditions of these actions as goals to be satisfied in turn,
and taking note of potential interactions between actions, the planner recursively

generates a specification of appropriate actions.

49

Problems can sometimes be solved much faster (exponentially faster [Korf, 1987])
by planning than by direct search. How can we tell whether a problem is amenable
to planning? Three types of knowledge characterize planning: abstraction, problem
decomposition, and procedures [Korf, 1987]. These areas of knowledge are central to
the techn.iques humans use in exploring data—EDA is thus a planning problem.

This becomes clear, while still remaining implicit, in John Tukey’s introduction
to Ezploratory Data Analysis, quoted in Chapter 1:

A basic problem about any body of data is to make it more easily and
effectively handleable by minds—our minds, her mind, his mind. To this
general end:

o anything that makes a simpler description possible makes the de-
scription more easily handleable.

o anything that looks below the previously described surface makes the
description more effective.

So we shall always be glad (a) to simplify description and (b) to describe
one layer deeper [Tukey, 1977, p.v].

Tukey’s account of exploration emphasizes two related aspects: description by
hierarchical problem decomposition and description through abstraction. We saw
concrete examples of these notions in the exploration of the PHOENIX data in Sec-
tion 2.1.

We began by noticing a gap in the distribution of FirelineBuilt values, and that
the patterns in the two subsets derived by this observation were very different from one
another. These subsets are shown in Figure 5.1. While it might be possible to generate
a complex description to fit all the data in the relationship, we instead decomposed
the relationship into two parts and described each part separately. Combining the
resulting descriptions was then a matter of explaining the gap in FirelineBuilt values,
for which we found the variable Outcome. This process is hierarchical problem
decomposition. Many EDA problems are solved this way, by breaking the data into
parts, describing the parts, and combining the descriptions into a more comprehensive

result.

50

We continued with an exploration of the successful PHOENIX trials. Indications
of linearity included a moderate correlation, no evidence of curvature, and only a few
outlying values. We thus decided to fit a line, as shown in Figure 5.2. There are many
ways one can fit a line to a relationship. The simplest is a least-squares or regression
fit. Resistant lines, which are less sensitive to outlying points, offer another set of
possibilities: there are at least half a dozen ways to construct such lines [Emerson and
Hoaglin, 1983]. Alternatively, we could remove those points we consider outliers and
then fit a line, or downweight those points in a weighted regression. Many of these
procedures involve iterative improvement. These details, however, are unimportant
at the time we decide that the relationship is approximately linear. We first make
this decision, and then fill in the details about how the line should be fitted. Most

EDA procedures follow a similar pattern of abstraction.

200 °
° °
g 1 8
i
-
5 1 3 ° e °
° o
5 oo ° ¢
W 100 8 oo .
g b . ° o o o,
§ Lo, *®
o ° oun ©©
4 . o &3 o
o °
8 80° ooy ©
o° g 3 e °
- oay” 3 9 ?
g <><>g° $ ° ‘
- : 3g<$
0 | !] ' I ! | !] ! |
0 10000 20000 30000 40000 50000
Fireline Built

Figure 5.1. FirelineBuilt versus Duration

51

In addition to using hierarchical problem decomposition and abstraction, EDA is
also strongly procedural. In other words, when we execute an exploratory operation
we generally have a good notion of the next few operations that we should execute.
In the PHOENIX data, after we decomposed the relationship into clusters, as shown in
Fi'guré 5.3, we aggregated the clusters to se;:.fch for further patterns. When we fit a line
to a relationship, we run tests for patterns in the residuals. More complex procedures
for constructing descriptions are extremely common in the EDA literature [Hoaglin
et al., 1983; Hoaglin et al., 1985).

Finally, as others have noted, data modeling procedures are inherently construc-
tive [Lansky and Philpot, 1993; Huber, 1994]. Exploration is similarly a constructive
process. The results of an exploratory session are not simply the p-values, tables,

graphs, and so forth that have been computed. The interpretation of these individual

Trial Duration

0 T | T T T] T T J T
0 10000 20000 30000 40000 50000
Fireline Built

Figure 5.2. Linear fit of FirelineBuilt versus Duration, successful trials

52

results depends on how they were derived. Interpretation of the residuals of a linear
fit depends on whether a regression or resistant line was applied; individual cluster
properties depend on clustering criteria. In many cases even the knowledge that
some operation has been applied and has failed can influence our judgment of the
importance of a related result. As Peter Huber puts it, “Data analysis is different
[from word processing and batch programming]: the correctness of the end product
cannot be checked without inspecting the path leading to it.” [Huber, 1994, p. 69)
Huber’s path corresponds to a plan, in Al terms.

By capitalizing on knowledge of abstraction, hierarchical problem decomposition,
and procedures, we can recast EDA as a planning problem. Thus, rather than taking
single steps through an enormous search space, a planner for EDA can search through

a much smaller space of more abstract states.

- o

. o ° °

J o e
g o
S 100] o
g 1 o o o
]
a i °

[o oo

"§ i :8 ° o 8
- Y oo
& 1 °° N °% o ©

J & So S °

0%
© 8 os (4
- oogQ‘% ° < %
A S EE) ° E
0 T | T T 7] 7 T T |
0 10000 20000 30000 40000 50000
Fireline Built

Figure 5.3. Clusters in FirelineBuilt versus Duration, successful trials

53

5.2 EDA as Partial Hierarchical Planning

An planning formulation of EDA provides a basis for automated strategic support
of the task. There are a great many approaches to planning, each with advantages
and drawbacks. To help us settle on an appropriate planning formulation for EDA,
we need to examine the process in more detail.

First, exploratory procedures rely on explicit, often complex control constructs.
Many fitting procedures iteratively improve a description until it is judged adequate.
A resistant line fitting procedure for (z,y) can be described informally as shown in
Figure 5.4. This procedure involves a sequence of steps, a conditional test, and what
may be seen either as recursion or iteration. Variables are bound to computed values
and updated as needed.

Many EDA procedures take the form of tests of generated values, iteration,
recursion, and other types of control. These procedures may be complex, but for-
tunately there is little need to generate each one from scratch; there is a great deal of
commonality between procedures. In Section 4, for example, we saw that constructing
a histogram involves the same procedures as constructing a contingency table: the

contingency table is a two-dimensional analog of the histogram, with cell counts

Define Resistant-Fit (x, y, initially slope = 0, intercept = 0):
Sort (x,y) by increasing x values;
Divide sorted (x,y) into three equally-sized groups;
Compute medians for each group;
new-slope = slope + adjustment by left and right medians;
new-’intercépt = functional combination of new-slope and medians;
If (new-slope - slope) is sufficiently small,
then exit with new-slope and new-intercept;
else
Extract residuals;
Resistant-Fit (x, residuals, new-slope, new-intercept).

Figure 5.4. Pseudo-code for resistant fit procedure

54

corresponding to bin heights. We can draw similar analogies between procedures
for smoothing and for generating kernel density estimates, or between resistant line
fitting and locally-weighted regression curves. While sometimes novel procedures are
constructed from scratch, variations on existing procedures are much more common.

