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Finding Planar Regions in Noisy 3D Grid Point Data

Justus H. Piater and Edward M. Riseman

Abstract— This paper describes an algorithm for
finding regions of planar surfaces in data given as
three-dimensional points located in a (possibly in-
complete) grid. It was motivated by noisy range data
obtained from IFSAR or stereo correlation. The pro-
cedure basically consists of the following steps: (a)
fitting of robust planar patches, (b) region merging,
(c) region refinement, (d) region splitting, and (e)
boundary finding. The steps (b)—(d) are iterated un-
til a convergence criterion is met.

A major design principle was the lack of assump-
tions about specific characteristics of the input data.
Hence, heuristic parameters common in most of to-
day’s range image segmenters were avoided where
possible. Rather, the same fit criteria are applied
at all steps of the procedure. The algorithm can
incorporate information from optical imagery where
available, and cooperate with higher-level site re-
construction tasks. However, a major drawback is
the resultant computational complexity of the pro-
cedure, which becomes significant especially where
planar regions grow very large. Therefore, some op-
tional heuristic parameters are provided for speedup,
without degrading the results. This paper describes
the algorithm, illustrates some results on IFSAR, dig-
ital elevation maps (DEMs) from aerial stereo images,
and range data, and discusses advantages as well as
limitations.

1 Introduction

Localization of planar regions in 3D data is a funda-
mental, yet difficult problem with many applications
in object recognition, target detection, and terrain re-
construction. Traditionally, important cues are taken
from optical imagery registered to the 3D data. In
site reconstruction from aerial images, for example,
potentially planar regions are segmented in optical
images, and are tested for planarity in noisy 3D in-
terferometric synthetic aperture radar (IFSAR) data
by fitting planes to the corresponding regions in 3D

(Jaynes et al. 1994). However, this (top-down) ap-
proach fails where no data sources other than the
3D data exist, or where the information they pro-
vide is misleading or incomplete. The motivation for
this research was the need (a) for data-driven sup-
port where optical imagery is available but does not
provide sufficient information for 3D reconstruction,
and (b) for an entirely data-driven (bottom-up) ap-
proach for finding planar regions, without such addi-
tional information. Although many applications are
possible, this paper mainly addresses the issue of site
reconstruction from 3D elevation maps obtained by
IFSAR or by stereo matching of optical images. We
note that IFSAR data and processing is predicted to
become a very heavily used source of information in
the near future.

In IFSAR, the complex phase difference of two SAR
images is used to derive a height measurement at each
image location (see e.g. Giglio and Carlisle (1995) for
a concise introduction). Typically, the SAR images
are acquired using two antennas mounted on a single
aircraft. Alternatively, SAR data from two passes
of aircraft equipped with a single SAR system can
be registered using highly accurate differential GPS
information. The resultant digital elevation maps
(DEM) tend to be speckled with non-Gaussian noise
and contain many dropouts caused by radar shadows

(Fig. 1).

The quality of depth reconstruction from stereo
largely depends on the reconstructed objects and
the matching algorithm employed. Here we are con-
cerned with DEM’s generated by the UMass terrain
reconstruction system (Schultz 1995). It performs
multi-resolution stereo correlation matching in aerial
images without prior feature extraction. The im-
ages may be nadir views, but the system works ef-
fectively even on highly oblique views from very dif-
ferent viewing angles. Accurate elevation maps can
be expected where detailed and structured texture is
available, whereas lack of texture may cause stereo
mismatches, which in turn produce irregularities in
the output DEM. On the other hand, the DEM’s are
relatively free from random uncorrelated noise. A
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Figure 1: IFSAR data from Kirtland AFB. Gray val-
ues represent heights, and black are dropouts (i.e.
points without height information). Note the speck-
led noise and the clustered structure of the dropouts.

striking characteristic of errors is that sharp changes
in elevation often appear rounded by smoothing ef-
fects induced by the hierarchical matching technique,
where large correlation masks had to be employed
(Fig. 2). Dropouts do not generally occur, but low
confidence on mismatched points that are occluded
in one of the images serve as the equivalent.

This paper describes an algorithm that was designed
to perform planar region extraction on difficult types
of input data, where the difficulty is given by extreme
noisiness and/or lack of 3D edges. It can operate as
an independent, entirely data-driven tool, or it can be
used to aid a higher-level reconstruction procedure.
The overall problem addressed in this paper can be
characterized as follows: A set of 3D points is given as
input, arranged in a rectangular (i, j) grid topology
(such that each point can be indexed by its (4,7) co-
ordinates) which is assumed to form a surface. Note
that the grid need not be regularly spaced. It is only
needed to provide neighborhood relationships. For
example, it can be given by the image coordinates of
an oblique view, or by the raster of a range image.
Furthermore, the grid may be incomplete, i.e. points

Figure 2: DEM generated via stereo correlation from
two optical images. The scene contains a peaked-roof
building. Note that most edges appear smoothed.

may be missing. The goal is to determine connected
sets of points forming planar regions in this surface.
For use by a higher-level procedure and for visual-
ization purposes, the boundaries of each region are
extracted as lists of 3D points. This includes both
exterior (hull) and interior (hole) boundaries.

