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Abstract

In this paper, we study the problem of resource allocation and control for an ATM node with regulated traffic.
Both guaranteed lossless service and statistical service with small loss probability are considered. We investigate
the relationship between source characteristics and the buffer/bandwidth trade-off under both services.

Our contributions are the following. For guaranteed lossless service, we find that the optimal resource
allocation scheme suggests a time scale separation of sources sharing an ATM node with finite bandwidth and
buffer space, with the optimal buffer/bandwidth trade-off is determined by the sources’ time scale. For statistical
service with a small loss probability, we present a new approach for estimating the loss probability in a shared
buffer multiplexor with the so called “extremal” on-off, periodic sources. Under this approach, the optimal
resource allocation for statistical service is achieved by maximizing both the benefits of buffering sharing and
bandwidth sharing. The optimal buffer/bandwidth trade-off is again determined by time scale separation.

Besides their obvious application to resource allocation and call admission control, our results have many
other implications in network design and control such as network dimensioning and traffic shaping.

Keywords: ATM, Call Admission Control, Network Dimensioning, Performance Bounds, Quality-of-Service Guar-
antees, Resource Allocation, Statistical Multiplexing.

1 Introduction

Resource allocation is an extremely challenging and important problem in the design and control of high-speed

networks such as ATM networks. The problem is particularly complicated by the need to support Quality-of-Service

(QoS) guarantees for a variety of applications with very diverse traffic characteristics.

This author was supported in part by the National Science Foundation under grant CCR-9119922 and NCR 9508274. Any opinions,
findings, and conclusions or recommendations expressed in this paper are those of the author and do not necessarily reflect the views of the
National Science Foundation.
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In [EMW95], a new approach to resource allocation in an ATM node with fixed bandwidth and a finite, shared

buffer is presented. In this approach, an ATM node is modeled by a shared buffer multiplexor with the so-called

“extremal” on-off, periodic arrival processes, which account for the worst-case stochastic behavior (as proved for

the bufferless multiplexor in [MM95, ZKST96]). The ingenuity of the approach is the reduction of the two-resource

(i.e., buffer and bandwidth) allocation problem to a single-resource allocation problem, i.e., the known problem of

estimating loss probability of a bufferless multiplexor. This reduction is made possible by introducing the concept of

a virtual buffer/trunk system and establishing the “exchangeability” of buffer and bandwidth. Based on the analytical

results, a qualitative theory is then described which provides many insights in call admission control.

Motivated and inspired by the work in [EMW95], we study source characteristics and their impact on buffer/band-

width trade-off in the design and control of an ATM node. The starting point of our approach is the examination of

optimal resource allocation schemes for guaranteed lossless service. We find that under such service, the optimal

resource allocation scheme for an ATM node where each virtual circuit has its own allocated bandwidth and buffer

space with no resource sharing (referred to as a lossless segregated system) is no different from that for an ATM

node with all virtual circuits sharing the resources (i.e., a lossless multiplexing system). Hence, in this case, there

are no benefits in resource sharing, and the two systems are effectively equivalent. We also find that the optimal

resource allocation scheme suggests an interesting separation of time scales among sources sharing an ATM node

with finite bandwidth and buffer space, with the optimal buffer/bandwidth trade-off being determined by this time

scale separation. Sources are classified as having either “fast” or “slow” time scales, reflecting the efficacy of either

buffer sharing or bandwidth sharing among the sources.

For statistical service where a small loss probability is allowed, we derive a new approach to estimate the loss

probability using our results for the optimal buffer/bandwidth trade-off obtained for lossless service. By giving a new

interpretation to the virtual trunk/buffer systems introduced in [EMW95], we are able to transform the two-resource

allocation problem into two independent single-resource allocation problems. The best buffer/bandwidth separation

is explored by optimizing resource allocation along the optimal buffer/bandwidth trade-off curve. Through numerical

examples, we demonstrate that source time scales also have a major impact on the optimal resource allocation under

statistical service, and the optimal buffer/bandwidth trade-off is again reflected by the source time scale separation.

Our work differs from [EMW95] in several aspects. First, our perspectives on resource allocation and control

problems are somewhat different. The authors in [EMW95] are primarily interested in call admission control. This

is reflected in their fixing the system bandwidth and buffer space . Resource allocation to each source is

independent of the sources’ characteristics. In our approach, we fix one resource (bandwidth ) and find the optimal
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allocation of the other resource (buffer space ). Furthermore, resource allocation is made according to the time

scale separation of the system and the source’ own time scale. Due to this difference in perspectives, we are able

to study the role of source time scale and investigate optimal buffer/bandwidth trade-off for both lossless service

and statistical service with a given loss probability. We are also able to explore the maximal benefits of both buffer

sharing and bandwidth sharing. This is important, as the efficacy of buffer sharing and that of bandwidth sharing

for sources with different time scales are quite different. Numerical examples indicate that our approach provides a

better estimate of the system loss probability than [EMW95].