Second, exploratory procedures are applied opportunistically. EDA relies heavily
on the observation of indications, suggestive features of the data [Mosteller and Tukey,
1977]. At each point in the process we can determine what the next few steps should
be; the details of how to proceed must often wait until we have actually performed
those steps and see the types of indications that arise. Each exploratory operation
is thus simultaneously an effective action and an information-gathering action. In
Figure 5.3 we observed indications of clustering in our exploration of successful trials.
We could not have predicted these clusters, and it would have been impractical in the
extreme to generate procedures to handle every possible type of pattern that might
arise in the data. Once we observe them, though, our course of action is clear: we
search for other variables to explain the pattern.

These two points have a number of implications for an EDA planner.
o Plans must be able to represent control explicitly, including sequences, iteration,
and conditionalization of actions.

e Actions must be able to compute numerical values for variables; planning deci-

sions must be able to use these values.

® The planner must be able to interleave plan generation with plan execution, to

take advaﬁtage of new information about how to proceed.

o The planner must be able to retrieve and apply existing plans as well as con-

structing new ones.

A type of planning called partial hierarchical planning [Georgeff and Lansky, 1986]

meets these needs. Systems that use the approach include PRS [Georgeff and Lansky,

55

1987], the PHOENIX planner [Cohen et al., 1989], the RESUN system [Carver and
Lesser, 1993], and to some extent languages for reactive control such as XFRM [McDer-
mott, 1992]. Partial hierarchical planning techniques were developed in an attempt to
overcome the limitations of existing planners; to understand the partial hierarchical

approach we first need to understand these limitations.

One of the earliest efforts in planning research resulted in the STRIPS plan-
ner [Fikes and Nilsson, 1971], the first of the so-called classical planners. In STRIPS,
states are logical formulas, constructed from a finite vocabulary of symbols. Operators
move from the current state of the world to another by adding or deleting formulas.
Classical planners construct a plan by searching through a space of world states. The
classical planner’s task is complete when it has constructed a partially ordered set of
operators that lead from the start state to the goal state. Execution of the plan is

carried out by another, separate system.

Unfortunately, the classical approach is often inadequate to deal with problems
in the real world. Plans are rarely generated entirely from first principles; they are
modifications of existing plans or constructed from pieces of other plans. Plans are
often more complex than sequences of primitive operations; they encode procedural
knowledge about how to act, in the form of conditionals, iteration, recursion, and
the like. Planners almost never have an indefinite amount of time to search a
combinatorially intractable space of plans; rather, sometimes action must be taken
whether the planner is finished or not. Partial hierarchical planning was developed

in response to these issues.

First, and most importan!;ly, partial hierarchical plans are specifications: they
implement procedural knowledge. In the classical formulation a plan is a partially
ordered sequence of actions with annotated “causal” links between actions. A partial
hierarchical plan is a control schema of subgoals to be achieved. The schema explicitly
specifies how the subgoals must be achieved for the plan to complete successfully.

Schema constructs typically allow sequences, conditional establishment, and iteration

56

of subgoals. They may also provide for parallel satisfaction of subgoals, mapping over
lists of subgoals, recursion, and more complex domain-specific processing.

Because these plans may be complex and thus difficult to generate de novo in a
timely way, a partial hierarchical planner stores its planf_ in a library, to be retrieved
when appropriate. This approach is comparable to that taken by case-based planning.
These plan definitions are not the fully elaborated sequences of actions that are usually
stored in a case library, however, but are specifications of subgoals: they are thus
hierarchical. Information available at plan design time is thus used to reduce search
at run-time.

The planner constructs plans by searching through the library, its set of partial
solutions, for appropriate ways to satisfy established goals. With a classical planner,
the plan would need to be fully elaborated—all primitive actions determined, and a
partial order established—before any action could be executed. In contrast, a partial
hierarchical planner may execute the first action of a plan as soon as it has been
determined, regardless of the status of the rest of the plan. In other words, a plan may
be partial at the time of its execution. This behavior has advantages over classical,
off-line planning: in dynamic environments, information necessary to choose a specific
action may not be known at planning time; in complex or uncertain environments, an
action may generate too many possible results to enumerate exhaustively in advance.
By interleaving planning and execution, planning effort can be reduced.

To summarize, partial hierarchical planning provides a good match for EDA.
Explicit plans are well-suited to the sophisticated conmtrol often required in EDA
procedures. Because EDA procedures share common structure and are relatively
general, they can be stored in a library for retrieval when needed. Finally, because
local EDA decisions are often data-driven (i.e., indications guide exploration), a
planner that interleaves generation and execution can be more effective than one

that does not.

57

5.3 The Planner

The design of the AIDE planner reflects the foregoing observations about EDA
and its relationship to partial hierarchical planning. The AIDE planner is simple but
powerfi:l; the simplicity of its design is one of its strengths. In abstract terms, the
AIDE planner does little more than manipulate stacks of control units. The planner is
essentially a high-level language interpreter, in which the *active-stack#* stores the
current execution context. The top level planning loop is simple enough to present
in pseudo-code, as shown in Figure 5.5.

In words, the planner executes the control unit at the top of the planning stack,
by calling its execution method. If this generates a new control unit, then it is pushed
onto the stack to be executed in turn. The process continues as long as the topmost
stack element has the status :in-progress. If this status changes to :suc.ceeded or
:failed, then the control unit is not executed, but rather popped off the stack, its
completion method being called at that point.

A control unit is similar in many ways to a stream, in the sense used by Abelson
and Sussman [Abelson et al., 1985]. Streams are an element of demand-driven
programming, in which the execution behavior of a program element is not determined

until it is actually needed. When executed, a control unit performs some action (as

(loop until (stack-empty-p *active-stack*) do
(let ((current (stack-top *active-stack#*)))
(case (get-completion-status current)

((:unstarted :in-progress)

(let ((next (execute-control-unit current)))
(vhen next
(stack-push next *active-stack#*))))

((:succeeded :failed)
(complete-control-unit current)
(stack-pop *active-stack*)))))

Figure 5.5. Top level planning loop

58

a side effect) but also potentially returns another new control unit to be executed.
Conventional planning structures (goals, plans, and actions) as well as partial hi-
erarchical planning elements (control constructs for sequencing, conditionalization,
iteration, and so forth) are all built around specializations of the basic control unit.
The behavior of a control unit depends on the specialized definition of its execution

and completion methods, as we discuss in the following sections.

5.3.1 Goals

A goal is a direct subtype of a control unit. When generated, a goal contains a

list of constants and unbound variables. In this form,

(:SUBGOAL fit (generate-fit ?relatiomship ?7op ?fit-structure)),

generate-fit is a constant, and the terms prefixed by “?” are variables. A goal is
always generated in the context of a specific plan. If this plan has existing bindings for
the goal variables, then the goal variables are immediately bound to these values. For
example, some plan fit-relationship may bind ?relationship to a specific value,
(2,y), and then establish the subgoal (generate-fit...), in which ?relationship
is then bound to (z,y).

In the classical planning framework, there is no notion of “goal execution.” A
goal exists to be satisfied (matched) by either a plan or a primitive operator, and it
is only these latter objects that actually take any action. As a control unit, however,
a goal does have a specific execution behavior: it causes plans to be activated that
can potentially satisfy it. More specifically, when a goal appears at the top of the
execution stack, its execution method causes the planner to search through the plan
library for a matching (unifying) plan. The planning process continues with this new

plan pushed onto the execution stack.!

1For the purposes of exposition, we are assuming here that for each goal that is established, only
one plan in the library exists to satisfy it. Section 5.4.2 gives a fuller explanation of the process.

