ELF: An Evaluation Function Learner
That Constructs Its Own Features

Paul E. Utgoff

Technical Report 96-65
October 7, 1996

Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

Telephone: (413) 545-4843
Net: utgoff@cs.umass.edu



ELF: An Evaluation Function Learner 1

Abstract

The ELF algorithm learns an evaluation function that maps an object that is described
by a conjunction of discrete variables to a real value. This is accomplished by simultaneously
constructing binary features and adjusting a real-valued weight for each of the constructed
features. The algorithm determines how many features it needs and what they should be in
a deterministic manner.

1 Introduction

Numerical evaluation functions have become a mainstay in building systems that make
choices. Many approaches have been devised that enable such systems to learn an evaluation
function by representing it as a parameterized model, and then by adjusting those parame-
ters, based on feedback. Many researchers are now addressing the problem of how to search
the space of parameterized models automatically. To find a good parameterized model is
to find a good representation, and a representation is good to the extent that it facilitates
finding quickly an evaluation function of high accuracy and low memory cost.

An evaluation function v maps every element in its domain X to a real value. One needs
a base level representation for the elements of X, and a procedure for computing v(x), where
x € X. The choice of base level representation has a profound effect on how well v can be
approximated, as does the choice of a parameterized model. For example, if every element
x is described by a single integer component, and v is related linearly to the integer value,
and one chooses a model of the form ©(x) = may + b, then one can expect to find values for
m and b quite easily. With a different base level representation, or a different parameterized
model, the problem of finding a good ¢ becomes difficult or impossible.

We have noted three degrees of freedom for systems that learn a good v: vary the base
level representation, vary the model class (parameterized combination of features), and vary
the parameters of the current parameterized model. One often encounters systems in which
the parameters are adjusted automatically, while the representation and parameterized model
are held fixed. More recent work addresses how to vary all three, and that is the focus here.

One would like to be able to pick an obvious and easy-to-implement base level represen-
tation for the elements of X, and this is commonly done. For practical reasons, a second
level of representation is typically present, taking the form of a feature vector. Instead of
computing ©(x), one computes v(f(x)). There is no loss of generality, as one could choose
to define f(x) = x. On the contrary, there is great advantage in this approach because one
can map the easy-to-implement base-level representation to another that is better suited to
the parameterized model under consideration. Furthermore, the representation for f can be
manipulated by the algorithm, whereas it would be quite difficult to manipulate the base
level representation directly. Hereafter, we assume that the base-level representation is held
fixed, and that the vector-valued function f is varied instead.

2 Algorithm ELF

We present an algorithm, which for convenience is called ELF (Evaluation Function
Learner, with a twist). It varies the vector-valued function f by changing its component



ELF: An Evaluation Function Learner 2

functions and the number of them, the model class, and the parameters of the model.

2.1 Representation

The base-level representation consists of an encoded set of discrete variables. To simply
the presentation, we shall assume that every discrete variable has the same number of possible
values. There is excess capacity in this representation, but it is easy to implement. Consider
a few examples. In the game of Checkers, there are 32 squares, any one of which has five
possible contents: empty, red pawn, red king, black pawn, black king. Each of the 32
squares can be seen as a discrete variable with five possible values. Each value is encoded as
a proposition (bit) that is true if the square has that value and false otherwise. Thus, each
of the squares would be represented with five bits, for a total of 160 bits. A second example
is the eight-puzzle, in which there are 9 locations, each of which can take on one of nine
values, making an 81-bit representation.

An element of X is thus encoded as a boolean matrix, with one column for each discrete
variable, and one row for each possible value of the variable. A matrix entry is 1 if the variable
has that value in the domain element, and is 0 otherwise. Every column contains exactly
one 1. For Checkers, a board is represented by a 5x32 matrix, and for the eight-puzzle, a
board is represented by a 9x9 matrix.

