A Framework for Relocation in Mobile Process-Centered

Software Development Environments *

Supratik Bhattacharyya
Dept. Of Computer Science
University of Massachusetts
Amherst MA 01003, USA
(413) 545 3179
bhattach@cs.umass.edu

ABSTRACT

This paper addresses the problem of enabling a user of a
process-centered SDE, hosted on a high-speed network,
to continue working on a detached mobile workstation
connected by a lower speed interruptable communica-
tions link. The focus of the paper is a process for de-
termining whether and how to allow detachment. The
process takes into account a broad range of factors, in-
cluding the speed and reliability of the mobile link, the
relative sizes and speeds of the mobile and networked
workstations, the nature and state of the development
process, and the importance of the detaching user. The
paper presents a formal framework that allows us to
specify the various factors, and an objective function
that quantifies the inconvenience incurred by the de-
tachment. The process uses the framework to determine
which tools and resources to relocate when the user de-
taches from the network. A detailed example is used to
illustrate this process.

Keywords
Process-centered SDEs, wireless, detachment, reloca-
tion.

Introduction

Wireless networking technology presents an opportunity
to exploit mobile computing with portable devices to
provide remote access to shared infrastructure. But
this also gives rise to new technical challenges. For
software development these challenges entail supporting
collaboration and parallel development, as well as in-
dividual developer autonomy, for multiple participants
who are widely dispersed geographically and are con-

This work was supported in part by the Air Force Ma-
teriel Command, Rome Laboratory, and the Advanced Research
Projects Agency under Contract F30602-94-C-0137 and in part
by the National Science Foundation under grant NCR-95-08274.

Leon Osterweil
Dept. of Computer Science
University of Massachusetts

Amherst MA 01003, USA
(413) 545 2186

ljo@cs.umass.edu

nected by a communication network. Past software de-
velopment environments (SDEs) required continuous,
reliable access to shared resources (eg. software pro-
cess fragments, tools, files, etc.) via a high speed net-
work. With wireless networking users can operate in
one of two modes - attached mode, where connectiv-
ity is provided by high-speed wired links (eg. a LAN) ,
or detached mode, with connectivity through a wire-
less link. The bandwidth of a wireless link is about 1-2
Mbits/s, whereas high-speed fiber-optic links can pro-
vide a 155 Mbits/s bandwidth. In addition, a wireless
link is error-prone and can suffer from frequent discon-
nections. Also, mobile computers can be expected to
have lower processing power and storage capacity than
workstations.

Approaches to compensating for poor network access
quality include pre-fectching of certain files and soft-
ware tools needed during a planned period of detach-
ment, and work redistribution to avoid having the mo-
bile user become a bottleneck. These approaches seem
applicable to all domains where wireless technology is
used. In this paper we explore the application of such
approaches for the specific domain of Process-Centered
SDEs (PSDE’s), and show how the explicit process rep-
resentations found in PSDE’s enable us sharpen these
approaches.

Approach to this work

In this work we present a framework for evaluating and
handling PSDE user requests to detach from a wired
network and go mobile. We characterize some conse-
quences of this, identify factors needed to quantify the
detachment scenario, suggest a cost function whose opti-
mization characterizes the ideal reaction to the request,
and suggest how to optimize the cost function.

Our focal point is the objective function, which quanti-
fies user inconvenience, and a method for minimizing it.
We suggest how to decompose the objective function
into subfunctions quantifying different types of incon-
venience. We show how the factors characterizing the
scenario are used to define these subfunctions. We also
suggest how and why the PSDE process might be mod-

Current

Process
(PINFO)

= Answer(s)
Network
Configuration RELOCATE ————= Modified

———=
(NINFO)
- Process
User /

Request
(UINFO)

Figure 1: A high-level view of decision framework

ified, and how tasks might be reassigned to users, in
order to minimize the objective function that measures
inconvenience.

Figure 1 is a schematic of our work, centering on the role
of the RELOCATE relocation request analysis engine.
RELOCATE inputs three types of data describing the
detachment scenario, uses it to compute the objective
function for all ways of honoring the detachment re-
quest, and outputs a recommendation for how to honor
the request. The output may be either a denial of the
request or a suggestion of how to modify the process,
prefetch tools and data, and assign upcoming steps to
the detaching user. We now present details of the fea-
tures shown in Figure 1.

Inputs to RELOCATE

The input to RELOCATE is three types of informa-
tion, PINFO (Process Information), NINFO (Network
Information), and UINFO (User Request). Each is now
described in detail.

PINFO : process information needed

An SDE is a collection of tools, a repository for soft-
ware resources like tools, files, code, etc. and a set of
data and management policies. A PSDE also provides
a representation of the software process itself. The rep-
resentation may be by a model such as a Petri Net or
flowgraph, or by executable code written in a coding
language. [8].

PINFO characterizes the PSDE process representation
with both static and dynamic information. Static infor-
mation expresses the process structure. Dynamic infor-
mation represents process execution state.

Static Information :

We assume that a PSDE process consists of a set of steps
to be executed procedurally or as triggered reactions to
events. A step, may contain substeps or tasks to be
performed either in sequence or parallel. A task can
contain a set of preconditions to be satisfied, a struc-
ture of substeps, a set of resources potentially required,
a set of postconditions potentially fulfilled, a set of re-

actions potentially triggered, and a set of artifacts to
be produced. While one cannot know beforehand which
resources will be actually used, which reactions will be
actually triggered, and which postconditions will be ac-
tually satisifed, it suffices to determine supersets stati-
cally by making simplifying assumptions.

