Retrieval of Passages for

Information Reduction *

Jody J. Daniels
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003 USA

Phone: (413) 545-1985
Email: daniels@cs.umass.edu

July 19, 1996

Abstract

Information Retrieval (IR) typically retrieves entire documents in response to a user’s in-
formation need. However, many times a user would prefer to examine smaller portions of a
document. One example of this is when building a frame-based representation of a text. The
user would like to read all and only those portions of the text that are about predefined impor-
tant features.

This research addresses the problem of automatically locating text about these features,
where the important features are those defined for use by a case-based reasoning (CBR) system
in the form of slots and fillers.

We propose to use a small set of “annotations”, textual segments, that we saved when cre-
ating our original case-base to generate queries and retrieve relevant passages. Annotations are
associated with the slot about which they provide information. Using a case-base of annotations
for each slot we generate and pose a query to an IR system that is aimed at the retrieval of
passages within a relevant document. By locating passages for display to the user, we winnow a
text down to sets of several sentences, greatly reducing the time and effort expended searching
through each text for important features.

1 Introduction

There currently exists a bottleneck in extracting information from pre-existing texts to generate
a symbolic representation of the text that can be used by a case-based reasoner. Symbolic case
representations are used in legal and medical domains, among others. Finding similar cases in the
legal domain is crucial because of the importance precedents play when arguing a case. Further,
by examining the features of previous cases and sentences imposed, a legal reasoner (e.g., judge,
advocate) can decide how to handle a current problem. In the medical domain, remembering or

*This research was supported by NSF Grant no. EEC-9209623, State/Industry/University Cooperative Research
on Intelligent Information Retrieval, Digital Equipment Corporation and the National Center for Automated Infor-
mation Research.

finding cases similar to the current patient may be key to making a correct diagnosis. Previous
cases may provide insight as to how an illness should be treated and which treatments may prove
to be the most effective.

Our goal is to save a user from reading an entire text in order to locate those areas of text
containing information relevant to filling in a frame-based representation of the text. If a user must
read through ten pages of text in order to fill one case-frame, then there will be a huge expenditure
of time, particularly if the user must do this for fifty or more texts. Alternatively, we could save
an automated information extraction system from processing an entire text by focusing the system
down to those portions of the text most likely to contain the desired information. Therefore, we
would like to automatically and expedientially locate predefined important features from within
novel texts. The important features are those defined for use by a case-based reasoning (CBR)
system in the form of slots and fills and are the frame-based representation of a text or case. This
research aims to find those portions of a text that that can:

e be used as a slot fill,
e designate a value for a slot, or
e provide the information necessary to decide if a particular slot applies.

Our approach is to use a small selective set of textual annotations that we derive from those
texts whose cases are already in the case base. From these annotations we construct a query to
retrieve the most highly matching passages in a new text. This research explores some of the various
means of composing queries from these annotations for use in probing new texts for passages that
provide information about a desired slot. Our system will return the top ranked passages to the
user for examination.

1.1 Example of the Problem

To show the distinctions in the above categories and illustrate the magnitude of the problem, we
provide the following example. Suppose an individual is evaluating the possible courses of action
relative to claiming bankruptcy and filing a repayment plan for her creditors. The user is concerned
with whether her plan will be considered as being proposed in “good faith” and wishes to compare
her situation with that of others who have already been to court over the same issue.

One of the good faith considerations is the debtor’s amount of monthly income, which combined
with information about expenses will determine the available surplus. Figure 1 provides a partial
overview of a sample case opinion, the Easley' case. It contains eight of the opinion’s nine pages.
In this particular opinion, text describing the amount of monthly income can be found near the top
of the second column on the second page. The actual sentence containing the pertinent information
is “Debtor’s amended budget commits $30 to the plan from a weekly take-home pay of $262.30.”
This sentence does not contain the actual slot fill, but it does provide enough information for a user
to be able to deduce the value for the slot, 262.5 x 52 = 12 = 1136.63. Nowhere in the document is
the value $1136 ever associated with the debtor’s monthly income.

Other text segments within the opinion expound on the debtor’s income: “The debtor’s original
budget reflected slightly higher income...”, “...income was slightly reduced by lost overtime.”,
“...amendments were explained by changes in income and expenses including the loss of overtime.”,
and “...given the debtor’s small income,...”. These all provide insight to the reader that the value

'In re Easley, 72 B. R. 948, 950 (Bankr. M.D. Tenn. 1987)

Figure 1: Replica of the first eight pages from the Fasley opinion. The top row is the first four
pages; the bottom row the next four pages.

of the monthly income slot has been previously discussed and is important to this case without
ever stating any amounts.

These last four segments are spread throughout the opinion. The first two appear in footnote
two on the second page, while the third is in the middle of the first column on the fourth page,
and the last does not appear until the sixth page. Fortunately for the reader of this opinion,
the segment containing enough information to provide a slot fill appears first. Unfortunately, the
characterization of the income as being “small” does not appear until the sixth page and is buried
in a discussion about the debtor’s pre-plan conduct.

This highlights the magnitude of the problem facing the knowledge engineer who desires to
use a complex case representation. If the user must read through the entire document, and must
do so multiple times because of the numbers of slots that are in the case’s representation, then
any large-scale or even moderate reduction of the length of the text that must be read provides a
tremendous savings.

1.2 Current Case-Based Reasoning Methods

There tends to be a large disparity between the size of the case bases and the size of the cases
Among current case-based reasoning systems. Those systems with large-sized cases have small case
bases and those with smaller-sized cases may have a larger case base. There are few CBR systems
with large case bases and even fewer yet with both large-sized cases and a large case base.

One of the reasons for this is that the level of representation for the CBR case tends to be deep.

In general, CBR systems tend to focus on the automatic evaluation, selection, and adaptation of
prior cases to solve a current problem or to justify and explain an interpretation of a case. Cases
are hand-coded into structures that support this process.

Sadly, most CBR systems require the manual input of cases; they are not automatically
generated from text or other sources (e.g., episodes in Kolodner’s CYRUS [Kol84] and Bain’s
JUDGE [Bai86] used a conceptual dependency representation for their textual input.) A human
makes the decisions about how to structure a case and what indexing structures to use. A case’s
input form is extracted from text or created from events, and information is put into either an
intermediate or final form. A case’s actual indices may be automatically generated (e.g., CYRUS
dynamically decides what features to use as indices and may reorganize memory if better features
are later discerned. Ashley’s HYPO [RA87, Ash90] automatically generates an intermediate case
representation, an interpretation frame, and the indices, called “dimensions”, for each case.)

Because of the knowledge representation expense, there are few CBR systems with large case
bases, that is, a thousand or more cases. In fact, there are few systems employing even several
hundred cases. A rather interesting byproduct of this manual input characteristic is that those
systems that do contain a large number of cases, tend to have very small or simplistic cases or case
structures (e.g., MBRtalk used letters for the word pronunciation problem [SW86] while Anapron
used word segments [Gol91], and PRO used word segments and associated phonemes [Leh87a].
Veloso was able to derive cases directly from the problem sets in her planning domain [Vel92], and
Lehnert used 8-puzzle problems [Leh87b, BL88].)

CBR case structures typically represent more than one level of abstraction. Indices can be
formed from these various levels so that a case can be retrieved and reasoned about from multiple
perspectives and levels of abstraction. For this reason, one of the ways to merge CBR and IR is
to try to automatically form text indices that have a higher level of abstraction. This would allow
case-based reasoners to perform more complex reasoning about the relationships among these cases
as represented by texts. It is because we would like to be able to more easily expand the size
of our case-bases that we turn to automated techniques for representing texts and for extracting
information from or locating information in them.

1.3 Current Document Retrieval Methods

We can currently use the surface-level features of texts to retrieve documents from a corpus of
full-length texts. This is what is done in “Information Retrieval” (IR). We index each document
based on the words it contains. To automatically convert a document into a set of word-based
indices, we remove predefined “stop” words, that is, high frequency words that do not represent
content and add little value for discrimination between documents (e.g., and, but, the, a). Then
we “stem” the remaining words, that is, remove suffixes, to get at the root form of a word. What
remains in a document constitutes the “terms” that are used as the (inverted) indices for it.

Although we may index the document based on its individual words, we can also store infor-
mation about the location of each word. Using this location data we can base searches on pairs,
triples, or larger sets of words that are within a stated proximity to each other. Using proximity
information allows the retrieval engine to search for “phrases”, words found within a close proxim-
ity to each other, while words found further apart may be treated as being in the same sentence,
paragraph, or larger document element.

Combining statistics based on both the corpus as a whole and on the individual texts, we
evaluate each document relative to a user’s query. From this evaluation we decide which documents

to retrieve. We frequently measure the quality of the retrieval via “precision” and “recall”. Precision
compares the number of relevant items retrieved against the total number of retrieved items. It
measures accuracy. Recall compares the number of items that should have been retrieved by a
query to the total number of items that actually were. It measures coverage.

Information retrieval obtains for us a set of documents statistically related to a query. The
query represents an information need and the retrieved documents are believed to be relevant to
the stated information need. However, all we have retrieved is a set of documents. What if the user
desires to research specific facets of the text’s content or if the document is lengthy and the user
is only interested in a subportion(s) of the document? We have not shown the user where within
the document the pertinent text resides. This is crucial if the user’s information need is more
specialized than a global examination of the document or if there are limitations on the available
resources, such as time or money.

Current technologies allow us to display for the user those locations within the document where
there is a match between the user’s query and the various terms or phrases in the document. We
can also highlight the passage that contains the best matches for the query. Problematically, if we
employ the use of a thesaurus or other query expansion techniques, it becomes more difficult to
explain to the user how each document is relevant to the query and to their stated information
need.

Another problem arises when the user is interested in multiple facets of a document, that is,
the user desires to find documents that are generally similar (i.e., they are about the same broad
subject), yet additionally share multiple specific features in common (i.e., they discuss particular
aspects of the subject). Current IR systems do not signify which text segments relate to which
feature.

1.4 Current Information Extraction Methods

In some domains it is possible to use information extraction (IE) technologies to convert textual
items found in a relevant text into a frame-based representation. Many examples of current message
understanding systems and the domains they run in can be found in [MUC92, MUC93]. However,
these are specialized domains and the techniques employed rely on the ability to find particular
syntactic patterns associated with “trigger” or key words, usually verbs. The association of noun
phrases with key verbs found in recognizable syntactic patterns allows for the extraction of pertinent
information. Unfortunately, these techniques currently rely on significant numbers of manually
annotated texts (e.g., on the order of 1000 or more texts?), to provide training for the extraction
system.

The training documents for generating the linguistic patterns are domain specific and are there-
fore not generalizable to other extraction domains. Another important feature of these domains
is that the information extracted for a slot is directly found within the text, that is, the actual
verbiage found in the text is used as the slot fill. This is generally not true for most CBR case
representations, and in particular for our domains. Frequently a human must draw some inference
from the text to garner the slot fill. The definition for inference that we will use throughout this
document is that a human reader must make an inference on the text in order to provide the slot
filler.

2 Although this may be changing. This will be discussed more in Section 3.4.

The cost of annotating such large numbers of texts can be prohibitively exorbitant in most
domains, particularly if the information need is not recurrent, but sporadic. Similarly, the creation
of large numbers of extensive frame-based case representations is a daunting task and prohibitively
expensive in domains requiring extensive expertise.

In summary, existing information extraction techniques:

e require a large, annotated, training corpus,
e are domain specific, and
e directly extract their slot fills, verbatim, from the text.

1.5 What are Slots and Fills?

Given that information retrieval systems locate entire documents and information extraction sys-
tems are expensive to train, this research aims at being able to automatically locate the relevant
portions of a text and associate them with a slot in a frame, without the use of a large, annotated,
training corpus. The first issue this raises is whether the slot fills for our cases can be found verba-
tim within the case texts: Are the slot values embedded in the text and, if so, can we automatically
locate the relevant portions of text containing the values?

For any particular frame-based representation of a domain, there may be various types of slots
and types of fills that may be the slot’s value. By examining the representations found in two legal
domains, we have identified several different types of slots and fills.

The slots broke down into seven general type classes: boolean, category, numeric, range, set,
date, and proper name. We give the definition of each slot type along with example slots and
representative fills where necessary below. (This is not intended to be an exclusive list of all the
possible types of slots in a case-frame, merely an enumeration of those encountered in these two
case representations.)

Types of slots:

e Boolean:
— Fills: A yes or no value.
— Examples: special-circumstances-occurred, substantiality.

Category:
— Fills: One and only one from a given set.
— Examples: decision-for (plaintiff, defendant), employment-history (poor, neutral, good),
earnings-potential ((small poor) (medium neutral) (large good)).

e Numeric:
— Fills: Single numeric value, either integer or real.
— Examples: monthly-income, percent-surplus-income, amount-unsecured-claims.

e Range:
— Fills: Numeric values with an upper and lower bound.
— Examples: hours-per-week-in-home-office, room-temperature.

e Set:
— Fills: One or more values from a given class of items.
— Examples: furniture-in-home-office (desk, chair, telephone, etc.), debt-type (educational,
taxes, judgment-debt, fraud, other)

e Date:

— Fills: A calendar date
— Examples: plan-filing-date, loan-due-date

e Proper Name:
— Fills: Name of an individual or company
— Examples: judge, plaintiff, defendant

e Free Text:
— Fills: Free text
— Examples: case-summary, case-citation

e Formatted Text:
— Fills: Stylized text or symbols
— Examples: case-citation

Because there is such a diversity of slot types, there is an assortment of available means to
locate the slot fills. There is no direct correlation between slot types and a means of locating a
fill. The various means may work well for slots of differing types. Below are some of the means
of finding fills. (Again, this is not meant to be an exclusive list, merely representative of those
techniques currently in practice.)

Ways to find fills:

1. Locating a word from a set that we might be able to enumerate — (ruling: affirmed, over-
turned), (furniture in home office: chair, desk, telephone).

2. Keywords/phrases that closely link a slot to its fill — These might be similar to the “triggers”
for “concept nodes” [Ril93, RS95a]. When you see the word/phrase, you expect the next
or preceding text to be the fill. (occupation: employed by, works for; ruling: judgment for,
judgment against; monthly amount: proposes(ed) to pay, excess available).

3. Locating words/phrases that you might expect to be found in proximity to the fill — (plan
duration: week(s), month(s), year(s): payments made: paid back, regular payments.)

4. Inferencing based on a segment of text — The reader or system must know some background
information in order to make the association between the slot and the fill. (monthly income:
given a weekly salary) (decision for: overturned — ruling value and knowledge about the level
of this case (and previous decisions) is needed in order to know the outcome of this decision.)