The remainder of this paper is organized as follows. We start with the optimal resource allocation problem for

guaranteed lossless service in Section 2, and demonstrate the relationship between source time scale and optimal

buffer/bandwidth trade-off. In Section 3, we study the optimal resource allocation problem for statistical service

with small loss probability. We present a new approach to estimate the system loss probability by maximizing the

efficacy of buffer and bandwidth sharing. In Section 4, numerical examples are presented to illustrate the relationship

between source time scale and buffer/bandwidth trade-off. The effectiveness of our approach is demonstrated and

comparison with the results in [EMW95] is also made. The paper is concluded in Section 5.

2 Guaranteed Lossless Service

The starting point of our study is the analysis of the optimal resource allocation scheme for guaranteed lossless service.

Consider an ATM node with a total amount of bandwidth and buffer space . Suppose there are virtual circuits

sharing the node. Each virtual circuit is associated with a traffic source that is leaky bucket regulated [ATM, Tu86].

We consider the following two scenarios. In the first scenario, each virtual circuit is allocated a fixed portion of the

total bandwidth and buffer space with no resource sharing among the virtual circuits. We call this system lossless

segregated system (see Figure 1). In the second scenario, the resources are shared among the virtual circuits. We call

such a system lossless multiplexing system (see Figure 2). We are interested in optimal resource allocation schemes

that, for given bandwidth , minimize the buffer requirement while ensuring that no virtual circuits ever incur losses

in the above scenarios. Because of resource sharing, one may expect that the latter system requires less resources

than the former for supporting lossless service. However, we show that for guaranteed lossless service, the optimal

resource allocation schemes for both systems are the same. Hence in terms of resource requirements, the lossless

multiplexing system is effectively equivalent to the lossless segregated system, and resource sharing in this case does

not yield any saving in resources. Before we present the optimal resource allocation problems for the two systems,
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Figure 2: Lossless Multiplexing System.

we first describe the regulated traffic sources.

A leaky bucket regulator is characterized by three parameters: the token rate , the token bucket size and the

peak rate , where . Let denote the amount of traffic passing through the regulator in the time

interval . Then

(1)

where is called the minimum envelope process for the regulated source [Ch94]. It bounds the amount of traffic

departing from the regulator during any time interval of length .

Let denote the maximum length of a peak rate burst, i.e.,

(2)

A traffic source which generates traffic at peak rate for time and switches to rate for the rest of the time has

a regulated traffic such that . We call such a traffic source greedy.

For the purpose of exposition, we assume that the traffic sources are classified into classes according to their

regulator characterization, where all regulated sources in class have the same leaky bucket parameters ,

. There are Class sources, and . We assume that all classes have different peak rate

burst length . Without loss of generality, let . In order to have a stable system, we

require that . Also in order to avoid triviality, we assume that .

2.1 Lossless Segregated System

We first consider the optimal resource allocation problem for the lossless segregated system (Figure 1). We fix the

total bandwidth for the system, and consider allocation schemes that minimize the total buffer space required to

ensure that no virtual circuits incur any losses.
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For , suppose each source in class is allocated bandwidth and buffer space . Let

and denote, respectively, the total amount of bandwidth and buffer space allocated to class sources. The

stability condition requires that for each . Since the total bandwidth of the system is , .

In order to ensure that no losses occur for any virtual circuit, the amount of buffer space allocated to a class

source is determined by the maximum queue length for each segregated virtual circuit , i.e.,

(3)

The overall buffer space required to ensure that no virtual circuits encounter losses is thus . This

determines the buffer requirement under the segregated allocation scheme.

Given the linearity of (3), the optimal buffer allocation problem can be formulated as the following Linear

Programming (LP) problem:

Problem Minimize

subject to:

The first term in the objective function denotes the buffer requirement if the total bandwidth is equal to the aggregate

average rate of the sources, , and the second term accounts for the buffer space reduction resulting from

exceeding the aggregate average rate. By removing the first term (which is constant) from the objective function

and reversing its sign, we can rewrite the optimization problem as follows:

Problem Maximize

subject to:

where note the new objective function is now to be maximized.

It is clear that the new objective function increases whenever bandwidth is taken from classes with smaller

and is allocated to classes with larger . As a consequence, the optimal allocation scheme consists of allocating

We can also make the variable substitution , , in order to rewrite the LP problem in the standard form. But

for the sake of clarity, we leave the problem in the present form.
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peak rate to as many classes with large as possible without violating the constraint , while allocating

only average rate to classes with small . Formally, let be the smallest index such that

(4)

Then the optimal resource allocation scheme that results in the minimum buffer requirement for the given bandwidth

is as follows:

(5)

and

(6)

Note that , and the buffer requirement has the following closed-form expression

in terms of the regulated source parameters

(7)

2.2 Lossless Multiplexing System

We now consider the optimal resource allocation problem for the lossless multiplexing system. Again we fix the

total bandwidth of the system which is shared by all virtual circuits, and determine the minimal buffer space required

to guarantee no losses. This shared buffer multiplexing system is equivalent to a shared single queue serviced by a

server of capacity . Given the regulated traffic sources defined earlier, the maximum queue length of the system is

given by the following expression

(8)

where the equality is attained when all sources are greedy and start at the same time. Hence in order to ensure that

no losses occur in the system, a minimum buffer size is required.