Table 1. Feature Matching

1 1 1 0 1 0 1 1 0 O 0 1 0 0 O

1 0 0 1 1 0O 0 0 1 1 1 0 1 1 0

1 1 0 1 1 1 0 0 0 O 0 0 0 0 1
fe x

Feature Element x4 Element x7

The vector-valued f is a vector of feature definitions that initially consists of one compo-
nent feature that is defined to be the most general feature. The vector of feature definitions
subsequently changes due to addition of new feature definitions, deletion of existing feature
definitions, and revision of feature definitions. Each feature is represented by a boolean
matrix with exactly the same dimensionality as an element of X. A 1 in the feature matrix
means that, for matching purposes, a 0 or 1 is permitted in the corresponding cell of the
element’s matrix, and a 0 in the feature matrix means that only a 0 is permitted in the
element’s matrix cell. Consider a column of a feature matrix. If all entries are 1, then any
domain element will match in that column. Thus, this representation provides a conjunctive
normal form description of a set of domain elements, with one conjunctive term for each
discrete variable. For example, Table 1 shows a feature matrix for a feature fg, and the
matrices for two different elements x4 and x7. The feature matrix fg covers the element x4
but it does not cover the element x7.

The most general feature consists of a matrix in which every cell has a value of 1. The
most general feature matches (covers) every domain element because every value in any
element’s matrix is permitted according to the feature matrix. A feature covers a domain
element if and only if every every bit value in the element’s matrix is permitted according
to the feature’s matrix. One can implement the match predicate efficiently with a bitwise
formula. By changing a bit in a feature matrix from 1 to 0, one specializes the feature
because the set of domain elements that it covers is reduced, except when the set is already



ELF: An Evaluation Function Learner 3

empty. A feature maps a domain element x to the value 1 if it covers the element, and the
value 0 otherwise.

The feature function f(x) is a vector of Os and 1s, and the evaluation function ¥ is
defined to be the linear combination wTf(x), where w is a vector of real-valued weights.
It is sometimes convenient to think of f as a list instead of a vector. The feature values
are combined linearly with the corresponding weights, so one needs to ensure that each
feature value is multiplied by the corresponding weight. The ordering of the component
feature definitions in f is unimportant as long as the correspondence with the weights in w
is maintained. Indeed, in the implementation each weight w; is kept as a field of the feature
definition to which it corresponds. The list of features that defines f changes during learning,
including growing and shrinking, so this is a convenient way to maintain the correspondence
between weights and features.

Because the list of features is growing and shrinking during learning, one can see that
the parameterized model is changing in the number of components and in the adjustable
parameters. No other model classes are considered, but there is no loss of generality in
terms of representation. For example, one could have a list of features in which each feature
covers exactly one domain element, with each domain element covered by exactly one feature.
Then each feature can have a weight that is the value of the instance that it covers, providing
a precise form of lookup table. So, the design choice of representing the evaluation function
as a linear combination of binary features allows representing any real-valued function over
the inputs. Although the function is linear in the weights, the binary features are non-linear
over the inputs.

2.2 Operation

The top-level of algorithm ELF is data driven, and consists of three steps. First, upon
receiving a training element (a domain element with a target value for ©), one computes the
error for that element as the difference between the provided target value and the current
value that v produces for that element. Second, one updates the weights w to reduce the
error for that element. Finally, the feature function f is updated as needed. With respect to
learning a good v, it is assumed that training elements are supplied serially. The source of a
training element is a surrounding environment, which may provide a perfect target value or
a noisy value, or a value that is a current estimate that may be revised later by presenting
the same domain element with a new target value. We shall not concern ourselves further
with the source, but instead simply adopt the view that it is beneficial to make use of the
training element.

The procedure for updating the weights uses the well known Widrow-Hoff rule (Duda &
Hart, 1973) for updating the weights in a way that attempts to minimize the mean squared
error of the evaluation function. One computes a fixed amount by which to alter the weights
of those features that matched the instance. The update rule takes this form here because the
features evaluate individually to 0 or 1. The stepsize parameter « is normalized dynamically.
In addition to updating the weights, a separate matrix of bit-errors is maintained for each
feature. These bit errors are accumulated by attributing the amount of correction that
has been applied to the feature weight to each of the bits in the feature matrix whose



ELF: An Evaluation Function Learner 4

f1 f2

Figure 1. Four Regions from Two Features

corresponding bit was set in the domain element matrix. This information is of central
importance to the procedure for updating the features, but plays no role in updating the
feature weights.