5. Concept recognizers — These are methods for identifying closely related ideas or patterns such
as: proper names, dates, monetary values, and foreign countries. (monthly surplus: monetary
value; loan-due-date: date) (See Section 3.6.)

6. Synonym expansion through use of a thesaurus, an association thesaurus, [JC94], or a cooc-
currence thesaurus, [SP94].

We observe that for most slots, there will be multiple ways in which to describe the value for
a slot fill. These different descriptors will vary both within and across texts. For example, when
trying to find the value for the “surplus” income available for payments of debts, you may directly
locate the phrase “surplus of”, which you would expect to be followed by the amount of the surplus.
Alternatively, you might have to do some inferencing with such such expressions as: “did not have
more than $50 per month for debt repayment” and “leaving him with approximately $100 per
month to finance his plan”. While these are quite descriptive of a surplus, it is likely that the
average user will not be able to create a query capable of matching these expressions.

As a second example, consider the slot describing the number of “hours spent in home office”.
You might find “per week” and “spent” in proximity to an actual value, however, the expressions

“on weekends” and “in the evenings” do not directly derive a value and, again, require inferencing
on the part of the user. Thus, the usual extraction strategy of locating import syntactic or linguistic
patterns in conjunction with key terms will not suffice here.

1.6 Sample Search Problem

Here is a hypothetical example scenario in which a user is searching through a text trying to locate
the value of the plaintiff’s monthly income in a bankruptcy case. The user would probably first
request a string search trying to match “monthly income”. Failing this, the user might proceed on
searching for instances of “salary”, “earnings”, or just “income” alone. If this was unfruitful, the
next attempt might be to look for “per month”, “per week”, or “per year”. Other synonymous
terms for monthly income might come to mind leading the user to try expressions such as “minimum
wage”, “stipend”, “grant”, or even “unemployment” or “unemployed”. Finally, the user might just
give up and either assume that there is no description of the plaintiff’s monthly salary, or resort to
reading the entire case opinion.

This scenario points out several problems with searching through natural language:

1. String search may not yield a result due to its requirement for an exact match. The user would
have to understand stemming and when it would be appropriate to do so. For example, both
“earnings” and “earned” might be appropriate for locating a value for the “annual income”
slot. In which case, stemming to “earn” would work for both searches.

2. Slots that have a time factor, such as “monthly”, may be expressed in multiple ways. The
user must recognize that “per week”, “per year”, “every two weeks”, and “annually”, among
others, may serve as valid locators for the value of the “monthly income” slot.

3. All the synonyms for a particular expression may not come to mind. An additional phrase
describing “monthly income” is “take-home pay”. In one text it was “take home pay”, further
complicating attempts at string matching.

4. Typographical errors will complicate matching. Misspellings will cause matches not to occur.

Information retrieval search engines are able to ameliorate the string search problem by using
word-based rather than character-based approaches. They also have available such techniques as
stemming and automatic query expansion via a thesaurus or association thesaurus. Nevertheless,
the typical IR system is not designed to allow the user to conduct interactive searches over single
documents; there is usually a tight loop between posing a query over an entire collection and
examining the results of that query. This becomes problematic when the document of interest is
not retrieved by a particular query or is much lower in the ranking and must be relocated after
each query.

The above scenario points to the basic problem that language is ambiguous. This is even true
even when the relevant vocabulary is small.

1.7 Summary

We examined the case representations with their slots and values in two domains, and found that,
regrettably, many of the slot fills differ in their representation between the text and the case-frame.
Current information extraction technologies can not directly extract the relevant information from
within the text. IE methodologies retrieve values directly from a text for use as a slot value.

Additionally, IE techniques generally draw on a large set of training texts in order to learn where
to find slot fills. These training texts are domain specific as is the resulting knowledge about what
to extract from new novel texts. There is the further limitation that our domains have small case-
bases (one consists of 55 texts, the other only 25) for use in training. It is infeasible to create
training data of a larger magnitude because of the expense associated with generating each new
case representation. This precludes our ability to use prevalent information extraction methods.

Furthermore, our CBR system requires a more knowledge-based level of representation (as
opposed the text itself) than that currently achievable by IR techniques. Hence, we must turn
to some other means of generating our case representations. This lead us to the possibility of
automatically locating the text that the human would have examined to determine the slot’s value.
Can we associate text pieces with their inferred representation?

We know that a link exists (although possibly weak) between certain text pieces and a slot
fill because a human has made this link. For every slot that has a value, we know that a human
was able to transform the information contained in the text into the frame-based representation.
Therefore, we know that there must have been some level of association between text pieces and a
slot. This gives rise to the issue: can we automatically locate those portions of a text affiliated with
a particular slot? If so, this will greatly reduce the time spent by a human searching through the
text looking for information about each slot.

Since we already have a set of texts and their frame-based representation, we can go back and
affiliate portions of each text with their associated slots and resulting fillers. When we do this, we
end up with a case-base of annotations for each slot or feature. We propose to use these annotations
to generate queries and to pose the queries against novel texts. We will assume that the novel texts
are relevant to the problem at hand. We decompose each new text into a series of passages with
the hope of retrieving the best passage(s) relative to a given slot. The best passage(s) will be
presented to a user, who will then fill in the slot with the appropriate information for this text’s
representation. If the user marks the passage from which the new fill is derived, we can add it to
our case-base of annotations for use in future queries.

In the next section we describe the system and Section 3 explains in more detail the technologies
we will employ. Section 4 gives a review of related work and Section 5 covers the issues inherent in
this research.

2 System Description

This section provides a broad overview of the system followed by a more detailed explanation of
the processing of documents. It finishes with an example problem case, starting with the input of
the problem, showing retrieval of relevant new documents, and finishing with an example of the
passages retrieved in response to a particular slot query.

2.1 System Overview

We assume that we have available a small set of texts, their frame-based representation, and a set
of annotations associating text with slots. Using a CBR system in conjunction with an IR engine,
we use these cases and their texts to retrieve an additional set of texts believed to be relevant to
a current problem situation (one possible technique is described in [DR95] and [RD95].) The next

step is to see how closely the situations in the retrieved documents match our current problem. To
be able to do this automatically, we must convert our newly retrieved texts into a representation
with which the case-based reasoner can work. Therefore, we now focus on how we propose to make
this conversion.

In general terms, we gather all the annotations from which our original case knowledge base
(CKB) was derived. We use these as the basis of a new query, with which we retrieve passages
from novel, but relevant, texts. The top ranked passages are presented to and reviewed by a user
who will extract or infer slot values for each novel text. In this way, we have added new cases to
our CKB at an expense to the user that is lower than the cost of reading the entire text.

2.2 Detailed System Description

To provide a more detailed explanation of how the proposed system will operate, we must go back
to the start of the case-generation process. The first step to creating a case-frame representation
of the new texts is to associate portions of the original case texts with the slots about which they
provide information. Based on domain knowledge and the task at hand, a domain expert creates
a case-frame representation to assist with the annotation and location of information from case
texts. This representation will be exploited by the case-based reasoner to perform the desired type
of reasoning. Utilizing the case-frame representation and a “text marker”, the domain expert marks
and extracts information from a small number of texts (on the order of 10-50). All of this data,
the slots and their values, the associated annotations from within the original text, and the start
location of each annotation, is stored in the CKB.

A new case is presented, called the “current fact situation” (CFS), in the form of a case-frame to
the case-based reasoning component. The CBR component determines, using one of its similarity
metrics, those cases most important to the CFS. The original case texts associated with these “best”
cases are then passed over to the information retrieval system. Using a modified form of relevance
feedback, the IR system generates and submits a query to retrieve additional related documents
from a larger document collection. (See Figure 2.)

— Case-Based Information
Reasoner Retrieval
—p System Retrieved
CKB RF-CKB Texts
Texts
Relevance

Texts Feedback
/ Module 1 /

Query
Engine

—

Figure 2: Retrieval process for novel documents.

The new retrieved texts are, unfortunately, not in a format that the reasoner can use. Conse-
quently, we must find a means to convert them. If the system is capable of automatically extracting
fills for any of the representation’s slots, it will do so at this point. For most of the slots though,

10

automatic extraction will not be possible. We now take advantage of the annotations that the
domain expert has provided when creating the original case-frame representations. One slot at a
time, the system passes the respective annotations over to the IR system. (See Figure 3.)

Instead of treating each new document as a single item, we propose to divide it into smaller
elements. The IR system divides a relevant document into passages and treats each as a separate
entity. There are various ways to segment a text: using user-defined boundaries such as sentences,
paragraphs, or sections; semantically or thematically, or by indiscriminately dividing the text into
windows of a particular (or varying) size. (In Section 3.5 we elaborate on the various options
available and in Section 5.3 discuss which method we will use.)

The IR system next generates a query from the case-base of annotations to locate the relevant
passages rather than relevant documents. The passage query is posed against the document’s
passages and the top ones presented to the user. The user will either extract or infer a slot value
from the presented material. In this way the user adds new cases to the CKB. The user may also
add passages or subportions of them as additional annotations to be used by later passage queries.
Once the new texts have been converted and added to the CKB, the CBR component may reason
about them relative to the CFS and the original task.

2.3 Example Problem Case

To better illustrate the approach of our system we run through the following scenario based on a
real personal bankruptcy case, the Rasmussen? case. Suppose a client, Mr. Rasmussen, approaches
a lawyer about his attempt to file a personal bankruptcy plan. The Bankruptcy Court has denied
approval of the plan because it failed to meet the “good faith” requirement. However, Mr. Ras-
mussen believes that he does satisfy the requirement and wants to appeal the court’s decision. He
tells the lawyer various facts concerning his problem case. The lawyer inputs these facts to the
CBR-IR system.

Having practiced in this area of law, the lawyer has knowledge of a set of past bankruptcy good
faith cases and their outcomes. Assume she has represented these in her own in-house case-base,
which is used by the CBR portion of the system. The system begins by performing an analysis of
her client’s problem case, with respect to this in-house case-base. In this instance, the CBR module
uses a HYPO-style reasoner that uses a claim lattice to determine similarity [RA87, Ash90]. (See
Section 3.1 for more details on CBR systems.)

Next, the CBR module selects a small set of special texts on which to employ relevance feedback
to generate a query. We call this set of texts the “RF-CKB”. One good choice of texts would be
those associated with the top layer or top two layers of the claim lattice. The cases in the top layer
are those most highly similar to the problem case, based on the reasoner’s particular similarity
metric. They are referred to as the “most on-point” cases (mopc’s).

With Rasmussen as the problem case and a small corpus containing 43 hand-coded bankruptcy
cases as the CKB, Figure 4 shows the top portion of the resulting claim lattice. All of the dimensions
of the Chura case overlap with the problem case, hence, Chura is the only most on-point case. This
is depicted by the single node coming from the root. There are three nodes in the second layer of
the lattice and these nodes encompass four additional cases.

The case opinions associated with the mopc’s or the top two or three layers of the claim lattice
are then used as the set of marked, relevant documents on which the IR engine will perform relevance

3In re Rasmussen, 888 F.2d 703

11

MITAIIAQ WAISAS MI-AGD i€ 2In31

IIIIIIIIIIIIIIIIIIIII S) 1980

QorJIU]
mowﬁ_ﬂmmmm [E Pp-| U000 IneA
wdOL, 10[S/SUIMIIA

agessed 1osN

\

suoneloUUy
[euonippy

sase)) MaN

S[NPOA
[eAQLIIOY
o3essed
[BASLNOY
J3esse(J10J
Arong UOIRIUID)
o8esseq K1ond)
|
I
_ SUONBIOUUY
I
I
I
Juiduyg |
[eASLIOY SIX9 _
juswnoo «doL, _
| IOUOSeY
I 5 5
yoeqpaoq pased-ase))
JUAWNI0(] ADUBAJ[Y _._omwo 159d,
/[eASLNY
WIISAS TUWNOO(] 10J _ »
[BASLIIY uonesouan) Krond)| |
uoneuLIOJu) .

$1X9) ase))
sase)
S[[14 Pu® *s10[S
‘suonjelouuy TONIRIN 1XAL
1adxg
uonejuasardoy urewo |
QWRIJ-9S8)) .

12

IRASMUSSEN|

CHURA
RASMUSSEN

(SILVA) y (SCHYMA)
GIBSON I
BROWN), (SELLERS GOEB
I SHEETS l
NEUFELD ESTOS

TAUSCHER) (axaicanos) | TRAMONTO

DOS-PASSOS GUNN

ASHTON
OWENS SANABRIA
SEVERS SOTTER
GIRDAUKAS

Figure 4: Partial claim lattice for the Rasmussen case.

feedback in a modified fashion to generate a query. To enable this, the CBR module passes the
indices for these documents over to the relevance feedback module within the INQUERY system.

The relevance feedback module then selects and weights the top terms or pairs of terms from
within these CBR-provided texts and forms a query. INQUERY acts on the query in the usual way
to return a set of relevant documents from a larger collection, say the WestLaw~Federal Taxation
Case Law collection. The system returns to the lawyer this set of highly relevant documents, some
of which she already knows about since they were in her own personal CKB, to use in her research
on Mr. Rasmussen’s legal problem. Below is a sample query for this case, using the top 15 terms
and the top three layers of the claim lattice:

#WSUM(1.000000 0.772051 d.c.cir. 1.524504 mislead 1.888424 likelihood 0.957335
marlow 1.330305 sincer 1.523974 liber 1.345248 frequenc 1.426169 accurac
1.744932 minim 1.136436 eighth 1.117896 inaccurac 0.891818 gen 1.441973 colleg
1.247028 inordin 1.248914 preferent)

The lawyer now has a larger set of relevant documents for her research on Mr. Rasmussen’s
problem. The system has located new cases, previously unknown to the CBR module.

Now, we take these top documents and send them, one at a time, through the next portion
of the system. Since the Fasley case, partially depicted in Figure 1, shows up as a highly ranked
document by many of the possible RF-generated queries, we will use it to illustrate the next step
of inputting a text to the passage retrieval portion of the system.

For each slot about which we are concerned, we generate a query over the passages in a novel
text. Consider, once again, the monthly income slot. If we were to use the sample terms and
phrases previously discussed in Section 1.6, and manually form a query, it might look like:

#PARSUMN20 (#SUM (#phrase(monthly income) salary earnings #phrase(per month)
#phrase(per week) #phrase(per year) #phrase(minimum wage) stipend grant
unemployment))

13

The above query searches for the given words and phrases among passages of size 20. Using
this query? on the Easley text, the listing of the top passages looks like:

Psg Strt Belief

4010 0.408031
4020 0.408031
1170 0.406361
1180 0.406361
2430 0.403198

160 0.403198
2420 0.403198

80 0.403198
1230 0.403198
1250 0.403198

The first two passages can be found in the second full paragraph, second column, on page six.
The text in the general area is shown below. Embedded within the text are word counts so that
the retrieved passages are identifiable. Both passages contain the words “income”, “minimum”,
and “months”, which end up giving these passages the highest score.

