Y

A Hybrid Discrete Event Dynamic Systems
Approach to Robot Control

Manfred Huber and Roderic A. Grupen

Laboratory for Perceptual Robotics
Department of Computer Science
University of Massachusetts

Technical Report #96-43
October, 1996

A Hybrid Discrete Event Dynamic Systems
Approach to Robot Control

Manfred Huber and Roderic A. Grupen

Abstract

The achievement of a wide variety of tasks using a complex system in an unknown environment
presents formidable challenges to the control system and its designer. This paper presents a hybrid
DEDS approach to the control of such systems which allows for reactivity in the continuous domain
and for the automatic generation of the control strategy in the discrete framework, thus drastically
reducing the amount of system specification required from the designer. In this framework, control
is constructed on-line by activating convergent, reactive controllers in a task dependent fashion.
Using certain properties of these control modules and a predicate space characterization of their
behavior in terms of their control objectives allows thereby to derive “safe” activation strategies
automatically using formal techniques from the DEDS formalism. This, the general, largely device
independent character of the underlying control modules, and the absence of a requirement for a
monolithic control law then drastically reduces the complexity of the control task and thus allows
the application of this approach to a large variety of complex task domains. In addition the resulting
supervisory control structure can be used as a basis for on-line adaptation and learning mechanisms
due to the inherent compression of the state space and the enforcement of “safety” constraints.

Contents

1.

2.

5.

6.

Introduction

Discrete Event Dynamic Systems (DEDS)

21 SystemModels

22 LogicalModels
22.1 Model Representation
222 Model Construction
223 Model Properties

2.3 Supervisory Control,
2.3.1 Behavior under Supervision
2.3.2 Supervisor Representation and Construction
233 Observability,

DEDS and Robot Control
3.1 Traditional Robot Control
3.2 HybridSystems

The Hybrid DEDS Approach

4.1 The Control Architecture

4.2 Structure of The Underlying Controllers
4.2.1 Symbolic Controller Specification
4.2.2 The Control Basis Approach

4.3 Plant Model in Predicate Space

4.4 Supervisor Construction

Visual Servoing Experiment

On-line Adaptation and Future Work

Acknowledgements

References

36
38
38

1. Introduction

In order for robots to perform a wide variety of tasks in the real world, it is important to design
control architectures which can handle complex systems in unstructured environments. Due to the
large amount of flexibility of the system and the complexity of possible task domains, however, this
presents a formidable challenge.

Traditional approaches to robot control, for example, derive a single control law based on a
model of the dynamics of the system and its environment in order to obtain appropriate control
actions [LHS89, CHS89]. In the presence of uncertainties and large numbers of degrees of freedom,
however, such models are hard to determine and highly non-linear, drastically limiting the applica-
bility of the approach to complex systems. Behavior based approaches [Bro89, Rai86], on the other
hand, largely circumvent the problems of model dependence by constructing behavior on-line from
a combination of elemental, reactive behaviors, thus avoiding the complexity of a monolithic control
law. Since behaviors, however, are commonly procedural sensorimotor strategies, the system designer
has to derive a set of such behaviors for each task and provide a mechanism for tuning the manner in
which these behaviors interact. DEDSs, in contrast, present a formalism which allows the automatic
synthesis of a supervisory control mechanism, i.e. a coordination scheme for control actions, given
knowledge about the overall behavior of the system. As opposed to other robot control approaches it
allows thus to automatically derive a control policy given a sufficiently precise system model.

This paper shows how the DEDS framework together with more formally derived control modules
could be used to simplify and automate the control composition problem while maintaining the largely
model independent character of reactive control approaches. In order to achieve this, the approach
presented here automatically derives a supervisor to coordinate the task-dependent activation of a
set of general, reactive control modules, thus drastically reducing the amount of off-line specification
required from the system designer. In order to achieve this, the system is modeled as a hybrid DEDS,
i.e. as a system whose dynamics or local control objectives change with the occurrence of discrete
events. Employing this, the control system can be decomposed into a continuous part, handled by a
set of reactive and convergent control modules which can be activated individually or in parallel, and
a DEDS supervisor which allows the system to move through a task-dependent sequence of favorable
controller equilibria. Besides a breakdown in complexity such a hierarchical approach also allows the
use of formal methods to automatically derive a suitable coordination mechanism under a given set
of domain and task constraints. The resulting control structure provides a good basis for additional
learning and on-line adaptation techniques since it reduces the size of the state and action spaces that
have to be considered, and avoids the problems of catastrophic failures for exploration based learning
schemes.

Overall the hybrid approach presented here reduces the amount of system description required
from the designer and thus allows for its application in a large number of complex task domains and
on a wide variety of systems. In addition the reactive character of the underlying continuous controllers
and the facilitation of learning and adaptation techniques increases the robustness of the scheme and
permits its application even in the presence of uncertainties and unmodeled environmental influences.

In the following, Section 2. introduces the DEDS framework of [RW89] and the techniques for
automatic generation of supervisors. Section 3. then relates this framework to robot control tasks
before Section 4. describes the hybrid DEDS approach and the example task of Section 5.. In Section 6.,
finally, the applicability of the resulting control structure to learning and on-line adaptation techniques
is discussed.

2. Discrete Event Dynamic Systems (DEDS)

A discrete event system is a dynamic system whose behavior is guided by the occurrence of discrete
events. Although only certain events can occur in any given situation, the exact order, the time, and
the intervals in which they appear is unknown in general. In most cases such systems are therefore not
deterministic and can thus not be controlled off-line but rather require an on-line control mechanism.
Since a large variety of problems can be modeled in this way, the use of formal methods for the
automatic synthesis of supervisory control mechanisms for discrete event systems has received a lot of
attention in recent years [RW89, OW90, TW94]'.