Dynamic Information :

Dynamic process information describes the current state
of execution of the process and changes with time. Ex-
amples of the pieces of information that determine the
dynamic state of the process are: the step(s) currently
being executed, the status of locks on shared resources,
software tools currently in use, ongoing collaborative ac-
tivities, and values of variables/objects stored in repos-
itories.

NINFO: network information needed

We assume SDE communication is provided by a het-
erogenous wired/wireless network. The backbone is a
high-speed network of arbitrary topology. Users con-
nect to the backbone by high-speed links in attached
mode and low-speed interruptable wireless links in de-
tached mode.

To simplify matters initially, we assume a star topol-
ogy for the network, where the star’s central node rep-
resents the entire wired part. All stationary users at-
tach to this center. Software resources can be physically
located anywhere on the backbone, but because all are
interconnected by high-speed links, we abstract their lo-
cation to a single logical site. A mobile (detached) user
is sited at the end of an arm of the star, connected by
an edge representing a link that may be wired or wire-
less. This encourages a focus on communication over
the star’s arms.

The specific information needed to describe the network
are :

e The bandwidth provided by the wireless
channel (B,) and how that compares to the band-
width (Bp) of the high-speed wired links. We de-
note the ratio of B, to By by By,. In a cellular
network, all cell users share available bandwidth.
Thus available bandwidth varies over time.

e The reliability of the wireless link. Wireless
links will go down suddenly and stay down unpre-
dictably, requiring users and processes to adapt.
Link reliability is characterized by two factors : the
expected fraction of time during which the link will
be down (Legp) and the frequency of disconnection
(Nezp). Both will change with time.

e The storage capacity/processing power of
the mobile computer. Mobile computers are de-

signed for portability and low power consumption,
and can be expected to have reduced storage capac-
ity /processing power. RELOCATE should know
the mobile computer’s storage capacity (Starec)
and processing power CPUy,,p so that it does not
try to overload the mobile computer. Available
storage space will also change over time.

UINFO : user request
The user’s detachment request (UINFO) consists of:

e Estimated time before detachment. This is
needed to help RELOCATE decide what it can pos-
sibly relocate. Thus, if time to detachment is short,
very little can be downloaded.

e The expected period of detachment (Tysei4ch)-
RELOCATE needs this to predict the process steps
that may be executed while the user is detached.

e The user profile. This helps the process decide
the urgency of the request. Requests from “impor-
tant” users may be allowed to inconvenience others
significantly.

e Suggested activities during detachment. This
helps reassure RELOCATE that projections of user
activities during the detachment period are realis-
tic.

The Objective Function :

Identifying User Inconve-
nience

PSDE developers/users should be unaffected by de-
tached operation to the greatest extent possible. Thus
it seems reasonable to define the discernible adverse im-
pact of detachment to be a cost function to be min-
imized by the RELOCATE engine. We refer to this
adverse impact as user inconvenience. The first step
in defining user inconvenience is to identify a number
of cost factors, each corresponding to a different type of
inconvenience. Our goal is to formulate for each factor
1 the inconvenience cost COST;.Then the total inconve-
nience cost INC_COST is given by some weighted sum
of all the costs :

INC_COST =3, w; x COST;

The cost attributable to each factor can, in turn be
viewed as a function of the cost to two different enti-
ties :

1. The mobile user U who may be in the detached
mode.

2. The rest of the development team, collectively re-
ferred to as G.

If for COST;, we denote inconvenience for U as UC;
and inconvenience for G as GCj;, then COST; can be
expressed as :

COST; = F(UC;, GC;)

Cost Factors
We can now identify some of the factors that seem most
likely to be the leading sources of inconvenience and
define the cost function for each.

1. Resource transfer : This cost arises from the
need to transfer resources to and from the detached
user’s computer. We must evaluate the costs due

to downloading resources to the mobile user prior
to detachment, uploading artifacts produced at the
mobile user, delays in receiving notification about
the release of locks on files, etc. The transfer time
for resource R can be expressed as a function of its
size , the available bandwidth and the link charac-
teristics as :

TX_TIME(R) = fnl(size(R), Bsr, Neap, Lezp)

where size(R) denote the size of a software resource
required to be downloaded for activity A. Now let
Delay_Cost(A,t) measures the cost incurred due
to a delay of time t in starting the execution of A.
Then suppose that before activity A starts, all the
resources that it needs have to be transferred. Sup-
pose N resources Ry, ..., Ry need to be dowloaded
over the wireless link after the user detaches, Then
the inconvenience cost is

S; = Y%, Delay_Cost(A, TX TIME(R;)).

Let Pq,..., P, be the activities that are potentially
affected by the delay in the transfer of artifacts
produced by activity A and by delays in receiving
needed notifications from activity A. These delays
can also be expressed in terms of the TX_TIME
and a function NOTIFY_DELAY, defined as

NOTIFY _DELAY (P;) =
fnz(Pia Bfr) Nea:pa Lea:p)

for the delay suffered by activity P; due to the de-
lay in receiving notification(s) from A. The total
inconvenience cost all such delays is :

Sy, =
Z:’;l[Dela,y_Cost(Pi, NOTIFY _DELAY (P;)) +
Ykey TX TIME(R;)]

where R; 1, R;j...R; x are the resources needed
from the detached user in order to perform P;.