We proceed to derive a closed-form expression for in terms of the parameters of the regulated sources.

Note that since is piece-wise linear and concave for each , so is . The maximum

of is attained at a point such that at , the left derivative and the right derivative
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. By substituting the expression for , we readily obtain that , where is exactly as

defined in (4). Specifically, is the smallest index such that

(9)

This gives exactly the same index as in the lossless segregated system. In this case, however, has the following

physical meaning: is the time the system reaches its maximum queue length when all sources are greedy.

From (8), we derive that the minimum buffer requirement is

(10)

Comparing (7) and (10) we observe that . Hence the minimum buffer requirement for the lossless

multiplexing system is exactly the same as for the lossless segregated system. Thus we can define

as the buffer requirement for lossless service.

From (9), we observe that if, for , we define and as in (5) and (6), then

and . This observation provides the following interesting interpretation as to how the system

resources are optimally shared among the regulated sources in the lossless multiplexing system. Specifically, when

resources are optimally allocated in the lossless multiplexing system, the virtual circuits behave as if each of them

was allocated fixed bandwidth and fixed buffer space , just as in the lossless segregated system. Hence the

lossless multiplexing system can be effectively treated as if it were the lossless segregated system. This observation

provides a motivation for the approach we take in Section 3 for studying resource allocation schemes under statistical

multiplexing with small loss probability.

2.3 Source Time Scale and Optimal Buffer/Bandwidth Trade-off Curve

This far we have studied the resource allocation problem by fixing the bandwidth . Now we consider the

buffer/bandwidth trade-off for lossless service with a given set of regulated sources.

For any bandwidth such that , the index defined in (9) is determined solely

by the regulated source parameters and plays a key role in determining the minimal buffer requirement (see

(7)). Hence in order to study the buffer/bandwidth trade-off, it suffices to study as a function of . From (4),

we see that is non-decreasing in : when , and when . As a

consequence, from (5) and (6), we have that for class sources, ,

and (11)
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Figure 3: Optimal buffer/bandwidth trade-off curve.

That is, the allocated bandwidth to class sources is a non-decreasing function of , whereas the buffer space

allocated to these sources is a non-increasing function of . Therefore, the buffer requirement is a decreasing

function of . Moreover, from (5) and (6), we obtain that

(12)

Thus, the buffer requirement is a piece-wise linear, decreasing convex function of (see Figure 3). We call

the curve in Figure 3 the buffer/bandwidth trade-off curve for lossless service.

The optimal resource allocation scheme also suggests a taxonomy of the regulated sources according to their

maximum peak rate burst length , which we shall also refer to as the time scale of the regulated sources.

Subsequently, we call the index the source time scale index with respect to . Sources in class are said to

have either have “fast” time scale or “slow” time scale with respect to according to whether

or . Under the optimal resource allocation scheme, we see that the most efficient way to accommodate

“fast” time scale sources under lossless service is to allocate minimum amount of bandwidth (equal to their mean

rates) and maximum buffer space (equal to their token bucket sizes), while the most efficient way to accommodate

“slow” time scale sources is to allocate maximum bandwidth (equal to their peak rate) and zero buffer space. Sources

in class have time scales in between, and accordingly, buffer/bandwidth trade-off for them are determined by

the relation (12). Clearly, with larger , increasing the bandwidth allocation to class sources will drastically

reduce their buffer requirement. Thus, the optimal resource allocation scheme reveals a very interesting relationship

between the source time scale and the buffer/bandwidth trade-off. In Section 4, we will present numerical examples

to illustrate this relationship.
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Figure 5: Buffer/bandwidth separation.

3 Statistical Service with Small Loss Probabilities

In the preceding section we established that under guaranteed lossless service, the optimal resource allocation is the

same, regardless of whether resources are shared among sources. In this section, we study the benefits of resource

sharing under statistical service where a small probability of loss, say, , is allowed, and investigate the

buffer/bandwidth trade-off under such statistical service.

Once again, consider an ATM node with virtual circuits. Each virtual circuits is associated with a leaky bucket

regulated traffic source. Suppose the node has a total amount of bandwidth and buffer space , shared by all

the sources. We assume that the system resources are not sufficient to provide guaranteed lossless service. In other

words, the lossless service buffer requirement for the given value of bandwidth exceeds . This implies

that lies below the buffer/bandwidth trade-off curve in Figure 3. In this section, we explore the possibility of

exploiting statistical multiplexing gains by considering statistical service with small loss probabilities.

