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Abstract

Schema evolution is a problem that is faced by long-lived data. When a schema changes, existing
persistent data can become inaccessible unless the database system provides mechanisms to access data
created with previous versions of the schema. Existing systems that support schema evolution focus
on changes local to individual types within the schema, thereby limiting the changes that the database
maintainer can perform. We have developed a model of type changes incorporating changes local to
individual types as well as compound changes involving multiple types. The model describes both type
changes and their impact on data by defining derivation rules to initialize new data based on the existing
data. The derivation rules can describe local and non-local changes to types to capture the intent of a
large class of type change operations. We have built a system called Tess (Type Evolution Software
System) that uses this model to recognize type changes by comparing schemas and then produces a
transformer that can update data in a database to correspond to a newer version of the schema.

1 Motivation

Databases frequently have long lives. During a database’s lifetime, the database schema is likely to un-
dergo significant change as new demands are placed on the data. The database schema serves two purposes.
First, it defines an interface for programs and users to query the data contained within the database. Second,
it determines how the database management system physically stores the data on the disk. When the schema
is changed so that the data can be used for a new purpose, this also impacts the way data is physically stored.
The goal of schema evolution research is to allow schema definitions to change while maintaining access to
data that has already been stored to disk.

There are two major issues involved in schema evolution. The first issue is understanding how a schema
has changed. The second issue involves deciding when and how to modify the database to address such
concerns as efficiency, availability, and impact on existing code. Most research efforts have been aimed at
this second issue and assume a small set of schema changes that are easy to support, such as adding and
removing record fields, while requiring the maintainer to provide translation routines for more complicated
changes. As a result, progress has been made in developing the backend mechanisms to convert, screen, or
version the existing data, but little progress has been made on supporting a rich collection of changes. The
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purpose of this work is to enrich the collection of changes supported, independent of the backend mechanism
used to manage the data.

Existing database systems that provide schema evolution support changes isolated to individual types
within a schema, such as adding a field to a record. More radical changes of representation, such as com-
bining two records are either difficult or impossible with existing database systems. Changes isolated to
individual types are not always sufficient, however. A new record may be created to combine the informa-
tion of several related records, or a large record may be decomposed into several simpler ones. Such changes
will clearly impact the representation of persistent data.

The flexibility in data type definition offered by object-oriented databases and persistent programming
languages admits the possibility of more complicated changes than those typically encountered in relational
database systems, making schema evolution a more difficult problem.

With persistent programming languages the evolution problem is more pervasive than with databases.
When using a database, those types that have persistent data are defined in the schema, while transient types
are defined in traditional programming languages that interoperate with the database. The transient types
can be changed without impacting the persistent data. With persistent programming languages, there is
typically no distinction in the programmer’s eyes between transient and persistent types. In particular, some
persistent programming languages, such as PGraphite, Pleiades, Napier-88, and PS-Algol [WWFT88, TC93,
DCBM89, ABC 83], treat persistence orthogonally to types. With these languages, an instance of any type
can be made persistent dynamically. This approach is very powerful and flexible, since it allows programs
to manipulate data uniformly without being concerned about whether it is persistent or transient data. It
aggravates the evolution problem, however, because every type potentially has persistent data associated
with it. Modifying any type definition can make some persistent data inaccessible.

Unfortunately, there is little published data [GKL94, Sjø93] about how persistent or transient types
change during maintenance. Researchers studying maintenance of object-oriented hierarchies, which are
not necessarily persistent, cite modifying types in the hierarchy and reorganizing the hierarchy as frequently
desirable activities [JO93, OJ93, LBSL91, OJ90, Cas90, MS92a]. One can expect, however, that maintainers
are reluctant to make radical changes to an object-oriented hierarchy or any other persistent type or schema
definitions if those changes make it difficult or impossible to access existing data. As a result, the maintainers
may sacrifice other desirable properties for their schemas and type definitions such as appropriateness of
abstractions, modularity, efficiency, etc.

Our goal is to facilitate schema evolution involving complex type changes to allow more natural evo-
lution of persistent types. We have developed a model of type changes incorporating changes local to
individual types as well as compound changes involving multiple types. The model describes both type
changes and their impact on data by defining derivation rules to initialize new data based on the existing
data. The derivation rules can describe local and non-local changes to types to capture the intent of a large
class of type change operations.

2 Overview

One way to design a schema evolution system is to define schema modification commands to implement
each type change that we want to support. The advantage of this approach is that the maintainer can explicitly
inform the schema evolution system of the changes. For each type change, the system defines the effect that
the change will have on the data. By choosing the appropriate commands, the maintainer simultaneously
modifies the schema and develops a transformer to update the existing data. For example, there may be a
command to add fields to a record whose effect on the data is to create a new field set to a default value.
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Another command may be used to delete a field from the type. Its effect is to delete the data corresponding to
that field. In this type of system, there will be many specialized commands to accomplish all the supported
type changes such as changing the size of an array, adding a value to an enumerated type, etc. When dealing
with type changes isolated to individual types, it is possible for us to enumerate all the changes that may
occur, provide a command for each of these, and define precisely what the effect on existing data will be.

Now, let’s consider a more complex type change. Suppose the maintainer wants to move a field from
one record to another. If the maintainer applies the delete-field command on the original type followed by
the add-field command on the new type, this will be treated as two separate commands. The semantics
of the delete-field command will result in deletion of the associated data. The semantics of the add-field
command will result in addition of a new field set to some default value. To solve this problem we could
introduce a new command, move-field. Now, there are two ways in which the maintainer can modify the
types. If one examines the type definitions after the changes using the two approaches, the definitions are
identical. The effect on the persistent data is quite different, however. When using the delete-field and add-
field commands, data is lost. When using the move-field command, data is preserved. The maintainer needs
to understand this difference and needs to be careful in choosing which commands to use when modifying
the types. The problem is that the command approach focuses on the editing process rather than the editing
result. Furthermore, the number of commands would proliferate and the complexity of using the schema
evolution system would increase as more complex type changes are supported.

Another alternative is to allow the maintainer to modify the types as necessary and then compare the
two versions of the schemas to identify the changes, thereby focusing on the editing result rather than the
editing process. The advantage is that the maintainer can edit the schemas using a normal editor, focusing
on producing the correct new type definitions without worrying about the exact process used to create those
new definitions. The disadvantage is that the system must now infer how the types have changed instead
of being explicitly told. In this research, we have developed algorithms to perform these inferences by
comparing successive versions of a schema to identify the changes. The schema comparison algorithms use
naming similarities, structural similarities, and interrelationships among the types from successive versions
to infer the type changes. Experimentation with these algorithms has demonstrated that they can identify a
wide variety of type changes successfully.

Of course, it is also possible that the algorithms will make incorrect inferences. As a result, it is im-
portant for the maintainer to be involved in the type comparison process. We have incorporated maintainer
control into the type comparison algorithms in several ways. First, the maintainer can control which types
are compared, if desired. Second, the algorithms can generate multiple inferences of observed type changes
from which the maintainer can choose. Third, the algorithms associate a qualitative assessment with each
inference indicating the complexity of the change and its impact on the data. The maintainer can use these
assessments to set thresholds on the comparison algorithms or to focus attention on the more complex infer-
ences or those with greater impact on the data. Finally, the maintainer can ignore the inferences generated
by the algorithm and explicitly tell the system what the impact on the data should be. Using these tech-
niques the maintainer can guarantee that the type changes have the appropriate impact on the existing data.
Note that this ability to review the anticipated impact on existing data is useful to remove ambiguity even if
schema modification commands are used, particularly in the case where there are multiple commands that
lead to the same result as in the move-field example earlier.

