
Efficient Admission Control for EDF Schedulers

Victor Firoiu Jim Kurose Don Towsley
vfiroiu@cs.umass.edu kurose@cs.umass.edu towsley@cs.umass.edu

Department of Computer Science
University of Massachusetts

LGRC, Box 34610
Amherst, MA 01003-4610, USA

CMPSCI Technical Report TR 96-46

June 1996, Revised April 1997

Abstract

In this paper we present algorithms for flow admission control at an EDF link scheduler when the
flows are characterized by peak rate, average rate and burst size. We show that the algorithms have
very low computational complexity and are easily applicable in practice. The complexity can be further
decreased by introducing the notion of discrete admission control. We evaluate the penalty in efficiency
incurred by the discretization of the EDF admission control. We find that this efficiency degradation can
be made arbitrarily small and is acceptable even for a small number of discretization points.

KEYWORDS: Admission Control Algorithms, Quality of Service, EDF scheduling, Leaky Bucket,
Traffic Envelope.

This material is based upon work supported in part by the National Science Foundation under Grant NCR-95-08274 and CDA-
95-02639. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation.

ftp://ftp.cs.umass.edu/pub/techrept/techreport/1996/UM-CS-1996-046.ps

1

1 Introduction

The demand for real-time communication in data networks such as Internet has grown rapidly in recent
years. Two important examples are voice and video communication over the Internet – applications that
require timely delivery of data packets. To be able to guarantee such delay requirements, the network has to
reserve resources at the links on the path of the given real-time flow. Several flow setup protocols that convey
end-to-end user delay requirements to the links have been proposed and are in the process of standardization;
these include RSVP [2] for the Internet, and ATM signaling [1] for ATM networks.

The problem of providing delay guarantees at a network link is the focus of much current research. Much
of this work focuses on the issue of packet scheduling – determining the order in which queued packets are
forwarded over outgoing links at switches and routers. This order determines the packets’ waiting time in
the link’s queue, and ultimately the delay that the link scheduler can guarantee. Several analytical models
for link scheduling have been proposed in the literature. A variant of Weighted Fair Queuing (WFQ) [4]
(also known as Generalized Processor Sharing (GPS) [13]) was proposed in [14] to guarantee a maximum
queuing delay by reserving a certain amount of link bandwidth for the given flow. Although simple, this
policy is known to be sub-optimal. Another discipline, Earliest Deadline First (EDF) [12] associates a per-
hop deadline with each packet and schedules packets in the order of their assigned deadlines. EDF has
been proven to be an optimal scheduling discipline in the sense that if a set of tasks is schedulable under
any scheduling discipline (i.e., if the packets can be scheduled in such a way that all of their deadlines are
met), then the set is also schedulable under EDF. Also, Rate-Controlled EDF [15] was proven to outperform
GPS in providing end-to-end delay guarantees in a network [7]. In the present work we adopt the Rate-
Controlled model where the EDF scheduler of each link has an independent contribution to the end-to-
end delay guarantee of a flow. The end-to-end admission control is thus reduced to EDF schedulability
verifications at each link.

Sufficient conditions for the EDF schedulability of flows have been proposed for some particular cases of
flow characterizations [8, 16]. Recently, a set of necessary and sufficient conditions for flow schedulability
has been put forward by [11, 6], using a general characterization of flows. The fact that EDF is an optimal
scheduling policy and that there exist necessary and sufficient conditions for schedulability makes EDF an
attractive choice for providing delay guarantees for real-time flows. There are, however, two important
concerns about the practicality of EDF scheduling. First, the implementation of EDF scheduling requires a
search of time in the list of packets (ordered by their deadlines) waiting in the queue of length for
transmission. This issue has been successfully addressed in [10], where the search time is brought to constant
() time by discretizing the range of packet deadline values. The second issue is that, although the EDF
schedulability conditions in [11] can be expressed simply, the algorithms to perform these schedulability
tests can be computationally complex, or, in the general case, require an unbounded number of values that
must be checked.

In this paper we consider the problem of simplifying the computation of EDF flow schedulability con-
ditions and present simple and computationally efficient algorithm for performing flow admission at links
using EDF scheduling. We take advantage of the particular flow characterization (peak rate, mean rate and

2

burst size) proposed in the emerging standards of Internet Integrated Services [14] and ATM signaling [1].
We find that our algorithms have low complexity () where is the number of admitted flows at the
EDF scheduler at the moment of the algorithm’s invocation. We further simplify these algorithms signifi-
cantly by discretizing the range of values for certain flow parameters (the horizontal position of the concave
point of flow’s envelope) to a predefined set of values. We obtain a very significant improvement in the
execution time (two orders of magnitude speedup), with the additional benefit of the execution time being
no longer dependent on the number of flows admitted at the scheduler. We examine the relative performance
degradation (in terms of the number of flows admitted) incurred by the discretization, and find the tradeoff
to be small.

The remainder of the paper is organized as follows. In Section 2 we describe the requirements imposed
by IP and ATM flow setup protocols on the local (link) admission control. In Section 3 we derive simple
admission control algorithms for flows characterized by peak rate, average rate, and burst size and further
simplify the admission control algorithm through discretization. In Appendix C we show how to simplify
further the admission control algorithms in the case that flows are characterized by (average rate, burst
size) envelopes, i.e. the peak rate is not bounded. In Section 4 we evaluate by simulation the performance
in computation time and flow admissibility of exact and discrete admission control algorithms. Section 5
concludes the paper.