Statistical multiplexing gains can be extracted by exploiting the bursty nature and statistical independence of traffic

sources [EMW95]. To exploit the bursty nature of traffic sources regulated by leaky buckets with parameters ,

we follow [EMW95] and assume that the regulated sources after passing through leaky bucket regulators are extremal

on-off, periodic processes (see Figure 4), where, when a source is active, it generates data at the peak rate until

the depletion of its token bucket; it then stays inactive until the token bucket is completely filled again. Use of such

processes are justified to a large extent by the work of [Do93, MM95, Wo94, YSS92, ZKST96]. In particular, such
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processes account for the worst-case statistical behavior in a bufferless multiplexor in the sense that they maximize

the average loss rate [ZKST96] and the loss probability estimated by the Chernoff bound [MM95, ZKST96].

Let denote an extremal on-off, periodic departure process from a leaky bucket regulator with parameters

as shown in Figure 4. Then the lengths of the on and off periods are and . The source

period is . Let denote the total amount of data generated during the on period. Then

. is known as the source burst-size.

In order to model the statistical independence of traffic sources, we introduce indeterminate “phases” to the

sources as in [EMW95]. Assume that traffic sources are grouped into classes, and for , there are

sources in class , . Each source of class , , is an extremal on-off, periodic process with leaky

bucket parameters , but having an associated phase , i.e., . For and

, the phases are independent random variables uniformly distributed in the interval .

In order to provide robust service, it is imperative to estimate the loss probability at the ATM node due to

buffer overflow. However, the loss probability of such a two-resource system with the given on-off sources is very

difficult to compute directly. Several bounding and approximate approaches has been developed [KB92, NRST91,

RV89, RV91], based on the so-called Benes approach [Be63]. A new approach is presented in [EMW95] by trading

one resource for the other, using the notion of the virtual buffer/trunk.

Based on the work of [EMW95], in this section, we present a new approach to the problem of estimating system

loss probability by transforming the two-resource problem into two independent single-resource problems which

allows us to explore the optimal trade-off between buffer and bandwidth. This reduction is achieved via a virtual

lossless segregate system functioning as a “resource separator”, a new interpretation of the notion of the virtual

buffer/trunk system introduced in [EMW95].

The rest of this section is organized as follows. In Section 3.1, we introduce the concept of virtual buffer/trunk

system. In Section 3.2, we describe our approach for determining the optimal buffer/bandwidth separation and

trade-off. The effectiveness of our approach is evaluated via numerical examples in section 4.

3.1 Virtual Buffer/Trunk System

Consider a virtual circuit with a single extremal on-off, periodic traffic source characterized by parameters

. Suppose it is allocated a trunk of bandwidth of where . Then the maximum backlog at the

virtual circuit is . Hence if the virtual circuit is allocated buffer space , no losses

10



will occur. Following [EMW95], we call such a virtual circuit a virtual buffer/trunk system.

Let and denote, respectively, the utilized bandwidth and the buffer content of the virtual circuit at time

. As shown in Figure 5, the two processes and are periodic with period , the source period. The buffer

fills at rate during a source’s on period, reaches at the end of the source on period, and then, at the onset of

an off period, depletes at rate until it becomes empty. The utilized bandwidth is whenever the buffer is not empty

and 0 otherwise. Let denote the time in each cycle that the system is busy, i.e., the buffer is not empty;

exceeds the length of the source on period by the time required to deplete the buffer. Thus,

(13)

We can view the virtual buffer/trunk system as a “resource separator” as it splits the traffic process into two

separate processes and , representing, respectively, the bandwidth requirement and buffer requirement of

the source at time . Under this interpretation, by varying the trunk bandwidth , the virtual buffer/trunk system can

“regulate” the source’s buffer and bandwidth requirements, thus providing an interesting buffer/bandwidth trade-off

when allocating resources. When is increased, the source’s bandwidth requirement during the system busy period

is also increased. However, the system busy period is shortened and the source’ buffer requirement is decreased.

When is increased to the source’s peak rate , the system busy period equals the source on period , during

which the bandwidth requirement is while the buffer requirement is reduced to zero at all times. On the other

hand, when is decreased, the reverse is true. In particular, when is decreased to the source’s average rate , the

system is always busy and the buffer is never empty. Thus the source’s bandwidth requirement is at all times, and

the buffer requirement is uniformly distributed in .

The effect of varying on and can be concisely stated using the theory of stochastic orderings. The

details are presented in Appendix A.

3.2 Estimating Loss Probability for Statistical Service

Recall that we are assuming that the system resources are not sufficient to support lossless service, i.e., lies

below the buffer/bandwidth trade-off curve in Figure 7. In this section, we present a new approach for estimating

the system loss probability in such cases. This approach exploits the buffer/bandwidth separation determined by a

virtual buffer/trunk system and exploits the optimal buffer/bandwidth trade-off curve for lossless service.

Consider a lossless segregated system with a total amount of bandwidth and buffer space where

lies on the buffer/bandwidth trade-off curve. Because the system resource pair lies below the buffer/bandwidth
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trade-off curve, we must have either or or both. We call such a system a virtual lossless segregated

system. In the virtual lossless segregated system, each source of class , , , has a

trunk of fixed bandwidth and a buffer of fixed size such that , , and the

resources and are allocated to each virtual buffer/trunk system according to the optimal resource allocation

scheme described in Section 2.1. Hence no sources suffer any losses in the virtual buffer/trunk systems.