As another example of a type change that requires understanding the impact on multiple types simul-
taneously, consider adding a new type to a schema. In most database systems this change is understood
in isolation from other changes. When a new type is added, it has no impact on existing data. It is quite
likely, however, that the addition of a new type actually represents the reorganization of other types in the
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schema. For example, an individual type may be split into two types. The desired effect on the data is to
move the data associated with the fields of the new type from objects of the old type to new objects. We
could define a split-type command to accomplish this, further complicating the maintainer’s job. Instead,
we develop algorithms to recognize that a type has been added and then look for modified types that may
act as sources of information for objects of this new type. Similarly, in most database systems, type deletion
results in deletion of objects of the type. Instead, our algorithms look for other modified types that may
serve as destinations for the data that would otherwise be deleted.

When supporting changes local to an individual type, the appropriate object changes can be performed
by modifying each object in isolation. For example, if a field is deleted from a type, each object of that
type can be modified independently of all other objects. The same is not true when supporting changes that
affect multiple types. Implementing a single change may require modifying more than one object. Consider
moving a field from one type to another again. To implement this change correctly, we must move data from
one object to another. This implies that we must identify pairs of objects to operate on. Our algorithms
identify collections of objects in two ways. Objects may be related structurally. That is by dereferencing
fields of one object transitively we may reach other objects that we need to modify. Alternatively, objects
may be related by having a common value. This is similar to a relational join operation. Identifying these
collections of objects is key to being able to implement complex type changes.

Most schema evolution research has addressed the problem of how to update existing data efficiently
assuming the type changes are well understood. The emphasis of the research described in this paper is
to understand how schemas change during evolution and to develop algorithms that can recognize those
changes. Our goal is to represent the schema changes that occur in such a way that their effect on existing
data can be accomplished using a variety of data translation mechanisms. For example, in small databases
that may belong to an individual user, we can make the database unavailable temporarily and transform all
data in the database at once. For large, shared databases, we can employ more sophisticated algorithms such
as those developed by Ferrandina [FMZ94] to transform individual objects as they are accessed in order to
maintain high availability. In situations where the data is shared by many programs, schema changes may
also impact a great deal of code. In those cases, we can use the inferences we produce to define views on the
data. Thus, the emphasis of this research is to develop algorithms that can recognize complex type changes
made by a maintainer. Instead of constraining the maintainer to perform only supported type changes using
a small set of primitive type change commands, we give the maintainer great flexibility in how to change
the types. We are addressing the front-end problem of understanding schema changes in a flexible manner
to allow integration with a variety of data translation mechanisms.

The remainder of the paper is organized as follows. In Section 3 we describe related work in schema
evolution. In Section 4 we present the type model used in this research. In Section 5 we describe a model of
how data changes in response to schema changes. In Section 6, we present a model for simple type changes.
In Section 7, we present our model of compound type changes. In Section 8, we present an example schema
evolution that uses compound type changes. In Section 9, we describe some algorithms developed to com-
pare schemas. In Section 10, we describe some experimental results with the type comparison algorithms.
In Section 11 we describe future directions of our research and conclude in Section 12.

3 Related Work

The problem of schema evolution was first addressed with respect to traditional database systems. While
many database systems support a few simple changes automatically, such as adding or deleting record fields,
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only a few systems [SHL75, Nav80, ST82] support more general transformations. In these cases, the main-
tainer is responsible for explicitly describing how to convert the data from its old format to its new format
using a special-purpose data translation language. This approach is a powerful one, but creation of the
transformer is a manual process.

More recent database systems generate transformation functions based upon the changes made to the
type definitions. Orion [BKKK87, KK88] and GemStone [PS87] are object-oriented database systems that
provide some evolution support. In these systems, evolution is defined in terms of primitive operations that
change individual type definitions, such as adding instance variables to a class, removing instance variables
from a class, and renaming instance variables. Some type changes are completely automated, but at the
expense of limiting the ways in which a maintainer can change type definitions. For example, in Orion the
type of an instance variable can only be replaced by a supertype in the type hierarchy. More complex type
changes, such as combining two records, are not supported directly. Instead this change is accomplished
as several independent changes as follows. The maintainer deletes each instance variable individually from
one of the types. The maintainer adds an equivalent instance variable to the second type for each instance
variable deleted from the first type. The maintainer modifies all references to the first type to refer to the
second type. Finally, the maintainer deletes the first type. Since each change is treated individually rather
than as a collection of related changes, deleting the instance variables results in deleting the data contained in
those instance variables. To preserve the data, the maintainer must develop code to move the data explicitly.
In GemStone the maintainer directly extends the transformer, while in Orion the maintainer must develop
and execute programs to move the data prior to deleting the instance variables containing the data.

O [BFK95] is another object-oriented database system that supports evolution through the use of oper-
ations. In addition to primitives similar to those of Orion and GemStone, O provides high-level operations
to manipulate the class hierarchy. These high-level operations are defined as a composition of primitive
operations. As a result, they provide better support for the maintainer in expressing type changes and pre-
serving data. For example, the Abstraction-Generalization operation can be used to create a new superclass
that generalizes a set of existing classes. While these high-level operations support more complex changes
than previous systems, defining type changes via a pre-defined set of operations necessarily restricts the
kinds of type changes that are supported. In particular, while they have numerous operations to allow the
definition of new classes and migration of existing objects to these new classes, none of their operations
allow simultaneous modification of multiple types such as moving a field from one existing type to another.

Another approach to schema evolution relies on the simultaneous maintenance of multiple versions
of types and data[SZ86, Cla94, Bra92, MS92b, TS92]. With these approaches, multiple versions of the
same type exist within a single database. The advantage is that old and new code can operate on old and
new data without requiring either to be changed. The disadvantage is that the maintainer must provide
routines to make data appear to be of the version of the type that the code is expecting. This approach
admits more general changes, but it still limits changes to be isolated to individual types. It also results in
significant overhead (in both space and time) for maintaining and accessing multiple type and data versions.
Odberg [Odb94] extends the versioning approach to the entire schema, which is versioned when a type is
modified. This allows the description of changes that simultaneously affect multiple types, but still requires
the maintainer to define the translation routines between versions.

TransformGen [GKL94] is a system to support evolution of abstract syntax grammars used by Gan-
dalf programming environments [HN86, HGN91]. The abstract syntax grammars are analogous to type

Note that if the type being deleted is used as the type of an instance variable, we cannot in general replace its type with the
second type since the second type is not necessarily a supertype of the first type. In that case, we would need to delete the instance
variable and create a new instance variable of the desired type.

5



definitions; they define the format of the abstract syntax trees stored in databases maintained by Gandalf
environments. The abstract syntax changes for which TransformGen automatically generates transforma-
tion routines are analogous to the type changes supported by Orion and GemStone. TransformGen goes
beyond these two systems, however, by allowing the maintainer to modify the generated transformation us-
ing a declarative data manipulation language. In this way, the maintainer can perform complex type changes
using the primitive operations provided and then easily fix the generated transformations to have the in-
tended effect. The significance of this extensibility is that the resulting transformers can handle arbitrary
type changes, including those involving multiple types, but without requiring the maintainer to write trans-
formation routines. While the maintainer can extend the transformer, there is little guidance in identifying
the limits of the generation process and the situations that require extension. OTGen [LH90] is a system de-
signed using the concepts developed in TransformGen to support flexible transformation of object-oriented
databases. As such it has many of the features and limitations of TransformGen, but is aimed at a more
general type system.