59

Again in the classical planning framework, there is no notion of “goal completion.”
A goal is either satisfied or not. In the control unit representation, control units are
either unstarted, in-progress, or completed. If completed, a control unit has
a completion status of either :succeeded or :failed. A goal completes when its
matching plan completes; its completion status is that of the plan.

On successful completion, a plan will generally rebind the goal’s variable bindings
to reflect its success; these new goal variable bindings are then made available to the

control construct or plan that initially established the goal.

5.3.2 Plans

A plan is a direct subtype of a control unit. It contains an initial set of static
variable bindings, a :satisfies form, a set of constraint tests on variables that
appear in the :satisfies form, a set of static properties, and a body. The body of a
plan is a control schema of subgoal specifications, subgoals which must be satisfied for
the plan to complete successfully. Control constructs in the schema allow sequencing
(:sequence), iteration (:while), conditionalizing (:if, :when) of subgoals, as well

as other domain-specific forms. A simple plan is given in Figure 5.6.

(define-plan fit-relationship ()
"Describe a relationship by fitting it. Evaluate the fit."
:satisfies (generate-description :fit ?structure ?op ?fit-structure)
:features ((?structure ((:dataset-type relationship)
(:cardinality 2))))
:body (:SEQUENCE
(:SUBGOAL generate-fit
(generate-fit ?structure ?op ?fit-structure))
(:SUBGOAL evaluate-fit
(explore-by ?strategy Zactivity ?7model
?fit-structure ?deepening-result))))

Figure 5.6. Plan to fit a relationship

60

In words, this plan computes a fit for a bivariate relationship and then ex-
amines the fit for possible deviations. The :features form constrains the plan’s
applicability. The body of the plan specifies that two subgoals must be satisfied
in sequence for the plan to complete successfully. The generate-fit subgoal may
be satisfied by different subplans: AIDE’s current plan library contains plans for a
least-squares linear fit, different varieties of resistant line fits, and smoothing fits.
The evaluate-fit subgoal, in each of these cases, is matched by plans that explore
the residuals for patterns not captured by the fit. While not an example of deep
statistical knowledge, this plan nevertheless captures a basic exploratory strategy.
As Tukey writes, “Anything that looks below the previously described surface makes
(a} description more effective.” [Tukey, 1977, p.v] The fit-relationship plan makes
explicit the dependence between the fitting and deepening procedures. Thus a pattern
that appears in the residuals at the evaluate-fit step (outliers, say, for a regression
fit) can be interpreted by the system as indicating that a different operation (perhaps
a resistant fit) is called for at the generate-fit step.

Plans execute in an attempt to satisfy a matching goal. The fit-relationship
plan, for example, is activated to satisfy the goal (generate-description...). A
plan executes by instantiating the top-level control unit represented in its body. In
the fit-relationship plan this is the :sequence construct.

When a plan completes, it informs its matching vgoal of its completion status,
either :succeeded or :failed. If successful, the plan may change the bindings of
variables in the goal it has satisfied. For example, if the £it-relationship plan com-
Pletes successfully, then it will pass back a result to the goal generate-description

by binding the ?fit-structure variable.

5.3.3 Actions

An action control unit is a subtype of the plan control unit type. The main

difference between the two types is that, rather than having a schema of control

61

constructs for its body, an action has executable code. An action thus generates
no new control unit when it executes. Otherwise, an action interacts with goals in
just the same way as plans: an action is activated to satisfy a goal, and does so
by rebinding the goal’s variables to reflect its execution. An example is given in
Figure 5.7.

Notice that an action in the AIDE planner is very different from a classical
planning operator. Primitive planning operators in the classical framework are indis-
tinguishable from goals: an operator is a goal form with all its variables bound to
constants. (Some modern planners allow rebinding of variables to values at runtime,
but it’s not clear whether this adds any power to the representation.) A partial
hierarchical planning action, in contrast, can perform any arbitrary manipulation of
its input to produce bindings for its variables on completion.

The AIDE planner also allows for “anonymous” actions in the body of plan or

other control construct, as in the form below:

(:ACTION (print ’anonymous-action)).

(define-action extract-x-residuals
na
:satisfies (extract-residuals ?fit :x ?residual-relationship)
taction (in-action-environment
(:bindings ((?fit :attributes (x y predicted))
(?residual-relationship :class relationship)))
(copy ?fit (function ’values)
:key (attributes x)
:name (attribute-name x)
:output ?residual-relationship)
(transform ?fit (function ’-)
:key (attributes predicted y)
:name (derive-name (attribute y) ’residual)
:output ?residual-relationship)
(values t (return-bindings ’?residual-relationship
?residual-relationship))))

Figure 5.7. Action of extracting residuals

62

These actions are executable code, evaluated only for side effects. Anonymous actions

always complete successfully.

5.3.4 Sequencing

A :sequence control unit executes a sequence of subordinate control units in

order, for example,

(: SEQUENCE
(:SUBGOAL fit (generate-fit ?relationship 7op ?fit-structure))
(:SUBGOAL eval (evaluate-fit ?op ?fit-structure. . .))).

If any subordinate unit completes with a :failed status, the :sequence unit fails as
well, and does not execute any of the elements that follow the failed one. Otherwise,
if all subordinate units complete with the status :succeeded, the :sequence unit
succeeds as well.

The :sequence control unit is a good example of AIDE’s demand-driven pro-
gramming style. In the example above, the ?fit-structure variable is bound only
on completion of the £fit subgoal. If the f£it subgoal fails, then there will be no
need to generate and execute eval subgoal. Thus the :sequence unit maintains a
stream [Abelson et al., 1985], or a “promise” of later execution, that generates the

eval subgoal only when the £it subgoal has completed successfully.

5.3.5 Conditionalization

The :when control unit is implemented in a similar fashion to the :sequence unit.
The :when unit consists of an executable test form and a single subordinate control

unit for its body.

(:WHEN (typep ?relationship 'bivariate-relationship)
(:SUBGOAL fit (generate-fit ?relationship Zop ?fit-structure)))

The :if control unit is a variant of the :when unit. It allows two body forms, one

for if the test form returns nil, the other for non-nil.

63

The :when unit first evaluates its test form. If the test form evaluates to non-nil,
then the :when execution method returns the subordinate unit. Planning continues
with this new unit. Eventually, when this new unit completes with status : succeeded
or :failed, the :when completes as well with the same status.

If the test form evaluates to nil, in contrast, then the :when unit completes with
status : succeeded. This may seem unintuitive; in Common Lisp for example the when
special form returns nil if its test evaluates to nil. We need to remember, however,
that these constructs are deciding whether or not to act. If a :when unit decides that
taking an action, or expanding a subordinate control construct, is unnecessary, then
there is no need for the entire plan to halt with failure. On the contrary, the plan
should proceed normally from that point.

5.3.6 Iteration

The :while control unit is another variant of the :when unit. It also consists of
an executable test form and a single subordinate control unit for its body. Variations
on the :while form include :repeat, for incrementing a numerical variable over a
specified range, and :map, for binding a variable to successive values in a list.
(:WHILE (test-for-curvature ?new-relationship)

(:SUBGOAL transform (transform ?relationship 7new-relationship)))

The :while unit repeatedly returns its subordinate control unit body, as long
as its test form returns non-nil. In other respects it behaves exactly like the :when
unit.
~ 5.3.7 .Conjunction and Disjunction

The :and unit is comparable to the :sequence unit. It specifies that all of
its subordinate control units must complete successfully. Analogously, the :or unit
specifies that at least one of its subordinate control units must complete successfully.