As discussed above and below, *3990* new s 1325(b) demonstrates congressional intent that an
objecting unsecured *4000* claim holder can be satisfied in a Chapter 13 case *4010* by full
payment or by commitment of all projected disposable *4020* income for a minimum of 36
months.

The percentage repayment ¥*4030* discussion of good faith in Memphis Bank is eroded by *4040*
the later enactment of s 1325(b).

Unfortunately, these passages do not provide any insight into Mr. Easley’s monthly income. The
second pair of passages is closer in that they address pay increases, yet no discussion of an actual
salary is mentioned. These passages are found in the first full paragraph, second column, page two.
Their text matches “salary” from the query. Below is the text surrounding these passages:

The plan does *1160* not commit future pay increases, but there was no evidence *1170* that
raises are likely. See In re Krull, 54 B.R. *1180* 375 (Bankr. D.Co0l0.1985) (future salary
increases too speculative to *1190* be ”projected”). Debtor testified he incurred additional
expense for furnace *1200* replacement after the amended budget.

The next set of passages all contain both “income” and “months”. The last passage in the list
includes: “income was slightly reduced by lost overtime”, which is the closest piece of information
about monthly income within the entire set.’

Instead of manually forming a query we propose to use our case-base of annotations to generate
one. Our query may treat these annotations either as separate entities or may merge all of the terms
into one long natural language query. For the monthly income slot, our case-base of annotations
includes those discussed below in Section 5.1.

4 All passage queries were run under version 3.0 of INQUERY and the collection was both stopped and stemmed.

®Ties are not resolved. If there is a tie that would cause the listing to go beyond the top ten passages, those that
make it into the top ten are arbitrarily assigned. This will be changed in the future so that all passages that are
equivalent within the top ten places are returned.

14

For this next query, we treat each annotation in our case-base as a separate entity by surrounding
each with an #or operator. Again using a passage size of 20, the retrieval results are given below.

Psg Strt Belief

990 0.404301
1180 0.404116
1170 0.404116

150 0.403834
4820 0.403407
4810 0.403407

80 0.403407

600 0.403407
4010 0.403406
2420 0.403406

The returned set of passages are much improved over those from the previous query. The top
passage is, in fact, the best one in this opinion. The pertinent text, including word counts and
matching terms in boldface, is:

“Debtor’s amended budget commits $30 *990* to the plan from a weekly take-home pay
of $262.30.”

The second and third ranked passages, 1180 and 1170, are discussed above, and the fourth includes
both “income” and “months”, as well as “statement”. It additionally includes “disposable”, which
is found in one of the annotations. Below is the relevant text surround the fourth passage with
matching words in boldface.

Debtor’s Chapter 13 plan was proposed in good faith, though major debt had been held *140*
nondischargeable in Chapter 7, where debtor had no history of bankruptcy filings, debtor’s
statements and schedules were reasonably accurate,plan *160* proposed payment of all dis-
posable income for 36 months, there are no unusual administrative problems, and attorney
fees were not *180* significant portion of total debt and were reasonable.

By using the case-base of annotations we were able to generate a query with which to locate a
good passage about our slot. Once the user has read the first passage, they can easily calculate the
value for the monthly-income slot. If the user so chooses, they may add text from this retrieval to
the case-base for use in future queries. This may prove particularly fruitful if an additional means
of expressing monthly income becomes apparent.

2.4 Summary

This example shows how we can leverage the strengths of two different systems for mutual benefit.
The CBR system with its highly defined sense of relevance passes salient cases to the IR system.
The IR system uses its knowledge of word distributions and the CBR provided relevant documents
to create suitable queries. We hypothesize that we can use this same style of interaction to retrieve
germane passages over a variety of types of slots and fillers.

15

3 Background

This research touches on the work done in many different methodologies. We start with a case-
based reasoner and a frame-based case representation, transition over to an information retrieval
system with full-length texts, and end up with short text segments from novel documents being
affiliated with case-frame slots. Along the way we use techniques from natural language processing
for the task of information extraction and we take advantage of previous work on passage retrieval
and concept recognition.

3.1 Case-Based Reasoning

CBR systems focus on the automatic evaluation, selection, and adaptation of prior cases. There
are two basic types of CBR systems; those that solve problems and those that are precedent-
based. Problem-solving CBR systems retrieve solutions to previous problems or subproblems and
merge or adapt these solutions to yield a new solution, preferably optimal. Precedent-based or
interpretive CBR systems will explain or justify the optimum answers based on comparisons with
prior outcomes.

As previously mentioned, most CBR. systems require the manual input of cases. (Although
there are systems with automatically generated case-bases: [Vel92, Gol91].) The case and indexing
structures are decided upon by a human. Each case’s input form is extracted from text or created
from events, and data is placed into the appropriate representation. The actual indices for a
case may be automatically generated based on the input data. Known cases are stored in a case-
knowledge base (ckb).

To reason about a new case or problem, a current fact situation (cfs) must be input to the
system. It is generally in the same format as the cases in the ckb. Once input, the cfs is compared
to the ckb using any one of a variety of similarity metrics. (See Figure 5.) The comparison yields a
set of documents or cases deemed to have some level of similarity to the cfs. In some CBR systems
it is sufficient to find a “close enough” case and not search the entire case base for the best matches
[Kot88]. Problem-solving CBR systems frequently use some form of nearest-neighbor metric, while
precedent-based systems frequently use a “claim lattice”. This means of measuring similarity is
based on Ashley’s HYPO system [RA87, Ash90)].

A claim lattice is a partial ordering of the cases similar to the cfs. The ckb is sorted based
on the intersection of each case’s “dimensions” (or features) with those applicable in the cfs; cases
with no shared dimensions are not considered since they are not deemed relevant [Ash90, RA8T].
Dimensions address important aspects of cases and are used both to index and compare cases.

In this sorting, Case A is considered more on-point than Case B if the set of applicable di-
mensions it shares with the cfs properly contains those shared by B and the cfs. Maximal cases
in this ordering are called “most on-point cases”. The result of sorting the cases is shown in the
claim lattice. It contains only the subset of cases from the ckb that are considered relevant to the
problem case at hand. (See Figure 4 for an example claim lattice.) Those cases on the top level of
the lattice are the mopc’s. The cfs is the root node.

The set of retrieved cases may or may not be weighted, providing discrimination within the
set as to their utility in satisfying the current need. For many CBR applications, particularly
in planning or designing, it is desirable to work with a single case or at least a small number

16

Current Fact
Situation

Representation Representation

Case Base '
:
:
H
:
Comparison

Retrieved
Cases

» Adaptation/ “
' Analysis 3

...............

@

..............

bt -

Figure 5: Overview of the CBR process. Optional elements are dashed and in grey.

of cases for adaptation (or possibly a case for each problem component.) Therefore, problem-
solving CBR systems generally have some means of weighting the relevant cases. (Kolodner’s
PARADYME [Kol89] uses preference heuristics, Hammond’s CHEF [Ham87] uses a discrimination
net that hierarchically orders features in terms of their relative importance, and Stanfill and Waltz
applied a variety of distance metrics to arrive at the “best case” in MBRtalk [SW86].)

Interpretive CBR. systems do not necessarily assign numerical values to relevant cases, but find
other means for generating at least a partial ordering among the retrieved cases. (HYPO and
Rissland and Skalak’s CABARET [RS91] generate a claim lattice and Goodman’s Battle Planner
[Goo89] uses “case prototypes” or conjuncts of indices to select the “most on-point” cases for
analysis.)

Once a solution or evaluation is generated, the CBR system may wish to validate the solution.
Additionally, the CBR system has the option of storing information about the problem-solving or
interpretive episode, such as knowledge about failures, adaptations, and the final outcome.

To summarize, the strengths of CBR include the following:

e CBR is a developing methodology that accords a great deal of flexibility to individual systems,
such as deciding on case structure, the indices and/or their structure, similarity metrics,
adaptation or evaluation techniques, retrieval model, and the storage mechanisms to use.

e Methodology flexibility allows CBR systems to take advantage of domain knowledge and do
a single job well (e.g., generate plans, develop interpretations.)

e Cases may have multiple levels of, or complex structures for, indexing. Having multifarious
indices enables a system to view a case from differing levels of abstraction and thereby allows
for a variety of means of reasoning.

17

e Because of the indexing methods used, case retrieval is done with a high level of relevancy.

e Problem-solving CBR systems can adapt a solution from a previous experience to solve a
new problem, thereby saving the time of re-solving all or a portion of a current problem.
Interpretive CBR. systems can analyze old experiences to predict an outcome for a current
situation or relate/distinguish the current situation to/from previous events.

e CBR systems can learn by storing solutions to, or analyses of, new situations.

e CBR systems can learn from failures by storing these events and the indices that predict
them, thereby avoiding repeating failures.

Even though CBR is a strong paradigm for reasoning at multiple levels of abstraction, there
are certain weaknesses found in many systems:

e Devising case representations, indexing structures, and extracting cases for use in some do-
mains is too manually intensive.

e Many of the currently used storage and retrieval mechanisms will not scale-up for larger case
bases.

Overcoming or reducing the first of these weaknesses, so that we may take advantage of the
strengths of CBR in reasoning from multiple perspectives and levels of abstraction, is the focus of
this research. Hence the integration with information retrieval which can rapidly index its “cases”.

3.2 Information Retrieval
Over 25 years ago Dyke summarized the IR process and its goals:

The ideal data retrieval system will take a user’s question, interpret it into the language of the
system, search all of the available information and data, and supply the optimum answers in
minimum time at a reasonable cost. [Dyk69] page 6.

These are still the same goals as today: automatic indexing of documents (or other data items),
with little or no manual input, and then retrieving those documents that match an information need
stated in the form of a query as effectively and efficiently possible. The internal representation of a
document may contain information about the document’s words, their locations, their frequencies,
whether they have been identified as being part of a concept, and information about adjacent words.
As described in Section 1.3, when indexing each document, words may be stemmed and stop words
may be removed.

The most common models for representing documents include the vector space model [Sal89], as
implemented in SMART [Buc85], the probabilistic model, and inference networks as implemented
in INQUERY [CCH92]. This research will be done using the inference net model as implemented
in INQUERY, but there is no apparent reason why it could not be done within another framework.

INQUERY uses an inference network model [TC91], [TC92] specifically, a Bayesian probabilistic
inference net, to represent texts and queries. It uses a directed acyclic graph with a information
need at the base, document nodes at the leaves, and a layer of query nodes, query concept nodes,
content representation nodes, and text representation nodes in between. (See Figure 6; copied
from [TC91].) Nodes that represent complex query operators can be included between the query
and query concept nodes. The INQUERY model allows for the combination of multiple sources of
evidence (beliefs) to retrieve relevant documents.

18

Document

Text
Representation
Document

Network

Content
Representation

Query
Concept
Query
Network
Query

Information
Need

Figure 6: Sample inference network for document retrieval.

Query formulation for all types of representations consists of taking an information need and
turning it into a form that can be matched against that of each document. The comparison
yields a set of documents deemed to have some high level of similarity to the stated query. The
retrieved document set is usually ranked, providing discrimination among the set as to their utility
in satisfying the query. Frequently IR systems implement a mechanism for the user to judge the
results of the query and to request a new query that incorporates these judgments. The system
automatically generates a modified query in a process known as “relevance feedback” [SB90)].

Because there has been much research and advancement in the IR process over the past 30
years, current IR systems are robust and exhibit the following strengths:

IR is a well-worked out methodology, that accords flexibility to individual systems, such as
deciding on a morphological rule set, stop word list, index set, query model, and the storage
mechanisms to use.

English language characteristics allow IR systems to entirely automate the traditional index
structure creation process, thereby being applicable across domains.

IR systems can access and retrieve data from very large collections or “case-bases”.
Accessing and retrieving from these large collections can be done very quickly.

IR systems can automatically add new data items to their collections (modulo data entry.)
IR systems can utilize learning in the form of relevance feedback to iteratively improve re-
trieval during a query session.

Even though there has been a great deal of research, Information Retrieval does have some
weaknesses and there are still many challenging areas within the field:

Only limited reasoning about the retrieved documents can be done. Similarity assessments
may be made, but current indexing techniques do not enable their indices to be used for
problem-solving or analysis of documents.

Formulating good queries can be difficult. However, the recent addition of new query operators
has helped ameliorate this problem.

IR systems can only achieve high recall at the cost of lowered precision and wvice versa.
However, reasonable results are achievable at intermediate values.

19

e IR systems do not learn from their failures over time. For example, suppose a user poses
a query and then provides relevance feedback. At a later time, that same initial query will
produce the same initial results. (Although this is an active area of research.)

3.3 Merging CBR and IR

As previously mentioned, CBR. systems have an information bottleneck problem and IR systems
have the problem of not being able reason abstractly about their collections. Conversely, CBR
systems have the ability to reason abstractly about their cases while IR systems can easily and
rapidly transform documents into an internal representation. It seems logical that we should want
to combine these two paradigms to tap the strengths of each in support of the other.

We have already been able to exploit the reasoning ability of a CBR system working in concert
with the indexing and retrieval abilities of an IR system [DR95, RD95]. The CBR system identifies
those cases most similar to a current fact situation. The documents associated with these most
similar cases can then be presented to the IR engine. The IR engine treats these documents as
though they were hand-marked by a user as being relevant and performs a modified version of
relevance feedback to generate a query against a much larger corpus of texts. Our experiments
showed that we were able to retrieve texts relevant to the current problem and were able to do so
with a high rate of confidence.

There is another system the merges IR and CBR techniques, but it is used for the classification
task. Prism is a system for classifying bank telexes for further distribution and routing [Goo91].
It uses a lexical pattern matcher to generate retrieval indices. These indices are used to select
cases from a case base of over 9600 sample telexes. It then adapts the best matching cases to find
classifications solutions for the new telex.

3.4 Information Extraction

The objective of an information extraction system is to locate and extract those pieces of informa-
tion considered to be significant from within a text. The information is placed in a frame-based
representation. The slots summarize information about an event and include such items as the
actor, date, location, type of event, important object, outcomes, etc. Compiling the extracted
data, one could easily create a summary the significant events or data items found in the text.
Domains used for the Message Understanding Conferences (MUC) over the years include naval
operations reports and terrorist newswires [MUC92, MUC93]. TIPSTER evaluations used business
joint venture and micro-electronics stories [Pro93].

