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Abstract

We examine an approach for providing reliable, scalable multicast communication,
involving the use of multiple multicast groups for reducing receiver processing costs
in a multicast session. In this approach a single multicast group is used for the origi-
nal transmission of packets. Retransmissions of packets are done to separate multicast
groups, which receivers dynamically join or leave. We first show that protocols using an
infinite number of multicast groups incur much less processing overhead at the receivers
compared to protocols that use only a single multicast group. This is due to the fact
that receivers do not receive retransmissions of packets they have already received cor-
rectly. Next, we derive the number of unwanted redundant packets at a receiver due to
using only a finite number of multicast groups, for a specific negative acknowledgment
(NAK)-based protocol. We then explore the minimum number of multicast groups
required to keep the cost of processing unwanted packets to a sufficiently low value
(i-e., to achieve most of the benefit of using an infinite number of multicast groups).
For an application consisting of a single sender transmitting reliably to many receivers
we find that only a small number of multicast groups are required for a wide range of
system parameters. In the case of an application where all participants simultaneously
act as both senders and receivers a moderate number of multicast groups is needed.
Finally, we present a local filtering scheme for minimizing join/leave signaling when
multiple multicast groups are used.



1 Introduction

Many applications such as shared whiteboards, distributed interactive simulation and dis-
tributed computing, require reliable multicast, where sender(s) transmit data to a group of
receivers in a reliable manner. Designing a reliable multicast protocol for an application that
can have several thousand receivers, (e.g., wb [8] which has been used with more than one
thousand users) is a challenging task.

In this paper we examine an approach for providing reliable, scalable multicast commu-
nication. This approach (first discussed in [3] and [5]) involves the use of multiple multicast
groups for reducing receiver processing costs in a multicast session. To illustrate the prob-
lem in using a single multicast group, consider an ARQ-based reliable multicast scenario
with a single multicast group. Since all packet transmissions and retransmissions are done
using the single multicast group, each receiver receives all the retransmissions of a packet
even after correctly receiving the packet. This can impose unnecessary receiver processing
overhead especially as the number of receivers increase. The approach we examine in this
paper allows one to overcome this problem of receiver processing unwanted redundant packets
i a multicast scenario. It can can be informally described as follows. Following the Inter-
net model of TP multicast, we will use the terms multicast groups, channels and addresses
interchangeably. Let us consider a system with a sender and R receivers such that data
is transmitted reliably from the sender to the receivers using G + 1 channels. One of the
channels is used for the original transmission of packets from the sender. The remaining G
channels are mapped to ranges of sequence numbers such that a lost packet is retransmitted
on the channel corresponding to the range to which it belongs. A receiver, after detecting
a packet loss, “joins” the appropriate channel for that packet’s retransmission. Once the
lost packet is received, the receiver “leaves” the appropriate channel. Past work on reliable
multicast assumes G = 0 and in such a situation all transmissions and retransmissions are
sent on the same multicast channel.

In our work we first show that protocols using an infinite number of multicast groups incur
much less processing overhead at the receivers compared to protocols that use only a single
multicast group. Next, through simple analyses, we derive the number of unwanted packets
at a receiver due to using only a finite number of multicast groups, for a specific negative
acknowledgment (NAK)-based protocol. We then explore the minimum number of multicast
groups required to keep the cost of processing unwanted packets to a sufficiently low value
(i.e., to achieve most of the benefit of using an infinite number of multicast groups). For
an application consisting of a single sender transmitting reliably to many receivers (referred
to as a one-many application [17]) we found that only a small number of multicast groups
are required for a wide range of system parameters. In the case of an application where all
participants simultaneously act as both senders and receivers (referred to as a many-many
application [17]) a moderate number of multicast groups is needed.

One potential concern with using multiple multicast groups is the processing of “joins”
" as receivers dynamically add and delete themselves from these groups. In order
to avoid shifting the burden from the receivers to the underlying network and at the same

and “leaves,’



time maintaining the reduced processing benefits, we propose a simple receiver filtering
mechanism that results in the same amount of network traffic as in the case of a single
multicast group, but does not require joins and leaves to be processed inside the network
once the multicast session begins.