Remaining consistent with the :sequence unit, :and and :or are short-circuiting. A

64

short-circuiting :and completes with failure as soon as any of its subordinates fail,
while a short-circuiting :or completes with success as soon as one of its subordinates
succeeds.

In the current implementation, subordinate control units of :and and :or forms

are pursued in a fixed, left-to-right order.?

5.4 Control

A step in the planning process, as presented up to this point, can be represented
as shown in Figure 5.8. The uppermost stack is the current execution stack, with
the current element shown at its top. When the current element is executed, the
either a new element is pushed onto the execution stack, as shown on the left, or the
current element is popped off the execution stack, as shown on the right. Execution
continues with the stack in its new state. As control units representing plans, goals,
and so forth, are processed, the execution stack grows and shrinks accordingly.

To simplify our discussion we have assumed that when a goal is to be satisfied only
one plan matches, the only one possible way to proceed. This is highly unrealistic;
indeed, if problems were so constrained, there would be no need for planning (or any

kind of search) at all. In any problem of interest, many plans can potentially satisfy

3A better solution would be provided by letting the ordering change dynamically. This is a
feature of Carver’s RESUN planning representation, in the form of subgoal focusing units.

element

result

element

Figure 5.8. A step in the planning process

65

a single goal. In AIDE, for example, there are several ways to satisfy a goal that
involves describing a relationship by a straight line: a regression line, resistant lines,
weighted regression lines, and so forth. Each possibility is represented by a different
plan; all can potentially satisfy the same goal. Similarly, when an action returns a
binding for a variable, it may not always be the case that only a single binding is
possible. In AIDE we can define an action to break a relationship into clusters, by
binding a ?clustering-criterion variable to some specific value. There may be a
large number of plausible ways to cluster the relationship, and it may not be possible
initially to select one as being the best way. The planner must maintain the different
possibilities as long as they have not been ruled out.

The planning process involves more than plans that expand to control constructs
that expand to subgoals, and so forth, in a recursive expansion. The process also
includes branch points where the planner can decide between several possible ways

to proceed. This raises a number of questions about the behavior of the planner:

e How should the planner select appropriate plans to satisfy a given goal? Anal-
ogously, how should the planner select appropriate bindings for a variable if

there are many possibilities?

o In attempting to satisfy a given goal, when should the planner switch from one
plan to another plan that might be more promising? When should the planner

switch between variable bindings?

e When should the planner switch from trying to satisfy one goal to try to satisfy
another? When should the planner switch between considering bindings for one

variable to consider bindings for an entirely different variable?

Three mechanisms address these issues: control rules, focus points, and meta-level
plans. We’ll discuss each of these mechanisms separately. The motivation for their

design depends somewhat on the requirement that AIDE be a mixed-initiative system.

66

Here we can only touch on these issues briefly; they are covered in more detail in

Chapter 7.

5.4.1 Control Rules

When more than one plan in the library matches a goal, AIDE must decide which
to instantiate. Control rules make this decision. Three steps are involved in executing
a plan to satisfy a goal: matching, activation, and preference. The matching step
attempts to unify the goal with the :satisfies form of each plan in the library.
If successful, this establishes that the plan is syntactically able to satisfy the goal.
power-transform, for example, satisfies the goal of fitting a power function to a
relationship. The activation step involves running a set of rules that further test the
applicability of plans, in order to activate or deactivate them. The power-transform
plan is only activated in the presence of curvature indications. The preference step
involves running another set of rules that apply preferences to the active plans. In
the presence of a curvature indication, the power-transform plan is preferred to
the linear-regression plan. Evaluation of the bindings of plan variables follows a
similar procedure.

The distinct matching and activation phases let the planner incorporate contex-
tual information into the decision about which plans should be pursued. Contextual
information includes, for example, the type of model a user has selected to describe
a dataset. If the user is building a regression model, then the ordering of plans to
describe a relationship differs from the ordering for a cluster model.

More importantly, flexible interaction with the user requires these separate phases.
Imagine, in contrast, a system that encodes all activation criteria directly in the
:satisfies form of its plans. It runs all those plans that match a given goal; those
plans that do not match are never considered. Suppose, however, that some of the
planner’s activation criteria are incorrect. In a mixed-initiative system, we would like

to be able to tell the planner, “Run plan P, even though your internal processing

67

hasn’t activated it.” Unfortunately, because the planner has ruled out plan P on
syntactic grounds, it cannot follow the directive. To be effective in a mixed-initiative
system, the planner must distinguish its preferences, or soft constraints that can be

overridden, from hard constraints that cannot.
5.4.2 Focus Points

Candidate plans and plan variable bindings are maintained by focus points. Focus
points fit into plan execution as follows. As plans, goals, and control constructs
(i.e. different types of control unit) execute, they generate an active execution stack.
Whenever there arises a choice between plans to satisfy a goal or values to which
a variable can be bound, a focus point is generated. This focus point maintains
an agenda of newly generated execution stacks, each containing as its top element
a control unit representing one of the candidate plans or variable bindings. The
execution method of the focus point—a focus point is yet another type of control
unit—selects one of these stacks to become the active execution stack, and returns
its top element. The planner continues with the new stack and the new control unit.
The planning code presented in Figure 5.5 can easily be revised to account for this
change, as shown in Figure 5.9. When executed, a control unit may potentially return
another control unit and in addition a new execution stack.

Each focus point maintains an agenda of candidate possible plans or variable
bindings. These candidates are those activated by control rules during the evaluation
phase; as might be expected, then, the agenda is ordered by applicable preference
rules.

Just like other types of control units, such as plans and goals, a focus point’s
behavior is determined by its specialized execution and completion methods. It will
be simplest if we discuss only the behavior of focus points for multiple plans; focus
points for multiple variable bindings behave similarly. The execution method of a

focus point returns the plan associated with the one of the stacks in its agenda;

68

this stack also becomes the active execution stack. The process is diagrammed in
Figure 5.10. When a plan that was initially generated by a focus point eventually
completes, the focus point is informed of the completion. It can then either complete
itself, informing the goal of the success or failure of the plan, or select a different plan
and stack to try a different way of satisfying the goal.

Let’s take the PHOENIX analysis again as an example. In exploring the dataset,

a goal is established to describe the relationship (Effort, Duration):

(:SUBGOAL describe (describe-relationship ?relationship
?descriptive-operation ?result)),

(loop until (stack-empty-p *active-stacks*)
do (let ((current-element (stack-top *active-stack*)))
(case (get-completion-status current-element)
((:unstarted :in-progress)
(multiple-value-bind (next-element new-stack)
(execute-control-unit current-element)
(when next-element
(stack-push next-element *active-stackx))
(when new-stack
(setf *active-stack* new-stack))))
((:succeeded :failed)
(complete-control-unit current-element)
(stack-pop *active-stack*)))))

Figure 5.9. Revised top level planning loop

(plan execution structure)

H

I

plans and goals

focus point

Figure 5.10. Branches in the planning process

69

where ?relationship is bound to (Effort, Duration). Because the relationship has
indications of local clustering, but is also approximately linear, several plans are
applicable. A focus point is generated to manage the plans. It executes by returning
the first plan (with an associated execution stack) on its agenda, a plan for fitting a
line to the relationship. When this plan completes, the focus point then must decide
whether the linear fit is sufficient as a description of the relationship, or if other
plans should be pursued as well. A focus point for high-level exploration goals of
this type always pursues all matching plans. Thus the focus point is executed again,
causing the next plan, one for exploring clusters in the relationship, to be returned.
Only when all activated plans have been executed does the focus point complete its
execution. This behavior gives the planning process an iterative flavor, an essential
property of exploration.