4 Type Model

Before discussing the details of the type change model, we must first present the type model that we use.
The type model is a language-independent type model that captures features common to many programming
languages. We are concerned with the structural aspects of the type model as those are most relevant to
understanding the impact of schema changes on persistent data. As a result, we do not treat the types as
abstract types, although they may, in fact, be implemented abstractly. In our examples, we therefore present
the type representations used, but not the interfaces or operations belonging to those types.

A schema consists of a collection of type definitions. Schema changes are performed by editing types
within the schema. Editing a schema is treated as an atomic operation, independent of how many types are
modified in the process.

The type model includes the predefined types of character, integer, string, and boolean. Programmers
can define new types using the following constructors: record, bounded and unbounded array, set, multi-set,
union, enumeration, subrange, pointer, and alias.

Data is organized into objects. Each instantiation of a type results in the creation of a new object. Each
object has an object identifier to allow objects to reference each other. Each object is tagged with its type.
An object can be made persistent at any time. When an object is made persistent, all other objects reachable
from that object are also made persistent. Any object can serve as the root of such a persistent structure.

Because the type model does not a priori restrict persistence in any way, the schema evolution support
must be very general as it must support changes to any type within a schema.

5 Object Changes

What makes schema evolution an interesting and difficult problem is not that types change, but rather
the impact that those type changes have on persistent objects. Therefore we begin by presenting a model of
how objects can change as a result of schema evolution. Following that, we describe how types can change
and relate type changes to object changes.

This persistence model could be changed without impacting the research presented here significantly. For example, the model
could allow the maintainer to restrict persistence to a subset of the types, allow only a subset of the types to be roots of persistent
structures, or not automatically make all objects reachable from a persistent instance persistent.
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There are fundamentally three object operations associated with evolution: initialization, derivation,
and deletion. New objects can be initialized to a default value. New objects can be derived from existing
objects. Existing objects can be deleted. As derivation is the only technique that involves both existing and
new objects, it is of greatest interest.

Derivation rules define how to derive new objects from existing objects. A derivation rule specifies a
source type, a destination type, and a derivation function. The source type is a type from the schema before
modification. It identifies the type of an existing object to transform. The destination type is a type from
the schema after modification. It identifies the type of the new object to create. The derivation function is a
function to apply to a source object to create a destination object. The simplest derivation function simply
copies an existing object unmodified. A more complicated function might traverse the persistent structure
starting at the source object to perform a more complex derivation such as summing a collection of values
to produce a total, or selecting the median from a collection of values.

When evolving an object, we apply the derivation rule associated with the type of the existing object to
create a new object. A derivation rule for a structured type, such as a record, is typically defined using other
derivation rules. For example, to derive a new record object, it is necessary to assign a value to each new
record field. The fields may be initialized to a default value or themselves derived from existing objects.

6 Simple Type Changes

We categorize simple type changes as being either local type changes or reference type changes (Figure
1 defines a complete list of all simple type changes in our type model.) A local type change affects the
structure of an individual type, such as adding a record field or changing the bounds of a subrange. A local
type change affects data local to individual objects. The effects of local type changes can be expressed with
derivation rules that derive each new object from a single old object. For example, a derivation rule for
a record type can capture all local changes to records by initializing new fields, deleting fields no longer
belonging to the record type, and providing a one-to-one mapping between the fields present in both the old
and new versions of the record.

A reference type change replaces a type used within a type constructor with another type, such as chang-
ing the type of a record field or an array element. To fully understand how the constructed type is changed,
it is necessary to understand the relationship between the old and new reference types. The effects of each
reference type change are described with a derivation rule from the old reference type to the new reference
type. This separation of concerns makes the derivation rules easier to understand since each derivation rule
describes changes local to an individual object. For example, when deriving a new record field from an old
one, we would refer to a derivation rule defined between the type of the old field and the type of the new
field.

Existing database systems that support schema evolution interpret all type changes as simple type
changes similar to those outlined above. Changes that make objects of a type smaller, such as deleting
a record field, result in deletion of data. Those that make objects of a type larger, such as adding a record
field, result in fields initialized to a default. Reference type changes result in application of the derivation
rule for the reference type. The only derivation rules produced by these systems are rules that derive new
objects by copying values local to the corresponding old object. Definition of non-local derivation rules is
left to the maintainer.
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Local type changes:

– Creating or deleting a type
– Changing the name of a type
– Changing the type constructor of a type

Changing an array type to a set or multi-set type, or vice versa.
Changing a set type to a multi-set type, or vice versa.
Replacing one scalar type with another.

– Changing a type constructor argument
Adding an enumeration value, deleting an enumeration value, reordering enumeration val-
ues, or renaming an enumeration value.
Changing the lower or upper bounds of a subrange type.
Adding a record field, deleting a record field, reordering record fields, or changing the name
of a record field.
Adding an array dimension, deleting an array dimension, changing the bounds of an array
dimension, or reordering array dimensions.

Reference type changes:

– Changing the type referenced by a pointer or alias type.
– Changing the type a subrange is defined over.
– Changing the type of a record field.
– Changing the index type of an array dimension.
– Changing the type of array, set, or multi-set elements.

Figure 1: Simple Type Changes

8



7 Compound Type Changes

For database systems to support non-local derivation rules, they must have a richer model of type
changes. These compound type changes modify more than one type and as a result affect more than one
object. Compound type changes compose three basic kinds of type operations, type deletion, type creation,
and type modification, to produce more complex type changes. As with simple type changes, the fundamen-
tal object change that is desired is derivation of the value for a new field from the value of one or more old
fields. In the case of compound type changes, however, the old and new fields belong to different types, not
different versions of the same type. Each compound type change could be modeled as a collection of simple
type changes, where old fields are deleted from their types and the new field is added to a different type. In
doing so, however, the ability to describe non-local derivation is lost. In our model we include compound
type changes whose effects on objects are defined with non-local derivation rules. In Figure 2, we list the
compound type changes in our model. In this section we define the compound type changes provided by our
model.

Inline — Replacing a type reference with its type definition.

Encapsulate — Creating a new type by encapsulating parts of one or more old types.

Merge — Replacing two or more type definitions with a new type that merges the old type definitions.

Move — Moving part of a type definition from one type to another existing type.

Duplicate — Duplicating part of a type definition in another type definition.

Reverse link — Reversing the connection between two types.

Link addition — Adding a link between two existing types.

Figure 2: Compound Type Changes

7.1 Type Deletion

When deleting a type, a database maintainer is either reorganizing the type system or removing func-
tionality. In the former case, the fields of the deleted type most likely become associated with another type,
either a new type or an existing type. In these cases, the data associated with the deleted type should be
moved to existing instances of the modified/created type.

One kind of compound change involving type deletion is inlining. Inlining involves replacing a use of a
type with the type definition. Figure 3 provides an example of inlining. Here the address field is replaced
with a collection of fields previously contained in the Address type. The new field values are derived from
fields of the old Address object. If this compound type change were viewed as a collection of simple type
changes, the new fields would be uninitialized and the old Address object would be deleted.