The remainder of the paper is organized as follows. In the next section we examine
the existing work on the subject. In section 3 we present several protocols that use multiple
multicast groups. In section 4, we analyze the processing cost performance of these protocols.
In section 5, we present numerical results to show that use of multiple multicast groups leads
to reduction of processing overhead at the receivers. In section 6 we derive the number of
multicast groups required to keep the processing overhead due to unwanted packets at a
receiver to a sufficiently low value for a specific NAK based protocol. In section 7 we present
our filtering scheme for handling multiple multicast groups without incurring any significant
overhead in the underlying network. Our conclusions and suggestions for future work are
contained in Section 8.

2 Related Work

Much of the existing work on reliable multicast concerns the design and implementation of
ACK-based and/or NAK-based error recovery. In [16] and [17] the authors have provided
a quantitative demonstration of the superiority of receiver-initiated NAK-based approaches
over sender-initiated ACK-based approaches. Yavatkar [18] proposes error recovery that
is driven by receivers who use a combination of restricted negative acknowledgment with
NAK suppression and periodic positive ACKs. Grossglauser [10] has described a rigorous
approach to the NAK implosion problem. Floyd et al. [8] have proposed a NAK based
reliable multicast for a shared whiteboard application. They have also proposed the use of
local recovery. All of the above work assumes that there is only a single multicast group, to
which all the receivers belong.

Cheung et al. [4] and later McCanne [14] have proposed the use of multiple multicast
groups for flow and congestion control, but not for error recovery. In [9] the possibility
of using separate multicast groups for defining “local groups” for local recovery has been
suggested. Cheriton [3] and Crowcroft [5] suggested the use of multiple multicast groups,
for error recovery in reliable multicast, in a discussion on the end-end mailing list. Holbrook
[11] proposes the use of separate retransmission channels for error recovery as future work.

Even earlier, Ammar and Wu [1] proposed the idea of destination set splitting for im-
proving the throughput of some specific positive acknowledgment based point-to-multipoint
protocols. They suggested that receivers could be divided into groups based on their ca-
pabilities and the sender carries out as many simultaneous independent conversations as
the number of groups. Our work, inspired by Cheriton and Crowcroft’s suggestion, differs
from Ammar’s work in several ways. We point out three significant differences. First, we
do not group receivers based on their capabilities. Rather we group packets such that re-
transmissions of packets belonging to each group is done on a separate multicast channel.
Second, we have considered generic NAK based protocols instead of specific ACK based



protocols. Third, in addition to point-to-multipoint scenario, we have also considered the
multipoint-to-multipoint scenario.

3 Protocols and System Model

We now present three NAK-based protocols for using multiple multicast channels for reliable
multicast from a sender to several receivers . Based on arguments presented in [8] and [16, 17]
it is clear that for many applications receiver-based reliability is a better scheme (in terms
of performance) for reliable multicast then sender—based reliability. Hence in our work we
focus only on receiver—based recovery, or negative acknowledgment (NAK)-based schemes.
The section ends with a description of the applications and the network model.

3.1 Protocol Description

The protocols we describe below are modified versions of the generic protocols, N1 and N2,
proposed in [16, 17] . In [16, 17], the authors have considered only one multicast group for
both transmissions and retransmissions. The reliable multicast protocols we will consider
will be denoted P1, P2 and P3. We initially make the assumption that we have an infinite
number of multicast groups at our disposal so that each packet can be recovered on a separate
channel, i.e., G = co. Later, we will see that we can easily reuse a small number of multicast
groups to achieve almost the same affect that can be obtained by using large number of
multicast groups. The discussion below is based on an IP multicast like network scenario,
where the sending of a packet to a multicast group address causes that packet to be sent
(potentially with some loss) to the members of that group.
The protocol P1 exhibits the following behavior

o the sender sends all original transmissions on a multicast address Ag.g.

e when required, the sender retransmits a packet with sequence number 7 on multicast
address A; where 2 =0,1,2,....

e whenever a receiver detects a lost packet ¢, it transmits a NAK to the sender over a
point-to-point channel and subscribes to the multicast address A; and starts a timer.

e the expiration of a timer without prior reception of the corresponding packet serves as
the detection of a lost NAK packet, a NAK is retransmitted for the associated packet
and a timer again started.

e on receiving packet z on A; a receiver unsubscribes to A;.