This problem is somewhat related to range image
segmentation (RIS). Two dominating approaches in
the literature are (1) parameter clustering or region
growing (e.g. Kaveti et al. 1994, Krishnapuram and
Freg 1992) and (2) patch fit/merge algorithms (e.g.
Jones and Illingworth 1994, Hu and Mehrotra 1992,
Boulanger and Godin 1992). Note, however, that
(as the term “segmentation” indicates) in these cases
the goal is to cover the entire image by planes (or
other parametric surfaces). When processing eleva-
tion maps of natural scenes where irregular terrain
occurs, this would typically result in a large number
of small planar regions, most of which probably would
be irrelevant for our purposes. The more traditional
clustering algorithms tend to merge planes with sim-
ilar orientation or spherical regions with large diam-
eter, which also is not desired here. Furthermore, an
important issue in RIS is that of adequately splitting
contiguous regions into well-distributed parametric
surfaces, e.g. a cylindric shape into planes or a land-
scape into cubics. “Well-distributed” typically means
segments of equal size, or adjacency constraints like
continuity of the first k& derivatives.

A typical approach to these issues is given by Biswas
et al. (1995). Their RIS algorithm is based on quan-



tization of surface normals to some predefined pro-
totype directions. Striking advantages of their ap-
proach are its computational simplicity and its par-
allel structure which yields constant time complexity
(with respect to the number of input points) on a
SIMD array computer. The use of prototype direc-
tions, however, may cause distinct planes to appear
as one. Furthermore, spherical surfaces with large
diameter will be approximated by planar segments,
which is intended by Biswas et al. but inappropriate
in our problem.

Jones and Illingworth (1994) employ a three-stage
method. First, biquadrics are robustly fit to spatial
sectors of depth data. Second, groups of neighboring
sectors are formed whose fits yield similar values for
properties such as curvature and surface normal di-
rection. Third, these groups are then classified as pla-
nar, cylindrical or neither, and the appropriate model
is fitted. This method involves a difficult tradeoff be-
tween sector size versus reliability of group member-
ship and does not consider the region membership of
single pixels, which limits accuracy near 3D edges.

A completely different approach is taken by Hu and
Mehrotra (1992). They first perform a segmentation
of the range image based on discontinuities in depth
(“step edges”) and its first spatial derivative (“roof
edges”). Surfaces are robustly fitted to the resulting
regions. A region merging step concludes the pro-
cedure. This method relies heavily on the existence
of 3D edges and their localization in a noisy range
image. Neither can be assumed in our problem.

All of the above algorithms can be classified as patch
fit/merge techniques. A remarkable representative of
the parameter clustering methods is the approach of
Krishnapuram and Freg (1992). They find an op-
timum number of parametric clusters in the data,
given that an upper bound on the number of clus-
ters present is known, effectively balancing clutter
and accuracy. Our problem is different in that the
goodness-of-fit of the planes to be found is more likely
to be known in advance than the number of them, due
to known or assumed sensor and domain characteris-
tics. The objective is more one of focus of attention
on a subset of data that must be extracted. Regions
that do not possess a sufficiently good fit are to be
discarded, not smoothed.

For a comparison of four other state-of-the-art RIS al-
gorithms, refer to Hoover et al. (1996). One other—
rather unique—segmentation algorithm should be
mentioned (Yu et al. 1994) because it does not fit
into either of the previously mentioned categories of
approaches. They propose an iterative robust fit-
ting method that randomly samples points in the
current processing region and solves plane equations
for k samples of three points. They present a com-
pressed histogram method to select the plane param-
eters which yield a best residual consensus. Initially,
the current processing region consists of the entire
image. A plane is robustly fitted (using the sam-
pling method) which yields the largest planar region
in the image. All other image points are regarded
as outliers and form processing regions for consec-
utive iterations. This process is repeated until the
processing regions are exhausted. At this stage, the
entire image has been segmented into planar regions.
According to the authors, the fitting procedure can
handle outlier proportions of around 80%.

All of these algorithms either rely on a heuristic selec-
tion of a (typically large) number of parameters which
coordinate the different stages of an algorithm, but
are reportedly difficult to adjust, or on assumptions
about the data (such as an expected number of re-
gions). The main contribution of this research is the
development of a concrete, straightforward algorithm
for finding planar segments in an irregular, noisy en-
vironment that avoids both of these drawbacks. Our
goals was the use of plane fits under the same fit-
ting criteria throughout the procedure (rather than
arbitrary splitting or merging criteria), and to keep
the number of parameters low and their effects in-
tuitively understandable. The following exposition
explains the algorithm and discusses advantages and
drawbacks of our approach.

2 Algorithm

The algorithm consists of the following largely inde-
pendent steps:

1. Fit elementary planar patches.



2. Merge as many patches to form larger regions as
appropriate.

Refine regions pointwise.
Split inconsistent regions.

Merge as many regions as appropriate.
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If a given convergence criterion has not been
met, go to 3.

7. Determine the boundaries of the regions.

These steps will be described in more detail in the
following sections, accompanied by a sequence of il-
lustrations denoted Running Example. Whenever
a plane is fitted to a set of 3D points, this set will
be referred to as a region, even though the points are
not necessarily connected. The term patch is used to
refer to the initial regions generated in the first step
of the algorithm.

