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Abstract

Interoperability is a fundamental concern in many areas of
software engineering, such as software reuse or infrastruc-
tures for software development environments. Of particular
interest to software engineers are the interoperability prob-
lems arising in polylingual software systems. The defining
characteristic of polylingual systems is their focus on uni-
form interaction among a set of components written in two
or more different languages.

Existing approaches to support for interoperability are
inadequate because they lack seamlessness: that is, they
generally force software developers to compensate explic-
itly for the existence of multiple languages or the crossing
of langnage houndaries. In this paper we first discuss some
foundations for polylingual interoperability, then review and
assess existing approaches. We then outline PolySPIN, an
approach in which interoperability can be made transparent
and existing systems can be made to interoperate with no
visible modifications. We also describe PolySPINner. our
prototype implementation of a toolset providing automated
support for PolySPIN. We illustrate the advantages of our
approach by applying it to an example problem and com-
paring PolySPIN’s ease of use with that of an alternative,
CORBA-stvle approach.

1 Introduction

Large and complex software systems invariably consist of
multiple software modules (programs, subprograms, collec-
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tions of subprograms). For any number of reasons, such as
a desire to reuse legacy components, or because particular
languages facilitate development of particular kinds of ap-
plications, those modules may be written in several different
languages. As a result. the problem of cooperation among
software modules of different languages - the multi-language
interoperability problem - naturally arises in such systems.’

Suppose two architecture companies, the Frank Firm and
Lloyd Ltd., are contemplating a merger. Each company has
important software assets, including evervthing from per-
sonnel information to design element descriptions to com-
puter aided architectural design (CAAD) tools, that the
merged company, Frank Lloyd, Inc., will wish to integrate
to form its own software infrastructure. While Frank’s as-
sets are implemented in C++, Lloyd’s are implemented in
CLOS (Common Lisp Object System). If the merger is to
be successful, Frank Lloyd must solve the multi-language in-
teroperability problem, preferably in a way that minimizes
its impact on the newly merged software development staff.
In particular, a solution that requires substantial translation
of existing code or data, or that forces significant retraining
of any part of the staff, will threaten the competitive advan-
tage that Frank Lloyd expects the existing assets to provide.

In addressing multi-language interoperability problems,
such as those confronting Frank Lloyd, we make several dis-
tinctions. First, we differentiate situations in which a com-
ponent written in one language needs to access one or more
components (subprograms, data objects, etc.) written in
a single second language from those in which a component
written in one language needs to uniformly interact with a
set of components written in two or more different languages
(which may or may not include the language of the first com-
ponent). We refer to the former, more homogeneous situ-
ation as multilingual interoperability, and the latter, more
heterogeneous situation, as polylingual interoperability.? In
our Frank Lloyd example, a CAAD tool written in C++
that invoked an aesthetics-assessient subprogram written
in CLOS would be an instance of multilingual interoperabil-
ity. A CLOS program that accessed personnel records, some

!Interoperability problems can also arise in systems written in a
single language — for example, systems that span several hardware
platforms or several dialects of the same language. This paper focuses
on multi-language interoperability, which will henceforth he referred
to simply as “interoperability.”

2This terminology is inspired by the analogy between “uniform
processing independent of data type” (polvmorphic) and “uniform
processing independent of language™ (polylingual).



stored as C++ objects and others stored as CLOS objects. to
assign emplovee office space would be a case of polylingual
interoperability.

Second, we distinguish approaches by their level of trans-
parency to software developers. Most current approaches
force developers to be aware that multiple languages are in-
volved and to build their modules to surmount the language
boundaries. Multilingnal interoperability may be achieved,
for example, by using heterogeneous remote procedure calls,
while polylingual interoperability can be realized by enforc-
ing the use of a common, foreign tvpe model among the
modules (e.g., as in CORBA [CIPCC*93)).

If developers of a multi-language software system need
not be aware of language differences between the software
modules, we call the interoperability approach seamless. For
example, suppose that two new CAAD tools under develop-
ment at Frank Lloyd, called Form and Function, are being
written in different object-oriented programming languages
(say C++ and CLOS, respectively) and they must share ob-
jects. In a typical multilingual system, the developers of
Form and Function must write special code for accessing
cach others’ objects across the language boundary, either di-
rectly (using low-level foreign function calls, for example) or
through an intermediary (e.g., a CORBA ORB). In a seam-
less approach, however, Form and Function could each ac-
cess C++ and CLOS objects as if there were no language
barrier. To Form, for instance, there would be no discern-
able difference when invoking the methods of a C++ or a
CLOS obhject.