2 Flow Admission Control in Networks: EDF Schedulers

Flow setup protocols for real-time flows such as ATM signaling and RSVP with Guaranteed Services have
certain requirements for flow admission control algorithms at a link. In this section, we examine these
requirements; in Section 3 we present specific admission control algorithms meeting these requirements.

Consider a source that wishes to establish a flow to a destination using ATM signaling. It sends a
SETUP message to the destination, including information such as the flow’s traffic characteristics (maximum
cell rate, sustained cell rate, maximum burst size [1]), and the maximum allowable end-to-end delay, .
At each link along the path from source to destination, the minimum delay that link can guarantee to ,

is computed, and added to , the cumulative delay included in the SETUP message. If at some node
the cumulative delay exceeds the maximum allowable delay , the flow cannot be accepted, and a
RELEASE message is returned. Otherwise, at the end of the first pass (at the destination node),
and the flow is accepted. A CONNECT message is returned on the same path to the source, assigning a
delay to flow at link on path , such that according to some delay division
policy (see for example [5]).

Consider the RSVP protocol [2] in conjunction with Int-Serv “Guaranteed QoS” specification [14],
protocol that is designed for real-time communication in Internet. In this protocol, the source of a real-time
flow sends periodic messages to a unicast or multicast IP address. The source includes in the
message the flow’s characteristics. At each link on the path to the receiver, the minimum delay that link
can guarantee to , is computed and added to , the cumulative delay, which is sent in the term

3

of the TSpec in the message. A receiver that requires end-to-end delay guarantee and receives a
message, compares with the minimum end-to-end delay that can be guaranteed by the network,

. If , the receiver decides that its delay requirement cannot be guaranteed. If , the
requirement can be satisfied, and the receiver sends a message back to the sender including , its
delay requirement in the delay slack term of RSpec. On its way to source, which is the same route that

had, assigns a delay to flow at link , such that , according to some
QoS division policy (see for example [5]).

We see that each of the above flow setup protocols requires that a local admission control procedure can
be invoked at each link with the following capabilities:

given a flow and its characteristics, provide the minimum delay that link can guarantee to ,
based on the current state (set of reserved flows) at the local scheduler;

given a flow , its characteristics, and a requirement , reserve resources at the local scheduler
following the admission of .

In the following we examine how to provide these capabilities in the case of EDF scheduling.
[11, 6] have given flow schedulability conditions at EDF schedulers for flows characterized by envelopes,

or rate-controlling functions. Consider a data flow with the amount of arrivals (measured in bits/second)
in the time interval denoted by . The flow is characterized by an envelope , an upper
bound on the flow’s arrival pattern, if:

We take , and we consider to be non-decreasing. Note that, in order to provide a
better intuition, in this paper we measure the traffic in number of data units (bits) rather than transmission
time (seconds), the latter being used in [11].

Let be a set of flows, where flow is characterized by the envelope . The
stability condition for a work-conserving scheduler (thus including the EDF scheduler) is ([11], eq. (5)):

(1)

where is the constant rate of the link (bits/second). Assuming a preemptive EDF scheduler or negligible
packet sizes (as in the case of ATM cells) we give the following variant of the schedulability condition
proposed in [11] for the set of flows:

Theorem 1 (Liebeherr,Wrege,Ferrari 1994) Let be a set of flows, stable by (1), where flow is
characterized by the envelope and has a maximum packet delay of . The set is EDF-schedulable if
and only if:

(2)

4

It is easy to show, following the proof in [11], that the above Theorem (having eq. (2)) is equivalent
to Theorem 1 of [11] (having eq. (2) , where is the maximum length of a busy period).

We say that the set is schedulable if (1) and (2) are satisfied. [11] provides schedulability
conditions, but does not provide algorithms for schedulability testing. In the following we show that EDF
schedulers have the capability to support the flow setup protocols described earlier.

Proposition 1 If a set of flows is schedulable, then it remains schedulable if the delay for any
flow is increased, , for any .

The intuition behind this result is that, by relaxing the delay requirement for a flow in a schedulable set, the
set remains schedulable.
Proof . Obviously the stability condition (1) is not affected by the increase of . It is easy to see that

the schedulability inequalities in (2) remain true when increases. Taking and knowing that
is non-decreasing, we have:

Corollary 1 Given an EDF scheduler with a set of admitted flows, for any new flow there is a unique
delay such that can be admitted iff .

The delay defined in Corollary 1, is the minimum (best) delay that can be guaranteed to flow by the
given EDF scheduler having the given load . The existence and uniqueness of the minimum delay
makes EDF schedulers capable of supporting the flow setup protocols described earlier.

3 EDF Admission Control for Token Bucket Flows

3.1 Analysis of EDF Schedulability Conditions

Let us consider flows that are characterized by the following type of envelope, referred to as
envelope, used in both IP [14] and ATM [1] networks:

(3)

where

is the peak rate of the flow (bits/second);

is the maximum burst size at time (bits);

5

is the average rate of the flow (bits/second);

is the maximum duration of the flow’s burst at peak rate (seconds);

is the maximum size of the flow’s burst at peak rate (bits).

Figure 1 shows an example of a envelope. We shall refer to the point of as the concave
point of .

A (t)*

t

!

C

a

"
h

Figure 1: An illustration of envelope

Let be a set of flows, flow being characterized by the envelope of the form given in (3) and
having a maximum packet delay requirement of . The stability condition (1) becomes:

(4)

For describing the admission control algorithms of the flows, we introduce the following sets.

Definition 1 The sets

(5)

(6)

where , are indexed in a non-decreasing order:

(7)

Definition 2 The sets

(8)

(9)

are indexed in a non-decreasing order:

(10)

To consider the schedulability conditions (2), we give the following:

6

Definition 3 The (work) availability function is defined by:

(11)

gives the amount of work (in bits) available at time in the worst case at the EDF scheduler, while
guaranteeing envelope the maximum packet delay of , for . This function will play a central
role in the development of admission control algorithms in the rest of this paper.

