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Abstract— This report describes the Stroke Lesion Segmentation
Project of the UMass Computer Vision Laboratory in cooperation
with Baystate Medical Center. Its purpose is to define the current
state and next steps, and to familiarize the reader with existing data
and tools. After a brief description of the project and its clinical
goals, the UMass contributions and possible approaches are presented.
Thorough literature reviews are related to our goals. Additional pre-
liminary experiments are discussed. The report concludes with a de-
scription of our clinical data and existing tools.
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1 Introduction

This research is part of a project led by Dr. Pleet, Head of the Neurology
Department, Baystate Medical Center (BMC), Springfield, MA. The main
purpose of this project can be outlined as follows: People who have suffered
an acute ischemic stroke' show an elevated blood pressure, the exact source
and effects of which are not known. The goal of this clinical study is to
determine whether patients should be treated with medication that lowers
blood pressure.

!Terms printed in italics are explained in the Glossary section of this project’s Web
page at URL http://vis-www.cs.umass.edu/projects/stroke/stroke.html.



In the course of the project, different blood pressure treatment protocols will
systematically be performed on separate groups of patients. The development
of brain lesions (as imaged by MR and CT methods), and other assessments
of recovery, will be correlated with the treatment in order to define an optimal
treatment protocol. More specifically, such lesions generally consist of a core
of dead tissue (infarct), and a surrounding area (penumbra) of damaged
tissue that either might recover or die. Whether the lesion imaged by MR
and CT include none, part or all of the penumbra, usually is not clear. A
more complete description of the project is presented on our Web page, and a
brief introduction to Magnetic Resonance Imaging is provided by Kapouleas
(1990).

The contribution of the UMass Computer Vision Laboratory will be the
localization and volumetric measurement of lesions, the main problem being
accurate identification of lesions and their boundaries. Difficulties arise from

e general fuzziness of the image data (caused by partial volume effects),

e low contrast between lesion and other tissue types,

e variations in intensity characteristics (intersubject and spatial),

some of which are readily illustrated in Fig. 1.

This work involves the following subtasks, not necessarily in this order:

Registration of volumetric data for

e obtaining multispectral volumes acquired with different parame-
ters (eg., PD, T1, T2 MR and/or CT),

e data refinement by integrating slices acquired in different orienta-
tions (azial, sagittal, coronal),

e comparison of data acquired at different times, and/or

e relating a given scan to a brain atlas as a segmentation aid.
Segmentation of lesion from healthy brain tissue.
Volume measurement of the lesion.

A successful completion of this project may have a significant impact on the
routine treatment of ischemic stroke patients.
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Figure 1: Two annotated sample MR images showing the same brain slice
using different parameters. (This image is from the Project’s Web page.)

2 Related Work

We are not aware of any published work on automated stroke lesion segmen-
tation. However, some significant work has been done on Multiple Sclerosis
lesion segmentation. Here are a few characteristic examples:

Kapouleas (1990) was one of the first to present a comprehensive approach.
He developed a highly specialized system, involving (among other features)
a specially designed low-level 2-D segmentation algorithm based on a combi-
nation of edge detection, local thresholding, and region merging; and elastic
registration of the brain volume to an atlas using the interhemispherical fis-
sure as a landmark, moments of inertia for orientation, and spline surface
fitting for elastic deformation. The result is used to aid false positive rejec-
tion. He operates on routine clinical data.

More recently, probabilistic segmentation paradigms predominate. Kamber
et al. (1995), for instance, developed a brain tissue probability model from
high-density MR data of healthy subjects. The model was built in a stan-
dardized reference coordinate system proposed by Talairach and Tournoux



(1988). They compare four different approaches to segmentation of MS le-
sions:

1. nonmodel-based (purely data driven),

2. data driven, but model used to confine the search to plausible white
matter locations,

3. model used to provide spatial tissue type probability features in addi-
tion to the data features, and

4. model used for both purposes.
They employ four different classifiers, namely

e minimum distance clustering,
e Bayesian maximume-likelihood,
e decision tree, and

e pruned decision tree,

and run all of them on all four tasks mentioned above. In short, the best
results were achieved when the model was used only to confine the search,
and the Bayesian classifier achieved the most accurate results. The tests were
performed on specially acquired high-density axial MR (PD and T2) data.