S and S5 are measures of inconvenience to the de-
taching and remaining user (U and G respectively).
UCRresTz and GCRrestTs, the costs for U and G, will
be determined by where activity A is assigned. For
example, if A is assigned to U then Py,..., P, are
activities at G that are delayed by A. In that case,

UCResTe = 51 and GCResTe = 52

The total resource transfer cost COSTgre,7z 18
some function(eg. the simple sum) of UCResr, and
GCResTa: :

COSTResTa: = FResTa:(UCResTa:a GCRest)

. Storage constraint : This is the cost arising from
the inconvenience to users caused by limited stor-
age capacity on a mobile computer. Excessive stor-
age requirement for the resources necessary for an
activity may prevent the execution of the activity
at the mobile user site. This may result in the ac-
tivity being reassigned to a stationary user or not
being executed at all during the period of detach-
ment.

Let an activity A require resources Ri, Ra,...Ry,
and let Py, P;,...Ppr be the artifacts produced.
Then the total storage requirement for A is

V= Zle(Size(Ri)) + Eiﬂil(Size(Pi))

Then we can define a function ST _Cost(A) for the
storage cost due to A :

ST _Cost(A) = h(V)

The form of h() above can vary from one SDE to
another. Omne possible form is to make the cost
linear in x below a certain threshold and very high
above that, eg.

h(z) = Cz, z < Thresh,
= 00, otherwise.

With a more sophisticated function, the constant
C can be replaced by a function of the available
storage space on the mobile computer at the time
of execution of A.

Evidently, ST_Cost(A) is the inconvenience cost to
the detaching user U and does not affect G. Hence
in this case,

UCgs: = ST Cost(A) and GCg; =0

and the total cost is

Costgy = Fs(UCsy, GCsy)

3. Processing Bottleneck : Mobile computers can

be expected to have lower processing power. Ex-
ecuting computation intensive tasks may not only
affect the mobile host but also other users by de-
laying the satisfaction of preconditions (eg. release
of locks on software resources) that these users may
be waiting on.

Let T4s7(A) be the additional time taken to exe-
cute an activity A on a mobile computer. Clearly
Taiy7(A) is some function of the relative execu-
tion and input/output speeds of the detached and
the attached computers.Let Py, Ps,..., Py, be the
tasks assigned to U that have to await the com-
pletion of A. Let Q1,Qs,..., @, be the tasks as-
signed to G that have to await the completion of
A. In order to account for the inconvenience to the
user (as opposed to the delay in executing other
tasks) due to the slow execution of A, we define
SLOW_COST(Tdiff(A)). The cost UCCPU for
the detaching users is given by

UCcpu(A) = SLOW COST(Tuizz(A)) + D
where
D= Z:r;l Delay_Cost(Pi, Tdiff (A))

The cost GC¢py for the remaining users is given

by
GCCPU (A) = Z?:l Delay_Cost(Qi, Tdiff (A))

As before, the total inconvenience cost for activity
A is some function of these two costs :

COSTepy = Fepu(UCcpr, GCepr)

. Collaboration overhead : Any software process

step involving collaboration among developers (eg.
a review session) requires use of the limited band-
width interruptible wireless channel. Temporary
disconnections of the channel may result in delay
in information reaching U from G and vice-versa,
thereby causing inconvenience to all the partici-
pants.

Leaving the detaching user out of the collaborative
activity would eliminate the delays but may result
in other types of inconveniences to both U and G.
Hence the form of the cost function will depend on
the decision to incude or exclude U.

LetBreq(A) be the required bandwidth for a col-
laborative activity A and Tgyration be the expected
duration. When U is included, we can define a
function GC¢or(A) for the inconvenience to G as

GCcol (A) = fn3(Tdurationa Breqa B,) Nea:pa Lezp)

and the cost to the detaching user as

UCcoL (A) = fn4(Tdurationa Breqa B,) Nea:pa Lezp)

Let us define functions U_ EXCLUDE(A,UP) and
G_EXCLUDE(A,UP) to measure the inconve-
nience cost to U and G respectively when U is ex-
cluded from A. The term UP represents the user
profile/importance. Then we have

GCcorL(A) = G_EXCLUDE(A,UP)

and
UCcorL(A) =U_EXCLUDE(A,UP)

In either case, the the total inconvenience cost is
COSTcor = Feor(UCcoL,GCcoL)

A collaborative activity may require running one
or more software tools. For each tool there are
processing and storage considerations. The incon-
venience costs for these are accounted for sepa-
rately as processing bottleneck and storage con-
straint costs.

5. Relocation Overhead: Costs are also incurred

due to the reassignment of a task in order to allevi-
ate the problems mentioned above. When a task is
reassigned to a user, then it may delay some or all of
the other tasks that have already been assigned to
that user. In this sense, the user is inconvenienced
by the user who was originally supposed to execute
the task.
Let activity A of duration 74 be reassigned to a
user. Then suppose there are n other activities
Py, ..., P, at the user that get delayed by this re-
assignment. Then we can express the total cost of
this reassignment as the following function :

RELOC_COST(A) = 5" | Delay Cost(P;,74)
If the reassignment is to U, then
UCRetoc = RELOC_COST(A) and GCRreioc = 0,

else

GCretoc = RELOC_COST(A) and UCRreioc = 0.

Other cost factors can be defined as well. For any de-
tachment considerations, it may be desirable to take
into account some or all of the above as well as some
additional costs. In the next section, we describe how
RELOCATE uses whichever of the factors that the end-
user selects.