Frequently, information extraction systems are paired with a filtering system. The filtering
system tries to separate the relevant from the non-relevant texts so that the extraction system only
has to expend effort on apposite texts.

Some extraction systems look for important phrases by applying heuristics such as: look for
proper nouns to be the names of individuals, companies, or countries, look for a word that is all
capitals surrounded by parenthesis, (which would denote an acronym,) look for the use of italics
or underlining to signify important concepts, and find multiply repeated compound noun phrases
(with the belief that some of these will be domain specific.) [KB95] (These techniques are related
to concept recognizers, which are discussed in Section 3.6.)

20

One system filters a text stream based on keywords, then uses the ODIE information extraction
system to do extraction on the remaining texts [SHH95]. Therefore, only those texts that have
met predefined characteristics are considered suitable for examination by the extraction system.
(We do a similar thing in that we use our relevance feedback generated query to act as a filter on
the collection and locate relevant texts.) Additionally, they further reduce the amount of semantic
processing by only examining those sentences in which the keywords appear [Huf95].

AutoSlog-TS [RS95a] shows great promise in overcoming one of the limitations found with most
natural language processing systems — that of needing large quantities of training data to learn
concepts and construct dictionaries. Primarily this training data has consisted of a domain-specific
manually-annotated corpora. These corpora represent a huge investment each time a new domain
is to be explored. AutoSlog [Ril93], used for dictionary construction with several information
extraction domains, also suffered from this limitation. This new approach, AutoSlog-TS, relies on
linguistic rules and statistics collected over the new corpus to generate a dictionary without the
need for an annotated corpus.

AutoSlog-TS has been tested for two NLP tasks, extraction and text classification. It performed
comparably to its counterpart for the classification task. For extraction, AutoSlog-TS was able to
produce concepts that would not otherwise have been generated because it examines statistics and
patterns throughout the texts, not just the annotated portions. There remains a need for a human
to review the generated concepts, but the need for an annotated corpus is potentially dissipating.

Even though we may be able to remove the need for a large training corpus, IE still relies on
linguistic patterns or rules associated with keywords to locate slot fills and extractions that come
directly out of the text. We have tried to use the natural language processing extraction system
at the University of Massachusetts, Amherst on our domains because this system has done quite
well over the MUC domains. Unfortunately, our domains come with little training data and the
linguistic patterns were sufficiently different that they did not readily apply. Limited automatic
extraction was obtained and with a lower than acceptable precision and recall rates.

An additional problem with IE systems is that there appears to be an implicit or even explicit
[Huf95] assumption that the information being extracted is about an “event”. These systems further
assume that the constituent elements being found fill “roles” within an event. This assumption
does not hold for the domains of this research; the sentences containing the desired information
generally use non-descriptive passive or infinitive verb forms.

IE systems extract facts, but their underlying purpose is closely aligned with the summarization
task. By default, they generate information that encompasses broad coverage of a topic. Some of
their techniques are directly applicable for some of our slots. Unfortunately due the magnitude of
training data generally required and the nature of the information captured we have not been able
to transfer this technology to our domains.

3.5 Passage Retrieval

Previous work on retrieval of textual subelements is limited. Primarily the work falls into three
areas: imagery analysis to locate document subelements, examining passages or other small doc-
ument element (sentence or paragraph) to aid in document retrieval, and retrieval of document
subelements. The second and third areas are more closely aligned to this work than the first.

The first line of research into breaking a document into smaller components primarily focuses
on imagery analysis and gets down to the pixel level to aid in distinguishing document subelements.

21

Partitioning a document into smaller structure-based elements is reported in [RS95b, RS95¢]|. They
use agents to search for “layout-based abstractions” such as tables, figures, and paragraphs, and
“content-based abstractions” such as theorems, lemmas, and examples. Once located, smaller
objects are further examined to see if they meet the information need. An example of their tech-
nique is to segment a newspaper, filter for relevant sections, segment the sections into paragraphs,
then detect tables and graphs. The resultant table and graph objects are examined for specific
information, such as stock data on a particular company.

This refinement of search toward progressively smaller levels of granularity is similar to what
we propose, except that we do not rely on locating structurally delineated objects for retrieval, nor
do we search at the pixel level.® (See [RS95b] for cites of other structure-based approaches that
use image analysis techniques to locate document subelements.)

In the next category, various types of passages are examined to aid with document retrieval.
Generally, the value of the best passage is combined with the similarity score of the document in
some fashion.

This process may be motivated by Ro, who compared the results of document retrievals when
queries were placed over full-text, paragraphs, abstracts, and a controlled vocabulary field [Ro88].
Not surprisingly, precision went, from best to worst: controlled vocabulary, abstracts, paragraphs,
and full-text. Recall was almost the inverse, with the order being: full-text, paragraphs, controlled
vocabulary, and abstracts.

We may not have an abstract or controlled vocabulary list associated with each document, so
the next best object for improving precision with full-text retrievals may be the paragraph. By
combining the score for the best matching paragraph with the scores of the individual terms, it may
be possible to achieve a higher level of precision without sacrificing the recall of full-text retrieval
alone.

Callan provides a comprehensive study of the relative merits of different types of passages when
dealing with different types of collections and documents [Cal94]. This work uses the inference
net model and in all cases, the belief value for the best passage within a document was added
to the belief for the document as a whole. Comparison was done among discourse and window
passages. Discourse passages were based on user-defined breaks such as sentence and paragraph
breaks. Window passages looked at a fixed-size amount of text, say 100 or 200 words.

Because discourse passages may vary significantly in length, which will have an impact on term
frequency statistics, he also examined fixed-size window passages. Fixed-size windows have the
counter problem of possibly breaking related text across windows. This was alleviated by having
passages overlap at intervals of half the window size. To ameliorate the size problem with discourse
passages, bounded paragraphs, where small paragraphs were merged and large paragraphs were
split, were also tested. His results indicated that fixed-size window passages did best over an
assortment of collections that range in the size of their documents. Stanfill and Waltz discuss a
commercial system, CMDRS, that uses the scores from fixed-size passages to retrieve documents
and has been in operation since 1989 [SW89].

Another approach that incorporates both local and global evaluations to determine similar-
ity among encyclopedia articles is by Salton and Buckley, [SB91a, SB91b]. They start with a
global similarity metric and then use the top retrieved articles as subsequent queries. This multi-
stage search showed additional improvement when requiring a minimum paragraph-to-paragraph
or sentence-to-sentence similarity threshold.

5We may, however, use layout-based abstractions for the presentation of results.

22

Rather than using sentences or paragraphs, Moffat et al. tried section and “page” divisions
[MSDWZ94]. They made page divisions based on the number of bytes in consecutive paragraphs;
this would approximately normalize the length of each page. Again, though, their task was to
retrieve entire documents.

Several systems actually retrieve passages in response to a query. In one case, the query set is
restricted.

More recent work by Salton, Allan, and Buckley executed single-stage searches, computed global
similarity, and then those documents exceeding a threshold had a local similarity computed at the
sentence level [SAB93]. This allowed for sections and paragraphs in addition to entire texts to be
retrieved in response to a query.

While this is in the same spirit as our work, in order to compute a sentence level similarity, they
start with queries that are articles themselves. We have much smaller individual elements available
as initial queries; our annotations are generally a sentence or shorter in length.

Hahn argued for analyzing and indexing the conceptual or thematic structure of a text and
implemented his ideas in the TOPIC system [Hah90]. TOPIC was tested over short texts describing
computer systems. Hahn asserts that storing a text’s conceptual structure makes possible three
types of retrieval operations: abstracting or summarization, fact retrieval, and passage retrieval.
Summarization is discussed below in Section 4.5. His techniques for fact retrieval are closely aligned
with those used by current information extraction systems: use of a domain-specific knowledge base,
generally in the form of a dictionary with information about the semantic and syntactic constituents
that may fill each term’s representation. More on information extraction can be found in Section
3.4.

His final type of retrieval, passage retrieval, is made possible by linking passages to their rep-
resentative in the concept index. This is a true instance of “passage retrieval”, with the limitation
that the only way to retrieve a passage is if it has been linked into the concept index. Passages are
not retrieved in response to general queries, only in response to a concept.

Another technique based on a document’s thematic structure is TextTiling [Hea93, HP93].
With TextTiling, coherent subtopic discussions determine document indices. Subtopic discussion
breaks are ascertained by evaluating the frequencies of the terms found in proximity to one another.
They compare small blocks of text (i.e. three to five sentence units,) to adjacent blocks to measure
similarity and merge those that are thematically related. Subtopics or “tiles” may span multiple
paragraphs. High value terms from within each tile form the subtopic’s label. Assembling the
labels into a listing effectively represents a table of contents for the document.

The query language for this system allows users to request related documents based on either or
both overall document similarity and similarity among tiles. Document retrieval is based on accu-
mulating the scores of the tiles. This type of query allows for searches where a topic is specifically
given as being subordinate to a main topic. This is similar to what we wish to do, however we do
not decide a priori which subtopics are discussed within a text. Since the discussion of our slots
is usually on the order of one or two sentences long and may be scattered throughout the text, we
are not able to take advantage of the TextTiling methods.

One final piece of research that should be mentioned is that of O’Connor [O’C70, O’C73, O’C75,
0’C80]. He experimented with the retrieval of “answer indicative” or “answer reporting” passages.

The first experiments were on a corpus of 82 full-length texts on information retrieval. He
created the second corpus by having medical librarians search for documents that answered specific

23

medical questions and subquestions. To be added to the collection, a document had to be an
“answer-paper”, that is, one that contained either an “answer indicative” or “answer reporting”
passage.

Two individuals without biomedical knowledge created sets of search terms for each question.
They spent between 2.5 and 3.0 hours, on average, developing the query terms for a single question.
(There was a 4.0 hour maximum per question.)

The collected documents were then manually searched for sets of consecutive sentences contain-
ing minimum numbers of matching query words. The results of this simulated retrieval were quite
good with recall being either 72% or 67% depending on the set of search words.

This work is quite relevant to what we are trying to accomplish. Their simulations have shown
that it is quite reasonable to expect that we can retrieve“answer indicative” or “answer reporting”
passages with our queries. We have the advantage of being able to automatically run our queries
and of generating our passage queries as a by-product of another process, rather than spending
hours manually encoding sets of terms.

3.6 Concept Recognizers

Controlled vocabularies allow for higher-level reasoning about a document than reasoning with just
using the words found in the document. They provide a second level of representation for a text.

If we consider that 1) slots represent concepts, and 2) indexing a document based on the concepts
it contains enables a second level of reasoning about a text, it would seem a natural match to try
to exploit concept recognizers for the passage retrieval task.

Concept recognizers come in various forms including table lookup, synonym expansion, and
pattern recognition. They support various natural language processing and information retrieval
tasks by merging multiple means of expressing a concept into a controlled vocabulary or into a
single canonical form. Concept recognizers enable NLP systems in their extraction task by locating
important patterns or terms from which information can be drawn. They enable IR systems to
index and utilize a second and more abstract representation of each text [CC93, RJ91].

Table lookup can be used when the items in the concept can be enumerated, such as foreign
countries, U.S. cities, or pieces of furniture. Pattern recognition, such as a series of capitalized
words may identify company and other proper names. Other patterns that can be easily recognized
include telephone numbers, dates, and social security numbers [Mau89].

FLEXICON, now Flexlaw, a legal text management tool, relies extensively on concept recog-
nizers for its searches [SGM™95]. The system displays four quadrants to the user, each containing
a different type of knowledge. Three of these quadrants use concept recognizers. The first, in the
form of table look-up, matches concepts from a manually encoded Legal Concept Dictionary to the
text of each case opinion. The dictionary entries are highly technical terms and phrases as well as
synonymous expressions. The next two types of conceptual knowledge are based on statutory and
case citations. They rely on pattern matching and capitalization for identification.

The final quadrant contains the “facts” of the case. It basically consists of the words and phrases
that are left over when the first three types of knowledge, along with stop words, are removed. Some
reduction of the search space is done by removing low frequency terms and lengthy phrases.

24

4 Related Work

There are many aspects of this research that are currently the subject of much study. There is
on-going research into the posing of multiple queries and the merging of results from multiple
databases. Visualizing retrieval results is a recent field of exploration due to advances in display
technology. Text classification or categorization, with the related are of document clustering,
along with summarization, have been investigated for well over 30 years by both the IR and NLP
communities. We now provide a brief overview of these areas.

4.1 Posing Multiple Queries and Merging of Results

There are two different categories of query merging. The first is when the same query is posed over
multiple databases and each of their results must somehow being combined to present one overall
retrieval. The second category of merging takes place when multiple representations of the same
information need are posed against a single collection. The former is the “data fusion” problem
while the latter is the “query combination” problem.

There is currently a great deal of on-going research into how to best combine the results of
a query performed over multiple databases [VGJL95, CLC95, BKFS95]. (See [Har94, Har95] for
additional references.) Here they must deal with the problems of normalizing statistics across the
various collections, how to decide which collections might provide the most fruitful results, deciding
how many documents to retrieve from each source, and how to actually combine the results from
each source. Since our retrievals remain within the bounds of one collection and we examine a
single document at a time, data fusion is not an issue in this research.

Query combination becomes an issue if we treat each annotation as a separate query. We
now encounter the dilemma of how to merge the results so that we can identify a ranking of
passages. Research into query combination has shown that using multiple representations for the
same information need and merging the results generally improves retrieval performance [SK88,
BCCC93, BCB94, BKFS95]. The issues here are how to generate more than one representation
and the costs associated with doing so and how to effectively combine the results at query time.

As we have an available set of annotations for each slot, we can treat each of these as a different
representation of the same information need. This research will be examining several means of
query merging, utilizing our case-base of annotations.

4.2 Visualization of Retrieval Results

Once we have retrieved the passages most highly similar to the query, we will want to somehow
display them to the user. For some of our queries we can learn, by observation of manually anno-
tating sample case texts, that location is important for extracting certain slot fills. For example, we
learn that the header information such as defendant, plaintiff, judge, hearing date, court, etc. are
located at the beginning of the opinion. We also learn that “decision for” may be found either early
(within the first few paragraphs) or at the very end of the text (within the last paragraph — unless
there are dissenting opinions). There may be other instances of slots, where, having knowledge of
the document’s structure, and being able to see the links between related passages, will lead the
user more quickly to the important passage(s).

25

We would like to take advantage of the knowledge we have learned. One means of doing so
would be by displaying the document as an arc with the related passages annotated, we can quickly
go to the passage that is most likely to contain the information we desire (at least hypothetically,
by “selecting” the passage we wish to examine). This would take advantage of the work done by
Salton and Allan on visualization of document structure [SA93, All196].