The schedulability condition (2) becomes , which in turn is equivalent to
for all that are proper local minima for . (is a proper local minimum for if in a
vicinity of and is not constant in any vicinity of .) Given that has the form in (3) for all ,
it is easy to see that all proper local minima of are included in the set . Hence, schedulability
condition (2) is equivalent to and . is equivalent to ,

. Given the form of in (3), becomes ():

(12)

Thus the schedulability conditions (in addition to ,) are:

(13)

Suppose now that a new flow, , arrives at the EDF scheduler. Let be characterized by ,
having a delay requirement , and let such that . By inserting in

that is ordered non-decreasingly, we obtain , as in Figure 2. If or
, is inserted as the first or last element of respectively.

={u , u , .. u , u , .. , u }

d +a

P

P’

1 2 b b+1 N

={u , u , .. u , u , u .. , u }1 2 b b+1 Nb+2

f f

Figure 2: The mapping of to

7

Following the same reasoning as above, the scheduling conditions for the set of flows
are:

(14)

It follows that the set is schedulable iff:

(15)

(16)

(17)

(18)

(19)

(20)

3.2 Admission control algorithms for EDF schedulers

Let us consider the problem of computing the minimum delay that can be guaranteed to a flow charac-
terized by at an EDF scheduler that has allocated a schedulable set of flows. This reduces
to the problem of computing the minimum value for that will satisfy the constraints (15)-(20). In the
following we explain intuitively the solution to this problem. The formal solution is given in Theorem 2.

From (12) it follows that has the general form shown in Figure 3: it is continuous, linear on intervals,
concave on the intervals , ,.. and convex in , ,.. .

t

F(t)

u u 1 2

Figure 3:

Given the flow with envelope as in Figure 1, the problem of finding the minimum value for (let
us call this minimum value) that can be guaranteed to reduces to determining the leftmost position for

such that it is below the graph of for all , as in Fig.4. Three sets of constraints are imposed by

8

A (t)*

t

!

C

d +a

F(t)

ff

f

f f

d f

Figure 4: An example of envelope below function

A (t)*

t

!

C

y +a

F(t)

fi

f

f
f

y i d +a i i

fh

Figure 5:

A (t)*

t

!

C

x +a

F(t)

fi

f

f
f

x i d +a i i

fh

Figure 6:

A (t)*

tz+a

F(t)

f

ffh

z

Figure 7:

on .

The first segment of , for must lie below any local minimum of that is
less than . This is expressed by (18) and is depicted in Figure 5. By defining to be a lower bound
on imposed by the local minimum in of on the first part of , we have that .

The second segment of , for must lie below any local minimum of
that is greater than . This is expressed by (20) and is depicted in Figure 6. By defining to be a
lower bound on imposed by the local minimum in of on the second part of , we have
that .

Finally, the concave point of must lie below within any concavity interval

9

of . This is expressed by (19) and is depicted in Figure 7. By defining to be a lower bound on
imposed by on the concave point of , we have that .

Theorem 2 gives the formal solution for computing the minimum delay that can be guaranteed to a flow,
by stating the above three sets of constraints. The proof can be found in Appendix A. In the following we
use the notation .

Theorem 2 Let be a schedulable set of envelopes and let characterize a new
flow such that the stability condition is satisfied.

1. Define by
(21)

and let .

Define by
(22)

and let .

Let and , , such that

(23)

where . Then exists and is unique.

2. Define as follows.

If
(24)

satisfies
(25)

and
(26)

Otherwise (or), define .

Then exists and is unique.

3. Define by
(27)

Then is the minimum delay that can be guaranteed to flow .

10

Based on Theorem 2 we present in Figures 9 and 10, a set of algorithms for admission control of
flows that support the flow setup protocol described in Section 2. MINIMUM DELAY takes as

inputs the characteristics and delay guarantees for the existing flows in and the characteristics for the
new flow . It outputs the minimum delay guarantee-able for . First (lines 1-2) it checks whether there is
sufficient capacity to accept the new flow. If there is (lines 3-7), it computes a lower bound on based
on the constraints imposed by the local minima of on the first and second parts of , as described in
Theorem 2.1. It then determines (line 8) the concavity interval of where is situated.
If condition (24) is met in this interval, another lower bound on , is computed (line 9-11) based on the
constraint imposed by the concave point on , as described in Theorem 2.2. The final value of is the
maximum of all the lower bounds computed so far (line 12).

A (t)*

t

F(t)

f
hf

ub ub+1dq dq+1z+af
z

Figure 8: Computing

MINIMUM DELAY(input: , ; output:)

1 if
2 then exit “cannot accept flow ”
3 for to do
4 if
5 then
6 else
7
8 find such that with
9 if
10 then COMPUTE (, , ;)
11 else
12

Figure 9: An algorithm for computing the minimum delay for flow at EDF scheduler

11

COMPUTE (Input: , , ;
Output:)

1 find , such that (or) and (or)

2

Figure 10: Auxiliary algorithm for computing

To compute , we use an auxiliary algorithm in Fig 10. is the solution of given
that . To compute we need to determine the segment of in the interval

that crosses the horizontal (see Fig 8). The segment is defined by that ,
such that (or) and (or), (again, see Fig 8). On that
segment, and has the form

(28)

Consequently, we have that the equation has the solution:

(29)

Thus, we obtain the algorithm in Fig 10 for computing .
Observing that if the computation of is done as in (12) in time, then MINIMUM DELAY

has complexity , thus having a limited practical applicability. In the following we will reduce this
complexity in several steps.