Another compound type change involving type deletion is merging. Merging deletes two or more object
types and creates a new type that represents the integration of the deleted types. Figure 4 provides an
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Old version:

type Person is
name: string;
address: Address;

end Person;

type Address is
street: string;
city: string;
state: string;
zipcode: integer;

end Address;

New version:

type Person is
name: string;
street: string;
city: string;
state: string;
zipcode: integer;

end Person;

Figure 3: Inlining

example of a merge type change. Here two or more objects must be located and combined to define a new
object. In the example, PersonalInfo and EmployeeInfo objects that have the same value in their
name field will be combined. This merge change finds its pairs of objects by joining on the name field. If
the name field does not serve as a key for the two types, the results are ambiguous.

As these two examples indicate, for complex type changes to be integrated into a schema evolution
system, it must be possible to identify collections of objects to modify instead of individual objects as with
simple type changes. The inlining example showed a relationship between objects based on a structural
connection, while the merging example showed a relationship based on equivalent values. A database
maintainer could define other relationships as well.

7.2 Type Creation

There are two type creation operations that are analogous to the type deletion operations. The merging
compound type change discussed above also involves type creation. The second type creation operation is
encapsulation. Encapsulation produces the opposite effect of inlining. Here one or more fields are replaced
with a single field. The type of the new field includes the old field type(s) as a reference type(s). An
example of encapsulation can be seen by swapping the old and new versions in Figure 3. As with inlining,
the relationship between objects is structural.

7.3 Type Modification

Compound type changes may involve the modification of types without requiring types to be created or
deleted. There are four kinds of type changes fitting this description: moving, duplication, link reversal, and
link addition.

Both moving and duplication involve deriving a new field from an old field. The difference is that moving
deletes the original field while duplication maintains the original field. As with simple type changes, the
derivation associated with moving and duplication may derive a new value, not just copy the old value.
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Old version:

type PersonalInfo is
name: string;
address: Address;
phone: Phone;
marital status: MaritalStatus;
num children: integer;

end PersonalInfo;

type EmployeeInfo is
name: string;
id: integer;
salary: integer;

end EmployeeInfo;

New version:

type Person is
name: string;
address: Address;
phone: Phone;
marital status: MaritalStatus;
num children: integer;
id: integer;
salary: integer;

end Person;

Figure 4: Merge

Figure 5 shows the address and phone fields being moved from the Personal Info type to the Person type.
In this case, the corresponding objects are identified using their structural relationship, specifically, the
Personal Info and Person objects that are connected using the Person.personal field are modified together.
Figure 6 shows duplication between objects with a value relationship. Here the id field is duplicated from
the EmployeeInfo object to the PersonalInfo object with the same value in their name fields.

Link reversal involves reversing the direction of a pointer. For example, consider Figure 7. Originally,
the PersonalInfo type has a pointer to the EmployeeInfo type. In the modified version, EmployeeInfo has a
pointer to the PersonalInfo type. Here we are reversing the structural relationship between two types.

Link addition involves adding a link between two existing types. The difference between this change
and the simple type change of adding a record field is that in the former case we expect the value of the
new link field to be an existing object, while in the latter case we expect to create a new value for the new
field. Once again, we can use either structural or value relationships to identify pairs of objects to add a link
between. For example, Figure 8 shows the addition of an inverse link between two structurally connected
types.

7.4 Limitations of the Compound Type Change Model

While this model of compound type changes allows a schema evolution system to develop non-local
derivation rules, the maintainer still needs to be involved directly in the definition of derivation rules for
two reasons. First, the default for both local and non-local derivation rules is to copy old values. If the
maintainer wants to use a different function, such as summing a collection of values, or finding a median,
the maintainer must provide this function explicitly. Second, the merge, move, duplicate, and link addition
type changes require finding collections of old objects to operate on. It may be necessary for the maintainer
to indicate how to find matching objects to operate on, particularly if the relationships are not structural or
by equivalent values.

11



Old version:

type Person is
name: string;
personal: Personal Info;

end Person;

type Personal Info is
address: Address;
phone: Phone;
marital status: MaritalStatus;
num children: integer;

end Personal Info;

New version:

type Person is
name: string;
address: Address;
home phone: Phone;
personal: Personal Info;

end Person;

type Personal Info is
marital status: MaritalStatus;
num children: integer;

end Personal Info;

Figure 5: Moving Using a Structural Relationship

Old version:

type PersonalInfo is
name: string;
address: Address;
phone: Phone;
marital status: MaritalStatus;
num children: integer;

end PersonalInfo;

type EmployeeInfo is
name: string;
id: integer;
salary: integer;

end EmployeeInfo;

New version:

type PersonalInfo is
name: string;
id: integer;
address: Address;
phone: Phone;
marital status: MaritalStatus;
num children: integer;

end PersonalInfo;

type EmployeeInfo is
name: string;
id: integer;
salary: integer;

end EmployeeInfo;

Figure 6: Duplication Based on Value Relationship
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Old version:

type PersonalInfo is
name: string;
address: Address;
phone: Phone;
marital status: MaritalStatus;
num children: integer;
emp info: EmployeeInfo;

end PersonalInfo;

type EmployeeInfo is
id: integer;
salary: integer;

end EmployeeInfo;

New version:

type PersonalInfo is
address: Address;
phone: Phone;
marital status: MaritalStatus;
num children: integer;

end PersonalInfo;

type EmployeeInfo is
name: string;
id: integer;
salary: integer;
private info: PersonalInfo;

end EmployeeInfo;

Figure 7: Link Reversal

Old version:

type PersonalInfo is
name: string;
address: Address;
phone: Phone;
marital status: MaritalStatus;
num children: integer;
emp info: EmployeeInfo;

end PersonalInfo;

type EmployeeInfo is
id: integer;
salary: integer;

end EmployeeInfo;

New version:

type PersonalInfo is
name: string;
address: Address;
phone: Phone;
marital status: MaritalStatus;
num children: integer;
emp info: EmployeeInfo;

end PersonalInfo;

type EmployeeInfo is
id: integer;
salary: integer;
private info: PersonalInfo;

end EmployeeInfo;

Figure 8: Link Addition
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8 Example

Compound type changes can be combined to produce interesting schema changes whose effects on
existing data can be understood following the model given. In this section, we provide an example of a real
schema evolution and describe how it fits into the compound type change model.

Figure 9 shows consecutive versions of a collection of interrelated types extracted from TAOS, a software
testing tool [Ric93]. In this example, we see three modified types and four new types.

Old version:

type SaveTestCases is (nada, todo);

type RandomTestInfo is
MinLength: natural := 0;
MaxLength: natural := 0;
NumberRequired: positive := 1;
Persistence: SaveTestCases := todo;
NumberNonPersistentPassed: natural := 0;
NumberNonPersistentFailed: natural := 0;

end;

type TestClass is
ExtraInfo: RandomTestInfo;

end ;

New version:

type TestCaseState is (Pass, Fail, Untested);

type SaveTestCases is array ( TestCaseState )
of boolean;

type RandomTestInfo is
MinLength: natural := 0;
MaxLength: natural := 0;
NumberRequired: positive := 1;

end;

type Saved is ( persistent, nonpersistent );

type TestCaseCounts is
array ( Saved, TestCaseState ) of natural;

type TestCasesInfo is
PersistencePreferences: SaveTestCases :=

Default Persistence;
NumTestCases: TestCaseCounts :=

Default Counts;
end;

type TestClass is
TestSetInfo : TestCasesInfo := Create;
ExtraInfo: RandomTestInfo;

end;

Figure 9: Schema Evolution in TAOS

If we consider each type in isolation, we see the following simple type changes: three fields have
been deleted from RandomTestInfo, one field has been added to TestClass, SaveTestCases has
changed from an enumerated type to an array of booleans, and four new types have been created. Treating
these as simple type changes would result in the deletion of the values associated with the deleted fields of
RandomTestInfo, the initialization of the new field in TestClass to its default value, and the deletion
of values of the SaveTestCases type.