In most of the literature, such systems are modeled as DES directly at the lowest level. This,
however, requires the incorporation of a large number of events and a high dimensional state space,
thus leading to very complex models and therefore limiting the applicability to complex task domains.
To reduce this problem, modular system models.can be employed, where modeling at the higher level
is performed in terms of abstract events. States in such an abstract model represent regions within
which no change in the control rules is required and which can thus be handled completely by the
lower level modules. This possibility to model a DES at various levels of abstraction also implies that
the nature of events can range from physical, measurable sensor events, up to logical events, such as
highly abstracted reasoning results. Events thus have not to be limited to influences from outside the
system but can also be internal to the controller and therefore hidden within the abstraction.

Due to this ability to describe systems at different levels of abstraction, thus hiding a certain
amount of its continuous character, a wide variety of systems can be modeled as DES, encompassing
such different areas as software systems, network protocols, and manufacturing processes.

2.1 System Models

As a first step to the control of a DES, the system to be controlled and its environment have to
be modeled in sufficient detail to represent all relevant aspects. This system model or “plant” is often
interpreted as the event generator?, which provides the information necessary for the control system.

Since DES occur in a large variety of contexts which pose rather different requirements on the
modeling, system models can take a broad range of forms, differing mainly in the character of the
events and thus in the complexity of the system and the formal tools available to solve the control
problem. In general, system models can be divided along two major axis, non-timed vs. timed models,
and deterministic vs. stochastic models. Along the former, logic models represent systems, where only
the occurrence of the event influences the system but not the time at which it occurs. This allows to
model the system simply as a sequence of events, thus opening the system to a wide variety of formal
techniques from formal languages, over automata theory, up to markov chains [HU79, van90]. In timed
models, on the other hand, the time at which the event occurs is of crucial importance. While this
second class encompasses the former, it has multiple drawbacks in that the resulting systems are much
more complex and do not allow for the application of many formal methods. This makes the analysis
and control of these systems much harder.

Along the second axis, in deterministic systems, no probabilities are associated with the occurrence
of certain events and with their timing. In stochastic models, on the other hand, such probabilities
are important parts of the system behavior. While this has no major effect on the modeling of

!For a list of references see [SOVG94]

2It should be noted here that although this suggests that all events are directly produced within the plant, this notion
also includes all events derived as higher level abstractions within the controlling or reasoning mechanism.

the underlying system, additional performance measures have to be incorporated in the analysis of
the system behavior due to the known stochastic behavior. Especially for timed models this further
increases the complexity of any analysis and moves most such systems out of the reach of the associated
DEDS control theory. Although the association of probabilities with events in the case of logical models
also increases the complexity since it is now required to distinguish between different admissible event
paths which result in different performance measures, these models are more tractable and still offer
formal method support.

For the remainder, the focus will be restricted only to non-timed models. Although this seems to
be a serious restriction, many systems can be modeled in this way. Even if timing is an important
factor, this can often be incorporated by introducing multiple events for each event /time pair, thus
avoiding the explicit timing variable at the cost of an increased event set.

2.2 Logical Models

The most restricted form of DESs are logical models where timing of events plays no role in the
behavior of the system and no probabilities are considered throughout modeling and system analysis.
Here a possible “run” of the system can be represented completely as a sequence of events, and is thus
also called an event sample path. In other words if ¥ is the set of all events possible in the system,

L ={a,mx,as..} ,
then the “history”, w of the system can be represented as a string over the event set %,
weX ,
and all possible behaviors of the system, L, form a set over such strings,
LCcx .

This interpretation opens the modeling and analysis of these systems to a wide variety of formal
methods since the overall behavior of the system can now be represented in language theoretic terms,
where the set of all events is the alphabet and the set of all possible behaviors is the language of the
system.

Since each event sample path, w, represents a possible “history” of the plant, every prefix of w,
also represents a possible history and thus belongs to the language L which is thus prefix closed, i.e.

L=L={u|wex , wel}

This language L contains all possible ways the given system can behave and thus does not include
any task or system objective. To be able to have the system perform goal-oriented behavior, tasks
have to be represented in this scheme. This is done in the form of a second language L,, such that

L, ={w|weL , Thesystem achieved a task/subtask at the end of event sample path w} .

This represents all the possible event sequences at the time when a task or subtask is achieved in the
system represented by L, and thus represents all the desired behaviors of the plant.

To illustrate this language presentation of a DES an extremely simple storage system is shown
here as an example. In this system only two actions are possible, namely a part can be put into the
store or it can be taken out of the store. It can thus be modeled by

T = {a, B}
L’={w|w€(a,ﬁ)' , Vv,uGE‘:vu=w=>|v|02|v|ﬁ} ,

5

where the events a and f represent delivering and removing of a part, respectively, and | w |, means
the number of occurrences of the event o in the string w. In other words, the language L expresses,
that parts can be delivered and removed in arbitrary order but never can be more parts removed than
were previously put into the store. If now the desired goal for the system is to achieve an empty
storage, this can be expressed by

L'mz{wlweL', IWL,=|'w|p})

which represents all the possible event sequences containing an equal number of part insertion and
removals.

2.2.1 Model Representation

To represent more complex systems, it is often very inconvenient and difficult to write the language
as such in the form of the set of possible strings. In general it is thus preferrable to use a different
means of representing the languages that form the plant model and the task. Two possibilities for
representing general languages are thereby grammars and automata. While the former basically form
a rule base for forming the strings, the latter explicitly represent all states of the plant with transitions
between them occurring whenever an event is generated. Although there is a direct correspondence
between both systems, allowing for an easy transformation of one representation into the other, and
grammars often form a more concise set, automata will be used as the representation for developing
the formal concepts, mainly due to their more intuitive character.