2.1 Elementary planar patches

The entire input image is organized into regularly po-
sitioned patches of equal size and shape, which may,
but need not, overlap. For each of these patches, a
plane is fit to the 3D points within that patch (Fig. 3).
If the resulting sum of squared residuals exceeds a
given threshold ¢, then the patch is discarded.

Either least squares or least median square fitting
(Doyle 1996) can be used. In the latter case, k planes
are hypothesized by randomly selecting three points
from a patch. The number k of planes tried is com-
puted as a function of the estimated probability p
that any given point is an inlier, and a certainty fac-
tor 0 < ¢ < 1 specifying the reliability desired. The
best-fitting plane is used to separate outlier points
from inlier points,! and then a least squares plane
is fitted to the inlier points only. Outliers are re-
turned into the pool of free points. This allows them
to be assigned to other planar regions. Generally, the
presence of noise dictates that a reasonable minimum
number of points be contained in a patch.

LA point is an outlier if its squared residual exceeds the
median squared residual of its region by a constant factor; see
Doyle (1996) for details.

-
-

-

-

Figure 3: Running Example: Left: Sample Sec-
tion of IFSAR data (from Fig. 1). The area mea-
sures roughly 25 by 25 meters, sampled by an array
of 50 by 50 points. The height range covered is 19
meters. Right: Four circular patches were robustly
fitted with one pixel overlap in both axis directions.
No patch was discarded. Gaps are due to missing
data (dropouts) and outliers. The parameters used
were r = s =10, p=0.8, ¢ = 0.9, ¢ = 1.5 (see text).

Important issues are the shape and positioning of
patches (Fig. 4). One objective is to minimize the
influence of patch orientation on the result (i.e. patch
rotation invariance is desired). Obviously, circu-
lar patches achieve total patch rotation invariance,
whereas square patches introduce considerable bias
toward straight contours parallel to their edges. The
positioning of patches also has some influence on the
result. The closer that patches are positioned, or the
more they overlap, the better the patch translation
invariance achieved. Throughout this paper, circu-
lar patches with varying degrees of overlap are consid-
ered. These issues are strongly related to the merging
of neighboring regions which will be discussed in the
following section.

2.2 Region merging

Whenever two regions are adjacent (or, at the first
iteration, overlap), a merge of these regions is at-
tempted. The objective here is to merge regions it-
eratively such that as few regions are generated as
possible (Fig. 5). This is a very hard optimization
task, since every possible combination of pairs of ad-
jacent regions has to be tried in all possible orderings.

Instead, a non-optimal scheme is employed, where
a priority queue of potential merges is maintained.



Figure 4: Patch shape and positioning examples: Cir-
cular, square and hexagonal shapes; positioning with
no overlap (square, hexagonal), 4-neighbor (circular)
and 8-neighbor (circular, square) overlap.

Figure 5: Running Example: After the first merg-
ing step. Only the bottom two patches were merged,
resulting in three planes. (Here and in all following
example illustrations, gray levels were chosen to illus-
trate membership of points to the resulting planes,
and are not representative of range, elevation, orien-
tation etc. in any way.)

Suggested merges are taken off the top. One merge
is tried at a time by fitting a least-squares plane to
the union of the inlier points of the two regions in-
volved. If the resulting mean squared residual does
not exceed the threshold ¢, the new region replaces
the two old ones. This is in fact the same criterion
as used in the patch fitting step. The least-squares
fitting relies on the (reasonable) assumption that the
parameters of the merged plane are very similar to
those of both the merged planes. In some rare in-
stances, the assumption of similar plane parameters
is violated, causing a (typically very small) number
of points with large residuals to occur (see Sec. 3.1).

Since the plane parameters of the two merged planes
have changed, the merge feasibilities of all remain-
ing potential merges with this new region should be
recomputed, thus updating the priority queue. How-
ever, since only planes with similar orientations are
merged, in general the relative surface orientation is
not expected to change much. It appeared a better
strategy to avoid the extra cost of updating the prior-
ity queue, as suggested by experiments that showed
no apparent differences.

The priority queue is initialized before the merging
starts. Potential merges must be ranked according
to some estimated feasibility f. Intuitively, when
two regions lie in nearly parallel planes, f should be
inverse proportional to the orthogonal distance be-
tween them. On the other hand, if the planes are
tilted, there is no well-defined notion of this distance,
and f should be inverse proportional to the angle be-
tween the planes. The following heuristic equation
reflects these intuitions:

max{d1 s dg}
0

f=rcosa— Coose

where « is the angle between the normals of the two
planes, d; is the perpendicular distance of the cen-
troid of region i from the other plane, and § is a
weighting constant. The resulting merge quality is
high if both angle and distance are small, and it
diminishes as either angle or distance grow. The
smaller the angle between the planes, the more im-
portant the distance becomes. The value of § is
not critical; the square root of the squared residual
threshold ¢ was used here.