The most sophisticated approach that I am aware of was presented by John-
ston et al. (1996). They use a non-model stochastic relaxation method for
segmentation of MR slices obtained in clinical routine. First, all non-brain
tissue is automatically masked out, and radio-frequency nonuniformities are
corrected by homomorphic filtering (Mackiewich 1995). Then, the intensity
volume is segmented using a Markov Random Field (MRF) model, which
initially requires minimal user interaction per data volume. The result is
a volume of tissue-type probability vectors. (The MRF approach will be
described in more detail below.) Those voxels that now have a lesion proba-
bility greater than a threshold are classified as lesion. Finally, a morpholog-
ical opening operation is performed to reduce the number of isolated lesion
voxels.



The problem of stroke lesion segmentation is closely related to this work.
However, most of this previous work relies on the fact that MS lesions are
predominantly found in the white matter of the brain. Also, it seems that
stroke lesions tend to be less regular in shape and have fuzzier boundaries
than typical MS lesions (personal observation). This makes both accurate
segmentation and false positive rejection somewhat harder.

3 Our Approach

After removing any spatial irregularities from the data (in particular, radio-
frequency correction), we propose to register all available data acquired at
the same session. Multispectral segmentation will be performed in 3-D to
extract any lesions. If successful, the volume of the lesions can then easily be
computed. (It should be noted, however, that the accuracy is limited by the
coarseness of the clinical data.) Key steps of this procedure will be outlined
in more detail in the following sections. Furthermore, by registration of CT
data to MRI, we may be able to define what parts of infarct and penumbra
are actually imaged by CT and MR methods.

In clinical application, assessment of lesion size changes over time will then
be possible by registering scans acquired at different sessions.

3.1 Data Acquisition

Our data is provided to UMass by Baystate Medical Center where it is ac-
quired on a routine basis. A typical MR data set, acquired at a single session
with one patient, at least includes one sagittal T1, and one axial T1/PD/T2
scan each. Each scan typically consists of roughly 20 slices of 5mm thickness,
the distance between slices being Tmm (i.e. there is a gap of 2mm between
slices). Each slice covers an area of 240x240 mm and is sampled into 256 x 256
(T1) or 512x512 (PD and T2) pixels, respectively. The gray values typically
range from 0 to about 1600.

Every scan comes as a set of image files along with a machine generated
ASCII parameter file. Perl scripts have been developed that read these files
and perform a variety of operations on these files and the associated MR
data, including anonymification of the data, sorting them by patients, display



of information, data conversion, reslicing of data volumes, and mapping of
metric coordinates to slice and pixel indices.

3.2 Radio-Frequency Correction

The response of today’s MRI machines is to some extent nonuniform over
the scanned volume. Both inter-planar and intra-planar variations occur.
Typically, the intensity of the MRI signal characterizing a particular tissue
composition is lower near the borders of the scanned volume. In other words,
MR images appear brighter near the center. (For an example and further
references see Johnston et al. 1996). Therefore, every approach that relies on
global features (e.g., MRF as described below) should start with the removal
of intensity irregularities like radio-frequency inhomogeneities.

Since we have access to our MRI machine, we should try to obtain test scans
of a so-called phantom and use the results to define a radio-frequency cor-
rection function. A phantom in this context is a homogeneous object of
appropriate size which is scanned by an MRI machine for calibration pur-
poses. It shows an intensity response similar to the human body. Any
radio-freqency inhomogeneities of an MRI machine will show up as inten-
sity variations within a phantom scan. These variations of the calibration
scan (and therefore, any similar scan) can be reversed by an appropriately
designed digital filter.?

If this turns out to be impossible, we will have to take another approach.
Johnston et al. (1996) briefly mention methods proposed by other authors,
including low-pass filtering of the original MR data to approximate a phan-
tom and fitting a surface to interactively defined points of the same tissue
type. Others suggest to suppress RF inhomogeneities directly by high-pass
filtering of the MR data. Johnston et al. themselves employ a method equiv-
alent to homomorphic filtering (Mackiewich 1995) which we could follow.