A focus point is thus responsible for interpreting the results returned by its
candidate plans. One focus point hight return as soon as its first plan completes,
whether successfully or not, while another focus point might continue to execute
until one of its plans succeeds. Because of the object-based representation of focus

points, specialized behavior is easy to implement and manage.

5.4.3 Meta-Planning

Control rules and focus points provide the mechanisms to answer the first two sets
of questions posed in the introduction to this section, dealing with how the system
decides which plans are applicable and how system decides which one to pursue. These
are local control decisions. There still remains the question of when AIDE should jump
to a potentially distant part of the search space, to consider an entirely different goal.
This non-local control is provided by meta-plans, executed by a meta-planner.

Why might this be useful? Exploratiqn is an opportunistic process. In general,
AIDE’s behavior might be described as selecting a subset of the data, finding a

specific plan for the data, executing the plan, examining the results, and continuing.

70

This style of processing is fine when all goes as planned, but sometimes unexpected
results are generated. In a regression fit, two or three points could turn out to
have unreasonably high leverage. Two or three clusters out of many could show a
strong linear relationship. In such cases, the appropriate response is to retreat to
an earlier step in the explo.ration—even though the current plan has not completed
execution—to take account of this new information. This opportunistic backtracking,
which has been called “refocusing” [Carver and Lesser, 1993), is handled by the
meta-planner.

Whenever a focus point is executed (or re-executed, on plan completion) the
meta-planner is invoked. The meta-planner is identical in design to the planner that
executes base-level plans for description, modeling, and so forth. The meta-planner
has a single, specialized purpose, however; it is responsible for deciding which focus
point should be active and which of its agenda items should be pursued. In the usual
course of processing, the meta-planner takes as input the currently active focus point,
along with its agenda, and returns the same focus point, with the best agenda item (as
rated by preference rules). This is all handled by a single default meta-plan. Different
meta-plans are activated, however, under different circumstances, and these serve to
change the active focus point or its currently executing agenda item. The current set
of meta-plans in AIDE’s library implement a depth-first search in the default case. In
some situations the agenda of a focus point are explored in breadth-first fashion; it
is useful, for example, to partially execute all of the residual exploration plans for a
linear fit, until any relevant indications are derived, rather than executing each one
fully to completion. TIn other situations the meta-planner must search through the
plan network for an appropriate focus point.

In contrast to the common approach of making each meta-level decision inde-
pendently, the AIDE meta-planner coroutines with the base-level planning process.

The motivation for this design is straightforward: sometimes the meta-level decision

71

about which plan to pursue are not independent of previous meta-level decisions. This
design is comparable to other successful arrangements: Wilkins describes a design in
which two independent planners, PRS and SIPE, cooperate as coroutines [Wilkins,
1988]); Wilensky discusses planning and meta-planning decisions being made in a
unifofm framework [Wilensky, 1981]; the RESUN planner, designed as a meta-level

control system, implicitly coroutines with lower-level activities.
5.5 Related Work

The design of the AIDE planner draws directly on the RESUN planner [Carver and
Lesser, 1993] and the PHOENIX planner [Cohen et al., 1989]. A prototype of AIDE
was initially built using the RESUN planner as its processing engine, and AIDE’s
design natﬁdly reflects this experience. AIDE also incorporates the ideas embodied
in PRS [Georgeff and Lansky, 1986] and early work in incremental blackboard-based
planners [Durfee and Lesser, 1986]. We will discuss each of these systems in turn, by
describing the intended use of the planner and those properties that influenced the
design of AIDE.

Approaches other than partial hierarchical planning have evolved as well. Modern
classical planners can now represent and solve much more complex problems than
could be handled by STRIPS. More recently, partial-order causal-link (POCL) planners
with well-understood theoretical properties have received a great deal of attention in
the planning literature. We’ll briefly discuss these types of planners, and explain why
there still remain reasons to prefer partial hierarchical planning for EDA.

Despite the availability of powerful planning systems, the AIDE planner was
deveioped from scratch. It might have been possible to overcome technical problems,
with some reasonable effort, but there is yet another practical reason to have gone this
route. It is often easier to build a tool that ddes exactly what one needs than to adapt

an existing general-purpose system; we can then attribute specific, desired behaviors

72

to specific features of the architecture of the new system, with fewer confounding

factors than we would have to consider otherwise.

5.5.1 Incremental Planning

AIDE’s design reflects thémes in incremental planning developed by Durfee and
Lesser [Durfee and Lesser, 1986]. Their approach views the resolution of uncertainty
as a central issue in controlling problem-solving activity. That is, a general-purpose
planner must decide which goals are worth pursuing and which sequences of actions
will achieve these goals. For many problems, the information necessary to make these
decisions is initially insufficient: the planner must generate short-range plans and
actions to resolve uncertainty about how to behave in the longer term.

This kind of incrémental, data-directed planning tends to rely on local information
and decision-making to develop complete solutions. Performance can be improved, as
Durfee and Lesser show, if the planner can form a higher-level, more strategic view
of the problem-solving situation.

Durfee and Lesser’s planner acts in the domain of vehicle monitoring, in which
the task is to identify, locate, and track patterns of vehicles moving through a
two-dimensional space, based on acoustical data. The planner’s formation of plans,
monitoring, modification, and execution are all interleaved. Planning begins with the
generation of a set of spatial and temporal constraints that give a rough, abstract
estimate of where solutions lie. This abstract information leads to a set of goals, to
distinguish and refine potential solutions. Rather than simply attempting to satisfy
the goals as they stand, the planner attempts to reduce “control uncertainty” in two
ways: it orders intermediate goals so that longer-term goals become easier to satisfy
(or even become eliminated entirely) and it determines a detailed sequence of actions
to satisfy the nearest-term goal. A small number of domain-independent heuristics

support the planner’s reasoning in the task.

73

AIDE is not based directly on this planner, which is embedded in a blackboard
system. Nevertheless there are strong similarities in their approaches to planning.
Most significantly, in both systems a data preprocessing phase creates contextual
information that can influence how the data should be processed further. In AIDE,
this invoiveé generating indications for the initial data and intermediate results. Other
similarities between AIDE and follow-on work to Durfee and Lesser’s problem-solving

system are described in Section 5.5.4.
5.5.2 PRS

Partial hierarchical planning was introduced with PRS, the Procedural Reasoning
System [Georgeff and Lansky, 1986; Georgeff and Lansky, 1987]. In a PRS-based
robot “the plans or intentions formed by the robot need only be partly elaborated
before it decides to act.” [Georgeff and Lansky, 1987, p. 677] This describes partial
hierarchical planning in a nutshell. PRS was tested, with the SRI robot Flakey, as
an assistant in a dynamic, uncertain world. To handle the uncertainty, PRS relied on

several innovative features:

e Plans execute before being completely elaborated.

e Plans are not only constructed from first principles, but may be retrieved from
a precompiled library.

e Plans incorporate complex control constructs, such as recursion and iteration.