INPUT

PRUNED TPG
+
CONSTRAINTS

TPG
FINAL TPG

+

FINAL CONSTRAINTS

OPTIMIZE =——

e

OUTPUT

Figure 2: RELOCATE engine stages

Structure of the RELO-

CATE Engine

RELOCATE is the engine for the decision making
framework. Given the necessary input information, it
reaches its decisions via the flow graph in Fig 2. The
flow graph is represented as three modules, of which the
second one is further divided into two sub-modules. A
high-level description of their functionality is provided
below :

BUILD :

For the given process or process fragment (repre-
sented by PINFO), this module builds a task precedence
graph(TPG) to represent the precedence relation among
tasks in the process fragment. Assuming that all cycles
in the TPG are unrolled, the TPG can be reduced to a
tree. The details of the TPG and its constructions are
described in a later section.

ANALYZE-SIMPLIFY :

The ANALYZE module scans the TPG and evaluates
the difficulty or complexity of actually answering the
questions posed to RELOCATE. If the decisions are
deemed “too difficult”, then the routine SIMPLIFY is
invoked to perform simplifications.

The SIMPLIFY module will apply some predefined poli-
cies/heuristics specific to the SDE under consideration.
One type of simplification is the pruning of the task
precedence graph. Another simplification is the (pos-
sible) generation of conditions/constraints that will re-
duce the number of alternative decisions that RELO-

CATE has to choose among in the OPTIMIZE routine.
The ANALYZE-SIMPLIFY cycle may be iterated a
number of times till ANALYZE decides that the graph
has been reasonably simplified. The exact criteria for
evaluating the complexity depends on the size of the
input graph, the input information provided and the
design of RELOCATE itself. It will have to be read-
justed through experience with RELOCATE.

OPTIMIZE :

This module weighs the various alternatives in response
to the UINFO request and selects the “best” solution. It
performs this by optimizing the objective function, sub-
ject to certain constraints. The constraints may arise
from various sources - the structure of the task prece-
dence graph, conditions generated by the SIMPLIFY
routine and user requests.

The RELOCATE engine is designed to be rich enough
and flexible enough to solve a range of problems with
varying degrees of complexity. For example, it can pro-
vide “yes/no” answers to relatively simple questions
such as whether a user will be allowed to download a
single data file. On the other hand, it can be given an
entire software process and asked to come up with an
“efficient” allocation of process fragments to users - in
effect, producing a new, modified version of the software
process. It can be asked to solve problems dealing with
specific aspects of mobile computing, eg. what if a user
is going to use a laptop computer with low processing
speed.

It is to be noted that the RELOCATE engine goes be-
yond performing resource relocation based on the pro-
cess fragment that a user is likely to execute when de-
tached. When RELOCATE receives a request from a
detaching user it makes a decision as to whether the
request should be honored and to do so, it may tailor
the entire software process before relocating resources.
Thus, its decisions are aimed at providing “global bene-
fits” within the SDE as opposed to providing benefits to
a single user. This is provided for by the design of the
cost function.

Example

At this point, we introduce a small fragment of a soft-
ware design process that will be used to used to illus-
trate and explain each of the modules of RELOCATE in
Fig 2 and various of the cost function computations of
Section 3. The example has been drawn from the well-
known Booch Object-Oriented Design(BOOD) Process.
The process fragment is a small, simplified segment of
step 1 of BOOD - a team of designers collaborating to
identify a set of objects from the requirements speci-
fications provided. The requirement specifications are
assumed to be clearly divided into a number of sub-
sections. Each designer is assigned one or more sub-

sections and each comes up with a list of objects for the
assigned section(s). However, the object names must
be unique across all the lists. Hence the designers need
to have some form of interaction to resolve the name
conflicts. In reality, this name conflict check may be
applied every time a designer comes up with a new ob-
ject. But we make the reasonable assumption that each
designer comes up with a complete list, and after that,
name conflict resolution is applied across all these lists.

We will identify the task/resource allocation decisions
that the process wishes to make when a member of the
design team desires to switch to a detached mode of op-
eration. Then we will demonstrate what RELOCATE
does to reach its recommendation of which tasks to as-
sign to which user.

The BUILD module

Building a Task Precedence Graph

The task precedence graph(TPG) is a representation of
a subset of the software process tasks and their par-
tial ordering, rooted at the currently executing task(s).
Note that this information is provided as part of PINFO.
The nodes in the graph represent tasks still to be done
and the directed edges represent their ordering. The
TPG can be thought of as an unrolling of the graph
representation of the original process by unrolling all
loops a (finite) number of times sufficient to anticipate
all iterations that are expected during the proposed de-
tachment period. In addition, if there are multiple users
collaborating on the execution of a task, then the TPG
represents the collaboration by creating multiple copies
of the task, one for each user. Thus the TPG contains
special fork and join nodes to represent this parallelism.
An edge emanating out of a (non-fork) task represents a
transition to another task that may immediately follow
it. Each such edge can be labelled with the probabil-
ity that it will be taken after the execution of the task.
Thus the sum of the probabilities over all the edges out
of a given (non-fork) node is 1. The sum of the proba-
bilities of all the edges leaving a fork is greater than 1.
We assume that each task T in the precedence graph
has a probability value P(T) associated with it. This is
the probability that the task will begin execution during
the period of detachment. Once a task begins execution,
then the probability that it will finish execution before
the end of the detachment period is

P4(T) = Prob(rr <= Taetach — OT)

where 77 is the expected execution time for the task
and or is the expected starting time, relative to the be-
ginning of the period of detachment. This is a function
of the expected execution times of all ancestors of T.