3.3 Registration

In this context, there are three classes of registration:

2 Apparently, at BMC a phantom is used for regular calibration of their MRI scanner,
which may serve our purposes.



e intrasubject MR to MR,
e intrasubject MR to CT, and

e individual MR or CT scans to an electronic brain atlas.

All intrasubject registration tasks can be assumed to require only rigid trans-
formations, while intersubject and scan-to-atlas registration will require elas-
tic (non-rigid and, ideally, non-affine) transformations. Most published re-
lated work on MS lesion segmentation does not involve intrasubject registra-
tion because only MRI is used, and it is assumed that all data are already
registered. In practice, however, this is only true if the different data sets are
acquired simultaneously, which is generally not the case with our data.

3.3.1 Previous work on rigid registration

Most of the predominant approaches to rigid registration fall into one of the
following categories, roughly in increasing order of complexity and accuracy:

1. Principal Axes Fitting
2. Surface-To-Surface / Point-To-Surface fitting

3. Feature Correlation

Dhawan et al. (1995) give a good example of the first approach. It works by
first segmenting the volumes to be registered, creating binary representations
of a reference volume (e.g., the brain), assuming it has a mass and computing
its principal axes of inertia, which are then matched. It is apparent that the
accuracy of the result heavily relies on the quality of the first segmentation.
If the chosen reference volumes do not match or are incomplete in the data
sets, then the outcome is likely to degrade.

Yan and Karp (1994) at the University of Pennsylvania use the principal axes
transform only for the estimation of an initial estimate. Then, they use a
Surface-To-Surface fitting approach: The brain surface is approximated by
cubic spline surfaces, which can efficiently be matched. This procedure is
more robust and quite accurate. However, it too requires segmentation of
the brain surface.



Feature Correlation is the approach employed by Kumar et al. (1994). It
starts with the extraction of 3-D edge features in both data volumes. These
features are then iteratively matched at increasing resolutions to avoid local
minima and speed up convergence. This procedure relies on the assumption
that a sufficient number of common features occur in both data sets (which
is always true in the cases discussed here). It is robust with respect to an
additional large number of features that do not match (and thus may produce
outlier matches).

The feature correlation approach seems to be the most promising one. How-
ever, it apparently has only been tried on data which is a lot denser than
that obtained in our clinical routine. On the other hand, van den Elsen et al.
(1995) in a previous paper experimented with 5 mm slices and no gaps be-
tween slices, and report some success. (Our Baystate data set is expected
to usually consist of 5 mm slices plus 2 mm gaps.) This approach was an
immediate predecessor of Kumar et al. (1994).

3.3.2 Plans for rigid transformation

It seems that the approach implemented by Kumar et al. (1994) represents
the current state of the art, and is appropriate for our needs. A lot of man-
power tends to be wasted by researchers at different institutions re-inventing
or re-implementing existing solutions. To avoid this, and since there is a
research agreement between the University of Massachusetts and the David
Sarnoff Resarch Center, I propose that we make as much use of their exist-
ing software as possible.? If it turns out that their solution does not produce
satisfactory results (e.g., because of our thick slices), then I suggest we follow
the approach of Yan and Karp (1994).

The performance of all iterative registration algorithms depends on an initial
pose estimate. For our data, a good estimate is provided by the orientation
coordinates given in the data (cf. Sec. 4.2). If a patient did not change his
position during the entire scanning period, these coordinates represent the
exact solution to this registration problem.

30n 6/4/96 Rich Weiss reported that Kumar is prepared to give us an executable
version of his code.



3.4 Segmentation

Geman and Geman (1984) proposed to model a gray level image as a Markov
Random Field. Local energy functions are defined on pixel similarities and
edge elements. The potential coefficients characterizing the local character-
istics of pixels and lines are given by hand.