® Once in progress, plans may be modified to meet the needs of a changing

environment.

o Plans capture abstract behaviors, rather than concentrating only on navigation

and low-level sensor/effector tasks.

¢ Meta-level activities are closely integrated with the execution of ordinary ac-
tions. The representation of meta-level plans (or knowledge areas) is at the

same level as the representation of base-level plans.

74

As discussed more fully in Section 5.2, AIDE relies on all these ideas, though

implemented in a different form than in PRS.

5.56.3 PHOENIX

PHOENIX is a simulation of forest fires and fire-fighting agents in Yellowstone
National Park [Cohen et al., 1989). When an area of the forest catches fire, a fireboss
directs a team of bulldozers to put it out. The fireboss is a domain-dependent, partial
hierarchical planner (in PHOENIX terminology, a lazy skeletal-expansion planner)
whose main task is to direct and coordinate the actions of the bulldozers, which dig
fireline to surround each fire.

The fireboss faces a number of difficulties in carrying out its planning task. The
fireboss cannot generate plans instantaneously, but must rather build them so that
they will be effective at the time that they will be executed. The simulation, however,
does not stand still. The environment can change rapidly, due to randomly shifting
wind speed and direction; non-uniform terrain and elevation exacerbate the problem
of predicting the behavior of a fire. Bulldozers take varying amounts of time to
execute their primitive tasks, which means that the fireboss’s initial estimates about
how to allocate time and resources may turn out to be wrong. These and other issues

make the fireboss’s planning task complex—it often fails and must replan.

To handle the complexity of the task, the PHOENIX plan representation is richer
than that of conventional planners. There are five components of the representation:

plans, actions, execution methods, timelines, and timeline entries [Howe, 1993].

Actions: Actions cause events to happen, both actual events in the simulation
and “cognitive events” in the processing of the fireboss. When the fireboss is
informed that a new fire has been detected, an action act-deal-with-new-fire
is activated.

Execution methods: A single action may execute in different ways; the action’s ex-

ecution methods give it different means of achieving its behavior under different

75

conditions. The execution method associated with act-deal-with-new-fire
causes it to search through the plan library for a type of plan that can manage

the current situation.

Plans: A plan is a composite action containing a schema of sub-actions to be exe-

cuted, in sequence or in parallel.

Time-lines and time-line entries: The actions, plans, and execution methods of a
planner are in many ways analogous to the rules of an expert system; time-lines
and time-line entries are the planner’s equivalent of working memory, storing

dynamic relationships between plans and actions as they execute.

A significant contribution of PHOENIX is the view that a plan is not simply an
annotated partial ordering of primitive actions. Plans are instead full-fledged objects
in which control can be represented explicitly. This representation allows the planner
" to examine and manipulate partially elaborated and partially executed plans.

In the PHOENIX plan representation, plans and actions are frames. The type
plan is a specialization of the typé action. Because an action contains slots for local
variables, activation predicates, priorities, rescheduling triggers, and so forth, a plan
inherits these slots as well. This gives us, the designers of a plan library, a great deal
of power. We can build a basic plan that has a special behavior and a set of specific
properties; a plans that is a simple variation can be defined as a specialization of the
basic plan, inheriting most of its ilecessary structure.

This notion of plans as first-class objects has been adopted by the AIDE planner
and taken a step further. All of AIDE’s planning structures (plans, goals, actions,
focus points, and so forth) are full-fledged objects, which we have called control units,
with inheritance of both structure and behavior. That is, in addition to inheriting

the slots of a parent plan, a plan also inherits the parent’s executable methods.

76
5.5.4 RESUN

RESUN is a control planner that operates in a blackboard-based interpretation
framework [Carver and Lesser, 1993). The standard blackboard architecture consists
of a blackboard, a set of knowledge sources, and a control mechanism [Carver and
Lesser, 1994]. The blackboard is a global database of data and potential partial
solutions. Knowledge sources (KSs), which embody the problem-solving knowledge
of the system, examine the state of the blackboard to update solutions appropriately.
The control mechanism determines which KSs become active and the order in which
they execution.

A common control mechanism is an agenda, which maintains a set of potentially
active KSs. On each execution cycle, the KSs are evaluated and the top-rated
KS selected for execution. This kind of evaluation phase traditionally relies on a
monolithic function that uses criteria applicable to all possible actions [Davis, 1980].
The RESUN planner provides an alternative to the agenda-based approach. One
of the goals in designing RESUN was to support the development of sophisticated
control strategies for interpretation, strategies that potentially involve large amounts

of context-specific information. RESUN is thus

e script-based: one can write complex, explicit control strategies in the plan
language;
e incremental: plan generation and execution are interleaved;

e opportunistic: the planner’s focus of attention shifts dynamically between de-

cision points, depending on information gained during the planning process.

RESUN’s plan language provides for sequencing, iteration, and conditionalization
of subgoals, as well as more complex control constructs. The functionality of this

language formed the basis for AIDE’s plan language. AIDE uses a simplified syntax

7

and extends its functionality slightly in one area, by allowing in-place actions to be

executed by a plan.

Carver and Lesser describe one of RESUN’s main contributions as the notion of
focusing and refocusing. Suppose that the planner finds two plausible ways to proceed
in solving a prol:)lem, e.g., two plans match a subgoal. The RESUN planner can make
a decision between the two choices based on local, context-sensitive information. This
is focusing. RESUN may also opt to pursue both plans at once. Because planning
is incremental, each course of action may turn up relevant information as the plans
execute. This information can be used at later points during the planning process to

prune one of the initial choices, if appropriate. This is refocusing.

AIDE provides a limited, single-thread version RESUN’s focusing ability,‘ with one
difference. Once the RESUN planner enters into consideration a focus point, it must
select one or more of the given possibilities to proceed. In contrast, the AIDE planner
can select a possibility or decide not to make the decision at all, and turn its attention
to a different focus point. This capability is essential to AIDE’s mixed-initiative
processing. When AIDE presents a decision to the user, it cannot force the user to
select one of the given choices. The user, with far greater knowledge of context, may
wish to consider an entirely different decision. The RESUN planner can manage this,
but only in a cumbersome way in its current implementation. Because this behavior
is required at almost every decision during the exploration, it made sense to design

the AIDE planner to support it easily.

One of RESUN’s applications is in the architecture of 1PUS (Integrated Processing
and Understanding of Signals) [Lesser et al., 1995]. 1PUS has as its goal the devel-
opment of framework that combines formal signal processing theory with the idea
of reprocessing. When, in the course of analyzing its data, an 1PUS-based system
encounters disqrepancies between its expectations and its results, the data can be
selectively reprocessed to diagnose the differences and explain them. In many ways

AIDE can be viewed as an application of the IPUS architecture to the domain of EDA.

78

For example, if AIDE observes clusters in the residuals (z,7) of a linear fit of (=,9),
its pursuit of these same clusters in (z,y) is a way of reprocessing the data. AIDE
differs from IPUS, though, in its lack of formal models for exploration and its strong

reliance on the user in deciding when to reprocess data.