Other means of visualization include: cone trees [RMC91], a perspective wall [MRC91], a docu-
ment lens [RM93], TileBars [Hea95], and NavigationCones [HKW94]. (See [RPH"95] for additional
visualization technique references.) While these are all interesting options for the visualization of
our results, this aspect will be left for future exploration.

4.3 Text Classification/Categorization

Suppose that we are unable to directly locate slot fills from a text, or even to locate the best
passage(s) for a slot fill. One alternative would be to see if we could determine with a high degree
of belief whether or not a text contains any information about a slot or possibly even a dimension
(using a HYPO-style definition [RA87, Ash90]). Being able to more generally claim that we believe
a document does or does not contain information about a slot would allow the case-based reasoner
to reason, at a gross level, about the new texts. If we can do this, then potentially, we would not
need to bother with generating extensive case representations for the majority of texts; we simply
generate a case representation that lists those factors believed to be present in each text.

If we can build such a general representation based on the presence or absence of factors, then
our reasoner can assign similarity ratings on this more general basis (using a nearest neighbor
algorithm or by constructing a claim lattice.) Once we know which cases have the most potential
to play a role in analyzing the current situation, we can concern ourselves with constructing a more
in-depth case representation for this restricted set.

To make this entire scenario plausible though, it is essential that we believe that reasoning with a
more general representation of the dimensions or features is sufficient for our needs. Assuming that
it is, how would we go about determining that each case does or does not contain information about
each slot? One possible method of making such an assertion would be classification techniques.

We may not have enough data on which to build a set of classifiers as these systems generally
use much larger amounts of training data than we have available. The large size of the training
set is necessary to gather sufficient statistics or other information with which to be able to make
distinctions between documents.

Frequently, these systems use documents that are typically a page or less in length for training.
Our documents are much longer, making it more difficult for a system to identify the impor-
tant terms for a concept. One set of experiments on classifying medical record encounter notes
used approximately 1000 training documents, where documents rarely exceeded one page in length
[ASPT95]. Another medical classification task, that of assigning codes to discharge summaries, em-
ployed more than 10,000 training documents averaging 4.43 codes per document [LLC95]. Discharge
summaries average one fifth the length of our documents. There have been various experiments on
classifying newswire stories, where again there is a large training set and the documents are much
shorter than ours [Lew92, LG94, Yan94, MG95]. Another system categorized part of the MED-
LINE collection where documents average 168 words and the training set contained 586 documents
[Yan94].

26

4.4 Document Clustering

This area of research is closely related to document categorization. Clustering techniques group
documents together based on either the number of features they share or some other metric that
measures similarity. Features may be the words, phrases, or concepts that compose the text or
other values such as author, document length, date of publication, etc.

Some clustering techniques are directed at the results of a query [CPKT92, CKP93], while others
use clustering to locate highly correlated text sections within documents [SB91b]. Unfortunately,
the passages that this research aims to locate may not be highly correlated to other passages within
the document or to the set of annotations as a group. In order to take advantage of clustering
techniques, we would have to find a statistical means of representing our sets of annotations as a
cluster. This might prove difficult, if not impossible, to do since it would have to be done ad hoc.
If we could establish our annotation sets as clusters, then they could be tested against the passages
of each document for correlations.

4.5 Text Summarization

Automatic summarization done by extraction is the attempt to locate those portions of a text
deemed to be the most representative of it. (See [SAB93] and its references for recent work on
summarization.) The user doesn’t have specific portions of the text in mind when requesting a
summary; they merely would like the subportion(s) of the text that best represent the content of
the entire document. The user may request that the summary be restricted to some percentage of
the original text, e.g., 30 or 50 percent.

Paice and Jones built a system to do summarization by examining the structural features
of technical papers [PJ93]. They created case-frames based on stylistic constructs found in a
collection of crop agriculture technical papers. They gathered patterns indicative of particular
types of information useful for generating an abstract. Their system automatically fills slots when
their patterns match the new text. This approach is similar to that of many information extraction
systems with the exception that the extracted information is then used to generate a document’s
abstract.

Most summarization systems do not fill case-frames, nor do they know a priori what sort of
information the user desires. These methods are generally a means of creating a second, more
compact representation of a text. This work does not attempt to create narrative summaries. Data
derived from the texts is to be used in analyzing the situation described in the text and in reasoning
about the text.

5 Issues

We do not propose to find all of the documents within the corpus that might contain a particular
feature. If we were to do so, potentially many of the retrieved documents would not be relevant
to our overall situation and would be later discarded. Rather, we prefer to focus on finding each
feature’s occurrence within a predefined subset of the corpus. This subset is that which is believed to
be relevant to the overall problem situation because it was retrieved in response to a query generated
by the overall fact situation. We have already achieved good results in retrieving documents relevant
to the current fact situation [DR95, RD95].

27

It is possible that we missed domain-specific, relevant documents when retrieving based on
our original query; however, that is not the concern of this research. It is also possible that
there exist documents that were not retrieved in response to the original query that contain this
feature. Again, we are not concerned with these documents since they have not satisfied the original
problem-specific relevance criterion.

The process of gathering annotations, composing queries, retrieving passages, and evaluating
results, gives rise to many complex issues. In the next sections we traverse through the passage
retrieval process enumerating and elaborating on the issues that arise during each step.

5.1 Case-Base Construction

The case-base of annotations becomes crucial in the process of retrieving passages. Care must be
taken that annotations are of reasonably good quality to ensure that they will enable the retrieval
of similar or related passages. This is especially important when we consider that the case-base
will be derived from a small set of texts, less than 25. To allow for the best possible case-base,
annotations must meet the following criteria: the annotation explicitly gives a slot fill or the text
provides sufficient information such that by reading it, a human could infer the slot fill.

Since the case-base will be manually created, we need to provide guidelines on the amount and
type of information that should be included in an annotation. Pertinent issues are:
e how long should the annotations be, and
e how much information should be annotated to denote that some text provides information
about a slot?

To illustrate these problems and staying with our example of monthly income, below are several
example sentences.

1. “In an amended family budget filed June 27, 1983 the debtors list total income of $1,468.00
per month and total expenses of $1,350.00.”

2. “The bankruptcy court found that the Kitchens’ net disposable monthly income for 1979
averaged $1,624.82, $1,800 when federal and state income taxes are included, and that their
estimated future monthly income was $1,479.”

3. “Her monthly salary is $1,068.00.”

4. “He is currently employed by a firm in a sales capacity, earning approximately $15,642.62 per
year.”

5. “Debtors’ sworn Chapter 13 statement shows a combined monthly spendable income of
$1,010.50, and monthly expenses of $900.00.

Should the annotations be complete sentences, just the slot filler, the smallest set of words that
delineates the filler, or some intermediate level of text? One advantage to using complete sentences
is that we could try to take advantage of linguistic context. However, we will not attempt to do
so in this research. One disadvantage of using entire sentences is that if the information is only a
small portion of a lengthy sentence, then we may have many terms in our case-base that provide
no bearing on finding relevant passages.

In the first two examples, it seems likely that we will want only a portion of the text to be
included in the annotation case-base. For the first example, we will save “the debtors list total
income of $1,468.00 per month” and in the second, “net disposable monthly income for 1979
averaged $1,624.82”.7

If we were examining these as solution passages, we would accept any portion of the second example.

28

The converse problem of lengthy sentences arises if we only select the fill as our annotation
when the fill in and of itself is meaningless for future queries. For example, if we only select the
fill from the third sentence, then we will be searching future texts for the number “1,068”. A more
meaningful annotation would include larger phrases or even the entire sentence. We would select
the entire third example sentence into our annotation case-base.

It is less obvious as to how much of the fourth and fifth examples to use. We would probably
enter the entire fourth sentence. In the fifth case, we will chop off text from both the beginning
and the end to leave “statement shows a combined monthly spendable income of $1,010.50”. We
remove “Debtors’ sworn Chapter 13” since every case in the corpus is a Chapter 13 case and hence,
this information would be useless for retrieval about income. Similar to the first example, we also
remove the final clause, as it pertains to expenses and not income.

The final examples we give are when the information necessary for a slot fill spans multiple sen-
tences. The following is from the Fasley case and provides the information necessary to determine
the monthly expenses:

“Food of $200 per month is reasonable. Monthly clothing expense of $20 and laundry
expense of $10 are consistent with the debtor’s simple lifestyle. Doctor expenses of $50
per month were justified for dental work, psychiatric attention and prescriptions. Debtor
takes medicine twice daily to control violent outbursts and a psychiatrist monitors
the medication. Transportation, including vehicle repair and gasoline is reasonably
estimated at $125 per month. Automobile insurance is $41 per month. Barber shop
expense of $18 and house maintenance of $60 a month were marginally justified by the
debtor but are not unreasonable in an amended budget which reflects no allocation for
recreation, newspapers, church contributions or club dues.”

A shorter example where the information is not contained in one sentence comes from the slot
for the unsecured amount of the debt. In this case, the first bit of text provides the background to
affiliate the values in the second with the slot. Interestingly, the first bit of text actually appears
well after the second.

1. “her two unsecured student loan creditors”

2. “...the NYSHESC and SUNY obligations were Debtor’s only scheduled debts, with SUNY
due approximately $501.58 as the result of a National Direct Student Loan, and NYSHESC
due approximately $7,600.80 as the result of two Guaranteed Student Loans...”

These examples show that we want our annotations to be descriptive of the slot, yet not contain
excessive verbiage, nor be too terse. Our first attempt to satisfy these criteria will result in a case-
base that contains both partial and complete sentences. In summary, the following are issues when
constructing the annotation case-base:

e How long should an annotation be?

e Need it be a complete sentence? multiple sentences? or, will smaller segments such as phrases
be sufficient?

e What text needs to be included?

e How much expertise is needed and how much care taken when creating the annotation case-
base?

Initially we will assume that not a lot of expertise is necessary when gathering the annotations. If
our results indicate otherwise, we will reexamine this position.

29

5.2 Query Formation

Assuming a set of annotations, all believed to be relevant to a given slot, how can we take advan-
tage of this information? We would like to automatically transform this information into a query
to locate “good” passages from within a novel text. While there are any number of specialized
operators we can wrap around the text in the annotations, we must also decide which ones make
the most sense.

To help us decide how our queries should represent the knowledge found in the annotations,
our first task is to see if we can observe any patterns among them. If we do observe patterns, we
should test if they are regular enough to describe within our set of query operators. We may wish
to add additional operators or “concept recognizers” to accommodate these patterns.

Potential concept recognizers that we may wish to employ for these domains are dollar amounts
and time periods. Specific dollar amounts show up in many of our slots and actual fills are frequently
found in the text. Example slots with dollar amounts are monthly payments (toward either a
bankruptcy plan or a loan), monthly income, monthly expense, amount of a debt, income from
home office, and others. This recognizer would simply scan for instances of the dollar symbol
followed by a numeric value. The concept of time periods, such as weekly, monthly, annually,
and yearly, likewise show up in our domains with some regularity. Besides those descriptors just
mentioned, the phrases “per week”, “per month”, and “per year” would additionally be a part of
this time period concept.

Second, we should see if we can manually generate a query (using this information) that will
retrieve the desired passages. These queries should initially be tested on the texts deriving the
annotations, the CKB. After those texts, we should expand to novel ones.

When we start to build our queries, we must decide if we are going to turn the annotations into
one query or to create multiple queries. If we wish to pose a single query, then we must decide
how to coherently merge all or a subset of the annotations together. If we are to pose multiple
queries then we must find a means for merging the retrieval results. In either case, we must create
a method for converting the raw annotations into our query language.

The next decision is what operators should we use? Natural language queries with INQUERY
currently use a #sum operator wrapped around the terms [CCH92]. This seems a bit too simplistic,
but it might work perfectly well for this problem. It may be reasonable to collect proximity
information about the terms and add this data to the queries. There already exists an INQUERY
tool that makes this possible, even when our queries are not complete sentences. Were we to use
proximity information, we will have to examine what size windows are reasonable and whether or
not the terms must be ordered.

Many IR systems stop and stem by default. We must decide if this makes sense for this
application. Riloff would argue against doing them for the information extraction task [Ril95] and
Liddy also found that different discourse elements in abstracts were distinguishable by the form
of the verb used [Lid91]. We must examine our annotations and decide which seems the most
reasonable.

Our hypothesis is that we may want to stem but not stop. We base this hypothesis on examples
found in the annotation case-base. Returning to the monthly income slot, many of the annotations
use variations on the expression “payments of” followed by a dollar amount. In this domain,
“payment” occurs quite frequently, while instances of “payments of” occur much less often. In this
particular case, “of” provides a valuable indicator for a following dollar amount, highly indicative

30

of the monthly income slot. It is conceivable that we may wish to modify the stop word list so that
it is a minimal set, but this will have to be tested.

It is possible that we may not want to stem either, but we have not yet explored the annotations
database enough to see if there are any concrete examples where this would make a difference. There
are intuitive reasons for not stemming documents when doing retrieval of passages. Stemming is a
valuable device for saving space when dealing with large collections by conflating multiple variants
of the same word. This is problematic when stemming conflates words that have different meanings
or if the task is such that the usages of the related words helps to provide discrimination among
collection elements. In our case, we are no longer concerned with full-text document retrievals.
We hope to make finer grain distinctions by retrieving smaller text elements, passages. Using the
original words with their inherent meanings may be more appropriate at this level of retrieval.

Since we are not certain whether either or stopping or stemming makes sense in this environment,
we will run some preliminary tests and examine those results. Based on those results, we will build
the appropriate database for further testing.

Another query formation issue is how to deal with redundant parses, (i.e., two annotations may
be reduced to the same stopped and stemmed set of terms — either in the same order or not.)
If we decide that the fact that an item exists in more than one annotation is valuable, how do
we incorporate this information? How do we handle terms, or phrases, that are identical across
annotations, or even entire annotations that are identical?

Operationally, keeping redundant items is simple; if making a single query, multiple instances of
an item can be reflected in the term weights. This is what is currently done with natural language
queries by INQUERY [CCH92]. If there are multiple queries, then we simply run each of them.

Removal of redundant items is slightly more difficult. If a single query is formed, then it is
simple to allow INQUERY to merge the items under the #wsum operator, but then go back and
reweigh all the terms so that they share equal weights.

If there are multiple queries, then the issue of redundancy is more complex. We must decide on
a definition of redundant and what it means to be either partially or fully redundant. It is possible
for two annotations to stop and stem to the same set of terms, however if proximity or phrasal
operators are used, then we must decide if order and distance matter when measuring similarity. If
a pair of terms occur within one annotation in one order but in another annotation in a different
order, will this matter? What if all but one term differs across two queries? What if two terms
differ? We must define how similar two queries must be in order to eliminate or alter one of them.