I propose that we follow the approach taken by Johnston et al. (1996). They
extend Geman and Geman’s approach in two ways: (a) they operate on 3-D
neighborhoods, and (b) instead of refined intensities, vectors of tissue type
probabilities (rather than scalar class labels) are computed. Furthermore,
only one type of local interdependency is used, which is derived from the
probability of two (not necessarily distinct) tissue types neighboring each
other. The vectors of tissue type probabilities are iteratively updated using
Besag’s (1986) Iterated Conditional Modes (ICM) algorithm. Simply speak-
ing, one iteration of ICM constitutes one voxel-by-voxel sweep of the data
volume in which, in this case, each voxel’s tissue type vector is changed to
maximize their likelihoods, given its observed data value and the current la-
bels of its neighbors. This procedure is repeated until convergence, which is
guaranteed if the voxels are swept according to a constant sweep pattern.

3.4.1 The approach of Johnston et al.

The approach is described in detail in Johnston et al. (1994a) and Johnston
et al. (1994b).* The following steps are performed for each (monospectral)
MR volume:

1. First, the user is to interactively outline image regions which he believes
are pure samples of one tissue type. At least one region is required per
tissue type @ to be considered (white matter, gray matter, CSF, lesion).

2. Normalized gray level histograms H, are computed for each of these
tissue types, providing initial probability estimates that a given gray
level represents each tissue type.

3. A volume V is constructed consisting of vectors giving these probabil-
ities for each voxel.

4Tt should be noted that in their terminology, the term “model-based” refers to the
MRF model, whereas I used it referring to a brain atlas.



4. Based on the probabilities given by V', a maximum likelihood segmenta-
tion of the volume is performed. For the MRF model, the neighborhood
interaction parameters [ of the tissue types are taken as the inverse of
the probability that two voxels of the given tissue types are adjacent.

5. One iteration of the stochastic relaxation process (ICM) is performed.
Prior probabilities are given by the Hy. This step yields an improved
version of V.

6. If a given convergence criterion is met, terminate.

7. Recompute histograms Hy from V. This bootstrapping step relies on
the assumption that the assigned probabilities in V' have become more
accurate.

8. Go back to step 5, or, if refinement of the 3 is desired, to step 4.

To combine the volumes V' obtained from the PD and T2 data sets, all
corresponding probabilities are multiplied together (under the assumption of
independence, which the authors justify by the independent acquisition of
the PD and T2 data). Then, the vectors are renormalized to yield > p = 1,
and a maximum likelihood segmentation of the data volume is performed.

It should be noted that it is unlikely that the construction of the [ and
the combination of probabilities can be formally justified. They must be
regarded as reasonable heuristics. Obtaining the energy coefficients [ is an
important area of research.

3.4.2 Modifications and Comments

I suggest the following modifications:

e Rather than segment each data volume separately and then integrate
the resulting probability vectors, I suggest we operate on one V' only.
This means that in steps 2 and 7 above, the histograms are computed
for each of the volumes as before, but the resulting probability vectors
are combined immediately in steps 3 and 5. Thus, all available informa-
tion is used right from the start. I expect improvement in the reliability

10



of the segmentation result, because some tissue types cannot be differ-
entiated in a monospectral image (e.g., lesion and CSF in T2), whereas
this seems possible if all images are combined into a multispectral data
set.

Johnston et al. noted that when they attempted this, they experienced
serious performance problems due to the huge amount of data to be
held in memory at the same time. I suggest that the local nature of the
MRF model be exploited in such a way that at most three slices per
volume are held in memory at any one time. This probably requires
that sagittal and coronal data be axially resliced.

e While Johnston et al. use one PD and one T2 axial data sets only
while preserving the resolution, the MRF model provides a natural
way to integrate all available data at any orientation, modality, and
resolution. Since we have various data sets at different orientations
and resolutions, we should take advantage of that. If slices at different
orientations are integrated, an appropriate definition of the energy co-
efficients effectively yields a refinement of the data to higher accuracy
than is provided by scans at one orientation alone.

e If it turns out that a brain atlas is needed, then the prior tissue type
probabilities given by the atlas can be included analogously in steps 3
and 5.

Johnston et al. exploit the highly parallel nature of the ICM algorithm by
using a parallel architecture. Although they state that the procedure con-
verges fast and can usually be terminated after 5-8 iterations, they do not
indicate the order of magnitude of time required to process a data set.