Now, let’s reconsider the example as a sequence of compound type changes.
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Moving: The Persistence, NumberNonPersistentFailed, and
NumberNonPersistentPassed fields are moved to the TestClass type using a structural
relationship..

type RandomTestInfo is
MinLength: natural := 0;
MaxLength: natural := 0;
NumberRequired: positive := 1;

end;

type TestClass is
Persistence: SaveTestCases := todo;
NumberNonPersistentPassed: natural := 0;
NumberNonPersistentFailed: natural := 0;
ExtraInfo: RandomTestInfo;

end;

Encapsulation: The NumberNonPersistentFailed and NumberNonPersistentPassed
fields are encapsulated into a new field named NumTestCaseswhose type is the new
TestCaseCounts type. Specifically, the value of the NumberNonPersistentFailedfield is
moved to the TestCaseCounts element indexed by (nonpersistent, Fail). The value of
the NumberNonPersistentPassed field is moved to the TestCaseCounts element indexed
by (nonpersistent, Pass).

type TestCaseState is (Pass, Fail, Untested);

type Saved is ( persistent, nonpersistent );

type TestCaseCounts is array ( Saved, TestCaseState ) of natural;

type TestClass is
Persistence: SaveTestCases := todo;
NumTestCases: TestCaseCounts := Default Counts;
ExtraInfo: RandomTestInfo;

end;
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Encapsulation: The Persistence field is encapsulated into an attribute named
PersistencePreferenceswhose type is the new SaveTestCases. The value of the field is
duplicated in each element of the SaveTestCases array, translating nada to false and todo to
true.

type TestCaseState is (Pass, Fail, Untested);

type SaveTestCases is array ( TestCaseState ) of boolean;

type TestClass is
PersistencePreferences: SaveTestCases := Default Persistence;
NumTestCases: TestCaseCounts := Default Counts;
ExtraInfo: RandomTestInfo;

end;

Encapsulation: PersistencePreferences and NumTestCases are encapsulated into a new
field named TestSetInfowhose type is the new TestCasesInfo type.

type TestCasesInfo is
PersistencePreferences: SaveTestCases := Default Persistence;
NumTestCases: TestCaseCounts := Default Counts;

end;

type TestClass is
TestSetInfo : TestCasesInfo := Create;
ExtraInfo: RandomTestInfo;

end;

This example demonstrates the type change model. It also demonstrates that describing these type
changes via editing commands would be cumbersome. We have developed type comparison algorithms to
support such changes without requiring the user to specify them with explicitly.

9 Type Comparison

For our type comparison approach to be feasible, we assume that between successive versions of a
system, most type definitions remain mostly the same. We rely heavily upon the similarities that exist to
quickly prune the space of types that must be compared. Since the types in databases tend to experience
evolutionary change, rather than revolutionary change, we do not expect this to be a significant problem for
most situations. In those situations in which revolutionary changes occur, the maintainer can and should
provide more guidance rather than relying on the fully automated control algorithm. In Section 10.1, we
describe how the maintainer can provide guidance in our implementation of the type comparison algorithms.

In this section, we describe derivation rules in more detail. Next, we describe the algorithm that controls
which types are compared. Following that, we describe the algorithm to recognize simple changes that
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may occur in a record definition. Then, we present the algorithm to identify movement of fields between
structurally-connected records, including encapsulation and inlining. Finally, we explain how derivation
rules could be used with a variety of data translation mechanisms.

9.1 Derivation Rules

A derivation rule describes how to translate data created using one type definition to a different type
definition. For simple values, such as integers and enumerated types, the derivation rule defines a function
to apply to the old value to compute the new value. In the simplest derivation rules, the function is simply
an identity function. For example, suppose we have a Counter type in our old and new schema. Assume
that this Counter type is unmodified. The corresponding derivation rule is the following:

Counter Counter:
new := old;

Note the use of the keywords old and new. old refers to the existing data that we are translating from.
new refers to the new data that we are creating. In this case, the new data has the same value as the old data.

For structured types, such as records, the function specifies how to compute the value for each new
substructure of the new type. Usually, the value of a new substructure is defined in terms of the value of
existing data. As a result, the derivation of most substructures is performed by applying the derivation rule
defined between the types of the corresponding substructures. A new substructure may be defined using a
constant value or a user-supplied function. For example, Figure 10 is the derivation rule that corresponds to
Figure 5:

Person Person:
new.name : derive from old.name;
new.address : derive from old.home.address;
new.home phone : derive from old.home.phone;
new.home : derive from old.home;

Figure 10: Derivation Rule for a Structured Type

In this case, the new fields are all derived from existing data. For example, the value for the new home
field is computed by applying the derivation rule from the old Personal Info type to the new Personal Info
type.

In some cases, we may want to use slightly different derivation rules between a pair of types depending
upon the state of the database. For example, suppose we replace one type with a collection of types. The
intent may be to partition the existing values so that each value belongs to one of the new types. To support
this, we add conditionals to our derivation rules. Consider the type change and corresponding derivation
rule shown in Figure 11. Here we will create a different type of new object depending on the value of an
existing field.

A similarity metric is associated with each derivation rule. A similarity metric is a qualitative descrip-
tion of the impact that applying the derivation rule would have on existing persistent data. For example,
derivation rules between record types have one of the following similarity metrics:
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Old version:

type Plane is
engine: EngineType;
num passengers: positive;
max speed: positive;

end;

type PlaneFleet is set (Plane);

New version:

type Jet is
num passengers: positive;
max speed: positive;

end;

type PropellorPlane is
num passengers: positive;
max speed: positive;

end;

type Glider is
num passengers: positive;
max speed: positive;

end;

type Plane is union of (Jet, PropellorPlane, Glider);

type PlaneFleet is set (Plane);

PlaneFleet PlaneFleet
for each old plane in old

if old plane.engine = JetEngine
let new plane = Jet derived from old plane

else if old plane.engine = PropellorEngine
let new plane = PropellorPlane derived from old plane

else if old plane.engine = None
let new plane = Glider derived from old plane

end if;
insert new plane in new end for;

Figure 11: Conditionals in Derivation Rules
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Similarity Metric Meaning
Identical No changes to the type
FieldOrderChange Fields appear in a different order.
FieldTypeNameChange Name of the type of a field has changed.
FieldNameChange Name of a field has changed.
NewField New type has an extra field.
DeletedField Old type has an extra field.

Each derivation rule has a single metric that describes the worst effect of applying the rule. Thus a rule
with a NewField metric may also have fields whose names have changed, but it will not have any deleted
fields. Similarity metrics are used within the comparison algorithms to prune the space of comparisons
considered. (In Section 10.1, we will also describe how similarity metrics are used to focus the maintainer’s
attention on the derivation rules with greatest impact on the data.)