If a task T has only one predecessor Tp,eq, then clearly

Distribute
Requirements T1(G)
Browse
Requirements T2 U &G)
Selecf
et 13U &6
Objects
Check Name
Collisions T4 (G)
Resolve
SOV T6 (U & G)
Collision
Save list T5 (U & G)

Figure 3: Flow graph for two-user (U & G) collaboration
on a design process fragment

P(T) = P(Tprea) * Pt(Tprea) * PE((Tprea, T))

where (Tpreq, T) is the edge representing the transition
from Tpreq to T and Pg((Tpred, T')) is the probability
that T is executed after Tp,,.q terminates. If a task has
n predecessors (eg. the termination of a CASE state-
ment), Tpreqi, 1 = 1, 2 ...n, then we must estimate P(T)
as

P(T) = mam?:l[P(Tpredi) * Py (Tpredi) * PE((Tpredi, T))]

If T is a join node, then with n predecessors 1, 2, ... n,
then

P(T) = H?zl[P(Tpredi) * Pf(Tpredi) * PE((Tpredi, T))]

Now, if we assign a probability of 1 to the task at the
root of the TPG, and probabilities to all edges of the
TPG, we can compute P(T) for every task T, if we are
also given all 7r for all T and Tyetach-

All tasks in the graph may not be equally valuable from
the point of view of the software process. Hencje a value
V(T) needs to be associated with every task T. Again,
from the point of view of the relocation process, all tasks
may not be given the same weight and then a weight
W (T) can be associated with each task T, given by :

W(T)=V(T) P(T)
Task Precedence Graph for BOOD Process Fragment

Fig 3a represents the flow graph for the design process
fragment described earlier. Note that the graph con-

tains a loop. Therefore in Fig. 3b, we show the corre-
sponding TPG for the fragment, rolled out to represent
one iteration.

Note also that Fig 3a. represents a collaborative design
process that should be carried out by two users U & G.
Some of the tasks are to be executed by both U and
G. Hence in Fig 3b., two copies of each of such tasks
are used to represent the collaboration by U and G. For
example, task T3 in Fig. 3a is represented by two tasks
- T4 for U and T5 for G in the TPG of Fig. 3b. to rep-
resent collaboration by U and G in the “Select Object”
activity.

Assume now that the requirements specifications are di-
vided into two parts : Req_Specl assigned to U and
Req_Spec2 assigned to G. Tasks T2 and T3 represent
the activities of U and G browsing through their respec-
tive parts. Objects selected by U are added to a list L1
(task T4). Objects selected by G are added to a list L2
(task T5). However, the name collision check across the
two lists is to be performed by only one of the two users
(in this case, G). This is represented by tasks T6. Once
the check is completed, one of two cases can arise :

e 1o collisions are found and the lists can be written
out to a repository (tasks T7 and T8).

e collisions are found. In that case, U and G have
to make modifications to their lists (tasks T9 and
T10) to resolve the collision(s). After that, G has to
perform the check once more (task T11). Only two
levels of this check-resolve iteration are represented
in Fig. 3b.

Our example application of RELOCATE will now ad-
dress the question of how to deal with a request that U
be allowed to detach prior to the start of this process
fragment, i.e. prior to the start of T1. Some possible
alternatives for RELOCATE are :

OPTION 1 :

To let U take away the process fragments represented
by the tasks marked with U in Fig. 3b. In that case,
the following resources must be downloaded to U prior
to detachment :

1. The requirement specifications Req_Specl.

2. The (possibly empty) list L1.

3. A browsing tool.

4. An object entry tool for adding objects to L1.

The inconvenience cost for choosing this option includes
the following factors :

1. Storage constraint (Costs:).

Distribute

Requirements

Browse

Requirements
Select
Objects

Check Name
Collisions

Browse

Requirements

Select
Objects

Save list

Resolve
Collision|

Check Name
Collisions

Resolve
Collision

Save list

Save list

Resolve
Collision

T12 (U)

Resolve
Collision T15 (G)

Save list T13 (G)

Figure 4: Task precedence graph for design process fragment

2. The difficulty faced in downloading L1 for the name
collision check at G and then communicating the

feedback information to U (Resource Transfer cost
COSTRest)-

3. The overhead of collaboration by U and G in resolv-
ing name collisions (Collaboration Overhead cost

COSToo).

4. The difficulties in running the browser and the ob-
ject entry tool on the (possibly slow) mobile com-
puter (CPU bottleneck cost COST¢pr).

OPTION 2:

To reassign all of U’s tasks to G. No resources have
to prefetched to U in this case. However, this puts
additional workload on G (Relocation Overhead cost
COStReloc)-

OPTION 3:

To refuse to let the detaching user U execute any task till
it re-attaches. This will cause inconvenience at U due
to the postponment of all the tasks that are assigned to
U and hence the creation of list L1. This will also re-
strict G from performing certain tasks, because collision
can be checked and resolved only after both the lists L1
and L2 have been created. If Tgeiqcn is the period of
detachment then for each task A that is postponed, the
assigned user will incur a cost Delay_Cost(A, Tgetach)-
The total inconvenience cost is the sum of the costs for
all the postponed tasks.

RELOCATE works by computing the cost for all such
options and then choosing the one that incurs the min-

Task Id(T) | Input Edge | P(T)
Probabilities
1 1.0 1.0
2 1.0 1.0
3 1.0 1.0
4 1.0 1.0
5 1.0 1.0
6 1.0, 1.0 1.0
7 0.8 0.8
8 0.8 0.8
9 0.2 0.2
10 0.2 0.2
11 1.0, 1.0 0.2
12 0.8 0.16
13 0.8 0.16
14 0.2 0.04
15 0.2 0.04

Table 1: Edge Weights and Task Probabilities

imum cost.