The first step in reducing the complexity of the admission control computation is to maintain partial
results for and in order to reduce their complexity to . For each , define

as:
(30)

and , . For define , and , . Define as

(31)

The new version of MINIMUM DELAY and COMPUTE in Fig 11 and Fig 12 are identical to MINI-
MUM DELAY and COMPUTE in Fig 9 and Fig 10, with the exception of the computation of , replaced by

and . This new algorithms have complexity , since the computation of is no longer needed.

12

In order to update the values of and upon the admission of flow , (which can be viewed as a
resource reservation), the algorithm in Fig 13 updates in step 1 the asymptotic slope of , and in steps 2-10
and 14-21 the values of in , , , and respectively:

(32)

(33)

(34)

(35)

In steps 11-13 and 22-24, the algorithm augments the sets and with the new values and
respectively, while preserving the sets’ non-decreasing order. The ordering of is important for an efficient
implementation of step 8 of the MINIMUM DELAY algorithm in Fig 11, and the ordering of is important
for an efficient implementation of step 1 of the COMPUTE algorithm in Fig 12.

In order to release the resources reserved for a flow upon its termination, the RELEASE algorithm in
Fig 14 performs all the operations of the RESERVE algorithm, with an opposite sign.

(36)

(37)

It also eliminates the variables and associated with the terminating flow.
We can see that the algorithms for admission control and resource and release of reservations have

complexity. Although this may be acceptable for small values of , even this level of computation can be
problematic when the number of flows reserved at a link is large (e.g., thousands of flows on an OC12 link).
In the next section we explore a technique for further reducing the computation time for flow admission.

13

MINIMUM DELAY (Input: , , , , ;
Output:)

1 if
2 then exit “cannot accept flow ”
3 for to do
4 if
5 then
6 else
7
8 find such that , with
9 if
10 then COMPUTE (, , , ;)
11 else
12

Figure 11: An algorithm for computing the minimum delay for flow at EDF scheduler

COMPUTE (Input: , , , ;
Output:)

1 find , such that (or) and (or)

2

Figure 12: Auxiliary algorithm for computing

14

RESERVE (Input: , , , ;
Output: , ,)

1
2 /* update of */
3 for to do
4 if
5 then
6 else if
7 then
8 create variable
9 let such that
10

11 insert in ordered set
12 let be the index of in
13 relabel to
14 /* update of */
15 for to do
16 if
17 then
18 else if
19 then
20 create variable
21

22 insert in ordered set
23 let be the index of in
24 relabel to

Figure 13: An algorithm for reservation for flow

15

RELEASE (Input: , , , ;
Output: , ,)

1
2 /* update of */
3 for to do
4 if
5 then
6 else if
7 then
7 let be the index of in
8 destroy variable
9 /* update of */
10 for to do
11 if
12 then
13 else if
14 then
13 let be the index of in
15 destroy variable

Figure 14: An algorithm for updating parameters after a flow leave

INIT STATE(input: ; output:)

1

Figure 15: State initialization at an empty EDF scheduler

16

3.3 Discrete admission control algorithms

We have seen in Section 3.2 that in order to verify the schedulability conditions for flows, we must verify
that for , i.e., that distinct evaluations of must be made. This is why the
complexity of algorithms in Section 3.2 cannot be lower that . In this section, we explore a way to
reduce this complexity by reducing the number of convex points of , thus requiring a smaller number of

inequality computation. We achieve this by discretizing the range of horizontal positions of the
concave point of the flow’s envelope.

Let us define

(38)

the set of positions on the “x” axis of the convex points of . We assume that and the extended set
are indexed in a non-decreasing order:

(39)

For each flow with envelope given by and with delay requirement , we reserve a “cover”
envelope , with

(40)

where is such that . is a translation of such that its concave point
matches the nearest discretization point at its left, as in Fig. 16. It follows that all the concave points of
have their “x” coordinates in , and thus all convex points of have their “x” coordinates in .

e1 e2 e3 e4 eL

B
B
_

C
_

C

Ai
*

Ai
o

t

Figure 16: Cover envelope constructed from

For a given set of envelopes , after reserving , becomes:

(41)

Since all are determined by their values in points in and by their slope , then
the same is true for . We define

(42)

17

and

(43)

and we observe that is uniquely defined by and .
The minimum delay guarantee-able to flow with envelope is the smallest value that satisfies the

following conditions:

1. for all convex points of

2. for the concave point of

3. (the stability condition)

In the following we give a more precise definition of the algorithm for computing the minimum delay
that can be guaranteed to a flow using the discretization method described above. We have seen that all local
minima of , that are included in the set , are also included in the set . Consequently the
schedulability conditions in (13) become:

(44)

Given the set of flows and a new flow , the constraints imposed on any guarantee-able delay for
(besides) are (from (17)-(20)):

(45)

(46)

(47)

Observe that there is no inequality corresponding to (19), as the constraint is included in (46) since the
discretization method mandates . Thus the computation of in point 2 of Theorem 2 is no
longer needed. In the following theorem we give the formal solution for computing the minimum delay that
can be guaranteed to a new flow.

Theorem 3 Let an EDF scheduler have capacity and a set of flex point positions . Let
with be a schedulable set of envelopes, and let characterize

a new flow such that the stability condition is satisfied.

1. Let such that
(48)

18

and let .

Let such that

(49)

and let .

Let and , , such that

(50)

Then exists and is unique.