Obviously this equation is only a heuristic. A better
solution would perform a temporary merge and use
the resulting sum of squared errors as the priority.
On the other hand, this would slow down the merg-
ing process dramatically, since potential fits would
be tried in all cases before a single merge takes place.
Clearly, the nature of this heuristic function has a sig-
nificant influence of the final result. It is easy to con-
struct examples where a bad ordering of the merges
yields unwanted results (Fig. 6). On the other hand,
this rarely happens in practice, since the heuristic
works pretty well, as illustrated in Fig. 7. This typical
example (from the Lockheed-Martin stereo data, see
Fig. 14) illustrates the fact that promising merges are
put first in the priority queue: The first 280 merges all
succeed. Then, the portion of failed merges increases
until most merges fail. At the end, again a small
number of merges succeeds. This is a systematic er-
ror that needs further investigaion. It may have to
do with the aforementioned unadjusted merge ranks
and with the heuristic nature of the ranking formula.

initial situation
appropriate merge

ﬂ

inappropriate merge

- T

Figure 6: An example of an inappropriate merge,
yielding either a good or an unwanted result. The
lines represent planar regions, viewed from the side.

Refitting planes to the set of points of the regions that
are to be merged is the predominant time factor dur-
ing the region merging process, especially if very large
regions are involved. To avoid unnecessary plane fits,
a screening scheme was introduced. Key is a measure
m that estimates the confidence that two given planes
can be merged in terms of the residual error of the
inlier points of the smaller plane with respect to the
larger region’s plane equation. If this confidence m
is very high, then the two regions are merged without
refitting, assuming that the plane equations do not
change much. (Planes of altered regions are refitted
periodically.) If m is very low, then the merge is not
even attempted. In case of medium values of m the
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Figure 7: Evaluation of the feasibility measure f for
prioritizing potential region merges: Plot of a typical
series of patch merges, total attempted versus suc-
cessful merges. The dashed line indicates a slope of
one for comparison.

merge is attempted as described above, and retained
only if the resulting plane satisfies the fit criterion
q- Since small regions tend to involve higher uncer-
tainties due to noise, this screening scheme is only
applied to sufficiently large regions.

Just as the shape of a patch influences the patch rota-
tion invariance, the neighborhood relationships defin-
ing the regions which can be merged will affect the
merge rolation invariance (see Fig. 4). This is easiest
to see when elementary patch merges are considered:
In the simplest case, merges are performed only in 4-
neighborhoods (assuming grid-like patch positions).
This favors regions with boundaries parallel to the
patch grid axes. Diagonal boundaries will be approx-
imated as staircase-like shapes.

For maximum merge rotation invariance, 8-
neighborhoods (or even higher) should be used.
Since it only makes sense to merge patches that
share a piece of boundary or overlap, this question is
related to the topic of patch shape and patch overlap.
Obviously, it makes no sense to use 8-neighborhood
merges with non-overlapping patches. Therefore
overlapping regions play a key role in region merging.

An unsolved problem with overlapping regions is,
when a merge fails, how to deal with those points



that belong to both regions. For simplicity, the algo-
rithm presented here removes these points from both
regions and relies on the region refinement step (de-
scribed in the next section) to fill any gaps. With
8-neighborhoods, in certain situations a region may
be split into disconnected subregions, as illustrated

N N
. .

Figure 8: The problem of crossing regions. Sup-
pose two diagonally overlapping patches have been
merged, as shown on the left. Suppose now that the
other two regions are merged next (middle). Then,
the two resulting regions are tried, but this merge
fails. Their intersection is removed from both regions,
and we are left with two point sets each of which has
been cut into two regions (right).

Hexagonal patches seem to constitute a reasonable
compromise for non-overlappinng patches. Their
unique 6-neighborhood also achieves some sense of
rotation invariance. However, its characteristics and
problems are very different from grid-like patch ar-
rangements, and will not be considered in this dis-
cussion.

2.3 Region refinement

The region refinement step simultaneously serves
three purposes, namely

¢ adding free points adjacent to a region if they
are perpendicularly close enough to the planar
surface,

e removing points currently belonging to a region
if they are too far away from the surface (this
is primarily useful if non-robust fitting was em-
ployed), and

e moving points at the juncture of two regions
from one to the other if they are more properly
part of the other.

There are two possible reasons for taking a point u
out of a planar region A: One is that u is further
away from the plane of A than some threshold, and
the other is that there is a plane B that u is closer
to than A. (To discourage oscillations, a hysteresis
mechanism was implemented which is not discussed
here.) Initially, all points are unflagged. For every
unflagged point u, the following procedure is per-
formed (Fig. 9):

Let A be the current region to which u belongs,
or NIL if u is a free point.
Let B be the region u is determined to fit best to,
or NIL if none.
If B is not equal to A, then:
If A is not NIL:
If there is no reason to take u out of A:
continue with next point wu.
Take u out of A.
If B is not NIL:
Insert u into B and flag u.

The convergence criterion mentioned at the begin-
ning of Sec. 2 is defined as a threshold to the number
of points changed (i.e. added, removed, or moved)
during one iteration of the above procedure. If fewer
points than this threshold were changed during a
given iteration, convergence is assumed, and the al-
gorithm terminates.

Figure 9: Running Example: After the first region
refinement step. Here, all three regions have grown
considerably and are mostly contiguous.