In order to compare the options, W;s have to be com-
puted for each of the tasks, as described earlier. In this
example, we assume that W(T) values for the tasks are
computed under the following assumptions :

1. V(T) = 1.0, for all T.
2. 7(T) = 1.0 for all T.
3. Taetach >> 7(T) for all T.

4. The probabilities on the various edges are as shown

in Table 1.

The OPTIMIZE module

Objective Function definition

In order to optimize the objective function INC_COST,
we assume that for each of N nodes in the TPG, denoted
by T;, i=1,...,N, we have the following associations :

1. A probability P; and weight W; as described before.

2. A variable z; such that :

z; = 0, if the task is not executed during
detachment, resulting in the non-execution
of all tasks in the DAG rooted
at this task.

= 1, if the task is executed at the central site.
= 2, if the task is executed at the remote site.

3. Costs UCj(z;), (z; = 0,1, 2), representing the costs
incurred for U for the values of z;.

4. Cost function GC;i(z;), (z; = 0,1, 2), representing
the costs incurred for G for the values of z;.

Then for each vector Xo = (Za1,Za2,---, LaN), Where
Zai €{0,1,2},Vi=1,...N, we can define the UC(X4),
GC(X4) and INC_COST(X,) as :

UC(Xy) = o, Wi % UCi(@ai)
GC(X,) = XN Wi % GCi(mas)
INC_COST(X4) = W1xUC(X,) + W2 * GC(X4)

where W1 and W2 are constants that weigh the relative
importance of U and G, specified as part of UINFO.
Our aim is to determine the vector X* such that

INC_COST(X*) = MIN(INC_COST(X,).

over all X, € {0, 1,2}¥). This minimization must how-
ever be subject to constraints on the values of the z;s.
These constraints come from a variety of sources :

e Precedence relations among tasks in the
graph. For example, if task T; precedes task Tj,
then all vectors for which z; = 0 and z; = 1 or
for which z; = 0 and z; = 2 (i.e. task Tj executes
though its predecessor is abandoned), are not feasi-
ble. In order to ensure that no such vector is found
to minimize INC_COST, the optimization process
must be constrained. The constraint 2z; —z; > 0
suffices to assure the desired results.

e PSDE-imposed requirements As another ex-
ample, suppose that RELOCATE UINFO specifi-
cations mandate that tasks 7; and T; must always
be executed at the same location (eg. the same de-
veloper). Then any feasible solution will also have
to satisfy the constraint z; — z; = 0.

e SIMPLIFY module constraints. In the next
section we will see that such factors as storage re-
quirements may prevent the assignment of a task
to a detaching user. This can be easily modelled
by the constraint z; < 1. This and other similar
restrictions are generated by the SIMPLIFY mod-
ule as part of the simplification of the optimization
computation overhead.

With N tasks and 3 possible values for each z;, there
can be as many as 3V different assignments of values
for vector X. Minimizing the INC_COST function, sub-
ject to the constraints, will yield a feasible optimal vec-
tor X (and consequently an optimal assignment of tasks
to users). This will determine which process fragments
should be executed at the remote site during detach-
ment. Accordingly, resources required for these should
be downloaded to the user before detachment.

Of course, whether all of them can be downloaded de-
pends on the time remaining before detachment (infor-
mation provided by user as part of UINFO). If it is not
possible to download all resources, some arbitration pol-
icy would have to be used. For example, priority might
be given to downloading resources that will ensure the
execution of certain key tasks. The process for execut-
ing this downloading is beyond the scope of this paper.
Computation of UC;(z;)s and GC;(z;)s is based on the
cost functions described earlier and depends on which
of the cost factors we choose to consider. For example,
we may consider only the resource transfer cost and the
collaboration overhead cost for a given query/request.
In that case, the costs due to all other factors (eg. CPU
overhead cost) are set to zero. However we make a set
of general assumptions :

1. There is an initial task assignment (i.e. a set of
assignments to #;5) Xgttached that represents how
the tasks are assigned to U and G when U is oper-
ating in the attached mode. Let ;44 be the value
assigned to z; under X i1ached-

2. For any assignment X = {z1,..,zn}, if z; is
0 (i.e. the task T; is not executed at all dur-
ing the period of detachment, the cost incurred
by the developer (U or G) who was initially as-
signed the task (under Xgttqcheqd) can be expressed
as Delay_Cost(T;, Tgetacn), Where Tgetqch is the pe-
riod of detachment. This cost is added to UC;(z;)
or GC;(z;) accordingly.

The ANALYZE-SIMPLIFY module

In the SIMPLIFY module, predefined guidelines, based
both on past experience and special requirements of the
PSDE under consideration, are used as heuristics to cre-
ate constraints used in the OPTIMIZE step to reduce
the computational effort. Some examples are :

1. If the probability value P; associated with a task is
less than a certain threshold Thr then prune the
subtree rooted at that task node. The effect is to
prevent the execution of these tasks while the user
is detached. This effects a process modification.

2. FEzclude the mobile user from some or all collabora-
tive activities during the detachment period. This
will depend on a number of factors - the importance
of the user in the collaborative activity, the dis-
connectivity characteristics i.e. NegpandLegp, the
bandwidth available i.e. B, and the bandwidth
required for the activity.

3. If the user has expressed a preference about activi-
ties during detachment, then honor the preferences.
The extent to which the relocation process honors
those preferences can depend on a number of fac-
tors eg. the importance of the user.

The benefits of following such guidelines are two-fold :

e Pruning the task precedence graph based on Thr
(example 1 above) can reduce the number of tasks
to be considered in the optimization step and can
therefore simplify the optimization computation.

e A number of restrictions (eg. examples 2 and 3)
above can be easily modelled as constraints on the
cost function to be optimized and can reduce the
number of feasible solutions to be considered by the
optimization step.