Protocol N1 in [16, 17] is equivalent to P1 when ¢ takes only the value 0. The protocol
P2 exhibits the following behavior

o the sender sends all the original transmissions on a multicast address A,,,,

o the sender retransmits packet ¢« on multicast address A; wherez =0,1,2, ...,



e whenever a receiver detects a lost packet(say 7), it waits for a random period of time
and then broadcasts a NAK on the address A;, and starts a timer,

e upon receipt of a NAK for a packet for which a receiver has not received, but for which
it initiated the random delay prior to sending a NAK, the receiver sets a timer and

behaves as if it had sent that NAK,

e the expiration of a timer without prior reception of the corresponding packet serves as
the detection of a lost NAK packet.

Protocol N2 in [16, 17] is equivalent to P2 when 7 takes only the value 0. Protocol P3
exhibits the same behavior as P2 except that a receiver sends a NAK for packet ¢ on the
original multicast address A,,, instead of A; as in P2. The important similarity between P2
and P3, which distinguishes them from P1, is that both have the capability to suppress NAKs
[8] to the sender. They attempt to ensure that at most one NAK is sent out to the sender per
packet by delaying the generation of the NAKs and multicasting them to all the participating
receivers. The suppression of NAKs to the sender does not come for free, however. The price
is paid in terms of extra NAK processing at the receivers as the NAKs are now multicast
instead of being unicast to the sender. P2 reduces the NAK processing cost at the receivers
by sending NAKSs for packet  on A;. Only those receivers, that have not received packet 1,
subscribe to A;. Hence NAKs are processed a few receivers. In comparison, in P3, NAKs
are retransmitted on A,,, and are received by all the receivers that have subscribed to A,.,.
It should be noted that the sender has to be a member of all the retransmission groups in
P2 and only a member of the group corresponding to A,., in P3. A sender does not have to
be a member of any retransmission group in P1.

Before quantitatively evaluating the performance of P1, P2 and P3 , let us first qualita-
tively examine their behavior. Recall that in P2, NAKs are received by only those receivers
that themselves have not received the packet 7. This means that a lost packet can only be
recovered from the sender and not from a local receiver. Additional mechanisms would have
to be provided for local recovery. In contrast, in P3, NAKs are received by all the receivers
participating in the multicast session. Some of these receivers might have received packet 2
correctly and can then retransmit the NAKed packet locally. Thus P3 has a provision for
local recovery built into itself. Another shortcoming of P2 is that its performance is sensi-
tive to the latency associated with detecting packet loss. If two receivers incur very different
latencies in detecting the loss of the same packet, it is possible for one to return a NAK prior
to the other joining the appropriate group. Consequently the second receiver will miss that
NAK and may transmit its own redundant NAK. For P3, since all NAKs are sent to A,,,,
and since all receivers belong to A,.g, such a situation does not arise.

3.1.1 System Model

When examining the performance of P1, P2 and P3, we will study two different system
models, corresponding roughly to two broad classes of applications that use reliable multicast.
In the first model, corresponding to the one-many application (e.g. telelecturing), we assume
that one sender transmits a continuous stream of packets to R identical receivers. In the



second model, corresponding to the many-many application (e.g. distributed interactive
simulations [12]), we assume that there are R + 1 identical nodes in the system. All nodes
can function as both a sender and receiver. In this model we assume that a node is a sender
with a probability 1/(R + 1) and a receiver with probability R/(R + 1) [17]. That is, for
each packet there is a single sender and each node is equally likely to be the sender. For
both models we assume that all loss events at all receivers for all transmissions are mutually
independent and that the probability of packet loss, p, is independent of receiver. We further
assume that NAKs are never lost.

As noted earlier, we will begin our analysis below assuming an infinite number of available
multicast channels and then consider the more realistic case of a limited number of channels.

4 Processing Cost Analysis

For the purpose of understanding the improvement in processing costs of protocols P1, P2
and P3 over protocols N1 and N2, we now analyze processing costs for both the one-many
and many-many models for protocols P1, P2 and P3. We start with the one-many model
and later use these results to obtain processing costs for the many-many model.

The receive processing cost(time) is determined by computing the processing involved
in correctly receiving a randomly chosen packet. This includes the time required to receive
those copies of this packet (i.e., the original copy plus any retransmissions) that arrive at the
receiver, the time required to send/receive any NAKs associated with this packet and the
time needed to handle any timer interrupts associated with this packet. The send processing
cost is determined by the processing involved in correctly transmitting a packet to all the
receivers. This includes the cost required to process the original transmission of the packet,
process any received NAKs, and process retransmissions that are sent out in response to
these NAKs.