The procedure for updating the features involves three kinds of operations: specializing
an existing feature, adding the most general feature, and deleting a feature. The rest of this
section describes these three operations.

Because every feature is binary, it is convenient to think of each feature in terms of the
set, of instances that it covers, and to depict the features in a Venn diagram. Each feature
covers a set of elements, and each feature has an associated weight. As shown in Figure 1,
the value to which v maps a domain element is the sum of the weights for those features
that cover the element. An element covered by f; alone has value 3, an element covered by
f2 alone has value 5, and an element covered by both f; and f; has value 3+ 5 = 8. In
general, n features will define 2" regions of the domain that can be mapped in this additive
way. For ELF, the most general feature is always included in f, so the number of regions is
2"~1. The most general feature is not included in the Figure.

For a given f, the process of adjusting the weights w is one of adjusting the additive
values of the regions defined by the features. If one were to adjust w; to be 2, then all
regions that include the instances covered by f; would be reduced simultaneously by 1. This
kind of interaction is well known, and it is of central importance in finding a good feature
function f. Consider what happens when some of the domain elements covered by f; alone
should take on one value for ¢ while still other domain elements covered by f; alone should
take on some different value. Clearly the single feature f; is not sufficient for representing v
accurately. As training points are observed, and the weight adjusting procedure repeatedly
modifies wq, the weight vascillates because no single value is correct for all points. This of
course has an effect on those elements that are covered by both f; and f5, causing weight
wq to vascillate in sympathy. If we could detect which of these features was less able to find
a good weight, we could attempt to improve the feature by changing its coverage, which is
what ELF does.

As mentioned above, while the weights w are being tuned, the error that is attributed
to the bits of each feature matrix collect valuable information about what the features are
being asked to do. Presumably, a feature is associated with an instrinsic property of the
elements that it covers. This property contributes a certain amount to the value of the
element. For now, assume that we have accumulated enough bit error information that we



ELF: An Evaluation Function Learner 5

are ready to act. For each feature, ELF computes the difference between the highest and
lowest bit errors. A feature that has very different bit errors is trying to have very different
values for its one weight, and in a way that can be associated with the bits of the instances
that the feature covers. We refer to this difference between highest and lowest bit errors as
the warp of the feature. The feature is not actually warped, but the bit errors indicate forces
that could be allowed to change the feature definition. The feature with the largest warp
value is doing the least effective job at identifying an intrinsic property of the instances it
covers, and is the feature that will be specialized.

Having chosen the feature to specialize, one then needs to identify the best bit to set to
0 (disallow) in the feature’s bit matrix. ELF selects the eligible bit whose bit error is most
different from the mean of the bit errors. However, a bit is not eligible if clearing it would
produce an empty feature or a feature that duplicates one that already exists. ELF adds a
copy of the selected feature to f, sets its associated weight to 0, and clears the selected bit in
the newly copied feature. Every feature definition can be reached in principle, even though
the only method for revising a feature definition is to specialize it. Finally, for every feature,
its bit errors and several other bookkeeping variables are reset. However, the feature weights
w are left untouched.

We know which feature and which bit of its matrix to specialize, but we have not yet
said when to take such action. As the weights adjust, bit errors accumulate. When does
one know that a bit should be specialized? For ELF, the weights must become relatively
stable and the error in ¥ must become relatively stable before taking action. One can expect
interaction in adjusting of the weights due to overlap of the features. Until the weights and
the error stabilize, one does not really know which feature is most warped for the current set
of features. There are extra bookkeeping variables that are maintained in order to determine
when the weights have stabilized and when the error has stabilized.

We consider the weights to have stabilized if they are all varying within a fixed range.
Of course the weights may continue to change, and potentially by large amounts, but all
the activity comes to be recognized as occuring within fixed bounds. With each feature, in
addition to storing its weight, the minimum observed value of the weight and the maximum
observed value of the weight are maintained. When updating the weights, if a new min
or max is established for any weight in w, then the counter nsnmm is set to 0. Otherwise
it is incremented. If this counter were to become sufficiently large, one would consider the
weights to be varying within a limited range, and hence to be relatively stable. If the counter
nsnmm exceeds five times the number of features in f times the number of matrix elements,
then the counter is sufficiently large to infer relatively stable weights.