To represent the language L of a plant, the corresponding automaton G consists of a state set Q,
an initial state go, and a partial transition function § : Q x £ — Q. The state set need thereby not be
finite, allowing for memory, counters, and other useful entities. In the example of the simple storage
system, given above, for example, an infinite state set is necessary since the language L' is not regular.
This example can be represented as

¢={=, ¢, w,d ,

where
Q ={a|iez}}
3+ fy=a
6(g5,7) =13 g1 ify=fandj>0

undefined otherwise

Alternatively, automata can also be depicted graphically. In the case of the simple storage system
this is shown in Figure 1.

N AN AN AN

~&% (@ B (B ([=

o 23

Figure 1: Automaton for Simple Storage Plant

As opposed to the standard definition of finite state machines (FSM), the automata used to model
the plant in the DES framework do not contain a set of final states since the language represents all

6

possible sample paths and thus all states are accepting states. The language of this automaton is thus
the set of all possible sequences of events,

L(G) = {w | §(go,w) is defined} ,

where
undefined if ¢ undefined
_Ja fw=e
8(g,w) = d(q, w) fwelX

0(0(qyu),v) fweT,uel:w=uvu

To represent the marked language L., i.e. the intended task, in this representation, a set of marker
states, Qm, can be introduced which is a subset of Q. These states now are similar to accepting states
in that each string of events that ends in a marker state belongs to L,,. There is, however, no notion
of termination at those points, instead the automaton continues to operate. The marked language is
thus represented by

QmCQ

L,= {w I wel, a(quw) € Qm}
Depending on the task envisioned, the designation of the marked states might require the extension of
the set Q of states in the plant in order to accommodate the sublanguage L,,. This is required since
the resulting automaton has to be able to accept both languages, L and L,,. In the storage example
with the marked language defined as all sequences that leave the storage empty, the automaton shown
in Figure 1 does not have to be changed and the set of marker states is simply Q',, = {go}. If, however,
the task changes to emptying the storage while never allowing more than 2 elements in the store, i.e.

Ln={w|wel, |wl,=|wl, , V0T w=w=|u|,<|ul,+2} ,

additional states go, 71, ¢z have to be introduced in order to accommodate this language. The resulting
" automaton is shown in Figure 2, where marker states are indicated as doubly circled states.

g,@\/ﬁ\
5 (%)

o T

Figure 2: Extended Automaton for Storage Plant with New Task

This shows, that in general, inclusion of a task into the plant model will require an increase in
complexity of the state and event representation. This increase happens in a way simmilar to the
standard minimization procedure used for finite state automata by splitting states into independent
pairs, where each new state maintains part of the previous connectivity. The representation of the
event generator depends thus on the task objective. This suggests that if a flexible model with changing
tasks is required, the general state representation has either to be very general and thus large, or it
has to be created for each objective separately to fit the currently active task requirements.

7

2.2.2 Model Construction

In many DES applications and so far in this introduction, the underlying plant model has been
designed in one piece by hand. For many applications, however, complete plant models are highly
complex and thus hard to design as one monolithic piece. Automatic or at least computer-aided design
of these models is therefore important in order to make DES techniques applicable to complex plants
and task domains. Two of the major techniques used to perform such simplifications and automations
are thereby hierarchy and modularization.

The state machine representation of the plant lends itself readily to the concept of hierarchical
modeling. If the behavior of the plant depends on a certain state variable, a model for each of these
situations can be designed independently. A higher level automaton can then be used to represent
the state changes that cause the switching from one “mode” to the other, and thus to coordinate
the individual automata. The different “modes” represent thereby a “temporal” decomposition of the
plant in that they don’t interleave but are coordinated only through the higher level “coordinator”.
In terms of the behavior of the whole system this means that

L(G) g {Ethm(Gl),Lm(Gﬂv"}‘
Lm(G) g {EhaLM(Gl)aLm(GZ)a'"}‘)

where), = {a, @, ...} is the set of events of the coordinating automaton and L,,(G;) is the marked
behavior of the i** module with marker states of the modules representing “interface” states to the
higher level automaton.

One example of such a temporal decomposition can be seen in a system with two limited size
buffers, one of which serves as the overflow buffer of the other. Here both buffers can be modeled
independently and the higher level coordinator simply switches from the main buffer to the overflow,
whenever the main buffer is full and back, whenever the overflow is emptied again. This example
is shown in Figure 3 with two buffers of capacity 2. The dashed arrows indicate the higher level
coordinator which does not have any states of its own in this example.

Figure 3: Hierarchical Composition of 2 Independently Modeled Buffers

The resulting automaton in this case is nondeterministic, could, however, be easily converted into
a deterministic automaton by changing only the coordinator.

A second possibility to build an automaton out of smaller pieces is if the action of the plant consists
of the parallel execution of independent modules without any transitioning between them. In more
mathematical terms this decomposability implies that

3G,, G, such that

Q1NQ=0
21U22=2
Vwe X :we L & ulg, €LG)Aw|s, € L(G,) ,

8

where w|g, denotes the string w with all symbols removed that are not in ;. Under these conditions,
these independent subsystems, G; and G, can again be modeled on their own and then be combined.
For the composition, two cases can be distinguished, asynchronous and synchronous modules. In the
case of asynchronous subsystems, they do not share any events, i.e. £; NS, = 0, and the composition
G is thus the shuffle product, G,||G> of the individual automata which is defined as

Q= (Q1 % Q)

2 = 21 U 22

Qo = (qIM q2o)
61(01:,7),a2,) f7ED,
6)) — (1 i 1 42; .

(@1, 02,),7) (41, 02(g2;,7)) ifyeX; .

An example of this construction for a system consisting of two storage areas, G and G, of the type
presented in Figure 1 in the previous section is shown in Figure 4.