9.2 The Type Comparison Control Algorithm

The input to the type comparison algorithms is the set of type definitions of consecutive schemas. The
algorithms selectively compare the types to identify how the types have changed and output derivation
rules describing how to transform instances of the old version into instances of the new version. The type
comparison control algorithm is responsible for determining which types to compare, based primarily on
the results of comparisons done thus far and on naming similarities between old and new types, as well as
which comparison algorithms to use based on the type constructors used by the types being compared. The
algorithms ignore changes to white space and comments and the order in which the type definitions appear
in the schema.

The fully-automated type comparison control algorithm is shown in Figure 12. It proceeds through three
stages. First, in the name comparison stage, old and new types that have the same names in both versions
are compared. For structured types, such as records and arrays, this may result in further type comparisons.
For example, a derivation rule that derives a new array from an old array requires a derivation rule from the
old array element type to the new array element type. Comparing these element types is called component
comparison. In the second stage, called use site comparison, types that use types that have been successfully
compared are compared. In the final stage, called exhaustive comparison, each old type that does not already
have a derivation rule is compared to each new type, first considering only those new types that use the same
type constructor and, if that fails to produce an acceptable derivation rule, considers all remaining new types.
The exhaustive comparison algorithm also performs component comparisons and use site comparisons as
derivation rules are generated. Thus if a derivation rule is found by exhaustive comparison, the algorithms
immediately compare pairs of types used by the matched type pair as well as pairs of types using the matched
type pair. This further reduces the search for matching types.

To better understand the stages of the algorithms, consider the type definitions in Figure 13. old record
is an old type and new record is the corresponding new type. Since they have different type names they
are not compared during the name comparison phase. The two versions of field2 type (not shown) are
compared in this phase. Assuming a derivation rule is found between these types, the use site comparison
stage searches for pairs of types that use field2 type. It finds old record and new record and compares
them. To complete the comparison of old record and new record, old field1 type and new field1 type are
compared during component comparison since they have the same field name.
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procedure CompareTypes (old types, new types) is
begin

– Compare types with the same name.
for each type o in old types

let n = type in new types with the same name as o
if Compare (o, n) finds a derivation rule then

add (o, n) to TypePairList
end if;

end for ;

– Check the use sites for each pair of types that have a derivation rule.
for each type pair tp in TypePairList

let o = old type in tp
let n = new type in tp

– Find where the old and new type are used.
let old uses = set of types in old types that use o
let new uses = set of types in new types that use n

– Compare each pair of use sites.
for each type o u in old uses

for each type n u in new uses
if Compare (o u, n u) finds a derivation rule then

add (o u, n u) to TypePairList
end if;

end for ;
end for ;

end for ;

– Exhaustive search
for each type o in old types

– Make sure we have at least one derivation rule for each old type
if there is no derivation rule from o to any type in new types then

– Compare to new types with the same type constructor.
for each type n in new types with the same type constructor

if Compare (o, n) finds a derivation rule then
compare the use sites of o and n

end if;
end for ;

– Compare to new types with different type constructors.
for each type n in new types with a different type constructor

if Compare (o, n) finds a derivation rule then
compare the use sites of o and n

end if;
end for ;

end if;
end for ;

end;

Figure 12: Type Comparison Control Algorithm
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type old record is record type new record is record
field1: old field1 type; field1: new field1 type;
field2: field2 type; field2: field2 type;

end record; end record;

Figure 13: Component and Use Site Comparisons

9.3 Recognizing Simple Type Changes: A Sample Algorithm

When looking for simple changes between two types, the algorithm varies depending upon the type
constructors that the types use. For example, a different algorithm is used to compare two enumerated
types than to compare two record types. We have also developed algorithms to compare two types that use
different type constructors, such as sets and arrays.

In Figure 14 we show the algorithm that compares two records to give more insight into how the type
comparisons proceed. The input to this algorithm is the type definitions of two record types. The output is a
derivation rule between those record types, such that each record field of the new type is either derived from
an old record field or is initialized to a default value, and each record field of the old type that is not used in
a derivation is explicitly identified as being deleted.

The record comparison algorithm is quite similar to the algorithm used to compare the sets of type
definitions. First, it compares record fields with the same name. Next, it compares old unmatched fields
with new unmatched fields with the same type name. Finally, it compares each old unmatched field to
each new unmatched field. When it compares fields, it compares the field names and recursively compares
the field types. If type definitions are recursive, as with linked lists for example, recursive comparison of
field types leads to an infinite loop. To avoid this, we use an algorithm similar to the one used by Amadio
and Cardelli to check subtyping of recursive types [AC93], which limits the recursion performed when
comparing recursive types. We cache the results of type comparisons in a matrix so that we can look up the
results of previous comparisons instead of repeating them.

Using algorithms such as the one described here we can recognize changes equivalent to those supported
by databases that provide automatic support for schema evolution, including Orion and GemStone.

9.4 Recognizing Compound Type Changes: A Sample Algorithm

We have also developed algorithms to recognize compound changes. This allows us to support type
changes not supported by other databases. Figure 15 shows the algorithm for recognizing movement and
encapsulation of fields from one record type to another where the types are structurally related. This algo-
rithm is passed an old record type, a new record type, and the derivation rule constructed by the algorithm
to detect simple changes in record types. In this initial derivation rule, old fields that may be sources of
movement are marked as deleted while new fields that may be the destinations of movement are marked
as uninitialized. After applying this algorithm, the derivation rule identifies the structural connections that
must be traversed to move the data from old fields to the corresponding new fields.

To accomplish this task, the algorithm identifies all the unused fields of the old type in the derivation rule.
It also transitively finds all unused subfields of any field of the old type. These are fields that might be moved.
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function CompareRecords (old record, new record) return derivation rule is
begin

let r = new derivation rule from old record to new record;

– Compare fields with the same name
for each field o f in old record

for each field n f in new record
if o f and n f have the same names

if Compare (type of o f, type of n f) finds a derivation rule
map o f to n f in r;
mark o f and n f as used;

end if;
end if;

end for;
end for;

– Compare fields with the same type name
for each field o f in old record

if o f is not used
for each field n f in new record

if n f is not used and
o f and n f have different names and
o f and n f have the same type names then
if Compare (type of o f, type of n f) finds a derivation rule

map o f to n f in r;
mark o f and n f as used;

end if;
end if;

end for;
end if;

end for;

– Compare unmatched old fields to unmatched new fields
for each field o f in old record

if o f is not used
for each field n f in new record

if n f is not used and
o f and n f have different names and
o f and n f have different type names then
if Compare (type of o f, type of n f) finds a derivation rule

map o f to n f in r;
mark o f and n f as used;

end if;
end if;

end for;
end if;

end for;
end;

Figure 14: Record Comparison Algorithm
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procedure RecordFieldMove (old record, new record, deriv rule) is
begin

create an empty record type o
for each field o f in old record

if o f is unused in deriv rule then
add o f to o;

end if;
add unused fields and subfields of o f in deriv rule to o

end for

create an empty record type n
for each field n f in new record

if n f is unused in deriv rule then
add n f to n;

end if;
add unused fields and subfields of n f in deriv rule to n

end for

move rule = CompareRecords (o, n);
for each field mapping fm in move rule

copy fm to deriv rule
end for;

end;