Such seamlessness has long been a highly desirable prop-
erty of interoperability, but it has rarely been achieved. Our
approach, PolySPIN, transparently and automatically mod-
ifies a set of objects, implemented in diverse languages, so
they can be accessed seamlessly by software modules of dif-
ferent programming languages. That is, PolySPIN allows
a programmer to proceed as if the languages of the object
and the accessor were the same. All software modules use
only their native type systems to access these objects, not a
common (but foreign) type system like CORBA’s IDL, and
existing modules need not be modified to do it. A prototype
toolset supporting the approach currently automates imple-
mentation of seamless interoperability for C++ and CLOS
objects.

The remainder of the paper is organized as follows. In
Section 2. we discuss some foundations for polylingual inter-
operability. Section 3 reviews existing approaches to inter-
operability, focusing particular attention on CORBA-style
approaches. Section 4 outlines our approach to seamless
interoperability in polylingual systems and describes the
toolset automating its use. Section 5 provides an example
application of our approach and compares it to a CORBA-
style approach. Section 6 summarizes the current status of
PolvSPIN and discusses some future directions for this work.

2 Polylingual Interoperability

In this section, we provide an overview of polylingual inter-
operability concepts. We first offer a simple but useful classi-
fication of interoperability situations. We then consider sev-
eral dimensions of interoperability, which we summarize in
a model representing a generic polylingual interoperability
situation. These foundations provide a basis for subsequent
discussion of various approaches to interoperability: both
existing approaches (Section 3) and PolySPIN (Section 4).

2.1 Classification of Interoperability Situations

The decision to cause two software modules A and B to in-
teroperate can be made at three different times in the soft-
ware lifecycle: before 4 and B have heen written. after A
but before B has been written, or after both 4 and B have
been written. The first scenario is the easiest case: since
neither 4 nor B exists yet, a developer can specifically de-
sign them to interoperate. Developers are seldom fortunate
enough to be able to design both interoperating modules
from scratch, however. The second scenario is a more com-
mon case, in which a new software module B must be de-
signed to interoperate with legacy system A. In this case. it
is desirable that legacy module 4 need not be modified; but
unless A was designed with future interoperability in mind.
this is unlikely.?

Our approach to automated support for interoperability
in polylingual systems addresses the third and most diffi-
cult of the three scenarios, sometimes called megaprogram.-
ming [BS92, WWC92). Since both A and B exist, we want to
modify them as little as possible to make them interoperate.
Our approach allows A and B to interoperate with no maod-
ifications visible to the developer nor the modules. Existing
approaches such as CORBA are problematic in this scenario
because they are intrusive, requiring both A and B to he
modified in a significant way: translating some of their data
type definitions into another language (IDL), and changing
the protocol by which those data are accessed (ORB calls
instead of native language constructs).

2.2 Dimensions of Polylingual Interoperability

As a basis for understanding, comparing and developing in-
teroperability approaches, we have found it helpful to view
interoperability as having several dimensions. Our model of
interoperability, depicted in Figure 1, illustrates this view.’
In this model, one or more software modules, called acces-
sors, need to access other software modules, called objects.
(A given software module can be both an accessor and an
object.) The accessors can be written in diverse languages
and, since we are modeling polylingual interoperability, the
objects are implemented in at least two different languages.’

The four central subcomponents in Figure 1 represent
dimensions of interoperability:

Interlanguage naming (Locator): Interoperability can-
not occur without some means for accessors to locate
or reference objects. Thus, an approach to polylingual
interoperability must include some mechanism for in-
terlanguage naming (or its equivalent). In the model,
that mechanism is termed a Locator.

Language information (Language Arbiter): Although
language differences between accessors and objects are
hidden in polylingual systems, they must be addressed
at some level. Our model includes a mechanism for
transparently associating language-specific information
with a given object. This mechanism is termed a Lan-
guage Arbiter.

3Moreover, even if legacy module A were designed with interoper-
ability in mind, that is no guarantee that it is an appropriate kind of
interoperability to use with future module B.

“We stress that this is a conceptual model. not to be interpreted as
prescribing an implementation strategy. As will be seen in Section 4.
however, our prototype implementation closely follows the model.