Figure 4: Shuffle Product of 2 Storage Plants G and G

The construction in the synchronous case is slightly more complicated since both subsystems are
now not completely independent but share some common events and thus sometimes transition at the
same time. In this case, a slightly more complicated synchronous product of the individual automata
has to be used. The difference of this product occurs when both modules, G; and G5, have to transition
at the same time. In those cases the transition function takes the value

6((‘11.':‘]2,')7'7) = (JI(QIe17)1 62(‘]2,17)) lf’)’ € z:1 n 22 .

These two mechanisms, hierarchical composition and synchronous product, representing in some
sense sequential and parallel composition, respectively, can be applied in arbitrary order to automati-
cally compose a plant model out of smaller independent pieces whenever such a modular decomposition
is possible. This can vastly reduce the design effort necessary since only the individual modules and
their interaction pattern have to be established. The composition can then be performed automati-
cally, resulting in the complete, more complex system model. Application of the synchronous or the
shuffle product results thereby in expansion of the state space which is exponential in the number
of modules involved. Under certain conditions this can lead to an explosion of the state space and
it might thus be advantageous to omit the formation of the product generator but rather to treat
them as concurrent, independent systems, thus trading off construction effort and size against control
complexity.

2.2.3 Model Properties

Besides simple constructibility there are various desirable properties that event generators can
possess. Especially in the state machine representation the non-uniqueness of the system model can
lead to unnecessarily big representations. To reduce this and to simplify analysis it is thus advantageous
to have a generator where every state is accessible. In other words the state set should be such that

Vg; € Q 3w € L(G) : §(go,w) = ¢;

and 6(q;,7) is defined only when this event can actually occur in the given state. This property as
well as a minimization in the number of states can be achieved by reducing any given generator.

Besides structural properties there are also desirable functional characteristics. One of the most
important and most advantageous ones would be that the generator is nonblocking, i.e. that every
possible event sequence is a prefix of a task sequence and can thus be completed to a subtask solution.
In terms of the system languages this means that

I.(G) = L(G) .

As opposed to the structural points mentioned above, this property can not be established without
changes and restrictions of the system model.

If a generator is nonblocking and reduced to its accessible component it is said to be trim. Such
a system model represents the most desirable situation in that the system is always “safe”, meaning
that at each point in time there is an event sequence which will lead to the goal, and does not have
any unreachable states.

2.3 Supervisory Control

In the previous sections, the actual and the desired behavior of the system were modeled. In order
to achieve the desired behavior, however, the plant has to be actively controlled. To do this it has to
be possible to influence the occurrence of certain events of the system. To represent this, events are
divided into controllable events, ¥., which can be enabled and disabled, and uncontrollable events,
3., such that

Ec = {0’1,0'2,...}
Yu= {5'1,(2,---}
.U, =3
N, =0 .

A supervisory control mechanism is then used to disable or enable events of 3. in order to achieve
desirable behavior and restrict the behavior of the system such that it is nonblocking. This supervisor
represents feedback to the plant and thus changes the “open loop” behavior of the system model
developed in the previous sections to a “closed loop” behavior. The resulting system is shown in
Figure 5.
The overall function of the supervisor is a mapping, f, from the set of event sequences to control

outputs,

f:L->T

r={0,1}"™ |

where f(w); = 0 implies that after occurrence of the event string w, the i** event in 3., a;, is disabled
and can thus not occur. For the resulting controlled discrete event system (CDES) this leads to a

10

Supervisor

%)
Observation Control
System Model / Event Generator

I\

Figure 5: Supervision of DES

system language under supervision, L(G, f), of

€€ L(G, f)
ws; € L(G, f) & w € L(G, f) Aws; € L(G)
wo; € L(G, f) & w € L(G, f) Awo; € L(G) A f(w); =1 .

The feedback can thus be used to restrict the possible behavior of the plant since L(G, f) € L(G).
Similarly, the effect of supervision on the desired behavior of the plant results in

Ln(G,f) = L(G, f)NLn(G) ,

representing all possible tasks and subtasks that remain under supervision.

2.3.1 Behavior under Supervision

Since the supervisor effectively limits the behavior of the system, it is important to determine
which types of behavior can be achieved under supervision in order to find the supervisor required to
achieve the task objectives.

A necessary condition for any language, K, describing a plant under supervision is that it is
controllable, meaning that

Kcy
K, NL(G)CK .

In other words, the occurrence of an uncontrollable event at one point in an event sequence does not
determine the strings membership to K. This is necessary since the supervisor has no influence over
uncontrollable events, thus requiring them to be part of the closed-loop behavior of the system. Using
this notion of controllability and assuming that the system generator is trim, the possible closed-loop
behavior of the system under supervision can be derived as

L(G,f) € L(G)
L(G, f) is controllable

L(G, f) = L(G,f) .

11

In most cases, however, the purpose of supervision is to guarantee the achieving of the task, given by
L(G). This implies that the desired closed-loop behavior, Lu(G, f) € L, has to be nonblocking. A
supervisor for this case exists if, and only if

L.(G, f) is controllable
Lm(G1f) NL, = Lm(G’f) .

Under these conditions, a working control strategy in the form of the corresponding mapping, f, can
be derived.

In both cases, multiple supervisors are possible, resulting in possibly different controllable lan-
guages with different constraints. It is thus desirable to include a quality criterion to these languages
in order to find the “optimal” supervisor. The most common criterion used, the “restrictivity” of the
supervisor, can be derived from an important.property of controllable languages, namely that they
are closed under union. The “optimal” language is then defined as the supremal element of the set
of all possible controllable languages. Intuitively this represents the language which requires the least
amount of control actions and allows for the largest number of different event sample paths to occur.
A second implication of the closure under union is that if a given language K is not controllable,
then there exists a controllable approximation, K’ C K, in form of the “optimal” controllable sublan-
guage (possibly). The goal of supervisor synthesis is thus to find a supervisor for the controllable
approximations of L(G) and L,,(G).