The simplification guidelines are organized in levels.
When the SIMPLIFY module is invoked the first time
from the ANALYZE module, it applies the simplifica-
tion guidelines at level 1. The next time it is invoked it
applies guidelines at level 2 and so on. For example, at
level 1, all tasks with probability of execution less than
0.01 may be pruned while at level 2, the cutoff proba-
bility may be set to 0.05.

ANALYZE decides the extent to which simplification is
necessary. It can base its decision on a number of fac-
tors. For example, the computational difficulty of the
optimization increases with the number of tasks in the
TPG. ANALYZE may repeatedly invoke SIMPLIFY (as
in the above example) till the number of tasks is suffi-
ciently reduced. Again, consider a query like the fol-
lowing : Does the mobile computer have sufficient ca-
pacity to store a certain file? In this case the network

connection, CPU speed, etc. are not relevant factors.
ANALYE will then invoke SIMPLIFY to set the costs
COSTRresT,COSTepy,COSTcoL, etc. to zero ensure
that the decision is not influenced by any of these fac-
tors.

As an example of heuristic pruning, let us consider Fig.
3b. If we apply heuristic 1 with Thr set to 0.2, then it
enables us to prune the tasks T12 through T15 to get
the graph in Fig. 4. This is the graph we consider now
to complete our example.

Optimization Example

The cost computation and optimization technique will
now be applied to the pruned graph in Fig. 4. It has
11 tasks T1 to T11 and the precedence relation among
them gives rise to a large number of constraints on the
values of z;. Since these are straightforward, we do not
list them here. However, let us assume the existence
of some PSDE-imposed restrictions and design the con-
straints to model them :

1. task T1, T3 T5, T6, T8, T10, T11 have to executed
at the central site. This implies that :

z;=1,j=1,3,5,6,8,10,11

2. All of the tasks T2, T4, T7, T9 have to be executed
at the same site or all of them have to be postponed
till U reattaches. ie.

LTy — L4 — T7 = X9

With the above restrictions, we have heavily restricted
the relocation options. The decision that remains to be
made is whether to allow tasks T2, T4, T7 and T9 to be
executed by the detaching user U, to reassign them to
G or to postpone their execution altogether. Of course,
a postponment will imply, that tasks T6, T8, T10 and
T11 (assigned to G) also have to be postponed (due to
the precedence constraints). We already have z; = 1,
J = 1,3,5. For the remaining variables, there are only
three feasible assignments of value sets :

1. €E2:€E4:€E7:€E9:0; 1:6:1:8:1:10:1:11:0.
2. €E2:€E4:€E7:€E9:1; :L‘.e::l,‘.s:l‘.lo::llll:l.

3. €E2:€E4:€E7:€E9:2; :L‘.e::l,‘.s:l‘.lo::llll:l.

The inconvenience cost factors for these three choices
have already been described in Section 4.1.2. It is easy
to see how the various cost factors influence the opti-
mal choice. For example, if COSTgeioc is very low (i.e.
U’s task can be reassigned to G without causing too
much inconvenience to G), then option 2 will be the op-
timal choice. On the other hand, if the other costs like

Distribute

Requirements

T1(G)

Browse T2 (U) Browse T3 (G)
Requirements Reaui
Select T4 (U) Select T5 (G)
Objects Objects
Check Name
Collisions T6 (G)
Resolve Resolve X
7 Collision »oO Collision |~ T10(G) Save list T8(G)
Chcc.kANamc T11 (G)
Collisions

Figure 5: Pruned task precedence graph

CostresTe etc. corresponding to option 3 (ref. Section
4.1.2) are low, then option 3 is optimal and U is allowed
to take away the process fragments represented by T2,
T4, T7 and T9.

Related Work

The issues raised by the mobile computing paradigm
include dealing with the problems of low bandwidth,
disconnection, conservation of battery power for mobile
hardware and storage limitations. These issues have
been discussed in [1]. The adverse effects of these can be
reduced by minimizing the communication requirements
between the mobile hardware and wired backbone net-
work. One approach is to have “user agents” inside the
wired part of the network, acting on behalf of a mobile
user. This has been proposed in several contexts([2, 3]).
If we consider each user/developer in a multi-user SDE
as an already existing“agent”, then the reassignment of
tasks from the detaching users to stationary users is es-
sentially the application of the “user agent” paradigm
in the SDE context.

Disconnection from the network can be either planned
or unplanned. Unplanned disconnection refers to the in-
termittent loss of connectivity while the user is still at-
tached to the network over a wireless link. Planned dis-
connection is the case where a mobile user disconnects
completely from the network to operate autonomously.
The Coda file system [4] has been designed to make
network disconnections transparent to the user, by cre-
ating on-board file caches and by devising techniques for
maintaining consistency of shared data. [5] discusses the
issue of consistency in SDEs where there is more flexi-
bility than in traditional databases systems. The paper

also discusses the issue of “lazy writeback”, which can
be beneficial for a more efficient use of bandwidth when
it is an expensive resource, eg. in the case of a wire-
less link. Our work does not aim to address the issue
of maintenance of consistency but simply assumes that
there is some underlying mechanism for doing it. How-
ever, we do address the issue of prefetching data prior
to detachment to minimize the adverse impact of the
wireless channel on users.