2. Define . If , then is the minimum delay that can be guaranteed to flow
by the discrete admission control. Otherwise, cannot be scheduled.

The proof follows from Theorem 2 and can be found in Appendix B.
Using Theorem 3 we can give the algorithms for discrete admission control for flows. In

Figure 17, we give an algorithm to compute the minimum delay that can be guaranteed to a new flow
, using a set of pre-computed parameters and . The algorithms in

Figure 18 and Figure 19 update and to reserve and release resources for flow .
State initialization at an empty scheduler is given in 20). We can easily see that we have an overall
complexity algorithm for discrete admission control of flows.

MINIMUM DELAY(Input: , , , ;
Output:)

1 if
2 then exit “cannot accept flow ”
3 for to do
4 if
5 then
6 else
7
8 find such that
9 if or
10 then exit “cannot accept flow ”
11 else

Figure 17: An algorithm for computing the minimum delay for flow, guaranteed by a discrete
admission control

19

RESERVE(Input: , , , ;
Output: ,)

1
2 /* update of */
3 for to do
4 if
5 then
6 else if
7 then

Figure 18: Reservation algorithm for discrete admission control

RELEASE(Input: , , , ;
Output: ,)

1
2 /* update of */
3 for to do
4 if
5 then
6 else if
7 then

Figure 19: Release algorithm for discrete admission control

INIT STATE(input: , ; output: ,)

1
2 /* Init of */
3 for to do
4

Figure 20: State initialization at an empty EDF scheduler with discrete admission control

4 Evaluation of admission control algorithms through simulations

We are interested in two directions of evaluation for the admission control algorithms. One is to asses the
benefit of discrete admission control over the exact algorithm by comparing their respective runnning times
in a simulation environment. The other direction concerns the shortcoming of the discrete admission control
to potentially admitting less flows due to a conservative resource reservation. We measure the link blocking

20

probability yielded by the exact and discrete algorithms through simulation.
We consider a link that forwards ATM traffic according to the EDF scheduling policy. The characteristics

of the flows to be serviced at this link are generated randomly and are intended to cover a wide range of
traffic patterns. In our simulations we take where is uniformly distributed in , that
makes cover the range . From multiple video and audio traces we have observed that
both and are correlated with . In our simulations we take , where is uniformly
distributed in . Similarly, where is uniformly distributed in . Observe that
the range of generated traffic patterns include a typical MPEG video source (sequence of advertisements
presented in [9]) with peak rate , mean rate , burst size , and a
typical packetized voice source (see e.g., [3]) with peak rate , mean rate , burst
size . Flows are created according to a Poisson process with parameter and their duration is
exponentially distributed with mean . The ratio characterizes the load offered to the link, i.e.,
the average number of flows that would exist at any time at a link with no capacity limitation. Each flow
has a delay requirement , where is uniformly distributed in , thus ranging in

. After a flow is generated with the above parameters, its EDF schedulability is verified by our
admission control algorithms. We generate 100000 flows in one simulation run, and we are interested in
the link blocking probability, i.e., the ratio between the number of rejected flows and the total number of
generated flows. We take the link blocking probability for an admission control algorithm as an indication
of its performance. In our simulations, we use the method of independent replications to generate
confidence intervals for the link blocking probability.

Bl
oc

ki
ng

 p
ro

ba
bi

lit
y

Offered load (# flows)

Blocking probability at an EDF link
of flows with specified and unspecified peak rates

40 60 80 100 120 140 160 180

10#4

10#3

10#2

10#1

100

Peak rate = $
Peak rate specified

Figure 21:

In the first experiment (Figure 21), we evaluate the impact of not specifying the flow’s peak rate (i.e.
assuming peak rate infinite). We note that the peak rate is an optional parameter in both ATM and Internet
“Int-Serv Guaranteed Service” specifications. Avoiding peak rate specification will result in simpler admis-
sibility tests (see Appendix C). However, the relaxed constraints on source behavior (by not specifying its
peak) will result in fewer flows being admitted to the network. Figure 21 quantitatively shows this tradeoff.

21

We see that the performance degradation is quite severe (orders of magnitude increase in blocking proba-
bility). Moreover, the complexity of admission control algorithms is improved when ignoring the peak rate
by only a constant factor, having the same asymptotic complexity as the algorithms that consider the peak
rate (see Appendix C for details). We conclude here that the use of peak rate in flow characterizations is
highly desirable for achieving good link utilization. In the remainder of our simulation experiments we will
include the peak rate in the characterization of flows.

0
0.4
0.8
1.2
1.6

2
2.4
2.8
3.2

0 400 800 1200 1600A
ve

ra
ge

 c
om

pu
ta

tio
n

tim
e

[m
s/c

al
l]

Mean number of simultaneous flows

admission control algorithms
Comparison of exact and discrete

T3 OC3 OC12

Exact Reserve
Exact Min_delay
Discrete Reserve

Discrete Min_delay

Figure 22:

In the following we compare the computational performance of discrete admission control algorithms
(having 13 discretization points) with the exact algorithm when both operate in the same environment. Both
algorithms input the same series of flows under three scenarios: link capacity (T3) and offered load

flows; link capacity (OC3) and offered load flows; link capacity (OC12)
and offered load flows. The offered loads have been chosen to incur the same blocking probability
() in all three scenarios. Given this low rejection probability, the average number of flows reserved
at the link at any time is approximately equal to the offered load. The average computation time has been
measured with the GNU code profiler on a DECalpha 347. We know that the exact admission control
algorithm has an asymptotic computation complexity of , which is confirmed by the linear shape of
the plots of the exact algorithms for MIN DELAY, RESERVE in Figure 22. The figure confirms also that the
execution time (ms/function call) of discrete admission control is independent of the number of flows

. Most importantly, the figure shows the very large gain in computation time for the discrete admission
control: times faster for an OC12 link having an average load of 1658 flows.