2.3.2 Supervisor Representation and Construction

Similar to the system model, a more convenient representation than languages has to be found
for the supervisor in order to deal with complex systems. Like the plant, the supervisor itself can be
seen as a DES, this time, however, interpreted as an event acceptor with an output mapping, rather
than as a generator. It can thus be represented using the same techniques. As in the case of system
representation, a state machine representation is used in this section due to the intuitive character
and the close correspondence between model and supervisor structure.

A supervisor can be represented as a state machine, S, with an associated control mapping, ¢,such
that

S = (E,X,E,-’Bo)
¢: X=>T
¢ (§ (2o, w)) = f(w) .

The automaton S plays thereby the role of an observer which attempts to determine the state of the
plant by means of the events generated. The mapping ¢, on the other hand, represents the control
feedback to the system.

A supervisor of this form can be easily derived from the controllable system language. Given
the desired L(G, f), the observer is simply a DES state machine S = (Z, X, &, o) such that L(S) =
L(G, f). After constructing this recognizer, the only remaining unknown, the feedback mapping ¢ can
be derived as
1 if &(z;,0;) is defined
0 otherwise .

(z;); = {

This allows to impose path constraints on the system by means of reducing the envelope of possible
behavior. It can thus be used to impose “safety” constraints on the overall system behavior by
effectively removing parts of the previously accessible state space regardless of marked states and thus
task objectives.

12

Using the example generator of Figure 1 and assuming that the arrival of elements is controllable
and the removal is uncontrollable, i.e. £. = {a} and T, = {8}, a maximum capacity constraint of 2
elements can be imposed using supervision. The corresponding controllable system behavior, given by

L(G,f)={'w IVu,vGE‘:uv=w=>|u|a$|u|p+2}

can be imposed using the supervisor (S, ¢) shown in Figure 6.

O (xy) =(1)

AN AN
—— O(x) =(1)

?(x) =(0)
Observer Feedback Map

Figure 6: Supervisor for Simple Storage Plant and L(G, f)

In general, constraints imposed on L(G, f) are not task directed and do not necessarily preserve
the nonblocking property of the system. Imposing such constraints might thus lead to a system which
although always in “safe” condition is not able to accomplish the task objectives. To prevent this
and to impose constraints on the possible tasks, supervisors can also be derived from the controllable
marked language. Given L(G, f), a supervisor for this objective can be derived similarly to the
previous case by observing that for the resulting nonblocking system L(G, f) = L,.(G, f). Using the
example plant as above, a task constraint could be imposed, such that successful tasks are such that
the buffer is empty and it never contained more than 3 elements. This goal can be described by

Ln(G,F) = {w ||w|n=|w|ﬁ/\Vu,vEE"‘:uv=w:~|ulaS|u|ﬁ+3} ,
and the system language under supervision, L(G, f), can thus be derived as
L(G,T)=Lm(G,7)={w |Vu,v€2’:uv=w=>|u|a$ | u |B+3} ,

resulting in the supervisor (S, ¢) shown in Figure 7.

Due to the very simple character of the underlying plant both constraints are very similar. In gen-
eral, however, different constraints can take very different forms, leading to the problem of integrating
multiple constraints. One way to do this is to first derive the “optimal” controllable language fulfilling
all constraints simultaneously for the whole system and then to derive the supervisor as described
above. Since, however, the complexity of this derivation increases with the size of the system and the
number and complexity of the constraints, it might be advantageous to construct such a supervisor in
a modular fashion, wherever possible.

In the case of state machines for the plant model, Section 2.2.2 shows ways that allow under
certain conditions to construct them in a modular fashion. Since the plant model and the state
machine for the supervisor are closely related in that the state machine of the supervisor represents a
sublanguage of the plant model, the modular character of the plant construction can be extended to the
supervisor if the controlled languages, L(G, f) and L,,(G, f), fulfill certain conditions. In the case of
the hierarchical construction, where the plant sequences through independent modules, the supervisor

13

O (%) =(1)

S il
R RSP by =(1)
¢ (%) =(0)

Observer Feedback Map

Figure 7: Supervisor for Storage Plant and L,,(G,f)

can be build analogously given that the constraints imposed by the desired controllable language are
modular, meaning that the controlled behavior of one module does not affect the constraints imposed
on any other module. Given such “modular” behavior, i.e

L(Ga f) g {Eh) Lm(Gh flE;))Lm(G2’ flz:g), }‘
Lm(Gs f) g {Eh; Lm(Gl,flzl)’Lm(G‘b f'Ez)a '-'}‘)

a supervisor can be constructed for each module independently and combined in the same way as for
the system model. In the case of the hierarchical two storage plant shown in Figure 3, a supervisor
enforcing the goal that both buffers should be empty and the second buffer never contains more than
1 part can be constructed out of independent supervisors for the modules as shown in Figure 8.

¢(x0)=(1)
NGRS A
Lem TS < d(x) =(0)
% 4
~C X ®]
o < s -7 \/® ?(io)':(’)
¢ (%) =(0)

Observer Feedback Map

Figure 8: Modular Supervisor for Hierarchical Storage Plant

In a similar fashion, the extension of the parallel construction methods to the supervisor requires
that the behavioral preconditions also hold for the desired controllable behavior induced by the su-
pervisor. In other words, if

Ywe Z* :w e L(G, f) & (wlg, € L(G1, flg,) Aw|g, € L(Gs, fls,))

supervisors can be derived for the independent components and then be combined using the shuffle or

14

the synchronous product for the observer part and the feedback map, f,

filau) * foge;)m ifox € 8y, NE,, and 0k = 0y, = 03,
f((‘hn‘h,‘))k = fl(QI.')l if o, € 3y, \22.: and oy = gy,
fa(g2;)m ifo, €3 \X,, andox =03, .