The issue of disconnected and low-bandwidth operation
in the specific context of SDEs has been addressed in de-
tail in ([6, 7]). The work has identified the issues related
to the existence of low-bandwidth, error-prone links in
a multiuser SDE and the need for a new model to ad-
dress the problems. Intelligent prefetching and caching
and the use of prozy clients as user agents have been
proposed to reduce bandwidth consumption. It makes
a valuable contribution in terms of building a complete
system within the framework of Oz to solve the various
problems. This includes solutions for concurrency con-
trol and data reintegration.

The work is motivated by the same set of problems
as ours but the approaches have been different. While
([6, 7]) has attempted to provide solutions through ex-
periences with a specific SDE, we have been interested
in identifying decisions that need to be made for effi-
cient low-bandwidth operation. and in building a gen-
eral framework that is rich and flexible enough for use
in different SDEs. There are some clear differences.
For example, ([6, 7]) treats low-bandwidth and zero-
bandwidth operations as being distinct with different
solutions in each case. In our model, we have consid-
ered zero-bandwidth as a special case of low-bandwidth

operation and have recognized that this allows us to ap-
ply techniques like intelligent prefetching in both cases.
Again, ([6, 7]) proposes intelligent prefetching of re-
sources prior to detachment (low bandwidth operation)
for bandwidth conservation. The prefetching is process-
based, i.e. the process bases its prefetching decisions on
a user’s intent to execute certain process steps while de-
tached. We advance this idea one step further by letting
RELOCATE decide which process fragments (if any) a
detaching user should be allowed to execute and then
downloading the resources for those steps.

The two pieces of work assume the same basic decen-
tralized process model and attempt to address the same
set of concerns. Decision- making frameworks and ex-
periences with SDE-specific implementations are both
important in building efficient systems. Hence we be-
lieve that the two approaches are not divergent and can
eventually be combined to efficiently support detached
operations in SDEs.

Conclusions and Future Di-
rections

In this work, we have identified the issues raised by the
use of mobile computers and wireless technology in PS-
DEs. We have presented a formal framework for deter-
mining whether and how to allow a user to detach from
the wired network and work with a low-speed wireless
connection to the backbone. Our aim has been to make
the framework rich enough to incorporate the high de-
gree of complexity encountered in practical PSDEs and
to leave enough flexibility for using it in diverse environ-
ments. We have also tried to illustrate some features of
the framework by means of a detailed practical exam-
ple.

To make our problem tractable, we have focussed on
the case of a single mobile user. A much higher level of
complexity can be expected for the case with N (N > 1)
mobile users. Hence we can expect modifications to the
to the design of the cost functions and to the objective
function minimization procedure . In that case, the use
of intelligent heuristics will play a significant role in re-
ducing the complexity of the computational process.
We can conceive of subproblems that cannot be solved
by this framework in its present form. A number of
choices may be available for selecting the set of resources
that are needed for a given task, eg. for a collabora-
tive activity, there may be a choice of browsers. One
may be sophisticated but may have high processing and
storage requirements, the other may be simple but low-
overhead. Thus we can possibly have multiple incon-
venience costs associated with the execution of a task
at any site. The computational framework needs to be
enhanced to handle such decisions.

We have limited ourselves to just specifying the cost
functions in terms of various factors in order to keep
our framework general enough. It will be interesting and
challenging to define the exact functions in the context
of a specific SDE. In order to gain insights into the func-
tioning of the decision framework and to fine-tune it, it
is very important to design and build practical SDEs
that use the RELOCATE engine for its relocation deci-
sions.

Acknowledgement

We would like to thank to Prof. Jim Kurose for his
support and encouragement at the outset, and for his
valuable comments and feedback at various stages of
this work.

REFERENCES

[1] G.H.Forman, J. Zahorjan. The Challenges of Mobile
Computing. University of Washington CSE Techni-
cal Report No. 93-11-03.

[2] M.T. Le et al. InfoNet : the Networking infrastruc-
ture of InfoPad. In Proceedings of Compcon, Calif.
Mar. 1995.

[3] B. Schilit and D. Duchamp. Adaptive Remote
Paging for Mobile Computers. Dept. of Computer
Science, Columbia University, technical report TR
CUCS-004-91.

[4] J.J. Kistler, M. Satyanarayanan. Disconnected Op-
eration in the Coda File System. ACM Transac-
tions on Computer Systems, Vol. 10, No. 1, February
1992, pp. 3-25.

[5] K. Narayanaswamy, N. Goldman. Lazy Consistency

A Basis for Cooperative Software Development.

In Proc. Computer Supported Collaborative Work
November 1992.

[6] P.D. Skopp, G.E. Kaiser. Disconnected Operation in
a Multi-User Software Development Environment.
IEEE Workshop on Advances in Parallel and Dis-
tributed Systems Oct ’93 pp. 146-151.

[7] P.D. Skopp. Low Bandwidth Operation in a Multi-
user Software Development Environment. Depart-
ment of Computer Science, Columbia University,
technical report TR CUCS-035-95.

[8] S.M. Sutton, D. Heimbigner, L.J. Osterweil.
APPL/A : A Language for Software-Process Pro-
gramming. ACM Trans. on Software Engineering
and Methodology, Vol. 4 No. 3 July 1995, pp. 221-
286.

[9] I.Z. Ben-Shaul, G.E. Kaiser, G.T. Heineman. An
Architecture for Multi-User Software Development
Environments. Computing Systems, The Journal of
the USENIX Association, 6(2):65-103, University of
California Press, Spring 1993.

[10] I.Z. Ben-Shaul, G.E. Kaiser. A Paradigm for De-
centralized Process Modelling and its Realization in
the Oz Environment. Proceedings of the Sizteenth
International Conference on Software Engineering,
May 1994.