51f all the objects were implemented in a single language different
from that of the accessors, this would be a model of multilingual
interoperability.
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Figure 1: Conceptual Model of Polvlingual Interoperability

Interlanguage invocation (Communicator): If the ac-
cessor and object are implemented in different lan-
guages, an approach to interoperability must provide a
mechanism for invoking operations across the language
boundary, including marshalling and unmarshalling of
arguments. In the model, this mechanism is termed a
Communicator.

Type compatibility (Type Matcher): In order to have
uniform access to objects, the data tvpes utilized by an
accessor and its accessed objects must be sufficiently
compatible that communication between them is sen-
sible and meaningful. In the model, satisfving this
requirement is the role of the Type Matcher.

2.3 Scope of Polylingual Interoperability

Our polylingual interoperability research focuses on inter-
language issues. It does not directly address the full prob-
lem of schema mismatch, in which models of objects having
significant semantic differences, implemented in the same
or different languages, must be reconciled. Rather, our ap-
proach provides an organized mechanism for dealing with
schema mismatch problems that arise solely from language
differences.

Our approach is designed to work best with languages
that encapsulate operations within types, i.e., abstraction-
oriented languages (e.g., Ada 83) and object-oriented lan-
guages (e.g., CLOS, C++ or Ada 95). In order to apply this
approach to older procedural languages that do not support
encapsulation, such as C and FORTRAN, some mechanism
like that provided by Polylith [Pur94} would be needed for
associating operations with datatypes.

3 Existing Approaches to Interoperability

A variety of approaches to interoperability have been devel-
oped over the years [WWRT91]. Existing approaches tend
to fall short of our goal of supporting seamless interoper-
ability in polylingual systems, however. In this section, we
describe several major categories of existing approaches in
terms of our four dimensions of interoperability, and assess
their effectiveness in achieving seamlessness. We then give
more detailed consideration to CORBA-style approaches,
since they not only come the closest of any existing ap-
proach to supporting seamless interoperability in polylingual

systems, but also are quite popular. We apply one such ap-
proach, ILU, to an interoperability problem that might face
Frank Lloyd, and then assess its level of seamlessnoess.

3.1 Overview of Existing Approaches

Low-level approaches: Some languages provide a foreign
function call interface, allowing a program p written in one
language to invoke a subprogram s written in another. The
object code modules of p and s are linked, and the foreign
function call is accomplished within a single address space.
For calling across address spaces, remote procedure calls
[BN84] have been extended to cross langnage houndaries
(e.g., [MHO96]). Both foreign function calls and remote
procedure calls represent relatively low-level approaches to
interoperability, and as a result they are generally far from
seamless because application programuners frequently must
deal with details of parameter marshalling and because com-
plex data types (pointer-based data structures, ADTs) are
not supported. In terms of our model, such approaches as-
sist software developers with interlanguage invocation but
provide little support for the other dimensions of interoper-
ability.

Messaging systems: Some systems accomplish interoper-
ability by allowing software modules to send messages to
each other or to a central message server that routes mes-
sages to their intended recipients. Well-known examples are
FIELD [Rei90] and Polylith [Pur94). These systems pri-
marily support interlanguage invocation and may also of-
fer some, typically primitive, assistance with interlanguage
naming. They seldom, however, provide much support for
the remaining dimensions of language information and type
compatibility. Approaches in this category are usually far
from seamless, since software modules must be created or
modified to adhere to the messaging interfaces supported
by these systems. Significant overhead can be incurred if
software modules must continually translate data from their
native type systems into messages and back again.

CORBA-style approaches; While the preceding classes of
approaches focus on interlanguage invocation. CORBA-stvle
approaches have emphasized the type compatibility dimen-
sion. They require all interoperating software modules to
adhere to a single type model, separate from that of the
modules’ languages. This approach is typified by CORBA
[CIPCC*93] and ILU [JSS95]. Software modules are con-
sidered to be of two kinds: objects, which provide public
interfaces, and clients, which invoke the methods of objects.
These objects may be written in numerous languages, but
a wrapper must be created for each object before it can be
accessed by clients. Wrappers defined in an interface lan-
guage (e.g., CORBA’s IDL or ILU’s ISL) provide a language-
independent interface to the object. This interface can then
be translated automatically into a client's language, allow-
ing the client to interoperate with the wrapped objects.