Taking the example plant with two buffers from Figure 4, and imposing the two constraints from -
Figures 6 and 7 on the first and second buffer, respectively, the shuffle product can be used in order
to generate the supervisor shown in Figure 9.

(1.1) (1,1) (0, 1)
(1,1) (1,1) (0,1)
(1,1) (1,1) (0,1)
(1,0) (1,0) (0,0)

QXI ”’(l X< gkl -

Observer Feedback Map

Figure 9: Shuffle Product Supervisor for 2 Buffer Storage Plant

The supervisor constructions shown so far can also be seen as imposing multiple constraints onto
a system where each constraint applies independently to a subsystem. While events sets can be seen
as disjoint in the cases of sequential and asynchronous constructions, multiple constraints might share
common events in the synchronous case. These shared events imply, that for the synchronous product
the result of composing multiple nonblocking controllable behaviors does not necessarily lead to a
nonblocking supervisor. To ensure the nonblocking property of the resulting controlled behavior it is
also necessary for the individual constraints to be non-conflicting, i.e.

Yw € Z*:w € Ln(G, 1) ¢ (wls, € Ln(Gy fls,) Awls, € In(Ga /l,))

In other words this means that every event sequence which can lead to a goal under each of the
constraints has also to be able to lead to a goal under the combined supervision. In the case of disjoint
event spaces, this condition is clearly met while it depends on the individual feedback maps for shared
events.

Similar to the case of constructing a supervisor for multiple parallel modules, multiple constraints
on the same plant can be imposed using the parallel product. Supervisors for each constraint can
be developed independently and then be joined using the same parallel product and feedback map
construction techniques, resulting in a nonblocking supervisor exactly if the individual supervisors are
nonblocking and non-conflicting. Figure 10 shows an example where the two constraints from Figures 6

15

el WX x| &

Observer Feedback Map

Figure 10: Shuffle Product Supervisor for Multiple Constraints

and 7 are imposed onto the same storage buffer. This resulting supervisor can then be reduced by
eliminating the unaccessible components from the observer as well as the feedback map resulting in
the shaded supervisor with 3 states.

In both cases, construction of the plant from multiple modules and imposing multiple constraints on
the same part of the plant, modular construction reduces the design work to the individual components.
Composition and reduction can then be performed automatically using the procedures described above.

2.3.3 Observability

As opposed to the assumptions made so far, events in real systems tend to be hard to distinguish
and partially unobservable. In order to cope with this, the constructed supervisor has to be able to
maintain the underlying system within the controllable sublanguage using only the actually detected
events. To represent this, an observation alphabet, ,, and a possibly nondeterministic observation
mapping, P, are defined as

3, C X

P: o3
P(0;) = 0 : 0; € {0k |o; can be detected as o} }
P(so) = P(s)P(a) .

Through this mapping, the observable language is defined by
P(L)C %7,

representing the input language of the supervisory control automaton.
To exemplify the implications of the effects of partial observability, the storage plant of Figure 1
is changed slightly by differentiating between the events o, and a, corresponding to entering the first

or consequent elements into the buffer, respectively. The resulting Plant model for L'(G) is shown in
Figure 11.

16

I VNI NN
~% (@ (@) (@ (@) ==

Gy o o « o

Figure 11: Automaton Model for Storage Plant With Partial Information

Assuming now, that while « is fully observable a; can be either detected as a or not at all, or in other

words
Eo = {€:a1 ﬁ}
Pla)=a
Play) =€|a
P'(B) =

the automaton representation of the resulting observable language P'(L'(G)) can be found as the one
in Figure 12.

/‘K/K/‘K,)\/K
88888

a [¢4 o

Figure 12: Automaton for P'(L'(G))

The nondeterminism introduced in the observation step clearly changes the language and thus the
possibilities of supervisory control.

Due to the difference between the actual system language L and the observed language P(L) the
supervisor changes to a map of the form

g:P(L)->T

and can be represented as an automaton over the new event set &, with the corresponding feedback
map. To determine the controllability of a given language K of the system it is thus necessary to
examine it considering the resulting observed language P(K).

Depending on the availability of a model for the underlying system in terms of the complete
event set ¥ this supervision problem with partial information can be solved in different ways. If such
a model is available, the analysis of this underlying model can be augmented with an observation
handling component or, if such a model does not exist, by construction of a complete system model
for the observed event set X, and solving the controllability for this system as shown in the previous
sections. The following will, conforming with the standard theory of DEDS, assume the existence of
a model and thus follow the first path.

In order to control a system with partial information, the supervisor has to derive its supervisory
commands from the observed rather than the real events. Defining this supervisor on the language of

17

the original model, L, results thus in a P-supervisor defined by

f: LT
f(w) =g(P(w))jwe L

the observable event sequence, i.e. that it is closed with respect to the equivalence relation given by
the mapping P. In other terms, a language, K, is P-observable, if

Vs,t € L[(P(s) = P(t)) =Vo((sc€LAto€L)= (so €K & toeK)) .

In the example plant this observability can be illustrated by transforming the automaton for the
observable language into the deterministic and e-free form shown in Figure 13.

Figure 13: Deterministic Automaton for Observable Language P'(L'(@®))

P-observable languages are then the ones that can be defined in the context of this automaton and
thus do not attempt to differentiate states any further.
Using this notion, the the existence of a P-supervisor for a given language K is guaranteed if

K=K
K controllable assuming complete information
K P-observable

P-observability of a given language reduces thus the controllability question under partial information
to the same question for completely observable systems as described in the previous sections.

Applying the constraint that the buffer size is at most 2 in the case of the storage plant leads to
the supervisor shown in Figure 14.