We also have the option of expanding queries. We could try using a thesaurus to add new
terms. Alternatively, we could further refine our expansion operation to take advantage of domain
knowledge by building an association thesaurus [JC94]. We have several choices of database on
which to base our association thesaurus. We could use either the entire collection or just those
documents related to the problem case as found in the CKB. Another possibility would be to built
the thesaurus from an intermediate collection that is comprised of the documents retrieved by
the document-based query. Thesauri built from the second and third collections would be highly
domain- and problem-specific.

In summary, there are numerous options available to us during query formation. This research
seeks to address and resolve the following questions :

e Which operators will we use?
e Should we stop and/or stem?

31

What will we do with redundant items?
Do we pose one or multiple queries?
Should we use concept recognizers?
Should we expand queries?

5.3 Retrieval

Another issue is the length of a passage: How large or small should a retrieved passage be? Do
we use writer-defined structures (e.g. sentence, paragraph, section), subject delineated segments
(ala TextTiling,) or bounded-size windows? If we use bounded-size windows or discourse-based
elements, how large a segment should each be? Should the retrieval size be the same for every slot,
or should it depend on the size of the user-provided annotations?

Since the best results for retrieving documents when incorporating information about passages
comes when using fixed-size passages, we will try this method first [Cal94]. While our task is not
the same, we would like to retrieve the best passage instead of the best document, so we will utilize
their evaluation technique to locate potentially good passages within each novel document.

We run the risk of using an incorrect window size for retrieval. Problems could arise if there are
too many query terms for too small a passage size. When this is the case, there will be too many
positive hits within many passages and we will be unable to distinguish relevant from non-relevant
passages. This argues for either ensuring the retrieved passage size stays proportional to the number
of query terms, or to pose multiple queries. Another consideration will be when adjacent passages
receive high belief scores. In this case we will consider merging them into one passage.

During passage retrieval we should consider whether a document and all of its passages are to
be considered as a single collection — generating its own statistics — or whether we use statistics
from the total collection. We will have to run experiments to see how treating a document as a
separate collection of passages affects retrieval of individual passages.

A final issue we must address when retrieving passages is whether we will require a minimum
number of matching terms within the passage before allowing it to be retrieved. This was the case
in [SAB93], where minimum numbers of terms had to be matched at the sentence level. Initially
we will not require minimums. Should it be the case that passages with fewer matching terms rank
higher than those with greater numbers of matching terms, and that the rank ordering is poor, we
will consider imposing minimums as a means of boosting performance.

5.4 Merging Query Results

If we pose multiple queries against the same set of passages, we must somehow merge the results
in order to attain an overall “best” passage or ranked set of passages. How best to merge is a
very complex question. Available to us for consideration are such factors as the number of queries
posed, the depth of the rankings each query provides, belief scores for individual passages, and the
rank score of a passage.

If we are to merge query results, then we must either accept all passages that return a belief
value, or set a cutoff, based on either rank or a threshold belief. If we utilize either a rank or belief
cutoff, there should be some theoretical or logical justification for this value. Additionally, when
using a rank cutoff, consideration should be given to dealing with ties and to queries where the
total number of passages returned is less than the cutoff.

32

We have multiple options available to us for merging query results:

e Sum the belief scores for each passage across all queries.

e Calculate the average belief score for each passages across all of the queries.

e Examine the ranks of the top n passages from all of the queries - try to do something with
this ordering.

None of these options has any intuitive appeal. Therefore, as an alternative to trying to merge
the document beliefs across multiple queries, we can do query combination where we merge all of
the query results as a part of the retrieval process. We can do this via a boolean or operator that we
wrap around all of the individual annotation queries. Consequently, we will explore various ways
to form natural language queries using the annotations either as individual queries that are merged
via an or operator, or by combining all of the terms across the annotations into a single natural
language query. A third possibility is to test the merging of the results from the two different types
of queries.

5.5 Presentation of Passages to the User

There are numerous interface issues when dealing with the presentation of results to a user. For
example,

e How many retrieved passages should be shown to a user?

e In what format should they be shown?

e Do we present a passage, a sentence, a paragraph, or some kind of listing with the highest

ranked results?

Additionally, there is the ability to selectively highlight portions of a text within a display. What
portion of the text should be displayed and what subportion should we highlight? Do we display
only the best passage, or do we include additional text to possibly provide additional context? Do
we expand the passage in each direction so that complete sentences are shown? Do we further
expand so that the user sees only complete paragraphs? Or, finally, do we just bring up the entire
document and then highlight a subportion of it?

Assuming that we use highlighting to focus the user’s attention, what text do we emphasize?
From less to more highlighting, some of our options are: emphasizing starting at the first matching
word within a passage, the entire retrieved passage, the sentence(s) surrounding and containing the
passage, or the paragraph(s) that do the same. One final consideration is the possibility of only
emphasizing those words that matched query terms.

Presentation of query results and user interfaces for information retrieval systems is a large
body of research. While this thesis poses many new aspects of interaction with a user, and these
issues will have to be addressed in future work, they are not the primary focus of this research.

5.6 Solution Keys

To test this approach, we require knowledge about which portions of a document contain text
relevant to the slot at issue. The passages that comprise the solution keys should probably be more
lenient in their description of the slot than the annotations found in the case-base. Here we must
decide whether to accept passages that provide information not directly applicable to the case at
hand or not directly providing a slot fill. Both these passage types provide information “about”
the slot but do not directly contribute to the filling-in of the current case-frame. Therefore, we
must answer the following questions to determine what our Solution Keys will be:

33

e What do we consider a solution?
e Will there be a single “best” passage or will there be multiple “good” passages?
e Will a slot require that information be drawn from several sources within the text and all of

these passages must be retrieved?
These simple questions are, in fact, much more complex than they appear and must be resolved in

order to evaluate the success of the system.

The answer to the first question, “Which passages will be in the solution set?”, somewhat
answers the second question of whether there is a single best solution. It should be obvious that
we will include in our solution any passage that expressly contains the slot’s fill. Furthermore, we
should also include any passage from which a human can infer the slot’s value.

What is not so obvious is what to do with passages that provide a slot fill, but do so for
another case that is being used for illustrative purposes or is being analogized to assist with a
particular point of discussion. Making a distinction between a passage that provides a slot fill for
this particular case and one that does so for another, at this point, is not reasonable. The state of
the art is not sufficiently advanced to be able to provide enough context to discriminate amongst
these passages. This type of passage should be considered acceptable and included as a solution.

What about passages that discuss the slot, but do not contain enough information to provide
a fill? At the present time, for many slots, the state of the art does not allow us the ability to
discriminate between these passages and those that actually contain a fill. If we have an available
means of directly extracting a value or of discriminating between these types of passages, then we
will do so. For most of the slots about which we are concerned, this will not be the case. Even more
difficult a task would be to automatically discern differences between passages that are “about”
a slot from passages that have enough information to derive a fill. We will include passages that
discuss or are “about” a slot in its set of acceptable solutions.

In answering the next question, that of whether there is a “best” passage, it is important for us
to recognize that there are multiple passages within a document that each, independently, provides
enough information to fill the same slot. When there are multiple “best” passages we would like
to give our system credit for finding any one of the solutions and not receive reduced credit for not
finding all of them. We defer discussion of how we will do this until the section on Evaluation, 5.8.

We now turn to the last question, that of the need for multiple passages to discern a slot fill.
This type of solution is beyond the scope of this research. Future work will examine these solutions
and their associated slots for possible means of generating multiple queries and retrievals and other
methods to notify the user that the solution spans more than one passage. It may be that the
passages are in close proximity to one another. Were that the case, it may be a simple matter of
either expanding the passage size or increasing the amount of the presented material. If there are
many slots that fall into this category, we may try these simple approaches.

In summary, to be considered an acceptable solution, a passage must:

o explicitly state a slot fill for either this or another case,

e inferentially provide a slot fill, or

e provide discussion about the slot without giving a fill for any particular case.

Our objective is to reduce the amount of text a user must read in order to derive a slot fill. If we
can focus the available material to be read down to information “about” a slot, and within that set
include passages containing the data for the slot fill, then we have substantially reduced the total
volume of text that the user must read to create a case-frame representation for a text.

34

5.7 Deriving Solution Keys

It is well-known that individuals will provide differing relevance judgments for the document re-
trieval task. This is due to different interpretations of the stated information need, different inter-
pretations of the meaning of the document in question, order of document presentation, personal
knowledge of the domain, etc.

We should, therefore, expect that there will be disagreements between individuals marking text
passages that are “about” a topic. We should also expect there to be some level of overlap. We
will examine the results of an initial marking to see if we have a sufficiently high level of agreement
to proceed.

We will use an undergraduate to mark segments of texts that are “about” a particular slot.
The student will be presented with texts to mark and a working definition of the slot. Initially,
the student will denote selected segments by marking with a highlighter on paper copies of case
opinions, but later we might use a computer screen with specialized marking software. We will
periodically and randomly screen the student’s marking so that we may test for consistency. All
readers will be asked to categorize the marked segments as belonging to one of three types:

e the segment contains a value for the slot either for this case or another,

e the segment provides enough information for you to ascertain the value of the slot, either for
this case or another, or

e the segment gives information “about” the slot’s value.

These categories go from more specific to more vague. Because of that, we would expect there
to be more agreement across individual markers, the higher a segment is in this categorization. We
will test this hypothesis when examining the markings. Owur initial concern is for the totality of
marked passages and not the categorization of each.

From these markings we will ascertain into which passages each falls. If a marking crosses
passage boundaries, then all shall be considered as a part of the solution.

We have experienced several problems with having one reader. These include:

1. missing relevant passages,

2. marking a segment in one text and not marking an identical (or nearly identical) one in
another, and

3. marking larger segments than are necessary to describe the slot.

The first and second problems are understandable considering the length of the texts and the type
of information that may be relevant. Some of the slots are difficult to describe, therefore increasing
the level of subjectivity allowed the reader. The third problem merely allow for makes liberal
positive judgments. We would prefer that the system not be given too much leniency in finding
relevant passages.

Since finding all of the text about a particular topic has proved to be a difficult task in practice,
we will have a second reader that provides relevance judgments based on the retrieval results. The
top 10 passages from each attempted query will be merged into one large set and placed in ascending
order. This reader will judge each passage as relevant or not.

(We did have a second reader who also marked the relevant portions of each document. This
reader was unable to consistently mark the relevant passages. Hence we opted to have this reader
make judgments on given passages rather than reading the entire document.)

35

5.8 Evaluation

We will not be evaluating the system on the basis of the time spent by the system in computing
the top passages. System retrieval time is negligible when compared with a user’s expenditure of
time in reading an entire document. We are assuming that there is no monetary cost to the user.
Therefore, the primary evaluation concern will be that of the actual retrieval effectiveness.

Should we use a multi-valued approach to relevance judgments, rather than a standard binary
approach? The standard binary approach rates documents as either relevant or non-relevant. For
many collections there will be non-rated documents relative to a query. These non-rated texts can
be treated as either always relevant or always non-relevant, to produce best-case and worst-case
scenarios. Since we will be able to provide relevant/non-relevant judgments for all of the passages
in a given text relative to a particular topic, this does not pose a problem for us. However, there
may be gradations of correctness for this problem.

If we decide that there are gradations of solutions, and that we wish to differentiate among them,
then we must devise a scheme to allocate differing values to the various levels of acceptable answers.
We must decide how much credit to extend to each of the different solution levels. But first, we
must be able to consistently distinguish among the actual solutions and be able to categorize them.

If we strive for a more differentiated definition of a correct retrieval, we will need to examine
the solution passages to ascertain if there are stand-alone solutions, (i.e., getting any one out of
the bunch is sufficient.) It may be that multiple passages need to be retrieved and read by the user
in order to find the slot value. This research will only make a cursory examination of situations
where multiple passages are required. If it turns out that the solution passages are found in close
proximity, then it may be worthwhile to expand the size of the passage, either during retrieval or
as a post-processing step.

We need to consider what metrics we will use for evaluation. There are a variety of available
metrics, primarily used by the IR community to evaluate the effectiveness of document retrieval.
These include:

1. Recall — compares the number of items that should have been retrieved by a query to those

that actually were.

2. Precision — compares the number of relevant items retrieved against the total number of

retrieved items.

3. Average precision — precision averaged over some set number of recall points, typically 3 or

11.

4. The F measure — combines recall and precision values at a given retrieval cutoff, ignoring
rank. The user provides the proportional value to give to each of recall and precision [Rij79].
Total number of relevant documents retrieved by a given cutoff.

Total number of queries with no relevant documents among the top n [Cro83].

Mean square error

Statistical methods for comparing ranks - Kendall, Spearman - but what does this tell you

overall?

9. Probability of getting a relevant document as rank 1, probability of getting a relevant docu-

ment within the top 2 returned, etc.

10. Some kind of weighting scheme that rewards higher ranked solutions i.e. 1st gets 5 points,
2nd gets 3, and 3rd gets 1. We can even use bins where any score over 5 is gratuitous.

N

We must decide which of these, or possibly some other, provides the most insight into how well our
system is performing.

36

Before we decide on our evaluation metric, we might wish to consider how many “solutions”
there are for each slot. If we pose exactly one query per slot, then the evaluation of the retrieved
top passages is less complex than if multiple queries are posed. Additionally, we should consider
how many solutions there are on average per text. If there are only a few, then we probably do not
want to look at precision, recall, and average precision.

Within the realm of document retrieval, if there are only a small number of relevant documents
that will satisfy the information need, then the query is “unstable”. This is due to wild swings
in the recall and precision statistics because of minor changes in the retrieval results. Since we
expect that there will be only a few relevant items, passages, for each of our information needs, a
slot query, within our collection, a document, we will have to contend with the problem of unstable
queries if we use precision, recall, and average precision.

Further, our task does not require that every applicable passage be retrieved. If there are
multiple good passages, then merely locating one or two of them may be sufficient for the user to
be able to fill in the case-frame representation. Therefore, in this environment, it is acceptable for
recall to be low while requiring precision to be high. Hence, if we were to use the E measure, we
would weight precision much more heavily than recall. It is also not unreasonable that we might
not use recall at all and rely on the other measures for assessment. Similarly, not using recall would
rule out using average precision to evaluate system effectiveness.

We can take advantage of the fact that our retrieval engine generates a rank ordering among
the retrieved passages.