In addition to addressing type compatibility, object wrap-
pers generally encapsulate interlanguage invocation, inter-
language naming, and object implementation language in-
formation. Thus, these approaches offer some support for all
dimensions of polylingual interoperability. Thev fall short
with respect to seamlessness, however, because clients use
their language’s type system for accessing local data and
another (the interface language) for accessing objects. This
shortcoming will be discussed further in Section 3.2.



Database approaches: Some databases provide applica-
tion programming interfaces (APIs) or query language bind-
ings for multiple languages, thereby allowing programs writ-
ten in different languages to share data by accessing a com-
mon database. The database approach, however, is an an-
cestor of the CORBA-style approaches and hence suffers
from the same lack of seamlessness. In particular, shared
objects must be created within the database’s type model,
usually different from a given language’s type model, and
the database’s query language must be used when access-
ing those objects. Object-oriented databases, such as the
TI/Arpa Open OODB [WBT92], allow accessors to create
and access objects using their own language’s type model,
but typically no facilities are provided for interoperability.
That is, data stored in the database via one API cannot be
accessed via another.

Compound documents: Microsoft's OLE [Bro94] and Ap-
ple's OpenDoc [App94] support interoperability by allow-
ing objects, called compound documents, to contain or refer
(point) to other objects. For example, a Microsoft Word
document can contain a reference to an Excel spreadsheet
object, and when the object is accessed, the operations in-
voked on it are automatically routed to Excel. As with
the previous approaches, software modules must be specif-
ically written or modified to make use of compound docu-
ments: e.g., making calls to a compound document man-
ager. Hence, while they may provide or encapsulate all the
subcomponents in our model. these approaches also fall far
short of seamlessness.

Languages and language extensions: The subject-oriented

programming paradigm [HO93] permits objects to be ac-
cessed via more than one public interface. Each accessor
can potentially use a different interface to access the same
object. Subject-oriented programming has been limited to
a single language, so it is not currently an approach to in-
teroperability; however, a natural extension is for an object
to be accessible from different languages via different inter-
faces. In this sense, our approach to polylingual systems
may be thought of as a generalization of subject-oriented
programming, since (as shall be described in Section 4) each
language has its own interface to an object, with the selec-
tion of interface handled automatically when the object is
accessed.

Concert [AR94] is a system that uses an extended C lan-
guage, called Concert/C, to support interoperability. Like
the CORBA-style approaches, Concert uses an intermediate
interface language; but unlike CORBA and ILU, Concert'’s
interfaces are automatically generated. So Concert elimi-
nates the need for a human-created wrapper, at the cost of
extending the programming language - a cost not incurred
by our approach. Although Concert supports only C and
C++, a successor to Concert, called Mockingbird [Aue96],
is intended to provide interoperability between C++, Java,
CORBA IDL, and other languages.

3.2 Example Application of a CORBA-style Approach

We now describe an application of a representative approach
to a specific interoperability problem in the Frank Lloyd
example. Specifically, we illustrate the use of a particular
CORBA-style approach, namely the Inter-Language Unifi-
cation (ILU) system, an interoperability mechanism devel-
oped at Xerox PARC [JS94).

3.2.1 An Example Scenario in Frank Lioyd

As noted earlier, a potential interoperability problem for the
new Frank Lloyd company might involve an application that
assigns office space based on information contained in per-
sonnel data. The new company would like to make use of a
CLOS application developed by Llovd Ltd. Figure 2 shows a
simple CLOS function in which personnel with higher office
rankings receive priority for office assignments.

(defun office-rank (employee)
3:: rank = years-of-service * salary / 10000
(/ (* (YearsOfService employee)
(Salary employee)

)
10000

)
)

Figure 2: Primary Function Used in CLOS Application

Recall that personnel data for employees from the Frank
Firm are maintained in C++, while Llovd Ltd. employee per-
sonnel data are maintained in CLOS. The new company
would like to make use of the CLOS application without
having to translate the C++-maintained personnel informa-
tion and with only minimal changes to the original CLOS
application.

3.2.2 An Overview of ILU

One approach that the Frank Lloyd company might nse to
solve this problem is provided by ILU. ILU can be viewed as
an approach to creating client-server architectures, in which
language-specific servers manage instances of classes. and
clients access and manipulate objects by invoking requests
on these servers. With respect to the Frank Lloyd example.
a CLOS server would manage CLOS-defined employee data
for Lloyd Ltd. and a C++ server would manage similarly
defined data for Frank Firm employees. The CLOS office
ranking application would be an example of a client in ILU.