Let and denote the utilized bandwidth and the buffer contents of source in the virtual

buffer/trunk system, where and are two periodic processes synchronized with source (i.e., they

all have the same phase ). Interpreting the virtual buffer/trunk system as a “resource separator”, then and

represent, respectively, the bandwidth and buffer consumed by source at time . Thus at any time ,

the total bandwidth requirement of all sources is , while the total buffer requirement of

all sources is . The virtual lossless segregated system separates the bandwidth and buffer

requirements of the sources, thus enabling us to treat them separately.

By imagining that the traffic sources go through a virtual lossless segregated system that separates their bandwidth

and buffer requirements, we reduce the difficult task of estimating the system loss probability in a buffered multiplexor

with finite resources into that for two simpler systems: a trunk with bandwidth (but no buffer) and a storage system

with buffer space (but no server)(see Figure 6 for an illustration). At any time , the sources demand a total amount

of bandwidth from the trunk and a total amount of buffer space from the storage system. The sources

will incur losses if either or . Therefore, we can use the probability that either event occurs
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as an upper bound on the loss probability of the real system. (This buffer/bandwidth separation approach

for estimating the system loss probability is justified and made rigorous in Appendix B.) By choosing different

resource pairs along the buffer/bandwidth trade-off curve, the virtual lossless segregate system “regulates”

the sources’ bandwidth and buffer requirements, thus providing a trade-off between them. The rest of this section is

devoted to the determination of the resource pair that optimizes the system loss probability estimate.

Let and be two random variables that represent respectively the instantaneous bandwidth requirement and

buffer requirement of source at a random time. Then is a Bernoulli random variable taking value with

probability and with probability , and has the distribution ,

(see Appendix A). Moreover, , , , are all independent, as are , ,

.

Define and . From the above discussion it follows that

or (14)

Since (14) is valid for any choice of a resource pair on the buffer/bandwidth trade-off curve, we have

(15)

The minimization problem on the right hand side of (15) reveals an interesting trade-off between buffer and bandwidth

in the virtual buffer/trunk systems. Intuitively, the resource pair that minimizes the probability on the right

hand side of (15) represents the “best” separation of bandwidth and buffer requirements of the resources. This

separation is obtained by optimizing the resource allocation along the optimal buffer/bandwidth trade-off curve.

For any , and can be estimated using the Chernoff bound. For ,

let and denote the moment generating functions of and . Then

and , where is

the resource allocation to a source of class under the optimal resource allocation scheme with total bandwidth

. Define and where , , and

. Then Chernoff bound [Bi86] yields

(16)

and

(17)
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where

and (18)

Hence,

(19)

The optimization problem can be greatly simplified by considering the asymptotic scaling with

, and , , held constant. In this case, we have that

(20)

Actually we can show (see Appendix C) that the choice of can be restricted to the segment of the

buffer/bandwidth trade-off curve where and (the highlighted segment on the buffer/bandwidth

trade-off curve in Figure 7). Let be the corresponding range of , i.e., iff and ,

where is the bandwidth such that the minimum buffer requirement in the lossless segregated system is exactly .

Then we have,

(21)

Since is a decreasing function in while is an increasing in , the above optimization can

be solved in a straightforward manner; details can be found in Appendix C. Let denote the solution to the

optimization problem, then the loss probability can be estimated by . This estimate can

be further refined by adding a prefactor that represents an asymptotic correction term for the Chernoff bound [BR60].

Therefore,

(22)

where and are the solutions of the equations and , respectively and where

and denote the first and second derivatives of .

4 Numerical Examples

In this section, we present numerical examples to illustrate the results of the previous sections. Our focus is on

the relationship between source time scale and the optimal buffer/bandwidth trade-off, and on the effect of this

buffer/bandwidth trade-off on admissible regions under both deterministic lossless service and statistical service

with small loss probabilities. In comparison to previous works that consider multiplexing of periodic on-off
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Figure 8: Buffer/bandwidth trade-off for a single class.

sources [EMW95, GBC95, KB92, NRST91, RV89, RV91], an important contribution of our present work lies in

exploiting the different sources times scales existing in heterogeneous traffic sources. In particular, we show how the

buffer/bandwidth trade-off is determined by the source time scale separation and that the boundary of the admissible

region for heterogeneous sources can be severely non linear if the sources have very different time scales.

In the following examples, we describe regulated sources using the token rate , the peak rate , and the burst-size

in place of the usual token bucket size . can be obtained from from the identity . The burst-size

is preferred because it is related to the source time scale via .

We begin by illustrating the relationship between source time scale and the optimal buffer/bandwidth trade-off.