5.5.5 Classical Planners

Modern classical planners, such as SIPE [Wilkins, 1988], O-PLAN [Currie and
Tate, 1991], and PRODIGY [Carbonell et al., 1992], have overcome many of the
limitations of earlier classical planners. Their operators can perform functions on
input variables, rather than simply matching; they often interleave plan generation
and plan execution; they can take advantage of earlier planning experience to help
solve new problems. Nevertheless, partial hierarchical planning is still preferable for
its explicit representation of control in its plans.

A plan is sometimes described informally as a sequence of actions leading from
an initial state to a goal state. We have been careful to avoid this exact phrasing.
Consider the two plans in Figure 5.5.5. Plan A is typical of the plans produced by a
classical planner, while Plan B could be generated or retrieved by a partial hierarchical
planner. In many situations, perhaps even all situations, the two plans will be
identical in their execution behavior. Nevertheless, there are significant differences
between the two.

In EDA, as well as other domains, one often needs to know the decisions that
led up to some point in order to evaluate a result. In other words, decisions about
procedural combinations 6f‘operations must be represented explicitly. For example, if
one is presented with a resistant line as a description of a relationship, it is reasonable
to wonder why a least-squares line was not tried instead. The sequence of steps that
led to the construction and rejection of the least-squares line are not part of the

sequence leading to the resistant line; nevertheless it can be that the latter sequence

79

was chosen only after examination of other possibilities. For a result to be evaluated
correctly, these possibilities need to be explicit in the executing plan.

The difference between Plan A and Plan B also has serious implications for
performance. Think of a classical planner searching for a plan a hundred operators
loné, and contrast this with a partial hierarchical planner producing a “Repeat 100
times” form. This can mean the difference between finding a plan and very quickly
running out of time or memory.

Classical planners rely on a relatively inexpressive notion of a plan as a sequence
of operations. Case-based and derivation-replay planners [Hammond, 1986; Veloso
and Carbonell, 1993] use libraries that contain annotated traces of planning sessions
to develop new plans. Nevertheless, the resulting plans are still partially ordered
sets, rather than the richer structure provided by explicit control constructs. The

question of how classical planners can build plans with more expressive operators,

Plan A
(:ACTION Operator A)
(:ACTION Operator B)
(:ACTION Operator A)
(:ACTION Operator B)
(:ACTION Operator C)

Plan B
(:SEQUENCE

(:REPEAT 2 times
(:ACTION Operator A)
(:ACTION Operator B)

(:IF (some condition holds)
then (:ACTION Operator C)
else (:ACTION Operator D))))

Figure 5.11. Two plans

80

including conditionals and iteration, is currently an open research problem. It seems
likely that the areas of classical planning and partial hierarchical planning will soon

become indistinguishable; at this point, however, there remain important differences.

5.5.6 Partial-Order Causal Link Planners

Classical pla.nniﬁg issues have also been addressed by research in partial-order
causal-link (POCL) planning. These planners use the classical representation of world
states and operators, but rather than searching through intermediate world states,
POCL planners search through a space of partial plans in their efforts to generate an
appropriate sequence of actions. POCL planning algorithms (e.g. TWEAK [Chap-
man, 1987], SNLP [McAllester and Rosenblitt, 1991], UCPOP [Penberthy and Weld,
1992]) and hierarchical task network planners (e.g. HTM [Erol et al., 1994]) have a
significant advantage over classical systems: they are provably sound (i.e. they will
generate no incorrect plans) and provably complete (i.e. they will eventually find a
correct plan, if one exists).

Despite the attractive theoretical guarantees of POCL planning, which we can by
no means provide for partial hierarchical planning, there are still reasons to prefer
the latter approach in building a planner for EDA. The problems concerning the
expressiveness of plans represented as sequences of actions apply here as well. Even if
these were solved, it would be difficult to apply a POCL planner directly to the EDA
domain. For example, soundness and completeness proofs generally rely on a view of
planning as theorem proving. In some partial hierarchical planners, however, actions
may deal with variables whose values vary along a continuous range; deciding that an
action has succeeded cannot rely solely on whether it unifies with a given goal. The
closed world assumption is an integral part of the planning-as-theorem-proving view,
but it fails to hold for representations of many interesting domains, including EDA.
The interleaving of plan generation and execution poses further problems for proving

the soundness of a partial hierarchical planner. Any irreversible action taken before

81

a plan is complete can potentially render the plan incorrect; ensuring that the effects
of an action are reversible can be as difficult as the planning problem itself. Finally,
there are issues of the efficiency of plan generation and the perspicuity of the plan
generation process. These points make POCL and related planners inappropriate for

the domain of AIDE.
5.6 Summary

Exploration can be cast as a planning problem. EDA makes use of abstraction,
problem decomposition, and procedural knowledge, three defining characteristics of
planning. More specifically, AIDE’s design exploits a striking similarity between
interactive data exploration and partial hierarchical planning. A partial hierarchical
planner has these properties: a plan library, which obviates the need to generate plans
from scratch; hierarchical plans, which may contain subgoals, rather than explicit
primitive operators; explicit planning control constructs, or procedural specifications
for the way subgoals are to be satisfied; interleaved generation and execution; and
sophisticated meta-level reasoning. Partial hierarchical planners were originally de-
veloped for complex, dynamic domains in which a planner must often act under time
pressure.

This kind of planning is well-suited to exploration. First, EDA is reactive. One
cannot anticipate every pattern that might possibly appear in the data; rather,
the analysis is driven by the data, which argues for integrating the generation and
execution of procedures. Second, exploratory procedures often need explicit control.
Some common EDA techniques, like resistant line generation, smoothing, and lowess,
are iterative, while other techniques need sequencing, conditionals, mapping, and
other kinds of control. Finally, exploration is constructive. An exploratory result is
not simply a graph or a statistical summary, but also includes a set of supporting

decisions, which provide context for results to be interpreted.

82

AIDE plans as follows. When a dataset or relationship is presented to the system,
a goal is established for its exploration. The planner searches through its library for
an appropriate plan and expands it, that is, establishes a set of new subgoals to be
satisfied. These subgoals are satisfied in turn by plans from the library. Because
several plans may satisfy a single goal, the planner must rely on control rules to
select the best possible choice. As planning continues, the planner may sometimes
backtrack to one of these decisions to make a different selection. The process continues
until the goal at the top level has been satisfied. In AIDE, exploration is a problem
of constructing and navigating through a network of decisions. Execution of each

primitive action generates one or more new results; the network of decisions and

results combines all the findings.

CHAPTER 6

STATISTICAL STRATEGIES

A statistical strategy is a formal description of the actions and decisions involved
in applying statistical tools to a problem [Hand, 1986]. AIDE’s library contains a set of
strategy components, in the form of plans, for common exploratory procedures, such
as fitting lines, examining clusters, partitioning relationships, and so forth. These
plans are activated within the context of other plans. In this context, decisions
are made by activation and preference rules, which can explicitly represent relevant
strategic considerations. The combination of these plans and rules in a specific context
constitutes a statistical strategy.

AIDE’s strategies and their components are taken from the literature of several
fields: statistics, statistical expert systems, machine learning, and knowledge discov-
ery in databases. Part of the challenge of building AIDE was to fit a set of such diverse
techniques into a single framework. This chapter describes, in informal terms, the
significant strategies in AIDE’s plan library and explains how they are combined. A
few representative examples of these strategies, in the syntax of AIDE’s plan language,

are given in Appendix B.