In ILU, interoperating classes are specified using an in-
terface description language called ISL (Interface Specifica-
tion Language). Classes are described by declaring a class
identifier and associating a set of operations with the class.
Figure 3 shows the ISL for an Employee class based on onr
example scenario.

INTERFACE Employee:

Type ClassInterface = OBJECT
METHODS
Salary () : INTEGER:
YearsofService () : INTEGER:
END:

Figure 3: ISL for Employee Class

Given the ISL for a class, creating an ILU-based polylin-
gual application requires that the following steps be per-



formed:

1. Create class interfaces for clients. This is accomplished
by applying language-specific translators (provided by
the ILU development environment) to the ISL class
description. For example, an ISL-to-CLOS translator
creates a CLOS class interface for emplovees. while an
ISL-to-C++ translator similarly creates a C++ class in-
terface. The ILU translators also produce additional
server and client code that is simply compiled and
linked into a client and server. respectively, but can
otherwise be ignored by the developer. This code serves
the purpose of the Language Arbiter and Communica-
tor defined in our model.

2. Coustruct the servers:

(a) A separate class, which is a subclass of the class
generated in step 1, must be supplied by the pro-
grammer. This class contains the actual imple-
mentations of the various member functions, as
well as any required data members (which are
part of the implementation, not defined as part
of the class). Thus, the server class is used by the
servers, while the client class is used by clients.

(b) A server program must be implemented. The
server program essentially creates instances of the
class implementation, publishes names for them
in a globally available, shared area, and then waits
for requests.

3. Construct the clients. Clients access objects by issuing
requests in the form of names (or identifiers) to servers.
With respect to our scenario, the CLOS office ranking
application corresponds to an ILU client. A client in-
teracts with a server through the interface generated in
step 1. Thus, the client views an instance as if it were
implemented in its own language, even though it may
turn out to be implemented in a different language.

4. Invoke the servers and the clients. With respect to the
example scenario, each server would manage instances
of personnel data, and the client, i.e., the office rank-
ing application, would access the instances via these
Servers.

3.2.3 An Assessment of ILU

ILU provides support for each of the dimensions in our in-
teroperability model. As mentioned above, a name service,
albeit a simple one, allows applications to locate objects. In
addition, the ILU ISL translators generate the required lan-
guage arbiters and communicators. As noted in Section 3.1,
CORBA-style approaches emphasize the type compatibility
dimension. ILU imposes a language-external type model on
application developers, who must use ISL to describe types
instead of using the native (CLOS, C++, etc.) type model.
This approach is best suited for the easiest case, and perhaps
the common case, interoperability scenario. For example, if
it is known a priori that two (or more) modules may need
to interoperate, then an application can of course start with
an ISL description of the interoperating classes. More prob-
lematic is the megaprogramming scenario, as in the Frank
Lloyd example. Using ILU in this case would require the
application developer to “wrap” the existing classes with
ISL descriptions. In addition, the existing application would
need to be modified to use the interface produced by the ISL
translators.

In summary, a significant problem with CORBA-stvle
approaches, such as ILU, is that software modules cannot
create and access shared objects by using their own tvpe
systems. They must use an external, common type model.
which may offer only a subset of the capabilities of the native
language’s type model, so some types cannot be expressed.
A related problem is that the common type model is not
transparent to the software modules; thus, legacy svstems
must be modified or retrofitted to use the interface langnage.
and programmers must learn and reason about a separate
type model. As we demonstrate in the forthcoming sections,
a major feature of our approach is that no common type
model is imposed on application developers, and therefore
no interface language need be used by developers. Each
software module can access shared objects via its language's
native tvpe system.

4 PolySPIN and PolySPINner

As indicated in Section 3.1, existing approaches to interop-
erability are generally not seamless. Because they typically
involve use of a different invocation mechanism (e.g., low-
level approaches and messaging systems) or a different tvpe
model (e.g., CORBA-style and database approaches) from
those of the programming languages in which accessors are
implemented, it is difficult to imagine how these approaches
could be made transparent, even through automation. Qur
approach, on the other hand, imposes neither different in-
vocation mechanisms nor different type models and hence
supports transparent, seamless interoperability. In this sec-
tion we outline our approach and describe the toolset that
automates its use.

4.1 PolySPIN

PolySPIN is an approach to Support for Persistence, Inter-
operability and Naming in POLYlingual systems [KW96].
The key component of PolySPIN is a language-neutral name
management mechanism that allows for uniform name-based
access to objects [Kap96]. This mechanism supports, but
does not require, a uniform model of orthogonal persistence
(see WWFT88] for an overview) and/or transparent polvliu-
gual interoperability.