For the rest of our simulations we consider a T3 link (). In the following we evaluate the
penalty in link performance when using the discrete admission control. Recall that the discrete algorithms
in Section 3.3 take their discretization point values from a finite set . A large spacing
between discretization points implies a significant over-reservation for a flow, that would translate in fewer
flows being admitted (higher blocking probability). A small spacing between discretization points, on the
other hand, results in a large number of points and consequently a higher overhead for the admission control

22

algorithms. In the following we address two issues. First, for a fixed number of points, what is a good policy
for choosing the spacing between points? Second, given that we have found a good spacing policy, what
is a number of points that is sufficient for good link performance and small enough for low computational
overhead.

One possibility for spacing of discretization points is equal (linear) spacing:

Another possibility is to have the points geometrically spaced:

spacing factor

This latter spacing policy is expected to result in a smaller over-reservation for a small distance between
discretization points compared to the linear policy, due to a smaller space the request falls in.

0.002

0.004

0.006
0.008
0.01

1 1.2 1.4 1.6 1.8 2 2.2

Bl
oc

ki
ng

 p
ro

ba
bi

lit
y

Spacing factor

various no. of discr. points and spacing factors
Blocking prob. at an EDF link using

No. points = 3
No. points = 6

No. points = 13
No. points = 25
No. points = 50

Exact algo.

Figure 23:

In Figure 23 we plot the results of our simulations for values of spacing factor between 1 and 1.5, value
1 corresponding to linear spacing. The graph “Exact algo.” corresponds to the exact admission control
algorithm, which forms the base case for our comparison. First, we note that with less that 13 points, the
blocking probability is unacceptably high, compared to the base case. For the rest (more than 13 points),
we see that the linear spacing policy can provide link performance close to or better than that given by the
geometric spacing policy, with any spacing factor. For this scenario, the linear spacing is the solution of
choice due to its simplicity and near optimal performance.

In Figure 24 we plot the results of simulation experiments with algorithms using linear spacing and
various number of discretization points. We can see that 13 points are sufficient to provide link utilization
within off the optimal (compare the offered load for the same link blocking probability). This result
confirms our estimation in Appendix D that about 10 points are sufficient to have a performance tradeoff
within .

23

0.0001

0.001

0.01

0.1

1

40 60 80 100 120 140 160 180

Bl
oc

ki
ng

 p
ro

ba
bi

lit
y

Offered load [number of flows]

using various numbers of discretization points
Blocking probability at an EDF link

No. points = 3
No. points = 6

No. points = 13
No. points = 25
No. points = 50

Exact algo.

Figure 24:

5 Conclusion and future work

In this paper we have proposed practical solutions to the problem of admission control for real-time flows
with delay guarantees at an EDF scheduler, as a part of end-to-end flow admission control in IP and ATM
networks. We applied the admission control conditions put forward by [11] to flows characterized by peak
rate, mean rate and burst size. We developed a first set of algorithms with a computation complexity of

, where is the number of flows admitted in the EDF scheduler at the time of algorithm invocation. A
second set of algorithms places the horizontal position of concave points of flow envelopes into a predefined
set of values (discretization points), thus reducing the computational complexity of admission control to

, where is the number of predefined discretization points. A set of simulation experiments showed
that the performance improvement achieved by the discrete admission control is indeed very important (240
times faster for an OC12 link) and that the algorithms’ execution time is independent of the number of flows
admitted. Moreover, we have seen that the link performance degradation of the discrete admission control
relative to the exact admission control is less that , while using a small number of discretization points
(13). Taken together, these results suggest that the algorithms we have studied in this paper form the basis
of a practical and highly efficient solution for the problem of admission control of real-time flows at EDF
schedulers.

Our present work can be extended in several ways. First, we can generalize our results to take into
consideration packet sizes at non-preemptive EDF schedulers. Second, both exact and discrete admission
control algorithms can be extended to flows characterized by multiple pairs (i.e. envelopes consisting
of multiple linear segments). This characterization has the potential to increase link utilization in comparison
to the two-segment characterization used in the present work.

24

A Proof of Theorem 2

1. By definition, is non-decreasing with . Since and
we conclude that there is a unique , such that (23) is satisfied.
2. Assume (24), .
For we have:

and thus:

Hence, is non-increasing, since more terms are possibly subtracted as increases. Consequently,
is concave on . Given that is continuous and concave, and by (24),

we conclude that has a unique solution in . Let such that and
. Observe that:

(51)

(52)

which follow from having the above mentioned properties.
3. We prove that is the minimum delay guarantee-able to .

First, observe that
(53)

since . Also, observe that

(54)

which follows from (23) and (25).
3.1. We prove that can be guaranteed to flow .

Below are the scheduling conditions for the set ((15)-(20)):

(55)

(56)

(57)

(58)

(59)

(60)

25

3.1.1 Since we assume that the set is schedulable, (55) and (57) are true. Relation (56) follows from (53).
3.1.2 Consider (60). We begin by establishing

(61)

by contradiction. Suppose that there exists such that . Then

Thus , which contradicts (23). Hence (61) holds. Consequently, for
. Thus,

(62)

Since (from (23)) we have that , implies , ,
and with (62) we conclude (60).
3.1.3 Let us establish (58). Let . If then, since for

, we have . Conversely, if then and
from (21) we have and we conclude (58).
3.1.4 Let us prove (59). Given that by (54), we have three cases.
3.1.4.1 . Then (59) follows from (58) with .
3.1.4.2 . Since (from (61)), and because is continuous and concave for

, we have , . Thus from (54).
3.1.4.3 and . We have :

by (22)

by

by

According to point 2 of Theorem 2, exists and by (52),

(63)

It follows from the fact that and from (54) that , which, with (63), implies
(59).