Assuming we are primarily interested in looking at the top rated passages, we must decide on
a reasonable value for n: How far down the ranked list will we look? Do we look at the top 3, 5,
10, or more, passages to see how many of the “solutions” we have retrieved? Will this depth vary
based on the importance of a slot?

Since we strongly desire to reduce the total amount of text presented to a user, we would like
to evaluate our system with the most stringent possible metric. We might expect that a user would
generally be willing to read the top three passages, and occasionally as deep as the top five. Reading
beyond the top five passages would be unreasonable to expect unless done very rarely or if the slot
were particularly important.

We will, therefore, evaluate our system over the top three and five passages. At this point we
will not make any distinctions in importance among the slots; all slots will be evaluated equally.
Further, we will be concerned with slots and texts in which no solution appears in the top set and
do a post-retrieval analysis to see if we can ascertain any reasons for individual failures.

We are interested in a metric that heavily credits those rankings where good passages are found
early, similar in nature to how cross-country race scores are computed. This is a stronger measure
than 5. above, where we simply counted the number of good passages in the top n. We should also
look at 6., where we see if there are queries in which we have not satisfied the requirement to find
any of the acceptable passages.

One measure that incorporates these features is Expected Search Length (ESL) [Coo68]. It
measures the amount of effort wasted when trying to find a particular number of relevant items
while searching through a ranked list. From ESL we can compute the average ESL to compare
values across queries when the collection and retrieval engine remain stable. Further, we can derive
the Expected Random Search Length (ESLR) and combining it with ESL we can compute the
Expected Search Length Reduction factor. This enables us to compare results across queries and
collections.

37

5.9 Learning New Annotations

To incorporate learning to the CBR component, our system will add new annotations to the case-
base. The user denotes these new annotations when examining passages. However, in order to
add them, our interface must be sufficiently robust. The interface’s primary role is to facilitate the
extraction of information about slot fills. Adding the ability to designate annotations must not
detract from this goal. Therefore, our first consideration is whether we even allow the user to add
new annotations to the case-base. Assuming we do, and we assemble an appropriate interface, we
must theoretically and operationally incorporate these new annotations into the case-base.

Designating and adding new annotations will not be one of the goals of this work. It is sufficiently
far through the information reduction cycle, that it will be a goal of future work.

5.10 Inadequate Slot Descriptors

One limitation of our approach is that we may not be able to determine when there is no passage
within a novel document that will satisfy our information need. This is currently true of all infor-
mation retrieval systems and is a side-effect of using language. Language is inherently ambiguous;
there are many different ways of relaying the same meaning. Therefore, can we determine that
there is no text within a novel document that will satisfy our information need? No. This is a
weakness. But this weakness or limitation is true of all systems that are incapable of learning or
generating novel criterion. Unfortunately, this is true of all current systems and not a reflection on
this work.

If we are able to rank order text pieces, then we are stating that the top-most piece is the most
likely to contain information relative to the examples or queries we have presented to the system.
If the requested information is not present in the top ranked pieces, and we believe our retrieval
algorithm to be sound, then we would like to be able to say that the information is not present.
However, we are unable to know if information is, in fact, present, yet in an unfamiliar form. It
may well be that the information exists in the document in a form with which we are unacquainted;
our exemplars do not cover this particular situation. The best we can do at this point is to state
that the information, if in a form we can recognize, based on information derived from our set of
exemplars, we believe to be most probably found in the returned passages.

6 Summary

In this document we have expounded upon the myriad issues facing this research project and
presented possible solutions for many of them. Below we summarize those issues that this research
will address. The bulk of the work will focus on the issues of stopping and stemming, and then
trying to identify a simple, efficient method for constructing effective passage queries.

e Case-Base/Annotations —

— There currently exists a case-base of annotations for the bankruptcy (Chapter 13, good
faith) domain. (The texts for this work were previously used for the first portion of
the CBR-IR processing cycle and are reported in [DR95, RD95].) There are 13 cases
containing approximately 60 slots. We derived annotations for approximately 55 slots.
Some of the slots are very similar and therefore the entire case-base needs a scrubbing
to determine how many unique slots we have.

38

— Besides doing a scrubbing of the slots, we will also conduct a pilot study to decide
whether stopping and/or stemming seems to make a difference. If it appears that one
or the other will make a difference in certain cases, we will try to classify those cases.

— Later experiments will look for instances where concept recognizers might prove benefi-
cial. Since it seems likely that money and time period recognizers will be useful, we will
build these.

Query Formation — We will first look at using the annotations as one large natural language
query. We will test both weighted and unweighted queries to garner insight into the redun-
dancy question. We will also look at using each of the annotations singly and combining
them with a boolean or. We will look for ways to utilize INQUERY’s structure operators and
to incorporate recognizers into queries. Use of InFinder or other thesauri techniques will be
done last.

e Retrieval — Not an issue for this work. We will retrieve passages of fixed-size windows. The
size will initially be set to 20 terms, representing an approximately two to three sentence
segment.

e Merging Retrieval Results — Not an issue for this work. All queries will result in a single
listing of the top ranked passages.

e Presentation Issues — Not an issue for this work. For comparative purposes we will generate
listings of the top ranked passages with their starting token position and their belief value.

e Solution Keys and Deriving Solution Keys — Solution Keys need to be derived for whichever
texts, both novel and training, and slots we test. The preferred method for marking texts is
to have individuals highlight text segments as relevant in such a manner that we can easily
derive solution keys. We will have individuals denote into which of the three categories each
segment falls (as described in Section 5.7), but we will initially lump all the segments together
for evaluation purposes. Each individual will mark approximately n texts per slot, and there
should be at least two individuals that perform the same task.

e Evaluation — We will compare across the various queries to see which of the query formation
methods work best.

e New Annotations — Not an issue for this work. We will not yet try to designate and/or

incorporate new annotations.

A Sample case-frame from the bankruptcy “good faith” domain

The table below gives each slot and it’s corresponding type from Section 1.5. Examples are given
for the slots of type set and category. The first entry after a line is the name of the object class
that contains the slot; it is signified with a pair of parentheses.

39

Slot Name Slot Type

legal-case ()

citation free text

year numeric

level category: :bankruptcy-court :appeals-court
judge proper name

summary free text

procedural-status category: ’plan-confirmation ’plan-filing
decision-for category: ’debtor ’creditor
citation-links not implemented

factual-prototype-link category: ’student-loan ’farm
alternative-factual-prototype-link same as above

legal-prototype-link category: 'Estus 'Kitchens
legal-theory-link set: 'memphis-theory ’estus-theory
bankruptcy-case ()

chapter numeric

plan-confirmed boolean

past-filings boolean

chapter-7-filing-date date

plan-filing-date date

unfair-manipulation-of-code boolean

attempts-to-pay boolean

estus-factors ()

duration-of-plan numeric
preferential-creditor-treatment boolean
secured-claims-modified boolean
special-circumstances boolean
frequency-relief-sought numeric
trustee-burden boolean

40

estus-factor-

payments-and-surplus ()
proposed-payments numeric
surplus numeric

estus-factor-
employment-history-prospects ()

employment-history category: :poor :neutral :good
earnings-potential category: :small :medium :large
likelihood-income-increase category: :unlikely :likely

estus-factor-

plan-accuracy ()

plan-accuracy boolean
inaccuracies-to-mislead-court boolean

estus-factor-debt-

type-and-discharge ()

debt-type set: ’auto-loan 'fraud
nondischarge-7 boolean or category: :after-5-years.

estus-factor-

motivation-sincerity ()

motivation category: :discharge-educational-debt
sincerity boolean

plan-payment ()

substantiality boolean
monthly-income numeric
monthly-expenses numeric
amount numeric
surplus numeric
percent-of-surplus-income numeric
percent-repayment-unsecured-debt numeric
payments-already-made not implemented
debt ()
debt-type-amount set of pairs (debt-type amount)
(category: numeric)
secured-amount numeric
unsecured-amount numeric
total-amount numeric
percent-secured numeric
percent-unsecured numeric
percent-educational numeric
otherwise-dischargeable boolean

date-repayment-obligation-commences date

student-loan-case ()

profession set: ’dentist ’teacher
dropout boolean
change-in-field boolean
loan-due-date date

41

makarchuk-factors ()

relative-timing category: :before :after
relative-total-payment-amount category: :greater :equal :less-than
relative-monthly-payment-amount category: :greater :equal :less-than
use-of-skills-gained boolean

attempts-to-pay boolean
relative-educational-loan-debt numeric

de-minimis-payments boolean
other-relevant-consideration set: :stress :medical-expenses
honest-debtor-case ()

profession set: ’dentist ’teacher
judgment-debtor-case ()

judgment-type not Implemented

Three slots were redundant as they had the same values, but were contained within different
objects: Proposed-Payments, Profession, and surplus. Proposed-Payments can be found to be
Payments and held the same value as Amount. Profession is in both the Honest-Debtor-Case and
Student-Loan-Case and Attempts-To-Pay is in Bankruptcy-Case and Makarchuk-Factors.

There were also three slots that were not implemented: Citation-Links in the Legal-Case,
Payments-Already-Made in Plan-Payment, and Judgment-Type in Judgment-Debtor-Case. In sum-
mary, there 67 slots, of which three are redundant and three were not implemented, leaving 61 for

further study.

References

[A1196]

[Ash90]

[ASP+95]

[Bai86)]

[BCBY4]

[BCCCY3]

James Allan. Automatic Hypertext Link Typing. In Hypertext 96, Washington, D.C.,
March 1996. ACM. To be published.

Kevin D. Ashley. Modeling Legal Argument: Reasoning with Cases and Hypotheticals.
M.L.T. Press, Cambridge, MA, 1990.

D. B. Aronow, S. Soderland, J.M. Ponte, Feng F., W.B. Croft, and W. G. Lehnert.
Automated Classificatin of Encounter Notes in a Computer Based Medical Record.
In Proceedings of the Fight World Congress on Medical Infomatics, pages 8-12, Van-
couver, Canada, July 1995.

W. M. Bain. Case-Based Reasoning: A Computer Model of Subjective Assessment.
PhD thesis, Yale University, New Haven, CT, 1986.

Brian T. Bartell, Garrison W. Cotrell, and Richard K. Belew. Automatic Combi-
nation of Multiple Ranked Retrieval Systems. In Proceedings of the 17th Annual
International ACM/SIGIR Conference on Research and Development in Information
Retrieval, pages 173-181, Dublin, Ireland, July 1994. ACM.

N. J. Belkin, C. Cool, W. B. Croft, and J. P. Callan. The Effect of Multiple Query
Representations on Information Retrieval System Performance. In Proceedings of the
16th Annual International ACM/SIGIR Conference on Research and Development in
Information Retrieval, pages 339-346, Pittsburgh, PA, June 1993. ACM.

42

[BKFS95]

[BLSS]

[Buc85]

[Cal94]

[CC93]

[CCH92]

[CKP93]

[CLC95)]

[Co068]

[CPKT92]

[Cro83]

[DR95]

N. J. Belkin, P. Kantor, E. A. Fox, and J. A. Shaw. Combining the Evidence of
Multiple Query Representations for Information Retrieval. Information Processing
and Management, 31(3):431-448, 1995.

Steven Bradtke and Wendy G. Lehnert. Some Experiments with Case-Based Search.
In Proceedings, Seventh National Conference on Artificial Intelligence, volume 1,
pages 133-138, St. Paul, MN, July 1988. AAAI

Chris Buckley. Implementation of the SMART Information Retrieval System. Techni-
cal report, Computer Science Department, Cornell University, Ithica, NY, May 1985.
85-686.

James P. Callan. Passage-Level Evidence in Document Retrieval. In Proceedings of the
17th Annual International ACM/SIGIR Conference on Research and Development in
Information Retrieval, pages 302-310, Dublin, Ireland, July 1994. ACM.

James P. Callan and W. Bruce Croft. An Approach to Incorporating CBR. Concepts
in IR Systems. In Working Notes of the AAAI Spring Symposium Series: Case-Based
Reasoning and Information Retrieval — Fxploring the Opportunities for Technology
Sharing, pages 28-34, Stanford, CA, March 1993. AAAI.

James P. Callan, W. Bruce Croft, and Stephen M. Harding. The INQUERY Retrieval
System. In A. M. Tjoa and I. Ramos, editors, Database and Ezpert Systems Applica-
tions: Proceedings of the International Conference in Valencia, Spain, pages 78-83,
Valencia, Spain, 1992. Springer Verlag, NY.

Douglass R. Cutting, David R. Karger, and Jan O. Pedersen. Constant Interaction-
Time Scatter/Gather Browsing of Very Large Document Collections. In Proceedings of
the 16th Annual International ACM/SIGIR Conference on Research and Development
in Information Retrieval, pages 126-134, Pittsburgh, PA, June 1993. ACM.

James P. Callan, Zhihong Lu, and W. Bruce Croft. Searching Distributed Col-
lections with Inference Networks. In Proceedings of the 18th Annual International
ACM/SIGIR Conference on Research and Development in Information Retrieval,
pages 21-28, Seattle, WA, July 1995. ACM.

William S. Cooper. Expected Search Length: A Single Measure of Retrieval Ef-
fectiveness Based on the Weak Ordering Action of Retrieval Systems. American
Documentation, 19:30-41, 1968.

Douglass R. Cutting, Jan O. Pedersen, David R. Karger, and J. W. Tukey. Scat-
ter/Gather: A Cluster-Based Approach to Browsing Large Document Collections. In
Proceedings of the 15th Annual International ACM/SIGIR Conference on Research

and Development in Information Retrieval, pages 318-329, Copenhagen, Denmark,
June 1992. ACM.

W. B. Croft. Experiments with Representation in a Document Retrieval System.
Information Technology: Research and Development., 2(1):1-21, January 1983.

Jody J. Daniels and Edwina L. Rissland. A Case-Based Approach to Intelligent
Information Retrieval. In Proceedings of the 18th Annual International ACM/SIGIR

Conference on Research and Development in Information Retrieval, pages 238-245,
Seattle, WA, July 1995. ACM.

43

[Dyk69]

[Gol91]

[Goo89]

[Goo91]

[Hah90]

[Ham87]

[Har94]

[Har95]

[Hea93]

[Hea95]

[HKW94]

[HP93]

[Huf95]

Freeman H. Dyke, Jr. A Manual on Methods for Retrieving and Correlating Technical
Data. American Society for Testing and Materials, 1969.

Andrew R. Golding. Pronouncing Names by a Combination of Rule-Based and Case-
Based Reasoning. PhD thesis, Stanford University, Stanford, CA, October 1991.

Marc Goodman. CBR in Battle Planning. In Proceedings, Case-Based Reasoning
Workshop, pages 264269, Pensacola Beach, FL, May 1989. DARPA.