6.1 Strategies for Fitting Lines

A common approach to describing patterns in data is to build linear models
of relationships. In the simplest case, this means fitting a line to a relationship
between two variables. AIDE’s plans include a variety of techniques for fitting lines.
There is the simple regression line, which minimizes the least squares error between

each y value and predicted § value, and can be effective when the relationship is

84

“well-behaved.” In other cases, AIDE can apply resistant line fitting procedures,
which give better results when outliers are present or when the variables are not
distributed smoothly. Yet another possibility is a weighted regression line, a variation
on the basic least-squares procedure in which outlying data points are downweighted
to reduce their influence on the linear parameters.

These procedures all generate linear descriptions of bivariate relationships. The
regression-based techniques can be generalized for multivariate relationships, but this
possibility has received only cursory attention in AIDE. Fitting lines is a type of
modeling, which involves a variety of assumptions about the data. These assumptions
are relatively easy to test in a simple regression between two variables, but, as we add
variables, problems grow harder to detect. Often in practice one makes assumptions
without the ability to test them. When exploring data it is useful to make as few
assumptions as possible, so that unexpected findings can more easily come to light.

AIDE concentrates on the simpler techniques.

6.1.1 A Simple Regression Strategy

An unweighted least-squares linear fit of a bivariate relationship is the most
straightforward fitting procedure implemented. Given a relationship (z,y), the plan
regression-fit fits a line

y=az+b

that minimizes the sum of squared residuals,

> -v)

The plan has two parts, the first part computing the parameters of the line, the
second generating information about the adequacy of the line as a description of the
relationship. The residuals r are generated and explored (a) as a batch of numerical
values, (b) combined with the original z values, and (c) combined with the new 3
values. The leverage of the each z value is also examined. Examples of each of

85

these results, for the relationship (FirelineBuilt, Duration) from the PHOENIX data,
are shown in Figure 6.1. Ideally, a linear fit to a relationship should give residuals
that show no obvious patterns; that is, if the line captures all of the structure in the
data, then what is left should be only noise. In the plot of residual observations in
Figﬁre 6.1(a), however, one can easily see outliers. In Figure 6.1(b), which plots the
residuals by the original z variable, the variance of the residuals increase as z increases,
possibly indicating a more complex relationship between the two variables. Plotting
y/z by z could remove this pattern, but this improved description would have to be
balanced against the increased complexity of interpreting y/z in real-world terms.
Note also that there seems to be a slight downward slope to the residuals, when they
should be completely flat. Figure 6.1(c) plots the residuals by the predicted response,
y. This is identical to Figure 6.1(b), because there is only one predictor variable,
but such a plot can give useful information for a multiple regression model. Finally,
the leverage relationship in Figure 6.1(d) plots the influence each point has on the
slope of the line. We see that leverage is distributed unevenly, that points with higher
values of z are much more influential than those with lower values.! Each of these
residual diagnostic plots is generated and explored by a different plan.

| What we call a regression strategy is then the regression-fit plan, the activa-
tion and preference rules that determine when it is applicable, and the subordinate
plans that compute the linear fit parameters and explore the residuals. By separating

the phases of a strategy in this way we can often generalize components for reuse.

1The leverage of a point z; is equal to

=\2
i — 1
) S
Y-z n
In other words, the amount of influence a point (z;, ;) has on the slope and intercept of a regression

line is proportional to the squared difference between z; and Z. This is a reasonable diagnostic
measure for lines based on least squares computations [Goodall, 1983].

86

6.1.2 A Weighted Regression Strategy

The weighted-regression-£it plan is closely related to the regression-fit
plan just described. As before, the parameters of the line minimize the sum of squared
residuals. Recognizing that some values may be overly influential on the parameters of
the line, however, this strategy weights the contribution of each point to the equation.
Because there are many different ways of determining outlying data points, there are
many possible weighted regression lines.

The weighted-regression-fit plan maintains a variable ?weights. For each
distinct indication of outliers, ?weights is bound to a different value, the bindings

being maintained by a variable focus point. (See Chapter 5 for a discussion of focus

110 110
100] ¢ 100] M
. .
90 Y 90]
60 20
70 70
§ 60 -] § 60]
2 2
g 50 g 5o
3 "0 i ° a 40" * . L
- 04 . - A4 .
5 0, ¢ 3 T ¢ *
2 207 %S =+ 207 M o0 8 'd
H o % 0'. : :. .‘ “.‘] bad S '.i 0’ : e . A4
3 & .
10 s..‘ . o 3 N 00. ..‘ lo- ‘ 0.‘\ .{ ’. . °
°'i\ﬁ°6 N w“&" '?9.0:0.0 . 'N o"p.' ° ¥ z s 8o o 2% .
10 oo e . e o % *° v 10 hd .\ ° %
20 o3 I\ SRS NON cod 20 ‘ ° .
30 ° 30 .
-40 T M T g T T -40 T v T T T T
e $0 100 150 ace 10000 20000 30000 40000 $0000
Gbservation PirelineBuile

(b) (z,7)

100 . d .
ol 0.05]
80 °
701
E 60] . 0.044] S
S so- .
.E. 4 * *e . . 1 £ 0.0
il . Lo o s
vl vegdersS ‘.] /
10 229\ 8., ° . 0.02 y
o7 “ L e ge o, 2% . .
10 L IR T A .
20 o, 0.017] hd o~ /
30 . Nomemesn®
40 T T T T T T T T 0.0 T T T T T
10 20 30 4 SO 6 70 80 0 100 110 10000 20000 30000 40000 50000
Predicted Duratica PirelineBuilt
(c) (9,7) (d) (z,leverage)

Figure 6.1. Regression residual plots

87

points.) Outlying points are given a weight of zero, all other points a weight of
one. For example, if AIDE determines that y has three outliers using a resistant
fourth-spread test,? ?weights will be bound to a list of ones and three zeroes in
appropriate positions. The variable focus point can maintain several instantiations
of the sa.ine plan, one for each possible weighting. Otherwise the weighted regression

plan is identical to the unweighted plan.

6.1.3 A Resistant Line Strategy

A resistant line is similar to a weighted regression line in that both techniques
are aimed at reducing the effects of an uneven distribution of data points, especially
outliers, on the parameters of the line. The resistant line procedure differs from least-
squares procedures, however, in a fundamental way. A resistant line fitting procedure
adds resistance to its estimates essentially by ignoring data. This is not unusual. The
median, for example, is a resistant estimator of location in that extremely large or
small outlying values are ignored in its calculation. In fact, only the central value (or
the mean of two central values, for batches of even size) is considered at all. The three
group resistant line [Emerson and Hoaglin, 1983] relies on the resistance provided by
medians. It breaks a relationship (z,y) into three partitions of equal size, using the
tertiles (33% quantiles) of the z values. Medians are computed for each partition:
(zz,yr), (zs,ym), and (zg,ym). The slope of the resistant line is then determined
by (zr,yr) and (zg,yr), while the intercept is adjusted upward or downward by
(zar, yne)-

Notice that if we were to fit a regression line to a relationship (=,y), extract the
residuals r, and then fit another regfession line to the relationship (z,r), this new line

would have zero slope. This is intuitively reasonable: We expect such a description

3The fourth-spread test uses the 25% and 75% quantiles of a variable (fz and fg) as boundaries.
If an observation is greater than fg + 1.5(fg — f) or less than fz, — 1.5(fm — f1) it is considered an
outlier. The f<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>