By establishing that (55)-(60) are satisfied by , we have proved that can be guaranteed to flow .
3.2. We prove by contradiction that is the minimum delay that can be guaranteed to .
Suppose there is a delay , , that can be guaranteed to . We have three cases:

3.2.1 and . For any such that we have from (22). Thus,
for any , and so for (since). From this
and (61) we have . Thus implies that there is , such
that . But , and thus, for to be schedulable it is
necessary that (20):

26

From and from (22) with we have

which contradicts the assumption that can be guaranteed.
3.2.2 and . From (61) follows that . Thus

implies that there is , such that and . If then for to be
schedulable it is necessary that (20):

But and which leads to contradiction.
Conversely, let us consider . From (21) taking , and since (is

schedulable), we have . So, . Thus, for to be schedulable it is necessary that (18):

But from (21) with and we have

which leads to a contradiction.
3.2.3 and . Then and from point 2 of Theorem 2, and

(64)

If then for to be schedulable it is necessary that (20):

But and , which leads to contradiction.
Conversely, let us consider . For to be schedulable it is necessary that (19):

But from , (64) and (51) we have

which leads to a contradiction.
Since in all the above cases we have found contradictions, we conclude that is the minimum delay

that can be guaranteed to .

27

B Proof of Theorem 3

From hypothesis, all envelopes reserved at the EDF scheduler have their concave points , so
all convex points of are in . It follows that schedulability equations (17)-(20) are equivalent to (45)-
(47). Let be the minimum delay guarantee-able to by the exact (non-discretized) EDF
admission control, as given by Theorem 2. It is easy to see that point 1 of Theorem 3 is equivalent to point 1
of Theorem 2. It follows that and defined by Theorem 2 are identical to and defined by Theorem 3.
From Theorem 2 we have that

(65)

But the discrete admission control mandates that any delay guaranteed to should have
. So, the smallest delay guarantee-able to by the discrete admission control is

. Point 2 of Theorem 3 then follows.

C EDF Admission Control for Token Bucket Flows

In this section we derive simpler admission control algorithms for the particular case, often used in practice,
of flows that are token bucket constrained and are assumed to have infinite peak rate. The flows are
characterized by the following type of envelope:

(66)

where

is the maximum burst size (bits);

is the average rate of the flow (bits/second).

See Figure 25 for an example of envelope.

A (t)*

t

!

"

Figure 25: An illustration of envelope

Let be a set of flows, flow being characterized by the envelope of the form given in (3) and
having a maximum packet delay requirement of . The stability condition (1) becomes:

(67)

28

In the following we derive schedulability conditions from (2) that are simple to compute. Let
. Then the schedulability condition (2) is equivalent to .

Let us assume, without loss of generality, that the flows in are ordered by :

(68)

Since the form of is given in (3), becomes:

(69)

Thus the schedulability conditions become (besides ,):

(70)

Let a new flow be characterized by and have a delay guarantee , and assume that there is
such that . The scheduling conditions for the set are:

(71)

This is equivalent to the following set of inequalities:

(72)

(73)

(74)

(75)

(76)

C.1 Exact admission control algorithms for flows at EDF schedulers

Theorem 4 Let be a schedulable set of flows sorted in increasing order of , and let
characterize a new flow such that the stability condition is satisfied.

1. Let such that
(77)

and let .

Let .

Let and , , such that

(78)

29

where and . Then exists and is unique.
2. If

(79)

and
(80)

let such that
(81)

and
(82)

Then exists, and is unique.
3. Let such that:

if (79) and (80
otherwise

(83)

Then is the minimum delay that can be guaranteed to flow .

MINIMUM DELAY(input: , , , ; output:)

1 if
2 then exit “cannot accept flow ”
3 ;
4 for to do
5 if
6 then
7
8 else
9
10
11 while and do
12
13 if [or] and [or]

14 then

15
16 else
17 return

Figure 26: An algorithm for computing the minimum delay for flow at EDF scheduler

30

JOIN UPDATE(input: , , ; output: ,)

1
2 /* update of */
3 for to do
4 if
5 then
6 create variable
7 let such that
8
9 insert flow with in ordered set

Figure 27: An algorithm for updating parameters after a flow join

LEAVE UPDATE(input: , , ; output: ,)

1
2 /* update of */
3 for to do
4 if
5 then
7 destroy variable
8 extract flow from the ordered set

Figure 28: An algorithm for updating parameters after a flow leave

INIT STATE(input: ; output:)

1

Figure 29: State initialization at an empty EDF scheduler

31

C.2 Discrete admission control algorithms for flows at EDF schedulers

In this section we introduce a set of classes for the delays at the EDF scheduler. If flow
is admitted in delay class it is given delay guarantee , where are predefined
values. We define to be the class of flow , if .

Theorem 5 Let a class-based EDF scheduler have a set of classes of delays,
. Let be a schedulable set of flows , sorted in increasing order of and ,

and let characterize a new flow such that the stability condition is satisfied.
1. Let such that

(84)

and let .

Let .

Let and , , such that

(85)

where and . Then exists and is unique.
2. If then the flow cannot be scheduled by the class-based EDF scheduler.

Otherwise can be scheduled and is the minimum delay that can be guaranteed to flow by the
class-based EDF scheduler.