We first consider the case where there is a single class of sources. Under lossless multiplexing, for a multiplexor of

bandwidth with homogeneous sources, from (10), we have that the minimal buffer requirement is given by

(23)

With fixed, the buffer requirement decreases linearly with the bandwidth and is proportional to the source time

scale. At , it becomes zero. The source time scale also determines the rate of change in the buffer

requirement, as . In Figure 8(a), the optimal buffer/bandwidth curve is plotted with

for three types of single-class sources with the same mean rate Mbps and peak rate Mbps, but

three different burst-sizes , measured in cells (i.e., 53 Bytes), yielding ms.,

respectively. With , the aggregate average rate is 15 Mbps and the aggregate peak rate 150 Mbps. In

Figure 8(b), we plot the bandwidth/buffer trade-off for statistical service with a loss probability of , where

15



class
1 0.15 1.5 250 70
2 0.15 6 25 1.7

Table 1: Sources leaky bucket parameters.

for each given bandwidth value, the buffer requirement is computed as the minimum buffer size such that .

In this case, the buffer requirement also decreases with the bandwidth, and is proportional to the source time scale.

Note that the buffer requirement under statistical service is much less than under lossless service. For example, in

this case, the buffer requirement drops to 0 as bandwidth approach 50 Mbps, as opposed to 150 Mbps in the case of

lossless service. The presence of statistical multiplexing gains is clearly evident.

We now consider multiplexing two classes of sources. The parameters for the two classes are listed in Table 1.

The parameters are chosen so that the two classes have drastically different ( ), so as to highlight the

effect of source time scale on the buffer/bandwidth trade-off curve when heterogeneous classes are multiplexed. We

assume that . The aggregate average and peak rate of the two classes are 15 Mbps and 375 Mbps,

respectively.

The optimal buffer/bandwidth trade-off curve for lossless service ( ) is plotted in Figure 9(a). We can

distinguish two distinct components in the curve: the first one with a very steep slope, and the second one with a

much lower slope. The knee point is at . This phenomenon can be explained by considering the structure of

the optimal resource allocation scheme. With small values of bandwidth , class 2 sources have a “fast” time scale

(the time scale index defined in (9) is 1), and are thus allocated an amount of bandwidth equal to their mean rate

and buffer space equal to their maximum token bucket size , while the remaining bandwidth and buffer space are

allocated among class 1 sources, which have much larger time scale, . As increases, the bandwidth allocated

to class 1 sources increases, hence their buffer requirement decreases as a rate of . When

reaches Mbps, class 1 sources are allocated peak rate (the time scale index, , is 2), thus turning into “slow”

time scale sources with no buffer requirements. As a consequence, as further increases, additional bandwidth is

allocated only among class 2 sources, reducing their buffer requirements at a rate of .

In Figure 9, we also plot the buffer/bandwidth trade-off for statistical service with a loss probability of . As

expected, both bandwidth and buffer requirements are reduced under statistical service, again providing evidence of

statistical multiplexing gains. At Mbps, the buffer requirement drops to 0. For statistical service, the time

scale separation of the two classes is easier to discern by examining the trade-off curve in log-scale (Figure 9(b)).
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Figure 9: Buffer/bandwidth trade-off for two classes.

Observe that as the bandwidth approaches 50Mbps, the curve bends. As in the deterministic case, this phenomenon

can be explained in terms of the structure of the optimal resource allocation for the virtual segregated system, which

is determined by the optimization in (21). Due to statistical multiplexing gains, the time scale separation evident in

the bandwidth/buffer trade-off curve occurs at a lower value of bandwidth.

Next, we study the impact of source characteristics on the system admissible region, defined as the number of

sources that can be admitted without violating a given QoS requirement. We consider the same two classes of traffic

discussed above. We fix the value of the system bandwidth at 45 Mbps and study the admissible region as a

function of the system buffer size . Because the two classes have the same average rate, the system utilization

is maximized when the number of sources of both classes, is maximized. Because , the

utilization is .

The admissible regions for lossless service with various values of buffer size are plotted in Figure 10. The key

observation here is the non-linearity of the boundary of the admissible region for all values of the buffer size

except for . As we will see, this non-linearity is caused by the different source time scales, , of the sources.

For , the boundary is linear with a slope given by the ratio of the source peak rates .

This is because in the bufferless case, sources are allocated peak rate. For a nonzero buffer size, we can identify

two distinct segments of different slopes on the boundary of the admissible region. For relatively small numbers of

class 1 sources, the boundary has the same slope as in the bufferless case, as shown in the figure. On the other hand,
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Figure 10: Admissible region for two heterogeneous
classes: .
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Figure 11: Admissible Region for two heterogeneous
classes: .

for relatively small numbers of class 2 sources, it is not difficult to show that the slope of the boundary is

(24)

as . As a result, the admissible region is convex.

From (24), we expect the boundary to be approximately linear when , and linear when .

To illustrate this observation, we reduce the burst size of class 1 from 250 to 20, yielding a new source time scale

, which is comparable to the time scale of class 2, . The resulting admissible region is plotted

in Figure 11. We see that the boundary of the admissible region is now much closer to linear.

In Figures 12, 13 and 14, we plot the admissible regions for statistical service with various loss probabilities.