Figure 15: Record Field Move Algorithm
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type record1 is record
   field1:  integer;
   field2:  boolean;
   field3:  string;
end record;

type record1 is record
   field1:  integer;
   encapsulated_field:  field3_type;
end record;

type field3_type is record
   field2:  boolean;
   field3:  string;
end record;

Before Checking for Encapsulation

After Checking for Encapsulation

type record1 is record
   field1:  integer;
   field2:  boolean;
   field3:  string;
end record;

type record1 is record
   field1:  integer;
   encapsulated_field:  field3_type;
end record;

type field3_type is record
   field2:  boolean;
   field3:  string;
end record;

Figure 16: Encapsulation Example

It then constructs a dummy record definition whose fields are these unused fields and subfields. The field
names used in these dummy record definitions encode the path to the real subfield so that this information
can be used to identify the source of a moved field. In a similar manner, a second dummy record definition
is created to hold all the unused fields and subfields of the new type, again encoding the path to the real
subfield. Next, the algorithm applies the record comparison algorithm for recognizing simple type changes
given in Figure 14. Field mappings identified by comparing these two dummy types necessarily involve a
subfield from the old, new, or perhaps both types, since all mappings between fields of the old and new type
have been identified prior to calling the compound type comparison algorithm. These mappings correspond
to compound type changes. Each field mapping identified by this algorithm is then merged into the original
derivation rule. In this way, the derivation rule now encodes both local and non-local changes.

Figure 16 graphically shows the derivation rules that the encapsulation algorithm finds for a particular
set of type definitions. The top of the figure shows the result of comparing the old and new versions of
record1 looking for only simple type changes. The field2 and field3 fields of the old version are
unused; the nested field of the new version is unused. After looking for compound type changes,
field2 is mapped to
encapsulated field.field2 and field3 is mapped to encapsulated field.field3.

Using algorithms such as this one we can recognize compound type changes where the relationships
between the source and destination types is structural.
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9.5 Using Derivation Rules to Perform Data Translation

The derivation rules do not specify when objects are updated or whether those updates are persistent.
This separation is done deliberately to allow derivation rules to be used by a variety of data translation
mechanisms. In this section, we briefly describe how the derivation rules would be used by several different
data translation mechanisms.

9.5.1 Conversion

In a conversion backend, data are read from their old format, converted to the new format, and written
back to the database. GemStone and O are examples of object-oriented database systems that perform
conversion. Conversions can be performed by taking the database offline, starting at each root object, visiting
each object in turn, converting it, and writing the result to the database.

If the database is large or high availability is required, it may not be feasible to take the database off-line.
In these cases, lazy conversion can be done as in O [FMZ94]. With lazy conversion individual objects are
converted as they are accessed. To work with conversion, we would apply a derivation rule locally, but would
only convert components of structured objects as they were accessed. Ferrandina presents a solution to the
problem of ordering conversions in lazy conversion to ensure that data is not deleted before it is transformed.
Our derivation rules can be used with his algorithms.

9.5.2 Screening

With screening, information is never deleted from objects. Instead the accessing functions hide the
appropriate information based upon the version of the code that is accessing the object. Orion [BKKK87,
KK88] uses screening to evolve its objects. To do so, it uses a clever object representation that allows fast
access to objects even after the object’s type has been changed. It also restricts the kinds of changes to a
subset of our local change model. The changes that they allow minimize the impact on the persistent objects,
but reduce the flexibility available to the maintainer.

Derivation rules can extend the screening approach to more complex type changes. This is accomplished
by applying the derivation rules as objects are accessed. For example, suppose we want to move data from
one object to another conceptually. When an object is accessed from which data has moved, the data should
be hidden by the accessing function, just as deletion is managed currently. When an object is accessed
to which data has moved, the accessing function must apply the portion of the derivation rule that defines
where the data comes from to access the data. The advantage of this approach is that it has minimal impact
on the data, just as current screening techniques. Furthermore, there is no need to take the database off-line.
The disadvantage is that accessing objects associated with these complex type change operations will pay a
penalty on each access. Additionally, we must be careful to not delete objects that contain data that serves
as the source of a data movement operation.

9.5.3 Versioning

In a versioning backend, such as Encore [SZ86] provides, multiple versions of an object may exist at
one time. The runtime system compares the version of code accessing an object with the versions available
so that the correct version can be returned. If the correct version does not exist, it is created dynamically
by applying the appropriate derivation rules. Current systems that use versioning only support local type
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changes. In order to derive a new version of an object, one only needs to access an existing version of that
object. Our derivation rules could be used in a similar manner to support non-local derivations.

To support this, derivation rules must be able to translate from newer versions of a type system to older
versions. This could be done by applying the same comparison algorithms but changing which is being used
as the source and which as the destination. A more straightforward technique would be to define reverse
transformations directly by analyzing the existing derivation rules.

Thus, we see that the basic notion of derivation rules is quite flexible and could be used with a variety
of data translation mechanisms to address different database concerns such as minimizing access times,
maintaining high availability, and reducing the impact on existing code.

10 TESS: An Experimental Type Comparison System

We have implemented type comparison algorithms in a tool called Tess. Tess can automatically gen-
erate derivation rules for all simple type changes listed in Figure 1. It can also generate derivation rules
for inlining and encapsulation, as well as merging of structurally-connected types and moving fields be-
tween structurally-connected types. The maintainer has extensive control over what is automated: Tess can
operate in modes ranging from completely manual, as in early database systems, to fully automated. The
combination of powerful derivation rule generation algorithms and flexible application of those algorithms
as determined by a maintainer leads to a synergism not found in existing systems. In this section, we de-
scribe the maintainer’s role in running Tess, how Tess assures that all necessary derivation rules have been
provided, and then discuss some experimental results.

10.1 Maintainer Control over Type Comparison

We provide an interactive user interface to Tess that gives the maintainer control over how type com-
parisons proceed. There are three dimensions that the maintainer has control over. First, the maintainer can
control which stages of the comparison control algorithm are used (name comparison, use site comparison,
and exhaustive search).

The second dimension that the maintainer can control is which types get compared. Here there are three
options. All types can be considered at once (the fully-automated control algorithm shown in Figure 12), a
specific old and new type can be compared, or an individual old type can be compared with all new types.
When schema changes are minor, it is reasonable for the maintainer to use all stages of type comparison
and allow all types to be compared. When the schema has changed radically, it would be better to use only
the name comparison algorithm on all types to identify the unchanged types and obvious changes and then
complete the transformer by specifying pairs of types for Tess to develop derivation rules for.

The third dimension involves determining which derivation rules are automatically accepted as correct
and which must be presented to the maintainer for manual acceptance. This is done by defining a threshold
value for the similarity metric. The most conservative approach accepts only derivation rules between un-
changed types, that is, simple identity rules. A more liberal policy accepts changes in which all old values
still belong to the new type, such as increasing the size of a subrange. The most liberal, yet still sensible,
policy automatically accepts those changes that affect the representation of the type within the database, but
not its use within a program, such as reordering the fields of a record. If a schema contains many unchanged
types or trivial changes, the use of similarity metrics allows the user to quickly focus on the interesting
changes.
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10.2 Assuring Completeness of Derivation Rules

Since generation of derivation rules is a separate activity from updating the persistent data, it is important
that all the necessary derivation rules are produced so that they are available when we later attempt to access
old data. In this section, we describe how we ensure this.