Marc Goodman. Prism: A Case-Based Telex Classifier. In Alain Rappaport and
Reid Smith, editors, Innovative Applications of Artificial Intelligence - 2., pages 25—
37. AAAI Press, Menlo Park, CA, 1991.

Udo Hahn. Topic Parsing: Accounting for Text Macro Structures in Full-Text Anal-
ysis. Information Processing and Management, 26(1):135-170, 1990.

Kristian J. Hammond. Explaining and Repairing Plans that Fail. In Proceedings,
Tenth International Joint Conference on Artificial Intelligence, volume 1, pages 109—
114, Milan Italy, August 1987. IJCAI

Donna K. Harman, editor. The Second Text REtrieval Conference (TREC-2). Na-
tional Institute of Standards and Technology, Gaithersburg, MD, 1994. Special Pub-
lication 500-215.

Donna K. Harman, editor. The Third Text REtrieval Conference (TREC-3). National
Institute of Standards and Technology, Gaithersburg, MD, 1995. Special Publication
500-225.

Marti A. Hearst. Cases as Structured Indexes for Full-Length Documents. In Working
Notes of the AAAI Spring Symposium Series: Case-Based Reasoning and Informa-
tion Retrieval — Fxploring the Opportunities for Technology Sharing, pages 140-145,
Stanford, CA, March 1993. AAAIL

Marti A. Hearst. TileBars: Visualization of Term Distribution Information in Full
Text Information Access. In Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems, Denver, CO, May 1995. ACM.

Matthias Hemmje, Clemens Kunkel, and Alexander Willett. LyberWorld — a Visual-
ization User Interface Supporting Fulltext Retrieval. In Proceedings of the 17th Annual

International ACM/SIGIR Conference on Research and Development in Information
Retrieval, pages 249-259, Dublin, Ireland, July 1994. ACM.

Marti A. Hearst and Christian Plaunt. Subtopic Structuring for Full-Length Docu-
ment Access. In Proceedings of the 16th Annual International ACM/SIGIR Confer-

ence on Research and Development in Information Retrieval, pages 59-68, Pittsburgh,
PA, June 1993. ACM.

Scott B. Huffman. Learning information extraction patterns from examples. In Work-
ing Notes of the IJCAI Workshop on New Approaches to Learning for Natural Lan-
guage Processing, pages 127-134, Montreal, Canada, August 1995. AAAI

44

[JC94]

[KB95]

[Kol84]

[Kol89)

[Kot88]

[LC95)

[Leh87a]

[Leh87b]

[Lew92]

[LGY4]

[Lid91]

[Mau89]

[MG95)

Yufeng Jing and W. Bruce Croft. An Association Thesaurus for Information Retrieval.
In Intelligent Multimedia Information Retrieval Systems and Management, RIAO 94,
pages 146-160, New York, NY, October 1994.

Bruce Krulwich and Chad Burkley. ContactFinder: Extracting indications of ex-
pertise and answering questions with referrals. In Working Notes of the AAAI Fall
Symposium Series: Al Applications in Knowledge Navigation and Retrieval, pages
85-91, Cambridge, MA, November 1995. AAATL

Janet L. Kolodner. Retrieval and Organizational Strategies in Conceptual Memory:
A Computer Model. Erlbaum Associates, 1984.

Janet L. Kolodner. Judging which is the “Best” Case for a Case-Based Reasoner.
In Proceedings, Case-Based Reasoning Workshop, pages 77-81, Pensacola Beach, FL,
May 1989. DARPA.

Phyllis Koton. Using Ezperience in Learning and Problem Solving. PhD thesis,
Massachusetts Institute of Technology, Boston, MA, May 1988.

Leah S. Larkey and W. Bruce Croft. Automatic Assignment of ICD9 Codes to
Discharge Summaries. Technical report, University of Massachusetts at Amherst,
Ambherst, MA, 1995.

Wendy G. Lehnert. Case-Based Problem Solving with a Large Knowledge Base of
Learned Cases. In Proceedings, Sizth National Conference on Artificial Intelligence,
volume 1, pages 301-306, Seattle, WA, July 1987. AAAI

Wendy G. Lehnert. Case-Based Reasoning as a Paradigm for Heuristic Search. Tech-
nical report, University of Massachusetts at Amherst, Amherst, MA, October 1987.

David D. Lewis. An Evaluation of Phrasal and Clustered Representations on a Text
Categorization Task. In Proceedings of the 15th Annual International ACM/SIGIR
Conference on Research and Development in Information Retrieval, pages 37-50,
Copenhagen, Denmark, June 1992. ACM.

David D. Lewis and William A. Gale. A Sequential Algorithm for Training Text
Classifiers. In Proceedings of the 17th Annual International ACM/SIGIR Conference

on Research and Development in Information Retrieval, pages 3—12, Dublin, Ireland,

July 1994. ACM.

Elizabeth DuRoss Liddy. The Discourse-Level Structure of Empirical Abstracts: An
Exploratory Study. Information Processing and Management, 27(1):55-81, 1991.

Michael Mauldin. Information Retreival by Text Skimming. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, August 1989.

Isabelle Moulinier and Jean-Gabriel Ganascia. Confronting an existing Machine
Learning Algorithm to the Text Categorizatino Task. In Working Notes of the [JCAI
Workshop on New Approaches to Learning for Natural Language Processing, pages
176-181, Montreal, Canada, August 1995. AAATL

45

[MRC91]

[MSDWZ94]

[MUC92]

[MUC93]

[O’CT0]

[0°C73]

[0°C75]

[0°C80]

[PJ93]

[Pro93]

[RAS7]

[RD95]

[Rij79]
[Ril93]

J. D. Mackinlay, G.G. Robertson, and S. K Card. The Perspective Wall: Detail and
Context Smoothly Integrated. In Proceedings of the ACM SIGCHI Conference on

Human Factors in Computing Systems, pages 189-194, New Orleans, LA, April 1991.
ACM.

Alistair Moffat, Ron Sacks-Davis, Ross Wilkinson, and Justin Zobel. Retreival of
Partial Documents. In D. Harman, editor, Proceedings of the Second Text RFEtrieval
Conference (TREC-2), pages 181-190, Pittsburgh, PA, 1994. National Institute of
Standards and Technology.

MUC-4. Proceedings of the Fourth Message Understanding Conference. Morgan Kauf-
mann, San Mateo, CA, 1992.

MUC-5. Proceedings of the Fifth Message Understanding Conference. Morgan Kauf-
mann, San Mateo, CA, 1993.

John O’Connor. Answer-Providing Documents: Some Inference Descriptions and
Text-Searching Retreival Results. Journal of the American Society for Information
Science, 21(6):406-414, 1970.

John O’Connor. Text-Searching Retreival of Answer-Sentences and Other Answer-
Passages. Journal of the American Society for Information Science, 24(4):445-460,
1973.

John O’Connor. Retreival of Answer-Sentences and Answer-Figures from Papers by
Text Searching. Information Processing and Management, 11:155-164, 1975.

John O’Connor. Answer Passage Retreival by Text Searching. Journal of the Amer-
ican Society for Information Science, 31(4):73-78, 1980.

Chris D. Paice and Paul A. Jones. The Identification of Important Concepts in
Highly Structured Technical Papers. In Proceedings of the 16th Annual Interna-
tional ACM/SIGIR Conference on Research and Development in Information Re-
trieval, pages 69-78, Pittsburgh, PA, June 1993. ACM.

TIPSTER Text Program. Proceedings of the TIPSTER Text Program (Phase I).
Morgan Kaufmann, San Franscico, CA, September 1993.

Edwina L. Rissland and Kevin D. Ashley. A Case-Based System for Trade Secrets
Law. In Proceedings, First International Conference on Artificial Intelligence and
Law. ACM, ACM Press, May 1987.

Edwina L. Rissland and Jody J. Daniels. The Synergistic Application of CBR to IR.
Artificial Intelligence Review, 1995. Accepted.

C. J. Van Rijsbergen. Information Retrieval. Butterworths, 1979.

Ellen Riloff. Automatically Constructing a Dictionary for Information Extraction
Tasks. In Proceedings, The 11th National Conference on Artificial Intelligence, pages
811-816, Washington D.C., July 1993. AAAI, AAAI Press/The MIT Press.

46

[Ril95]

[RJ91]

[RM93]

[RMC91]

[Ro88]

[RPH*95]

[RS91]

[RS95a]

[RS95b)]

[RS95c]

[SA93]

[SAB93]

[Sal89]

Ellen Riloff. Little Words can make a Big Difference for Text Classification. In
Proceedings of the 18th Annual International ACM/SIGIR Conference on Research
and Development in Information Retrieval, pages 130-136, Seattle, WA, July 1995.
ACM.

Lisa F. Rau and Paul S. Jacobs. Creating Segmented Databases from Free Text
for Text Retrieval. In Proceedings of the 14th Annual International ACM/SIGIR
Conference on Research and Development in Information Retrieval, pages 337-346,
Chicago, IL, October 1991. ACM.

G. Robertson and J. D. Mackinlay. The Document Lens. In Proceedings of the ACM
Symposium on User Interface Software and Technology. ACM, November 1993.

G.G. Robertson, J. D. Mackinlay, and S. K Card. Cone Trees: Animated 3-D Visual-
ization of Hierarchical Information. In Proceedings of the ACM SIGCHI Conference

on Human Factors in Computing Systems, pages 189-194, New Orleans, LA, April
1991. ACM.

Jung Soon Ro. An Evaluation of the Applicability of Ranking Algorithms to Im-
prove the Effectiveness of Full-Text Retrieval. Journal of the American Society for
Information Science, 39(2):73-78, 1988.

Ramana Rao, Jan O. Pedersen, Marti A. Hearst, Jock D. Mackinlay, Stuart K. Card,
Larry Masinter, Per-Kristian Halvorsen, and George G Robertson. Rich Interaction
in the Digital Library. Communications of the ACM, 88(4):29-39, April 1995.

Edwina L. Rissland and David B. Skalak. CABARET: Rule Interpretation in a Hybrid
Architecture. International Journal of Man-Machine Studies, 34:839-887, 1991.

Ellen Riloff and Jay Shoen. Automatically Acquiring Conceptual Patterns Without
an Annotated Corpus. In Proceedings of the Third Workshop on Very Large Corpora,
pages 148-161, Boston, MA, July 1995.

Daniela Rus and Devika Subramanian. Customizing Information Capture and Access.
ACM Transactions on Information Systems, 1995. Submitted.

Daniela Rus and Kristen Summers. Using White Space for Automated Document
Structuring. In N. Adam, B. Bhargava, and Y. Yesha, editors, Digital Libraries:
Current Issues. Lecture Notes in Computer Science 916., pages 129-162. Springer-
Verlag, 1995.

Gerard Salton and James Allan. Selective Text Utilization and Text Traversal. In
Hypertext 93, pages 131-144. ACM, November 1993.

Gerard Salton, James Allan, and Chris Buckley. Approaches to Passage Retrieval in
Full Text Information Systems. In Proceedings of the 16th Annual International
ACM/SIGIR Conference on Research and Development in Information Retrieval,
pages 49-58, Pittsburgh, PA, June 1993. ACM.

Gerard Salton. Automatic Text Processing: The Transformation, Analysis, and Re-
trieval of Information by Computer. Addison-Wesley, 1989.

47

[SB90]

[SB91a]

[SBY1b]

[SGM+95]

[SHHY5)

[SK8S]

[SP94]

[SW86]

[SW89)]

[TC91]
[TC92]
[Vel92]

[VGJLY5]

[Yan94]

Gerard Salton and Chris Buckley. Improving Retrieval Performance by Relevance
Feedback. Journal of the American Society for Information Science, 41(4):288-297,
1990.

Gerard Salton and Chris Buckley. Automatic Text Structuring and Retrieval — Ex-
periments in Automatic Encyclopedia Searching. In Proceedings of the 1/th Annual
International ACM/SIGIR Conference on Research and Development in Information
Retrieval, pages 21-30, Chicago, IL, October 1991. ACM.

Gerard Salton and Chris Buckley. Global Text Matching for Information Retreival.
Science, 253:1012-1015, 1991.

J. C. Smith, Daphne Gelbart, Keith MacCrimmon, Bruce Atherton, John McClean,
Michelle Shinehoft, and Lincoln Quintana. Artificial Intelligence and Legal Discourse:
The Flexlaw Legal Text Management System. Artificial Intelligence and Law, 3(2):55—
95, 1995.

David Steier, Scott B. Huffman, and Walter C. Hamscher. Meta-Information for
Knowledge Navigation and Retrieval: What’s in There. In Working Notes of the
AAAI Faoll Symposium Series: AI Applications in Knowledge Navigation and Re-
trieval, pages 123-126, Cambridge, MA, November 1995. AAAI.

T. Saracevic and P. Kantor. A Study of Information Seeking and Retrieving. Journal
of the American Society for Information Science, 39(3):187-222, 1988.

Hinrich Schiitze and Jan O. Pedersen. A Cooccurrence-Based Thesaurus and Ap-
plications to Information Retrieval. In Intelligent Multimedia Information Retrieval
Systems and Management, RIAO 94, pages 266—274, New York, NY, October 1994.

Craig Stanfill and David Waltz. Toward Memory-Based Reasoning. Communications
of the ACM, 29(12):1213-1228, December 1986.

Craig Stanfill and David L. Waltz. Text-Based Intelligent Systems. In Paul S. Ja-
cobs, editor, Statistical Methods, Artificial Intelligence, and Information Retrieval.
Addison-Wesley, 1989.

H. R. Turtle and W. B. Croft. Evaluation of an Inference Network-Based Retrieval
Model. ACM Transactions on Information Systems, 9(3):187-222, July 1991.

H. R. Turtle and W. B. Croft. A Comparison of Text Retrieval Models. Computer
Journal, 35(3):279-290, 1992.

Manuela M. Veloso. Learning by Analogical Reasoning in General Problem Solving.
PhD thesis, Carnegie Mellon University, Pittsburgh, PA, August 1992.

Ellen M. Voorhees, Narendra K. Gupta, and Ben Johnson-Laird. Learning Collec-
tion Fusion Strategies. In Proceedings of the 18th Annual International ACM/SIGIR
Conference on Research and Development in Information Retrieval, pages 172-179,
Seattle, WA, July 1995. ACM.

Yiming Yang. Expert Network: Effective and Efficient Learning from Human Deci-
sions in Text Categorization and Retrieval. In Proceedings of the 17th Annual In-
ternational ACM/SIGIR Conference on Research and Development in Information
Retrieval, pages 13-22, Dublin, Ireland, July 1994. ACM.

48