The system bandwidth is again fixed at Mbps, and three values of the system buffer size are considered:

cells. Note that statistical service provides considerable improvement in system utilization. It is also

interesting to observe that for large buffer, a form of system saturation takes effect that limits statistical multiplexing

gains. For example, for (Figure 14), because the most resource-efficient way to accommodate “fast”

time scale is to allocate minimum bandwidth and maximum buffer space, when the input traffic is dominated by

the “fast” time scale class 2 sources, it is possible to admit up to 300 sources, corresponding to utilization

under lossless service. The same buffer size is less effective when input traffic is dominated by the “slow” time

scale class 1 sources. In this case, because the most resource-efficient way to accommodate “slow” time scale is to

allocate maximum bandwidth and no buffer space, no more than 70 sources can be admitted under lossless service
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Figure 13: Admissible region: .

(resulting in an utilization below ) and no more than approximately 210 sources can be admitted under statistical

service with a loss probability of (resulting in an utilization of approximately ). For statistical service, the

resulting admissible region is also clearly non-linear. We can distinguish two distinct components in the boundary:

a linear region for and a concave region otherwise.

We now compare our approach with that in [EMW95]. In [EMW95] the system loss probability is estimated by

reducing the two-resource allocation problem into a single resource allocation problem by fixing the buffer/bandwidth

trade-off to the ratio regardless of sources characteristics. We extend their approach by transforming the two-

resource allocation problem into two independent resource allocation problems. This allows us to explore the

maximal benefits of both buffer sharing and bandwidth sharing. This is important, as the efficacy of buffer sharing

and bandwidth sharing for sources with different time scales are quite different. As a consequence our loss probability

estimate (21) that explores the “best” resource separation is expected to provide better results than the approach in

[EMW95]. This has been confirmed by our numerical investigations. As an example, we compare our results in

Figure 13 with the corresponding example of Figure 13 in [EMW95]. The parameters of the classes are swapped in

their case, so our class 1 corresponds to class 2 in [EMW95] and vice versa. In Figure 15, we plot the admissible

region obtained using both approaches, for loss probabilities of and . The bandwidth and buffer size are

fixed to Mbps and cells, respectively. The admissible region computed by means of (21) is larger

for all the loss probabilities considered.

Finally we evaluate the accuracy of our approach by comparison with simulation. In Table 2, we list the numbers
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Loss Probability
(simulation) 150 160 170 180

(analysis) 116 123 134 142

Table 2: Comparison with simulation.

of class 1 admissible sources, , obtained from simulation and our numerical approach for various loss probabilities,

where Mbps and cells. The simulations results are taken from [EMW95]. As expected, our

approach provides a conservative estimate of number of admissible sources when compared with simulation.

5 Conclusions

In this paper, we studied the problem of resource allocation and control for an ATM node with regulated traffic. Both

guaranteed lossless service and statistical service with small loss probability were considered. We investigated the

relationship between source characteristics and buffer/bandwidth trade-off under both services.

For guaranteed lossless service, we identified the optimal resource allocation scheme for an ATM node with

finite bandwidth and buffer space, and found that the optimal resource allocation scheme suggests an interesting

time scale separation of sources sharing the ATM node. With respect to this time scale separation, the time scale

of a source can be defined and the optimal buffer/bandwidth trade-off determined by the sources’ time scale. For
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statistical service with small loss probability, we presented a new approach for estimating loss probability in a shared

buffer multiplexor with extremal on-off, periodic sources. Under this approach, the optimal resource allocation for

statistical service is achieved by maximizing both the benefits of buffering sharing and bandwidth sharing. The

optimal buffer/bandwidth trade-off is again determined by the time scale separation and reflects the efficacy of

buffer sharing and bandwidth sharing among sources with different time scales. Through numerical investigations,

we illustrated the relationship of source time scale and the optimal buffer/bandwidth tradeoff and discussed the

implications of our results in resource allocation and call admission control.

Our results have many other implications in network design and control such as network dimensioning and traffic

shaping, in addition to resource allocation and call admission control in an ATM node. This will be the subject of

future research.

A Stochastic Orderings and Virtual Buffer/Trunk System

Let and be two nonnegative real random variables with distributions and , respectively. We say that

is smaller than under stochastic order (resp., under convex order), denoted as (resp. ), if for

all increasing (resp. convex) functions ,

(25)

provided that the expectations exist.

If , it is easy to show that for any . In other words, is less

likely than to take on large values. Thus, if , we also say is stochastically smaller than .

If , then it follows that and . It can also be shown that that

if and only if for any ,

(26)

provided that the integrals exist. Intuitively, means that is less variable than in the sense that gives

more weight to the extreme values. Thus, if , we also say that is stochastically less variable than .

Both and are closed under convolution. Namely, for any two sets of independent random variables,

and , if , , then .

Now we apply these notions of stochastic orderings to the study of the virtual buffer/trunk system.

Let and denote, respectively, the instantaneous buffer content and utilized bandwidth at a random time. The
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instantaneous service rate is a Bernoulli random variable which takes value with probability , and

with probability . represents the fraction of time the system is busy. Clearly, , thus the average

(utilized) service rate equals to the average rate of the traffic source.