?(x) =(1)

R O
. O (x) =(1)
Observer Feedback Map

Figure 14: Supervisor for Partially Observable Storage Plant and I/ (G, f)

18

As opposed to the case of complete information illustrated in Figure 6, the language described in
this supervisor does no allow the sequential occurrence of 2 « events since the first one might not be
observable and the sequence might thus lead to a violation of the constraint.

This example thus already illustrates that in the same way as with complete information, a su-
pervisor which implements a set of constraints has not to be unique and additional optimality criteria
can thus be imposed onto the solution. Imposing the same minimal restrictiveness criterion, however,
leads to problems since it can not be uniquely determined. In order to still be able to approximate
such a supervisor for most types of constraints it is useful to require the resulting languages to be
P-normal, i.e. that

K =LNnPY(P(K)) .

This type of languages has the advantage that they are P-observable if they are closed and that
there exists a supremal controllable P-normal sublanguage for any closed K. Given this “optimal”
controllable language, a supervisor for the partially observable system can be synthesized.

Stronger requirements on the control of a system with incomplete information can be imposed e.g.
in the form of state observability. Here it has not only to be possible to determine if the given system
will maintain within the constraints imposed, but also to be able to determine the precise identity of
states at certain instances throughout the event sample path. Requiring such a behavior allows to
determine the amount a given system will maximally diverge from the nominal strategy or how far
errors can be propagated through the execution of the system.

2.4 Practical Considerations

Application of the techniques described in the previous sections to real systems in general limits
the scope of models that have to be considered and also requires simplifying assumptions in order to
make an analysis feasible. Real world limitations on the size of the underlying system for example
allow to model it using a finite state set and a finite event set which opens the system to further
analysis using the large body of work done on finite state machines. While the finite size of the state
space reduces the size of the modeling and analysis problem, the supervisor synthesis remains still
a highly complex problem and it is thus often necessary to further limit the size of the event space
to make the DEDS analysis feasible. This, however, requires to ignore certain aspects of the system
which have therefore to be dealt with in a different form. In general such a simplification will lead to
a reduced amount of off-line computation but through the resulting incomplete system representation
to higher requirements for on-line adaptation.

A second limiting factor in the applicability of the standard DEDS framework is that it represents
a synthesis tool for the supervisor but only an analysis tool for the underlying system model and thus
requires a complete a priori model of the behavior of the system under event transitions. Construction
of such a complete model, however, is often not possible, resulting in system models with incomplete
information. In a similar fashion, the often large event spaces possible dramatically increase the
complexity of the model and thus make it necessary to model the system in an incremental, hierarchical
fashion, associating different event subsets with each part (decentralized DEDS). All these aspects
make the task of the model designer very hard and often limit the size of actual problems that can be
treated in this framework. This clearly illustrates the potential benefit of automatic mechanisms for
the construction of a system model.

Overall the framework allows the analysis of a given system and the automatic synthesis of a
supervisor which implements additional task oriented constraints. To further automate the derivation
of control systems and to extend the applicability to more complex task domains, however, it seems

19

to be necessary to impose additional structure on the problem to allow the automatic generation of
the complex system model and to reduce the complexity of the arising state and event spaces.

3. DEDS and Robot Control

While DEDS were successfully applied to various task domains in different areas such as communi-
cation protocols and operating system design, their application to robotics has been limited mainly to
contact state transitions in assembly [MA93] and scheduling in manufacturing systems [WBS94]. One
of the limiting factors in this respect is that DEDS generally operate on symbolic rather than numeric
state spaces. For the control of physical systems, however, most aspects of the systems state are con-
tinuous and would thus have to be discretized in order to be useful within the described framework.
Treatment of such continuous state variables, as well as of continuous sensor readings would thus lead
not only to immensely large state spaces but also to a potentially infinite event set, thus rendering
the problem of supervisor synthesis intractable. This clearly illustrates the necessity of abstraction
away from pure state and sensory data to preprocessed symbolic representations. Such an abstraction,
however, also implies that, as opposed to the standard framework, the system model is not precisely
known a priori and it is thus not possible to construct a complete supervisor off-line. Under such
conditions, an approximate supervisor has to be augmented by on-line modification and correction
capabilities in order to achieve successful task performance.

A second problem for the application of the DEDS framework to complex domains is the need
to completely model the plant behavior a priori. In general, the complexity of such models increases
exponentially with respect to the number of possible state variables. For systems with large numbers
of degrees of freedom, operating in unstructured environments this implies that the design of such a
complete model easily becomes intractable for the designer. To cope with this complexity, sensor and
state abstractions have therefore to be more than just discretizations of state variables and sensors
but rather have to reduce the dimensionality of the underlying state and event spaces. To achieve
this, complete subspaces, as well as the continuous character of individual state variables have to
be removed from the supervisory control system and handled inside continuous control modules. In
addition this abstraction of the state and event spaces should allow the automatic derivation of the
complete abstracted plant model from simple, modular subspace descriptions, thus reducing the work
of the designer and allowing for more flexibility and faster adaptation to new task domains.

Together such abstractions away from pure sensor data and robot state variables require the use
of underlying continuous control and sensing modules which act as event generators for the DEDS
framework, and thus lead to a hybrid system which attempts to use the analysis and automatic
supervisor synthesis capabilities of the DEDS framework while reducing its complexity by adding a
reactive component to suppress uncertainties and unmodeled effects.

3.1 Traditional Robot Control

As opposed to DEDS systems, traditional approaches to robot control operate on continuous state
spaces and in continuous time. Here continuous control laws are derived which determine the actions
of the system based on its current sate.