32

MINIMUM DELAY CLASS(input: , , , ; output:)

1 if
2 then exit “cannot accept flow ”
3 ;
4 for to do
5 if
6 then
7
8 else
9
10
11 while and do
12
13 if
14 then exit “cannot accept flow ”
15 else
16 return

Figure 30: An algorithm for computing the minimum delay for flow at class-based EDF sched-
uler

JOIN UPDATE(input: , , , ; output: ,)

1
2 /* update of */
3 for to do
4 if
5 then

Figure 31: An algorithm for updating parameters after a flow join

33

LEAVE UPDATE(input: , , , ; output: ,)

1
2 /* update of */
3 for to do
4 if
5 then

Figure 32: An algorithm for updating parameters after a flow leave

INIT STATE(input: , ; output: ,)

1
2 /* Init of */
3 for to do
4

Figure 33: State initialization at an empty class-based EDF scheduler

34

D An Estimation of Performance Tradeoff for class-based EDF Schedulers

We have seen the computational benefits of discrete admission control in reducing the complexity of admis-
sion control. However, there is a tradeoff in that (Section 3.3) we schedule the envelope rather than
for flow , which is an over-allocation of resources to flow . Hence a discrete admission control may not
be able to admit as many flows as an exact admission control algorithm. In the following we estimate this
penalty by comparing the maximum number of flows accepted by the exact and discrete admission controls,
under a set of assumptions.

Let us consider two EDF schedulers one having an exact and the other a discrete admission control, and
both having throughput . All flows to be scheduled at both servers, have the same characterization
(, i.e.) and the delay requirements fall in the interval . Let be the maximum
number of flows that can be admitted by the exact algorithm, where the deadlines associated with the flows
are equally spaced within , , . Let be the maximum number
of flows that can be admitted by a discrete admission control with equally spaced discretization points
(,), the flows having delay requirements equally spaced in

, . Since both flow delays and discretization points are
equally spaced, the number of flows that are admitted in the same point (i.e. such that)
is or where . Defining , we have .
In the following we derive an estimate on the upper bound of the relative penalty in performance

for the discrete admission control.
Using Theorem 2, the exact admission control having reserved flows can accept more flows with

delays less than if and only if . Thus, if is the maximum number of flows we have
, or:

which yields:

where the approximation comes from the fact that is an integer. Similarly, using Theorem 3, we have that
the discrete admission control can accept more flows if and only if . Thus, for the maximum
number of flows we have , which yields:

Since we assumed we have:

where the last approximation holds because we assume that all flows are accepted, thus
and assuming we have and thus .

35

We can now compare and :

or

We conclude that having discretization points reduces the average number of accepted flows with an
estimated factor of . For example, a discrete admission control with points accepts on average
around less flows than the exact admission control with the same throughput. We consider that this
penalty is acceptable. In Section 4 we evaluate the link performance penalty by simulation which confirms
this estimation.

References

[1] ATM Forum. ATM User-Network Interface Specification. Version 3.1, September 1994.

[2] R. Braden, L. Zhang, D. Estrin, S. Herzog, and S. Jamin. Resource ReSerVation Protocol (RSVP) - Version 1
Functional Specification. Internet draft-ietf-rsvp-spec-12.ps, May 1996.

[3] P. T. Brady. A statistical analysis of on-off patterns in 16 conversations. Bell System Technical Journal, 47:73–91,
January 1968.

[4] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queuing Algorithm. Computer
Communication Review (ACM SIGCOMM’89), 19(4), 1989.

[5] V. Firoiu and D. Towsley. Call Admission and Resource Reservation for Multicast Sessions. In IEEE INFOCOM,
1996.

[6] L. Georgiadis, R. Guérin, and A. Parekh. Optimal multiplexing on a single link: Delay and buffer requirements.
In IEEE INFOCOM, 1994.

[7] L. Georgiadis, R. Guérin, V. Peris, and K. Sivarajan. Efficient Network QoS Provisioning Based on per Node
Traffic Shaping. In IEEE INFOCOM, 1996.

[8] D. Kandlur, K. Shin, and D. Ferrari. Real-time Communications in Multi-hop Networks. In Proceedings of the
11-th Int’l Conference on Distributed Computing Systems, 1991.

[9] E. Knightly, D. Wrege, J. Liebeherr, and H. Zhang. Fundamental Limits and Tradeoffs of Providing Deterministic
Guarantees to VBR Video Traffic. In ACM SIGMETRICS’95, 1995.

[10] J. Liebeherr and D. Wrege. Design and Analysis of a High-Performance Packet Multiplexer for Multiservice
Networks with Delay Guarantees. Technical Report CS-94-30, University of Virginia, 1994.

[11] J. Liebeherr, D. Wrege, and D. Ferrari. Exact Admission Control for Networks with Bounded Delay Services.
Technical Report CS-94-29, University of Virginia, 1994.

[12] C. Liu and J. Layland. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment. Journal
of ACM, 20(1), January 1973.

36

[13] A. K. Parekh. A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks. PhD
thesis, Department of Electrical Engineering and Computer Science, MIT, February 1992.

[14] S. Shenker, C. Partridge, and R. Guerin. Specification of Guaranteed Quality of Service. Internet draft-ietf-
intserv-guaranteed-svc-06.txt, August 1996.

[15] H. Zhang and D. Ferrari. Rate-Controlled Service Disciplines. Journal of High Speed Networks, 3(4), 1994.

[16] Q. Zheng and K. Shin. On the Ability of Establishing Real-Time Channels in Point-to-Point Packet-Switched
Networks. IEEE Transactions on Communications, 42(2/3/4), 1994.

37