2.4 Region splitting

A region needs to be split if it is crossed by a con-
tiguous chain of points that do not belong to it. Such
situations can occur for three reasons: These points
are outliers, or they were created during the region
refinement step, or they were removed from the re-
gion following a failed attempt to merge it with a
crossing region (see Sec. 2.2). Here, a 4-Connected-
Components operation (modified from Ballard and
Brown 1982) is performed. Besides finding connected
regions, it determines adjacency of different regions.
After splitting regions into connected components, a
new priority queue of potential merges is constructed
from these adjacencies. After all appropriate merges
have been performed, all regions smaller (i.e. con-
taining fewer inlier points) than a given threshold
are discarded. Then, the next refinement step begins
(Fig. 10).

2.5 Boundaries

All previous steps are performed without maintaining
explicit lists of boundary points. The construction
of these lists is the final step of this algorithm. All
boundaries are determined, including those of interior
subregions not belonging to the region in question
(“holes”). The lists are constructed such that points
to the left of the boundary points belong the region,
and points to the right do not. In other words, the
hull is traversed counterclockwise, and holes are tra-
versed clockwise. (This interpretation assumes that
the (i, j) coordinate system of the input point grid is
right-handed.) Boundary points play a crucial role in
visualization as well as many applications, as shown
in the following section.

3 Sample results on real data

In the following sections, the performance of this al-
gorithm is illustrated using typical data samples of
different types. Before these tests were performed,
all screening parameters were adjusted such that they
achieve their purpose but do not unduly influence the
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Figure 10: Running Example: After region refine-
ment, the first splitting step split two small “islands”
off the medium-gray region (Fig. 9). They were re-
turned into the pool of free points because they were
smaller than the minimum region size (a). Then,
the second iteration of the refinement /split/merge se-
quence starts: Refinement grows all regions (b), and
some of the points formerly belonging to the medium-
gray region have migrated to the light gray region
(note the dark “island” in the light gray region). The
next split/merge sequence merges the two upper re-
gions and merges the “island” to the surrounding re-
gion (c). —This sequence is iterated until conver-
gence (in this case, five iterations) and results in the
configuration (d). The height of the dark fitted re-
gion ranges from 1646.6 to 1648.1 meters, and the
light region 1652.5 to 1654.6 meters.



result. These parameters are intended to be fixed
across data sets. In all of the following examples,
overlapping circular patches are used in the initial
patch fitting step. The only user-specified parame-
ters are patch radius r and offset s (which also af-
fects whether or not diagonal patch merges are con-
sidered), and the squared residual threshold gq. The
parameters r and s should generally be set as large
as possible, but small enough to catch the smallest
desired planar region. For robust fitting, p and ¢
(which map onto only one parameter, as explained
above in Sec. 2.1) can be adjusted to reflect the given
noise characteristics. Since one of the design goals of
this algorithm was its independence from heuristic
parameters that need to be fine-tuned for specific in-
put data, it must be emphasized that no extensive
systematic or empirical parameter tuning was per-
formed to improve the results shown in the following
sections. In all cases, unless otherwise noted, the pa-
rameters were manually selected in a straightforward
fashion.

3.1 IFSAR

As mentioned in the introduction, IFSAR data such
as the Kirtland data set poses a challenge to any
plane fitting and segmentation algorithm due to its
speckled non-Gaussian noise and dropouts. Both
noise and dropouts occur in chunks of several corre-
lated data points. In particular, dropouts often form
relatively large contiguous regions. Some tests were
run on IFSAR data from Sandia/Kirtland AFB (see
Fig. 1). This site is characterized by many planar
faces parallel to the ground.

The result is presented in Fig. 11 (with the same pa-
rameter settings as in the Running Example above).
Note the many holes caused by outliers and dropouts.
Most of the ground plane and the “E”-shaped build-
ing complex in the middle are represented by large
connected regions. Most of the semi-cylindrical
Quonset huts (white buildings at the bottom and
right of Fig. 11c) are covered only in parts and mainly
show up as gaps in the ground plane. This is not sur-
prising since the corresponding IFSAR data mainly
consist of dropouts.

Figure 12 shows a histogram of the residuals of the
points belonging to the fitted planes. Except for very
few points with large residuals (up to almost 11 me-
ters), the residuals are pretty low (less than 1 me-
ter). A total of 1164 points (about 0.6 percent of
all points) have a residual larger than 3 standard de-
viations, which is about 2 meters. These residuals
are artifacts created by the least-squares fitting in
the merging step in conjunction with the non-optimal
merging queue (cf. Sec. 2.2). Ideally, they should be
removed from the regions. However, in rare cases
this could create disconnected subregions, which in
turn (during refitting) might produce outliers. This
problem is not easily solved.
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Figure 12: Histogram of the residuals (in meters) of
the 185318 points in Fig. 11 that belong to any fitted
plane. The residuals range from 0 to 11.1 meters,
with mean 0.9 and standard deviation 0.7 meters.