The interoperability aspects of PolySPIN supplement the
name management component (locator) with communica-
tor, type matcher and language arbiter functionality, all of
which are transparent to accessors. Language information
(language arbiter) is associated with objects as part of the
name-object binding. The interlanguage invocation (com-
municator) functionality is achieved by automatically mod-
ifying the implementation of object methods. The modified
methods consult the language arbiter at each invocation and
transparently select between making a local method call or
an automatically generated interlanguage call. Since this
communicator mechanism is encapsulated within the origi-
nal interfaces defined for the object-related procedures and
functions, it is entirely transparent to accessors. Similarly.
the type matcher functionality is achieved via automated
type compatibility checking whose results influence the mod-
ifications made to object method implementations. This
type matching is transparent to accessors since it does not
depend upon explicit use of any nou-native type models and
does not cause any type definitions or interfaces to be mod-
ified.



4.2 PolySPINner

PolySPINner is a toolset automating the application of the
PolySPIN technique. Currently, our prototype supports in-
teroperability between C++ and CLOS programs. PolySPIN-
ner is extensible because it consists of generic components
that can be instantiated for different languages. This section
discusses the PolySPINner tool, including its architecture,
foundations, and implementation.

PolySPINner operates in the following manner. Given
a set of accessors and objects implemented in programming
languages Iy, l,. .., lx. the user supplies PolySPINner with
the tvpe definitions (both interface and implementation) of
the objects. PolySPINner modifies the implementation of
each type (that is, the method implementations) so that
its methods become callable from all languages Iy,...,!m.
This instrumentation provides all the interoperability sup-
port functionality specified in our model (Figure 1).

In order for PolySPINner to accomplish this, some as-
sumptions are necessary. The primary assumption is that
for each object type ¢; written in language [, (without loss
of generality), the user must also supply corresponding ob-
ject types ta,ta,...,tm created in languages l3,l3,...,Im,
that “match” ¢,. (Matching is discussed further below.) Af-
ter PolySPINner has done its work, any call to a method of
t, that comes from a program in language l;,i > 2, is trans-
parently converted into a corresponding call to a method of
type t;. Since none of the type interfaces are modified, appli-
cation programs (accessors) that previously used these types
need no modification in order to interoperate via these types.
Thus, for example, even though the Frank Firm and Lloyd
Ltd. implemented their respective concepts of “employee” in
different languages and with different method calls to access
the person’s name, age, occupation, and so on, PolySPINner
in theory can allow an application developed by the Frank
Firm for processing its personnel information to be applied
to the merged database of Frank Lloyd with no visible mod-
ifications to the objects and no modifications at all to the
application.®

4.2.1 PolySPiNner Architecture

The architecture of PolySPINner is presented in Figure 4.
Each set of type definitions is fed throngh a Parser compo-
nent to convert it into a language-independent intermedi-
ate representation. In this form, types are matched via a
Matcher component so that calls to a method in one lan-
guage are converted into calls to another method in a dif-
ferent language. Finally, the type definitions, matcher out-
put, and other information are fed to a Generator that cre-
ates types that are accessible from various languages. These
types have interfaces that are identical to the originals.

PolySPINner is extensible because we have implemented
generic Parser, Matcher, and Generator components. By
instantiating these components with particular parsing re-
quirements, match criteria, or generation information, a de-
veloper can tailor PolySPINner for a given set of languages
without affecting PolySPINner's overall behavior.

The Parser PolySPINner’s generic Parser component is
responsible for managing the parsing of type definitions into
PolySPINner’s language-independent intermediate represen-
tation. In its current form, this intermediate representation

As noted in section 2.3, full discussion of database merging issues,
such as semantic heterogeneity [SL90)], is beyond the scope of this
paper.
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Figure 4: The PolySPINner Architecture

is fairly straightforward, consisting of abstract data types
for object types, methods, and parameters. We intend to
adopt a more powerful intermediate representation in the
near future and are currently examining alternatives in the
literature. The PolySPINner prototype incorporates mini-
mal, proof-of-concept parsers for C++ and CLOS.