The MRF/ICM algorithm seems a natural choice because it is relatively
general, and most of the specific parameters can be derived from the input
data and the desired segmentation objective. This is more desirable than a
highly specialized approach, as proposed e.g. by Kapouleas (1990).

3.5 Volume Measurement and Visualization

Once the lesions have been identified in all slices, their volumes can triv-
ially be estimated by counting voxels. This assumes that most of the voxels

11



involved are classified as highly pure lesion. It is not yet clear how sig-
nificant the percentage of inhomogeneous voxels near the boundary of the
lesions is. It might be necessary to employ mixture-models (as used in e.g.
remote sensory classification of ground coverage type), especially for smaller
lesions, to increase accuracy. Another possibility is the approximation of the
lesion surface by a closed spline surface and to integrate the volume. The
volumes and locations can then be compared between data acquired on dif-
ferent dates. Experiments will show whether our relatively coarse data will
yield sufficiently accurate results. As Michael Scudder pointed out (personal
communication), the goal of the project is to assess changes in volumes as
opposed to absolute volumes. This implies that consistent, systematic errors
in volume measurement can be tolerated.

For visualization, it might be helpful to interpolate between slices to increase
the spatial resolution. This is nontrivial because a simple intensity inter-
polation of neighboring slices would just yield blurred images. Raya and
Udupa (1990) proposed an interesting approach for shape-based interpola-
tion of objects. It requires a slicewise binary representation of the object
to be interpolated. First, a slicewise gray level representation is computed
where the gray level of each pixel is given by the distance of that pixel to the
closest boundary point of that object within the same slice. The resulting
gray level is positive if the pixel belongs to the object, negative if not, and
zero if it lies on the boundary. These gray level slices are then interpolated
at the desired resolution. Thresholding the volume at zero yields a binary
representation of the interpolated object voxels.

4 Preliminary Experiments

Some preliminary experiments were performed which may or may not play
a role in future progress. They will briefly be discussed in the following
sections.

4.1 Contrast Enhancement

While the intensity range extends over roughly 1600 gray levels, the interest-
ing contrast is contained within very small gray scale ranges. This suggests
the use of specially designed gray scale mappings both for visualization and

12



automatic segmentation. While this alone is obviously not sufficient for seg-
mentation, in general it can be expected to aid a segmentation algorithm by
focusing on the relevant gray level range. However, we do not expect this
information to be useful in our approach since this information is implicitly
incorporated in our proposed MRF model.

4.1.1 Global Thresholding

If a PD image is scaled uniformly over its entire intensity range, the resultant
contrast is very low, and a lesion is hardly visible (Fig. 2). However, if an
appropriate intensity window of a narrower range (say, 100 gray levels) is
selected and mapped to the visible range, a lesion can be greatly enhanced
for human inspection (Fig. 3).

In T2, lesion contrast from healthy brain tissue can be enhanced, making
the boundary between lesion and healthy brain obvious. On the other hand,
this is not the case for the boundary between lesion and CSF, since they are
generally indistinguishable in T2 MRI. In T1, lesions can hardly be identified
at all.

CT data contains very little detail if viewed at uniform scaling. A lot of
detail is hidden in the lower intensity ranges (Fig. 3). On the other hand,
now the bony structures are smeared out and cover parts of the brain near
the skull.

As mentioned above, such intensity transformations are desirable for human
viewing and can be helpful for many other segmentation algorithms, but they
are probably useless in the context of our proposed MRF approach.

4.1.2 Image Arithmetic

Other researchers sometimes compute the difference between PD and T2
images to enhance certain features. This is related to multispectral processing
of satellite data. Multiple bands can be combined in innumerable linear and
nonlinear ways. An example is shown in Fig. 4. Experiments like this may be
combined with gray scale remapping to enhance certain features. However,
it will probably not be helpful in our case since it is unclear if and how the
visibility of stroke lesions can be enhanced by such methods. A multispectral
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Figure 2: PD, T2 and CT images at uniform gray level scaling.
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Figure 3: PD, T2 and CT images at highly narrowed gray level scaling. The
MR images have been inverted, causing the lesions to appear dark. In the
top left PD image, one larger and one small lesion are clearly visible in the
left hemisphere of the brain. These can also be identified in the T2 image
on the right, but here they are indistinguishable from CSF. In the bottom
CT image, some brain structures are visible, but the white areas representing
bony structures are smeared, hiding part of the brain. Lesions are not clearly
visible.
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MRF approach will use all available data anyhow, rendering image arithmetic
useless for segmentation.