Interestingly, it is relatively easy to separate the
ground planes from other planes. This feature can
serve as a simple focus-of-attention mechanism for
building detection. For example, the user could se-
lect a region that is believed to belong to the ground
plane. This region is then marked as a ground re-
gion, along with all regions “similar” to it. The sim-
ilarity measure here is exactly the same parameter g
as used during region merging (cf. Sec. 2.2), the only
difference being that here pairs of regions need not
be connected. What remains are the regions that do
not belong to the ground plane, i.e. that are likely to



Figure 11: Fitted regions (nonoverlapping patches, r = s = 10, with horizontal/vertical adjacencies): (a)
dark to light gray levels encoding increasing elevations (white areas are not covered by any fitted plane).
Some heights (in meters) are given; (b) region outlines. Note that no geometric constraints are used to
straighten lines etc. The image size is 512 by 512 pixels; (c) an optical image of the same site for illustration.
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belong to buildings. Some sample results of a ground
plane removal from Fig. 11 are shown in Fig. 13. The
ground region (the largest region in Fig. 11b) was se-
lected as the ground prototype. The higher the value
of ¢ that is used, the less stringent the similarity mea-
sure for plane comparison is, and consequently, the
more planes are taken as belonging to the ground and
discarded.

3.2 UMass DEM

The input 3D data considered in this section were
computed by the UMass terrain reconstruction sys-
tem (see introduction). In the context of building de-
tection or reconstruction, a possible application of the
plane fitter is to focus attention on restricted regions
of such DEM’s. This can be desirable in situations
where image data provides insufficient cues or a lot of
clutter. In this case, one wants to set the fit threshold
q to a very small value, resulting in a sparse coverage
of the image by planar regions. To demonstrate this,
an image of a Lockheed-Martin building located in a
rural area was selected (Fig. 14). Patch radius and
offset were r = s = 5 pixels which yields horizon-
tally, vertically and diagonally overlapping patches.
Because the data contain little noise and we are in-
terested in finding buildings, least squares fitting was
used, and the fit threshold was set to a very strict
g = 0.01m2.

Indeed, the fitted regions cover only about one quar-
ter of the image, and the building is clearly repre-
sented (in the center of the image). Note that the flat
pavement surrounding the building is not covered by
any fitted planes. This is because the lack of texture
in these locations produces increased noise in the el-
evation data. — From this point onward, a terrain
reconstruction algorithm (for example) need process
only the regions covered by fitted planes. Further-
more, part of the roof of the Lockheed-Martin build-
ing is already described parametrically as 3D surfaces
in the appropriate regions. This demonstrates the
suitability of this algorithm as a planar object detec-
tor or focus-of-attention mechanism.

Next, the plane fitter was run on a peaked-roof build-
ing from ISPRS data. The reconstructed digital ele-
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vation map was generated by the UMass terrain re-
construction system (see Fig. 2). The plane finder
was run on this tile with several different parameter
configurations. The patch offset in the axis directions
was set equal to the patch radius such that horizon-
tal, vertical, and diagonal neighbors overlapped by
half a patch width. Patches were fitted using the
least-squares algorithm, since these data contain lit-
tle random noise.

Figure 15 shows the boundaries of the fitted re-
gions generated for two different mean squared error
thresholds ¢ and two different patch radii r, overlaid
on a slightly brightened elevation image. In the il-
lustration, the boundary overlays are one pixel wide.
Where these lines appear bold, two such boundaries
of neighboring regions meet. Note that many regions
contain holes, and that not quite the entire image is
covered by fitted regions. It is apparent how increas-
ing error thresholds yield larger regions. Note how
nicely the roof slopes are fitted at ¢ = 0.5, but how
much detail is lost compared to ¢ = 0.1. Starting
off with smaller patches yields even more detail. The
slopes of the roof are consistently found to be approx.
-25 and 55 degrees. This asymmetry is inherent in the
elevation data (cf. Fig. 2).

A completely different example was taken from a Fort
Hood data set (UMass tile 23; Fig. 16). This sample
was a lot harder to deal with because the elevation
data is much noisier here than in the ISPRS case,
and there are many larger bumps and dents in the
elevation data. Because of the noise, least median
square fitting was used (p = 0.8, ¢ = 0.9). The fitting
threshold was set to ¢ = 0.5. The patch diameter was
r = 8 pixels, and the patches did not overlap since
it did not appear necessary because the patches are
relatively small compared to the expected size of the
recovered planar regions.

A different section of the Ft. Hood data is shown in
Fig. 17. Here, the elevation data contains a lot more
noise than in the previous case due to distant oblique
views and poor contrast in the stereo images (Fig. 17a
shows one of them). It was processed using the same
settings as above, but using slightly larger patches
(r = s =10). All buildings shown in this scene have
peaked roofs at shallow angles. Note that many of
them are fitted in spite of the noisy data. The resid-



Figure 13: Same data as Fig. 11, but with ground regions removed with ¢ = 1, 1.5, 2 (left to right). Lighter
gray levels indicate higher elevation; white areas are not covered by any region. Note that ¢ = 1.5 is the
same value as used for the region generation (see text).