The Matcher PolySPINner’s generic Matcher component
is responsible for matching “equivalent” types from differ-
ent languages. What does it mean for two types in different
languages to be equivalent? A strict interpretation could
require them to have the same name, abstract specification.
and binary representation. Such strictness is unrealistic,
however, since interoperability is often desired between soft-
ware modules whose types are nearly but not exactly equiv-
alent. More lenient, or relazed, matching criteria, are more
realistic and useful. Zaremski and Wing [ZW93] have con-
structed a taxonomy of relaxed type matching criteria within
the language ML. Using polylingual system concepts, we
have created a prototype extension of their taxonomy that
models matching across languages, and PolySPINner cur-
rently supports these (and other) matching criteria. In par-
ticular, we provide a library of instantiations for the generic
Matcher corresponding to common type matching criteria:
exact match, Zaremski/Wing matching, intersection match
(ignore any methods that the types do not have in common),
and others. Since compatibility criteria are represented as
C++ functions, users can also create their own using the full
power of C++. We provide a library of functions to sim-
plify the process of building these functions, such as generic
iterators over all methods of an object type.

The Generator PolySPINner’s generic Generator compo-
nent is responsible for transparently modifying the imple-
mentations of types so that they are accessible from multi-
ple languages, without modifying the interfaces of the types.
Because we are working only with object-oriented languages,
in which the interface and implementation of a type (class)



are separate, we can conveniently modify the implementa-
tion and leave the interface unchanged. Thus, to support
access from multiple languages. a method’s body is modi-
fied to query the language arbiter and select the appropri-
ate communicator code.” Examples of such modifications as
they are performed by our current PolySPINner prototvpe
appear in Section 3.

5 Applying PolySPINner

As illustrated in Section 3. existing approaches support-
ing the development and maintenance of polylingual appli-
cations require some elaborate mechanisms. In contrast,
PolySPIN shields the developer of polyvlingual applications
from such complexities. As a point of comparison, we illus-
trate the use of the PolvSPINer prototvpe by applying it to
the example scenario outlined in Section 3.2.

Recall that in this scenario, the new company. Frank
Lloyd, wishes to use an application for assigning office rank-
ings (written in CLOS) on employee data objects (main-
tained in both CLOS and C++). To accomplish this, a soft-
ware engineer would apply PolySPINner to each of the orig-
inal class definitions for the personnel data. Figure 5 shows
portions the original CLOS and C++ Employee classes. Note
that the method interfaces are slightly different for each of
the classes. In addition, each of the classes is a subclass
of NameableObject, a class defined by PolySPIN, which al-
lows objects to participate in its unified name management
mechanism.

# Ce+ Employee Class Intertace

1 CLOS Empluyee class
class Empluyee : public NaineableObject |

(defelaxs Fanployee (NameableObject)

public: (S8 13CUessor ssn
wnt Salary (). ‘rype Integer)
im YeanOfService () {salary “acvessoe salary
Date Binthday (): type Integer)
m o Age () {yeamn “acveswr yean

pnvate: type Integery
it wonthlySalary: )
Date dateStarnted: )
Date dateOQtBirth:
... CLOS Emplovee class inethods
{detmethond Salary ((thix Esnployeen
tdeclare (retum-valves Integer)
(salary thisy
»

I
#C e Emplavee Class Impleientation
it Employee::Salary 0 {

retum unonthlySalary © 12):

t

int Eanployee:: YeanOfService () |
int numberOfMays:
nunberOtDays = Taday () - dateStaned.
return (nutnberOtDays / 368y

|

tdetinethod YeansOtService (tihis Einphovesn)
tdeclare tretum-values Integern
tyears this)

)

Date Employee::Birthday () |
retum ¢dateOBirth). {detinethext FornaSSN ((this Einploveen

} tdectare (resurmn-vatves String))

it Esuplovee:. Age t) { tfoanatter (xsn this) :ssn)

it nutnberOfDays: )
nuttiberOtDays = Tuday () - dateOtBinth:
retum (RuinberOays / 365):

t

Figure 3: Original C++ and CLOS Employee Classes

Next the tool determines whether the classes are “com-
patible” with one another. Compatibility is specified by the
user of the tool, as discussed in Section 4. A plausible com-
patibility specification for this example scenario might be
based on an intersection match criterion. Under this crite-
rion, two classes are said to be compatible if there exists at
least one method from each class such that the method sig-
natures are identical. Specifically, using the classes shown
in Figure 5, PolySPINner would deem the C++ and CLOS

“In the current PolySPINner prototype. the communicator code
consists of foreign function calls for C++ and CLOS, but one could
also use message passing, CORBA requests, special-purpose software,
etc.