Recall that our model of persistence assumes that any type can be the root of a persistent structure. As
a result, we require a root derivation rule for each old type. The root derivation rule is used to translate an
instance of a type that appears as an old root into an object of the new schema. Frequently, the old and new
types of a root derivation rule have the same type name, but this is not necessarily so.

Recall also that when we apply a derivation rule that creates a structured type, it generally assigns
values to the components of the structure by applying another derivation rule (as in Figure 10). Unlike
root derivation rules, Tess can determine which old and new types the derivation rule must operate on by
examining the types of the components that are paired. These derivation rules are referred to as reference
derivation rules. For each accepted derivation rule (root or reference), we examine the derivation rules used
within the accepted rule to determine what pairs of types require reference derivation rules.

Using this information, Tess keeps track of which types still require derivation rules. A user may decide
that not all types actually are used as the roots of structures and thus some types might not require root
derivation rules. In contrast, the analysis of which reference derivation rules are required is precise. If a
reference derivation rule is missing, a runtime error would occur if the derivation rule that used the missing
reference derivation rule was applied. Tess displays this status information to the user, indicating which old
types do not yet have root derivation rules and which type pairs referenced by accepted derivation rules do
not have derivation rules. Requiring completeness ensures that we will be able to transform any old data
that we might encounter.

10.3 Experimentation

Figure 17 shows the results of applying Tess to the example shown in Figure 9. The compound
change from the old TestClass type to the new TestClass type is correctly identified. If the compound
change algorithm had not been applied, the TestClass to TestClass derivation rule would have initialized
the TestSetInfo field to a default value. With the compound change algorithm, we see that the Persistence,
NumberNonPersistentPassed, and NumberNonPersistentFailed fields are moved from the RandomTestInfo
type to the TestCasesInfo type. Objects that the data should move between are connected structurally
through the old and new TestClass type. The data moves from the old TestClass.ExtraInfo to the new Test-
Class.TestSetInfo field. Of particular interest is the movement of data from TestClass.ExtraInfo.Persistence
to TestClass.TestSetInfo.PersistencePreferences. The movement is accomplished by applying the reference
derivation rule between the old and new SaveTestCases types. The definition of the SaveTestCases type has
changed considerably, however. In the old version, it was an enumerated type of two values. In the new
version, it is an array of booleans. The derivation rule generated by Tess specifies that the old value should
be placed in the first element of the new array, applying the derivation rule between SaveTestCases and
boolean to compute the new value.

This experiment demonstrates Tess’s flexibility in recognizing simple and compound changes as well
as the need for continued human involvement in the development of powerful derivation rules. While Tess
generates the correct derivation rule for the compound type change. It does not generate the correct rule
for the SaveTestCases type. The generated rule takes the old value and places it in the first element of the
new array. The correct derivation rule would duplicate the old SaveTestCases value into all elements of the
new SaveTestCases array. It is not possible to distinguish between the case of insertion into a single array
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TestClass TestClass: Compound Change
Handle each field as follows:

ExtraInfo ExtraInfo
See the mapping from RandomTestInfo to RandomTestInfo

ExtraInfo.Persistence TestSetInfo.PersistencePreferences
See the mapping from SaveTestCases to SaveTestCases

ExtraInfo.NumberNonPersistentPassed TestSetInfo.NumTestCases(persistent, Pass)
ExtraInfo.NumberNonPersistentFailed TestSetInfo.NumTestCases(persistent, Fail)

RandomTestInfo RandomTestInfo: Deletes Old Component
Handle each field as follows:

MinLength MinLength
MaxLength MaxLength
NumberRequired NumberRequired

SaveTestCases SaveTestCases: Requires New Component
Element indexed by Pass:

See the derivation rule from SaveTestCases to boolean
Elements indexed by Fail and Untested will be uninitialized.

SaveTestCases boolean: Value Change
Handle each value as follows:

nada false
todo true

Figure 17: The Derivation Rules Generated by Tess for the TAOS Example
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element and duplication in more than one array element by looking at the type definitions alone. It requires
a more semantic understanding of the change and thus we expect the maintainer to provide this information.

The similarity metrics on the derivation rules shown result in Tess requiring approval of the derivation
rules before they would be applied (for any reasonable threshold for automatic acceptance). Out of a total
of 37 derivation rules generated by the complete example, only two other derivation rules required review
and both of those derivation rules were correct. Thus, even though the totally-automated algorithm did
not produce a completely correct set of derivation rules, it did focus the maintainer’s attention on the few
complicated situations that existed. Even in the case where the derivation rule was wrong, the changes
required to correct the derivation rule were quite minor relative to the overall complexity of the derivation
rules.

This example demonstrates capabilities for which existing evolution systems provide no automated sup-
port. The change of SaveTestCases from an enumerated type to an array of booleans cannot be done in
existing automated systems. The movement of fields from RandomTestInfo to the TestSetInfo field of the
TestClass type would result in deletion of the associated data with existing automated evolution systems.
Systems that require the maintainer to provide the transformation routines would allow proper handling of
these transformations, but development of those routines would be entirely manual.

11 Future Work

The type comparison algorithms currently implemented in Tess compare types based upon the structure
of those types. Zaremski and Wing have demonstrated the use of type comparison to locate components in
a library for reuse [ZW95a, ZW95b]. The type comparison algorithms that they use rely on type signatures
and formal specifications. Since signatures and formal specifications generally change less frequently than
representations, incorporating these algorithms into Tess may improve Tess’s ability to find matching types
in old and new versions of a system. The algorithms to compare types at the representational level are
still required to produce the transformers between the types. Using signatures and formal specifications in
comparisons may also make it apparent that the database must evolve to respond to changing semantics of
the types, even when the representations are unmodified. For example, if a list type is changed from an
unsorted list to a sorted list, the representation would not be changed, but the existing values would still not
be appropriate to use with the new definition.

Type change is also an issue for dynamic module replacement systems whose goal is to replace program
components without stopping execution of a program. In this case there is existing data that may need to
be transformed even though it is not necessarily persistent data. Existing systems (such as [Fab76, FS91])
recognize the need for such transformation functions, but leave the development of those functions to the
maintainer. Tess’s comparison algorithms could be used to generate these transformation functions.

Another situation in which type comparison may be applicable is schema integration. Here the goal is
to develop derivation rules between the types defined in interoperating databases in order that they can share
data. In this scenario, the role of the maintainer will become more important as the assumption of naming
similarities will most likely be violated. Also, the maintainer would be able to provide valuable guidance in
distinguishing between types whose data should be shared and types whose data should remain encapsulated
within one database. With the maintainer’s guidance, derivation rules could be developed between schemas
to allow the necessary data sharing to occur.
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12 Conclusions

During software maintenance, a maintainer is typically expected to increase the functionality of soft-
ware and improve its performance while maintaining backward compatibility. Backward compatibility is
required so that existing users will not need to be retrained to use the new version of the system, and so that
existing persistent data can continue to be used. With traditional approaches to managing persistent data, it
is typically impractical to make major changes to types for which there is persistent data. This restriction
in changing type definitions complicates the design and implementation of the desired functionality and
performance modifications.

Our research into persistent type evolution addresses the problem of modifying types for which persistent
data exists. Specifically, we have defined a model of type changes that describes the complex type changes
we have observed in maintenance histories of real systems. We have developed algorithms to recognize
these type changes and to generate derivation rules that can translate data from an old representation to the
new representation. By doing so, we offer the maintainer much greater flexibility in the modification of
persistent types than traditional database systems do.
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