The method for determining whether the error has stabilized is similar in spirit. It is
relatively stable if a new minimum magnitude of the error has not been established recently.
The counter nsnme is set to 0 whenever a new minimum error magnitude is established,
and incremented by 1 otherwise. When this counter exceeds the same threshold as stated
above for the weights, then the error is considered to be relatively stable. If the weights and
the error are all relatively stable, then ELF will take action to specialize the most warped
feature.

Finally, one deletes a feature whose weight has been near to 0 for an extended length



ELF: An Evaluation Function Learner 6

Table 2. Four Feature Target Function For 3% Domain
Target v

Weight Feature
-783.8091600 | 76575527
699.8133500 | 77777777
-347.4764900 | 47677356
-30.2376300 | 77377777
-18.9269400 | 67657367

of time. This is accomplished by considering features for deletion only at the same time
that one would specialize a feature. For a feature that has both its minimum and maximum
observed weight near 0, the feature is deleted. However, the most general feature is never
deleted. This is critical, so that any feature definition remains potentially reachable through
specialization.

2.3 Discussion

Because ELF specializes bits that are associated with the largest errors, those features
that have high magnitude weights tend to be identified earliest. This has the desirable effect
of reducing error early in the learning process. As features are found that reduce error,
the new errors that emerge tend to be related to features that will have smaller magnitude
weights. The effect is to keep reducing residual error.

With regard to using the ELF algorithm, it has several useful properties. First, the
number of features grows or shrinks as necessary. One does not need to search for a good
number of features by making multiple runs. Second, there is no random element of the
algorithm itself. Given the same stream of training points, the algorithm will do the same
thing every time. Third, the representation for learning an evaluation function v is adequate
for describing any evaluation function over the discrete inputs of the base-level representation.
Finally, the © approximation of v is highly accurate for the problems tested so far, converging
to the stationary target v in every case. It is not known however whether ELF will always
converge for noise-free stationary targets.

3 Illustrations

The ELF algorithm has been embedded in a program that permits a simple form of test-
ing. The program repeatedly generates a domain element at random, evaluates it using the
correct evaluation function v, and then provides the training element to the ELF algorithm
so that it can update its version of ©. The program continues in this manner until a moving
average of the observed errors drops below 107!°. This provides a rudimentary method for
seeing how well ELF can learn a stationary noise-free evaluation function.

The target function v is loaded from a file, or generated at random. It is of the same
form that ELF uses for the v that it learns, i.e. a set of features, each described by a bit
matrix and a single associated real-valued weight. One should question whether a target
function of this form is in some way making the task simpler for the ELF algorithm. For
the moment however, it is a sufficient means for testing whether ELF can find the intrinsic
properties that one can ascertain by inspection of the target function.



ELF: An Evaluation Function Learner 7

Table 3. Function Learned by ELF For 3% Domain
ELF §

Weight Feature
783.8091600 | 76575557
-783.8091600 | 76575577
699.8133499 | 77777777
-347.4764899 | 77677356
347.4764899 | 37677356
-30.2376300 | 77377777
-18.9269397 | 67657367

-0.0000007 | 77677377
0.0000003 | 37677377
0.0000003 | 57677377
0.0000002 | 77677357
0.0000002 | 77677337
-0.0000001 | 67757767
-0.0000001 | 77657377
0.0000001 | 67777777
0.0000001 | 77757767
0.0000000 | 37777776
-0.0000000 | 77777776
-0.0000000 | 37777777
-0.0000000 | 77775757
0.0000000 | 76777577
0.0000000 | 77777377
0.0000000 | 77775777
-0.0000000 | 76777557
-0.0000000 | 67657767
-0.0000000 | 76577577
-0.0000000 | 77757777
0.0000000 | 76777777

A variety of target functions have been found by ELF, and one is shown here to illustrate
some of the characteristics of the ELF algorithm in this supervised setting. The target
function consists of four (4) features over a domain of elements where each is described by
a conjunction of eight three-valued discrete variables. The size of the domain of elements
is 3% = 6561. In addition to the four features, there is also the most general feature, which
is functionally equivalent to the customary bias weight because it associates a fundamental
weight with all instances. Thus there are 2* = 16 different regions of the target v. The
target function is shown in Table 2, with the columns of each feature matrix collapsed into
a single octal digit. Each column of matrix entries is encoded in a single octal digit.