4.2 Coordinate System Identification

For defining the position of a slice, a right-handed coordinate system is used
with the origin roughly in the center of the head. The x axis extends to the
right ear, the y axis down towards the neck, and the z axis forward towards
the front of the head. This is the coordinate system used to identify the
position and orientation of image slices in our data, and provides a good
initial pose estimate for registration purposes.

This coordinate system is consistent with our parameter files. It was de-
termined by inspection of angular values in our parameter files, interpreting
them as Euler angles. It should be noted, however, that it may not be the
definition that the designers of our parameter set had in mind.

If the patient does not move at all between scans, all data are perfectly regis-
tered with respect to this coordinate frame. Unfortunately, this is generally
not the case. However, examples exist where the data seem well registered,
as illustrated in Fig. 5. Here, the location at (10,20,30) millimeters with re-
spect to this coordinate system was arbitrarily chosen as an example. From
the data available in the parameter file, slices and pixel locations were com-
puted that represent this point in the axial and sagittal scans. To show the
registration of axial and sagittal scans, the appropriate sagittal slice was ex-
tracted from the axially scanned data volume. The location at (10,20,30)
mm is marked and seems to correspond well in the two sagittal views.

4.3 MR Parameter Quantization

There does not seem to be a clear definition of the PD, T1, and T2 MR
weightings. They are determined by the repetition time (TR), spin-echo
time (TE) and inversion time (TI) parameters. Roughly, T1 is acquired
using short TR and TE, and T2 from long TR and TE. If a proton density
(PD) image is desired, TR is long and TE short. In all of these cases, TI
is zero. A positive TT can be used to cancel out a certain tissue type. TR
and TE are usually set as in T2, and such an acquired scan is called Flair.
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Figure 4. Feature enhancement by image arithmetic. The first two images
show PD and T2 weighted data, and the third one the difference between
these two. Note how the boundary between brain and skull is slightly en-
hanced as compared to both raw images.
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Figure 5: Localization of location (10,20,30) in 3-D millimeter coordinates in
axial (top left), sagittally resliced axial (top right) and sagittal (bottom) data
sets. Slice and pixel indices were computed from the coordinate information
contained in the parameter files. Note that the top right image was produced
from the same data volume as the top left one, but in a different orientation.
By visual inspection, the sagittal data set seems to be well registered to the
axial one.
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Finally, pilot scans are performed using very short TR and TE. For automatic
classification of our data, these heuristics were turned into crisp rules that
are consistent with our data (Fig. 6).

if T > 0 then Flair
else if TR < 300 then Pilot
else if TR < 800 and TE < 20 then TI1
else if TR > 1500 and TE > 70 then T2
else if TR > 1500 and TE < 40 then PD

Figure 6: Mapping from MR parameters to weighting labels. Inversion (TT),
Repetition (TR) and Echo (TE) times are given in milliseconds. The right-
most column gives the label name for the respective data set.

5 Research Goals

This work has advanced to a stage where the steps described above can be
formally defined, filling in the details, and implemented. Our goals include:
e Automatic detection and segmentation of stroke lesions.
e Modifications to Kumar et al.’s registration algorithm as necessary.

e Derivation of energy coefficients in an MRF segmentation model for
segmentation of stroke lesions.

e 3-D multispectral relaxation segmentation.

e Integration of data from thick imaging slices at different orientations
for resolution enhancement.

e Achievement of sufficiently accurate segmentation and volumetric mea-
surements using routine (i.e., coarse) clinical data.

e Introduction of an automated or semi-automated system for stroke le-
sion detection and volumetric measurement into a clinical routine pro-
cedure.

A successful implementation and clinical evaluation may have a significant
impact on the routine treatment of ischemic stroke patients.
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