In the case of model-based approaches to control, the dynamics of the system and its environment,
as well as all sensory aspects of the plant have to be incorporated into a single control law. This,
however, implies, that a complete, continuous model of the behavior of the system has to be known a
priori, and that the resulting control is only as robust as the underlying system model, leading to very
limited error recovery capabilities. In addition, system models easily become highly non-linear and

20

non-stationary, and thus hard to derive, in the presence of dynamic systems with higher numbers of
degrees of freedom. This and the fact that a new control law has to be derived by the system designer
whenever the task or the environment change, dramatically reduce the applicability of the approach
to complex tasks.

To circumvent the problem of model dependence and to obtain more robust systems in the case
of less known environments, behavior based approaches have been introduced. Here control is derived
from combinations of elemental, reactive behaviors without the use of a global model. Due to the
procedural character of these behaviors and the resulting combination schemes, however, a change in
the task characteristics still requires the designer to create a new set of elemental behaviors to address
this new task and to redesign the manner in which behaviors interact. In addition, the possible size
of the resulting set of controllers can still lead to very complex interaction schemes which are hard to
design for complex systems.

Compared to these standard approaches to robot control the use of DEDS offers thus significant
design advantages due to the underlying theoretical framework and the possibility of automatic super-
visor synthesis. In contrast to these highly designer oriented methods, the use of hybrid DEDS could
allow the automatic generation of a control mechanism in such a way, that “safety” constraints and
error recovery capabilities are asserted off-line without the loss of on-line reactivity.

3.2 Hybrid Systems

As seen in the previous sections, continuous control laws and discrete, symbolic control mechanism
address different aspects of the control of a system in different ways and also have different weaknesses
and strength. While continuous control allows to cope with the temporal aspects of the system
dynamics, more abstract, symbolic supervisory control schemes allow to employ more formal methods
to address the contingencies involved in complex tasks. These different characteristics suggest the
potential benefit of combining the two methods, resulting in a more powerful and less complex hybrid
system which can employ the power of both approaches.

Such hybrid systems have only lately received some attention in the robotics literature, mainly in
the form of hierarchically structured control schemes which attempt to integrate longer term planning
with lower level reactive control units [Con92, MB90]. Most of these systems, however use higher level
coordinating mechanisms which do not provide any additional analysis capabilities and which can not
be automatically synthesized. The use of DEDS in such a hybrid control architecture as in [SAL96],
however, would allow this synthesis whenever a system model can be derived within the state space
abstraction utilized by the DEDS. Some work has been done to employ this capability in order to
coordinate reactive control modules for simple control coordination tasks [KB94, Bog93, BB94]. Most
of these approaches, however, still require “custom made” sensor abstractions as well as completely
user defined system models, thus effectively reducing the capability of the approach to rather simple
systems. In addition these approaches, like subsumption architectures, use procedural behaviors as the
underlying control abstractions and can thus not easily generalize across tasks, requiring a redesign
whenever the task changes. These observations already raise various questions about the important
aspects in the design of a hybrid system involving an underlying set of continuous controllers and a
supervising DEDS scheme.

One of the main objectives in the use of a hybrid DEDS system is to reduce the complexity of
the control system in order to make the control of more complex systems and tasks tractable. To
achieve this it is important to actually distribute the complexity of the control problem among the
two parts of the control approach and not to include the same state space inside the controllers and
inside the DEDS transition model. This division of the underlying continuous state and event spaces

21

should ensure that that both approaches can still exhibit their main strength but do not encounter
their main limitations. For the continuous control part this implies that individual controllers should
be derived for small subspaces rather than for the complete continuous state space. Such controllers
then represent solutions to various subproblems which can be coordinated using the DEDS framework.
For the DEDS supervisor such a representation can then be used to effectively reduce the problem of
continuous time and continuous state spaces by acting as generators of more symbolic events. Using
these abstracted events, the supervisor synthesis problem can be reduced to one on a more abstract
state space, ignoring parts of the system and controller dynamics which are handled automatically
within the continuous control elements. To allow such an abstraction, however, and to remove the
necessity of continuous monitoring at the supervisor level, the continuous control modules have to
modify the state of the system in a predictable, task independent manner and thus have to be more
formally designed than in most current approaches.

Besides the reduction of complexity, preservation of the analysis and synthesis capabilities of
the DEDS framework also requires a tight integration of the continuous control into the overarching
supervision scheme and thus into the global plant model. Since in the DEDS formalism control is
exerted by allowing certain controllable events to occur, activations of continuous controllers, which
represent the means of actively manipulating the state of the system in the hybrid framework, have to
be incorporated as controllable events into the abstract plant model of a hybrid system. This requires
that the effects of these modules have to be formally specified within the symbolic state abstraction
used for the supervisor synthesis. In addition, all essential task constraints have to be expressible over
this state space and can not be affected in any other ways by the continuous aspects of the plant.
The continuous control elements therefore partially determine the state space abstraction required for
automatic synthesis of the overall control system. Taking this one step further, a formal specification
of the possible effects of each of the control modules on the way the system behaves could also be used
as the starting points of an automatic generation of at least major parts of the symbolic plant model
used in the DEDS framework. .

Overall, a careful design of the continuous control modules and the state space and event abstrac-
tions can dramatically reduce the complexity of the control system, extending its applicability to more
complex physical systems, and also reduce the specification requirements to the system designer.

4. The Hybrid DEDS Approach

The design of a control system in general requires the consideration of a large number of factors and
the commitment to certain tradeoffs in order to make the system feasible. Major tradeoffs necessary in
robotic systems include the ones between the amount of on-line adaptation necessary and the degree of
model dependence of the system, as well as between the degree of generality and the required system
complexity and optimality. In hybrid DEDS systems such tradeoffs reflect heavily on the overall
structure of the control architecture since its design strongly influences the functionality. As described
in the previous section, the design of the continuous control modules, as well as of the abstraction used
for the coordinating DEDS model largely determine the precise capabilities of the resulting controller
and have thus to be designed accord<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>