The supervised learner using the ELF algorithm found the evaluation function shown
in Figure 3. Feature deletion was disabled during the run in order to show the maximum
number of features that were created during the run. Comparing the features of ¢ with those
of v, one sees three that appear identically in each, and several others that collectively match.
Specifically, the features 77777777, 77377777, and 67657367 appear in each. However, for
the feature 76575527 in the target, one sees the two features 76575577 and 76575557 in the
learned function. These two features in the learned function differ by one bit, and have
weights that are additive inverses. When both features match an instance, the weights
cancel each other. Only when 76575577 matches, and 76575557 does not, is there a non-zero
contribution to the linear combination. This occurs precisely when an instance matches
76575527, as in the target. One also sees that the features 77677356 and 37677356 in
the learned function collectively match the 47677356 feature of the target function. Thus,



ELF: An Evaluation Function Learner 8

182.90 -

91.45 -

0.00 - IL—.Q.—Q-W

0 1300 2600 3900 5200
Training Points, in 10,000s

Squared Error

Figure 2. Squared Error of ELF for Five Feature Function Over 3% Domain

810
[
<
2 0
Q
=

-810 -

Figure 3. Weights of ELF for Five Feature Function Over 3* Domain

although ELF has learned the evaluation function, the feature function that it learned is not
optimal with respect to space.

The mean squared error is plotted in Figure 2, with the number of training points shown
in ten-thousands. The error comes down quickly, with revision of f continuing longer after
the squared error has attained a low value. Each dot along the curve shows when some
feature was (copied and) specialized by one bit.

The components of the evaluation function (the feature weights) are shown in Figure 3.
The x-axis represents the number of training elements observed, as it does for the previous
figure. One can see how the weight of each feature changes over time. Each dot depicts a
moment when that feature was (copied and) specialized by one bit. Dots along the same curve



ELF: An Evaluation Function Learner 9

indicate that the feature has spawned multiple specializations, not that it has become very
specialized. After a feature has been copied and specialized, the weights of all the features
adjust through subsequent training. One sees that upon specialization, feature weights
‘travel’ until a new set of weights that minimize the squared error are attained. Often, many
weights change at one time, due to sympathetic movement of overlapping features. When
a feature is (copied and) specialized, the new specialized feature has an initial weight of 0.
These new features are clearly visible in the graph. By looking at the dots on the curves,
one can find the new feature that is born at that time.

Although this figure is easier to interpret in its color version, one can still observe two
characterstics. First, the features with larger magnitude weights tend to be found earlier
than those with smaller magnitude weights. Second, specialization often occurs repeatedly
on the same feature. One can see several consecutive specializations occuring on the same
feature, by finding a succession of feature creations. One can speculate that as the feature
begins to cover instances that share an intrinsic property, the bit errors are more clearly
attributable to certain bits, making those features least adequate under the warp measure
described above.

4 Related Work

There are several similarities between ELF and the error back propagation algorithm
(Rumelhart & McClelland, 1986), particularly when considering the same form of base-level
representation. With backprop, the error is computed in the forward direction by evaluating
the training point and comparing the target value to the computed value. Then the error
is used to update the output unit by adjusting the weights of its inputs. Whereas backprop
would then update its hidden units (features), ELF instead updates the bit-errors for each
feature. The bit-errors are not part of the parameterized model that represents the evaluation
function. Instead, ELF accumulates bit errors, and then periodically adjusts a single feature
definition in one step. In contrast, backprop tunes its features at every weight update.