Figure 14: Lockheed-Martin building. Aerial image and (registered) DEM overlaid by plane finder result
(244 by 222 pixels).
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Figure 15: ISPRS stereo data: (a-c) Region boundaries overlaid on a slightly brightened elevation image
(145 by 127 pixels). Least squares patches; (a) r = 5, ¢ = 0.1, (b) r = 10, ¢ = 0.1, (c¢) r = 10, ¢ = 0.5.
(d-f) Visualization of plane orientations: Gray level encodes the angular deviation of a fitted plane from
an imaginary vertical plane through the ridge of the house. Angles are mapped into the range of -90 (dark
gray) to 90 degrees (light gray). White areas are not covered by any fitted plane.
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Figure 16: Fort Hood flat-roofed building (350 by 250 pixels): (a) visible image, (b) stereo DEM, (c) region
outlines (holes are not shown), (d) fitted planes (white areas are outliers or other points not belonging to
any fitted plane).
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ual statistics are shown in Fig. 18. They are very
similar to those shown in Fig. 12: 1336 point residu-
als (less than 0.6 percent) are larger than 3 standard
deviations (1.2m).
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Figure 18: Histogram of the residuals of the 194788
points in Fig. 17 that belong to any fitted plane. The
residuals range from 0 to 4.3 meters, with mean 0.5
and standard deviation 0.4 meters.

3.3 Range Data

Hoover et al. (1996) developed a testing scheme
for range image segmentation algorithms, including a
number of carefully created 512 by 512 range images
of polyhedral objects. These range data show large
planar faces that cover most of the image area. They
are characterized by relatively crisp edges and little
random noise. Depending on the type of the range
finder, large shadow areas without depth information
may occur. Even though this plane finder was not de-
signed for range images, two different sample images
were chosen and segmented using non-overlapping
patches of radius » = 10 and least squares fitting with
a coarse threshold of ¢ = 5. The first image (Fig. 19)
was generated by an ABW Structured Light Cam-
era, and the second (Fig. 20) by a Perceptron Laser
Range Finder. While the results appear satisfactory
for our purposes, they illustrate some disadvantages
of our approach if applied to segmentation. In both
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cases, almost all faces are covered, and many edges
are straight and well-defined. These results are re-
markably good, given that no attempt was made to
detect edges in the 3D data. On the other hand, some
edges are very inaccurate. True RIS algorithms per-
form better because they typically make explicit use
of edges, which our plane finder intentionally avoids.
Because of this intrinsic difference between our algo-
rithm and typical RIS algorithms, no attempt was
made to formally assess the results using the frame-
work and tools provided by Hoover et al.

4 Interaction with higher-level
procedures

As mentioned in the introduction, the plane finder
can be used to supply additional information to ter-
rain reconstruction systems. Here is one example:
Ascender (Collins et al. 1996) is a site reconstruc-
tion system that detects straight lines in aerial (op-
tical) images, groups them into polygons and gener-
ates building hypotheses. In the visible image data
shown in Fig. 11c, Ascender failed to detect the up-
per rooftop edge of the building labeled “G”, because
loading docks disturb the straight appearance of this
edge. To verify the building hypothesis, the location
where a “U”-shape boundary is found is cropped out
of the data, and the plane finder is run. A subim-
age containing the result (Fig. 21) shows that indeed
a planar surface was found at the appropriate loca-
tion, with three of its edges corresponding to the roof
edges hypothesized by Ascender. The fourth edge of
the planar region provides the missing rooftop edge.
Hence, the existence of a building is confirmed.

While the plane finder operates well on 3D point data
without additional information, it is easy to make
use of additional knowledge if available. For exam-
ple, if optical imagery is available, lines (grayscale
edges) can be extracted from them and grouped to
form open or closed polygons as above. In many ap-
plications, it is reasonable to assume that 3D edges
coincide with grayscale edges in the visible image. An
easy way to communicate this cue to the plane finder
is to remove all points from the 3D data that coin-
cide with lines in the optical image. This prevents the
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Figure 17: Fort Hood peaked-roof building (451 by 451 pixels): (a) visible image, (b) stereo DEM, (c) region
outlines (holes are not shown), (d) fitted planes.
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Figure 19: (a) Intensity image, (b) ABW range image (in white areas, no range information is available),
(c) planes recovered from the range image.
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Figure 20: Left: Perceptron range image; right: plane finder result.

b
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Figure 21: (a) Subimage of Fig. 11c (Kirtland AFB site). White solid lines indicate roof edges of building G
which were found by the Ascender system. The upper side was not found because its appearance is disrupted
by a series of loading docks. The other three sides were found and grouped as a U-shape, providing a building
hypothesis that can be verified using the IFSAR data in this area. (b) Verification of the hypothesized
building “G” and detection of the missing upper side (the upper horizontal edge of the square region; see
text). The white areas are gaps, outliers or dropouts. Gray levels encode elevation.
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plane finder from generating regions that cross these
lines, thus improving the accuracy of the planes near
edges.

Figure 22 shows an example result of this procedure
applied to the ISPRS data. First, straight lines were
extracted from one of the two optical stereo images
using Burns’ (1986) algorithm. Then, these lines were
removed from the elevation map, and the plane finder
was run with the same parameters as used in Fig. 15c.
The improvement is striking: Without the line ex-
traction, the plane finder had difficulties precisely lo-
cating the region boundaries because of the absence
of sharp edges in the 3D data (cf. Fig. 15). After re-
moving the lines, the accuracy of the outlines of both
halves of the roof is greatly increased.