Employee classes to be compatible since the following meth-
ads form an intersection match:

C++ Method
int YearsOfService()
int Salary()

CLOS Method !
YearsOfService((this Emplovec)) |
Salaryv((this Emplovee)) !

As described in Section 4.2.1, PolySPINner then maod-
ifies the implementation for each of the matching meth-
ods and generates the necessary communication code en-
abling the appropriate inter-language references. PolvSPIN-
ner currently produces code based on constructs provided by
PolySPIN [KW96} and the foreign function interface mech-
anisms of C++ and CLOS. The specifics of these constructs
are beyond the scope of the paper (for details sce [KW96)).
Figure 6 presents example output, in pseudocode. produced
for the Salary methods. (Similar code would be generated
for the YearsOfService methods.) When the Salary metlod
is invoked on an object, the method first checks the defining,
language of the object. For example, in the CLOS version. if
the object is implemented in CLOS, then the original CLOS
logic is executed; otherwise, a foreign function call is made
to the corresponding C++ version of the Salary method.

st Employee @t Salary ()
switch tihis->language) | (detmethnd Salary ( ¢ this  Employee 1)

case CPLUSPLUS: (declare (retem-values tnteger )
#ongimal code teond ( (EQUAL tlznguage this) CLOS)
seturn CnanthlySelary * 12): wi onginal ode
break: (salary thivy

vase CLOS: (EQUAL (lznguage thix) CPLUSPLUS)
# call CLOS methwnd 12t cal) Co+ metbhend
int temtpSalary = (loreign-Tumction-call-to-cpp this)

ForeignFunctunCalIToCLOS (this): )

return (lempSalary): )
break: )

[

1

Figure 6: Modified Implementation of Salary Methods

Finally, the generated code (i.e., the modified method
implementations) must be compiled and linked with the ex-
isting office ranking application. Note that no madifications
to the CLOS application or the class interfaces are required
by the PolySPINner approach. Only the method implemen-
tations are changed.

5.1 A Comparison with ILU

Both PolySPIN and ILU provide support for each of the
dimensions in our model. PolySPIN’s name management
mechanism provides a much richer naming service than does
ILU’s. More importantly, PolySPIN, unlike ILU, does not
impose a language-external type model on application devel-
opers. Instead of ISL, PolySPIN permits developers to use
their native (CLOS, C++, etc.) type models and hence to
define types of shared objects in a style that they find famil-
iar, natural and intuitive. As a result, PolySPIN is better
suited than ILU for use in megaprogramming, although it
is also very appropriate for the easiest and common cases
of interoperability. Finally, CORBA-style approaches, such
as ILU, require exact type compatibility between accessor
and object, but PolySPIN allows relaxed matches, which
are more realistic, particularly for megaprogramming.



6 Conclusions

Existing approaches to interoperabilitv are not sufficiently
seamless. If software modules are required to use invo-
cation mechanisms or type models that are different from
those provided in their programming languages, this imn-
poses an unacceptable barrier to integration, particularly in
the megaprogramming case. An interoperability approach
that forces software developers to modifv such fundamental
aspects of software modules, that admits only exact match
tvpe compatibility, or that is effective only for easiest-case or
common-case interoperability is unsatisfactory for meeting
the challenges of polvlingual interoperability.

In this paper, we have described the PolySPIN approach
and PolySPINner toolkit for automating seamless interoper-
ability in polylingual systems. Since this approach evolved
from work on name management in persistent object sys-
tems, our prototvpe toolset relies upon features of the Open
Object-Oriented Database (Open OODB) [WBT92] and ex-
ploits inheritance of name management-associated capabil-
ities in implementing seamless interoperability. The ap-
proach, however, does not depend on Open OODB, per-
sistence in general, nor inheritance, so we plan to explore
alternative implementation strategies that will broaden the
applicability of our toolset.

Now that we have created a generic framework for exper-
imenting with polylingual systems, we have several other fu-
ture directions in mind for PolySPINner. Rather than hav-
ing the user supply matching type definitions in several lan-
guages, we would like PolySPINner to automate this process,
generating corresponding definitions to as great an extent as
possible. We also plan to support additional languages, with
Ada95 and Java being prime candidates. As the number of
supported languages increases, we expect interesting type
compatibility issues to arise. Finally, we envision further
tools to assist the construction of polylingual systems, such
as a polylingual debugger, static analyzer, and structured
editor.
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