The instantaneous buffer content is a random variable that takes value in and has the following distribution

(27)

i.e., it takes value 0 with probability , and is otherwise uniformly distributed in the interval .

.

It is easy to verify that the following stochastic ordering results hold for the instantaneous buffer content and

utilized bandwidth. For any and such that , let and , , denote the instantaneous

buffer content and utilized bandwidth for , respectively. Then:

(28)

(29)

Hence, increasing results in the instantaneous utilized bandwidth becoming stochastically more variable. On the

other hand, increasing results in stochastically smaller instantaneous buffer content. This means that not only the

peak buffer usage decreases as a function of , but also the probability of exceeding any buffer level monotonically

decreases with .

These results are useful in solving the optimization problem of Appendix C.

B Upper Bounding the System Loss Probability

In this Appendix, we justify our approach to estimate the system loss probability.

The ATM node considered in Section 3 can be modeled by an infinite queue with a server of capacity , the

arrival process to the queue is the aggregation of the independent extremal on-off, periodic sources ,

and . The system loss probability due to buffer overflow in the ATM node with finite resources

can then be upper bounded by the probability that where denotes the stationary queue length of the

infinite queue system.

Now consider a virtual lossless segregate system with a total amount of bandwidth and buffer space where

lies on the buffer/bandwidth trade-off curve. In the virtual lossless segregate system, each source of
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class , , , has a virtual trunk of fixed bandwidth and a virtual buffer of fixed size

such that , , and the resources and are allocated to each virtual buffer/trunk

system according to the optimal resource allocation scheme described in Section 2.1. Let and denote

the utilized bandwidth and the buffer content of source in the virtual buffer/trunk system. Thus, at any time ,

the total utilized bandwidth is , while the total buffer content is .

Now, let denote the derivative of . is zero when the buffer is empty; otherwise it takes values

and during the buffer filling and emptying phase, respectively. In other words, for any

. Given the definition of and , it is easy to verify that for any ,

(30)

Now for any time interval , define ,

, and . Then clearly, .

Let denote the queue length of the infinite queue system at time . Then

(31)

Hence

(32)

where we define

and

The last inequality determines the “separation” between bandwidth and buffer requirements that enables us to treat

them separately. The key observation now is that and can be regarded as the queue length processes

of two well-defined systems. In particular, is the queue length of a system with a server of capacity , where

the arrival process is . is the queue length (content) of a storage system where data is stored and

retrieved according to the rate process . Observe that the latter system can

be regarded as system with a server of zero capacity.
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Let and denote, respectively, the stationary version of and (which exist because of the

system stability condition). Inequality (32) implies

or

(33)

For small loss probability and large , the first term in (32) is well approximated (see [EM95, CIK91, SG94]) by

the loss probability of a bufferless multiplexor with capacity and stationary arrival process , i.e., .

This, along with the fact that , yields the upper bound (14) stated in Section 3.2

(34)

C Optimizing the Loss Probability Estimation

Here we determine the optimal allocation that minimize the loss probability below

(35)

To this end, we first establish that the two rate functions and are, respectively, decreasing and

increasing function of .

Consider the rate function of . In order to show that it is a decreasing function of

, we need to show that for any , if , then . From

(18), this is equivalent to

(36)

Clearly, (36) holds if for all .

Recall that and . Since is a convex function of , it suffices

to show that each is increasing in convex order as a function of . From Appendix A, we know that is

increasing in convex order with increasing . From (11), it follows that is also increasing in convex order with

increasing . Thus is an increasing of . This establishes that is a decreasing function of .

Similarly, we can prove that the rate function of is an increasing function of by

using the fact that each is decreasing in the stochastic order with increasing .

24



Given the monotonicity of and , it is easy to realize that the supremum in (35) is attained at a

where the two rate functions are equal (provided that they intersect), i.e.,

(37)

Intuitively this means that the optimal buffer/bandwidth trade-off is the one that makes probabilities of exceeding

either resources equal.

However, it is possible that there is no such that (37) holds. This occurs when two functions do not intersect,

thus one of the two functions always takes smaller values than the other. Intuitively, this corresponds to the case

where, for any buffer/bandwidth trade-off considered, the probability of exceeding one resource is always larger than

the probability of exceeding the other. For example, if , , then, from the fact that is

increasing in , we have that

(38)

where and .

Similarly, if , , then, from the fact that is decreasing in ,

(39)

where .

Finally, we justify the restriction of the choice of to the segment of the buffer/bandwidth curve trade-off

curve where ( highlighted segment in Figure 7). To this purpose, consider a pair on the

buffer/bandwidth trade-off curve outside the given segment, say with . This implies that

. Then, from the result for the lossless segregated system, we have that , i.e.,

and . Because is decreasing in , we can always improve the estimate

by decreasing the value of . As a consequence, for any pair , with , we get a

better estimate by considering the extreme of the interval, namely the point . Similar arguments apply for

any pair , with , the details of which are omitted. This establishes the

validity of the optimization problem (21) of Section 3.2.
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