For backprop, one picks a fixed number of hidden units, and initializes their weights
randomly. This initialization is needed so that hidden units will tune differently from each
other, and come to represent different features. However, by chance some initializations are
better than others, leading to variability and uncertainty in the performance of backprop.
When the feature definitions cannot be improved further, backprop becomes stuck. In con-
trast, ELF controls the number of features (hidden units), and no random initialization is
employed. Instead, the most inadequate feature is specialized by one bit, and the feature
weights are retuned until they restabilize. ELF is somewhat conservative in changing one
feature by one bit at a time. However, the selection of a feature and a bit to specialize is
guided by errors accumulated since the last time the feature function f was modified.

A variety of constructive methods have been devised for revising the hidden layer of an
artificial neural network. Ash’s (1989) Dynamic Node Creation measures when the error of
the network asymptotes, at which point if that error is unacceptably high, the algorithm
adds a new hidden unit to the network, and training resumes.

A meiosis network (Hanson, 1990) is a feed-forward network in which the variance of
each weight is maintained. For a unit that has one or more weights of high variance, the unit



ELF: An Evaluation Function Learner 10

is split into two. The input and output connections are duplicated and the corresponding
weights of the two units are moved away from their means. Meiosis networks have been
tested on classification tasks.

Wynne-Jones (1992) presents an approach called node splitting that detects and attempts
to repair an inadequate hidden layer of a feed-forward artificial neural network. His system
detects when the hyperlane of a hidden unit is oscillating, indicating that the unit is being
pushed in conflicting directions in feature space. His method splits such a unit into two,
and initally sets them apart from each other by an explicit altering of the weights. The
goal is to set the units apart along the most advantageous axis. Although this approach
sometimes works well, Wynne-Jones observes that the units often work back toward each
other instead of diverging. He reports promising results when this technique is applied to a
gaussian mixture model.

Fahlman and Lebiere’s (1990) cascade correlation method constructs a new hidden unit
and freezes its defining weights. The original input variables and the newly constructed unit
become the input variables for the next layer. Thus, one adds a new feature and a new layer
of mapping at the same time. The algorithm alternates between adding a new unit/layer,
and adjusting the weights for the output units. The algorithm has produced good results
when applied to classification tasks.

5 Summary

The ELF algorithm came into being during August 1996. Work is continuing, and much
remains to be done in exploring its characteristics and capabilities. For the problems on which
ELF has been tried so far, ELF has found the target evaluation function. It has reduced
error quickly, and has continued to reduce it asymptotically. The number of features has
never grown impractically large, nor to much more than several times the optimal number.
Multiple runs have not been needed because ELF determines how many features it needs
and what those features are.

Many questions need to be answered. Will ELF converge to the correct v for noise-free
stationary value functions? Although this would be desirable in principle, it may not be
necessary in practice. How well does ELF tolerate noise? If one encounters noise on the
desired value, then the instrinsic properties of the instances may not be obscured. If one
encounters noise in the base level representation, the problem may be more difficult. How
well does ELF learn for non-stationary problems? How well does ELF work for reinforcement
learning methods such as TD learning? How does ELF compare to existing methods such
as back-propagation with respect to short term and long term error reduction? Will ELF
work as well when the target function is not so clearly related to the features that need to
be found? These and other questions are being explored.

There is considerable interest in the problem of learning an evaluation function while
finding features that facilitate the task. The ELF algorithm represents a new way to handle
the problem when the inputs are discrete. Whether ELF has computational properties that
would make it the method of choice for a useful class of problems remains to be seen.



ELF: An Evaluation Function Learner 11

Acknowledgements

I have had many lengthy and helpful discussions with Rich Sutton and Doina Precup.
I thank Andy Barto, Doina Precup, Gunnar Blix, David Jensen, and Margie Connell for
providing helpful comments.

References

Ash, T. (1989). Dynamic node creation in backpropagation networks. Connection Science,
1, 365-375.

Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York:
Wiley & Sons.

Fahlman, S. E., & Lebiere, C. (1990). The cascade correlation architecture. Advances in
Neural Information Processing Systems, 2, 524-532.

Hanson, S. J. (1990). Meiosis networks. Advances in Neural Information Processing Systems,
2, 533-541.

Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing. Cambridge,
MA: MIT Press.

Wynne-Jones, M. (1992). Node splitting: A constructive algorithm for feed-forward neural
networks. Advances in Neural Information Processing Systems (pp. 1072-1079).