Note that this procedure is robust with respect to
spurious edges: If a large number of edges is extracted
that have no corresponding edge in 3D, all that hap-
pens is that neighboring regions are not merged even
though they lie in (nearly) identical planes. To ac-
count for this, one can easily add a postprocessing
stage that inserts the missing points into the data,
adds them to the region they fit best to (if any), and
then tries to merge neighboring regions.

5 Limitations, drawbacks, and
improvements

The strength of the presented algorithm is also its
greatest weakness: As mentioned above, a strong de-
sign principle was the use of plane fits instead of
heuristic merging criteria wherever possible. This
accounts for the sometimes poor representation of
edges, even if they are very clear in the input data.
More care should be taken to accurately locate edges
where they are expected; one possible approach was
presented in the previous section.

Another drawback is the computational complexity,
especially if robust fits are performed. For small im-
ages (up to, say, 100 by 100 pixels, depending on CPU
speed) performance times are not critical. An image
is processed within a few seconds. However, for larger
images (say, 512 by 512 pixels), the running time in-
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creases considerably. Especially if many patches are
generated and many merges succeed (such that re-
gions grow large), the region merging process easily
takes more than thirty minutes on a fast SGI (proces-
sor speed 200MHz). This step is by far the most time-
consuming one. It should be noted, however, that
this algorithm can be highly parallelized on many
levels. If the plane finder is used as a subsystem in
top-down processing (e.g. as illustrated in the preced-
ing section), then the procssing regions will often be
small, and thus running time becomes a minor issue.

If least-median-square plane fitting is used, the patch
fitting step takes many times longer (up to some min-
utes) than in the least squares case. This factor de-
pends on the p and ¢ parameters (cf. Sec. 2.1) and
will typically lie between about 3 and 10.

The iterative nature of the refine-split-merge proce-
dure does not appear to be a significant time factor,
since it usually converges after a small number of iter-
ations. The main time consumer, the region merging
step, becomes less significant with growing number
of iterations for two reasons: The number of poten-
tial merges decreases, and more and more potential
merges are rejected by screening (cf. Sec. 2.2) such
that the costly fitting step is avoided.

High memory requirements are characteristic of most
image processing procedures. This is very significant
here because during the iterative region merging and
refinement steps, non-local computations on large re-
gions occur which may cause a machine with limited
memory to swap extensively.

The merge quality ranking criterion (Sec. 2.2) is
somewhat arbitrary. However, it is not clear how
to specify a consistent one that relates to the plane
fit threshold ¢ in a well-defined way. This problem is
shared by all comparable region merging approaches
to range image segmentation. Note, however, that
in our algorithm this criterion affects only the order-
ing of the merges rather than the merges themselves.
This constitutes a clear improvement over other re-
gion merging approaches.

The larger the intersection of two overlapping
patches, the more points will be deleted from these
two regions if they cannot be merged. Thus, gener-
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Figure 22: ISPRS peaked roof house (compare with Fig. 15b). (a) Optical image; (b) optical image overlaid
with extracted lines; (c) brightened elevation map overlaid with boundaries of fitted regions (holes are not

shown).

ally far more points are removed than necessary. A
simple solution would be to delete the points from
just one region, e.g. the smaller one. Or, points can
be kept in the closer region only. More complex ap-
proaches may analyze the residual distributions of the
points in the overlapping segments, and try to assign
the points to the region of best fit. This is basically
what is attempted in the region refinement step (Sec.
2.3).

At the end of the iterative refinement/merging pro-
cedure, small holes should be included as outliers,
rather than tracing their boundary points.

An important improvement would be additional func-
tionality for hypothesizing straight line (or other
parametric) boundaries in a bottom-up manner. An
iterative procedure similar in spirit to the plane finder
could be employed for this purpose.

6 Conclusion

A straightforward algorithm was developed and im-
plemented that finds planar regions in 3D elevation
data. It does not make strong assumptions about
the nature of the data, and works well on very differ-
ent and challenging classes, including highly noisy IF-
SAR and stereo-generated DEM. The desired amount
of detail can be scaled by patch radius, patch overlap,
and an error threshold. Noise characteristics can be
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taken into account by selecting an appropriate num-
ber of iterations for the robust fitting procedure. The
algorithm reflects the desire to keep the results plau-
sible and consistent in that heuristics are mainly used
for speedup and are not observed to have much influ-
ence on the quality of the results. Wherever possible,
the same fitting criteria were applied during all major
steps (patch fitting, region merging, and region re-
finement). The resulting planes seem convincing. In
addition to purely data-driven planar region extrac-
tion, the algorithm can also operate as a supplemen-
tary tool as part of a higher-level site reconstruction
procedure by incorporating edge information, assum-
ing the presence of straight line or rectilinear bound-
aries, or by supplying additional 3D information.

If relatively few and small planar regions are found
in a given image, run-time and memory requirements
are minor issues. If large regions are found in a large
image, then the running time increases quickly. On
the other hand, the algorithm can make use of mas-
sive parallelism. Further suggestions for improve-
ment were made in the preceding section.
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