We now derive expressions for receiver processing requirements for the protocols P1, P2
and P3. Table 1 describes the notation used in the analysis. Most of the notation has been
reintroduced from [17] for the sake of consistency. We assume that the processing times
have general distributions, that they are independent of each other, and that {X,}, {X,},
{Y,}, {Vi}, {Y..}, {Y.}, {Y;} and {V}} are each identically distributed sequences of random
variables.

Following an approach similar to the one in [17], the mean per packet processing time
for a randomly chosen packet at a receiver for the P1 protocol can be expressed as,

E[Y™!] = E[Y,] + (E[Y;] + E[Yi])p + E[(M, — 1)¥]E[Y,] + E[(M, —2)*]E[V}] (1)

where (z)* = max{0, z}. The first term corresponds to the processing required to correctly
receive a packet. A receiver will only receive one copy of the packet (either on A,,.,, or on
A; for packet 7). The next term represents the processing required for joining and leaving
a multicast group. Note that the join and leave processing times have been multiplied by
the loss probability because this cost is incurred only when a packet is lost and a NAK is



Xp — the time to process the transmission of a packet

X, — the time to process a NAK

Y, — the time to process a newly received packet

Y: — the time to process a timeout

Y, — the time to process and transmit a NAK

Y, — the time to receive and process a NAK at a receiver

Y; — the time to process a join

Y; — the time to process a leave

p — the loss probability at a receiver

R — the total number of receivers

M, — the number of transmissions necessary for receiver r to
successfully receive a packet

M — the number of transmissions for all receivers to receive the
packet correctly; M = maz,.{M,}

X9 Y% — the send and receive per packet processing

time in protocol w € {P1, P2, P3}

Table 1: Notation

transmitted. Although several NAKs might be sent from a receiver to recover a lost packet,
a receiver needs to join and leave the corresponding multicast group only at most once per
packet. The third term represents the processing required to prepare and return NAKs. The
last term corresponds to the processing of the timer when it expires. Since M,, the number
of times a message must be sent before a given receiver receives the packet is independent
of the number of multicast groups (and indeed is independent of whether an ACK or NAK
protocol is used), we can use the results in [17] directly:

EM,] = 1/(1-p), (2)
E[(M, —1)*] = p/(1-p), (3)
E[(M, —2)*] = p*/(1—p). (4)

Substitution of (3) and (4) into (1) yields
E[Y™'] = E[Y,] + (E[Y;] + E[Yi])p + PE[Y.]/(1 — p) + P’ E[Y3]/(1 - p). (5)

For P2 the mean per packet processing time can be expressed as,

EY?”’] = E[Y,]+ (E[Y;] + E[Yi])p
( [(M,] = 1)(E[Y,]/R + (R —1)E[Y/]/R)
E[(M, — 2)"]E[Y}] (6)

Here, the first two terms are the same as in case of P1. The third term is comprised of
two terms. The first one results from generation of NAKs and the second results from the



reception of NAKs at the receiver. A receiver generates a NAK with a probability 1/R and
receives a NAK with a probability of (R — 1)/R. The last term is the same as that for P1.
Substitution of (2) and (4) into (6) yields

E[Y"?] = E[Y,]+(E[Y;]+E[Y)p+p/(1-p)(E[Ya]/R+(R-1)E[Y, ]/ R)+p* EIYi]/ (1-p) (T)

Using similar arguments, the mean per packet processing time at a receiver for the P3
protocol can be expressed as:

E[Y™?] = E[Y,]+ (E[Y;]+ EMi])p + (E[M] - 1)(E[Ya]/R + (R — 1) E[Y,]/R)
+p"E[Y]/(1 - p) (8)

The only difference between the expressions for P2 and P3 is the replacement of E[M,] in
P2 by E[M] in P3. Recall that in P2 a receiver sends a NAK for a packet 7 to address A;.
A receiver r, that is trying to recover packet i, will subscribe to A; for only the time until
it receives 2. Since all NAKs are sent to address A;, the number of NAKs it will receive
during this time is M,. On the other hand, in protocol P3, a NAK is sent to the original
transmission address A,,, and all the NAKs sent for packet ¢ are received by all receivers.
E[M] can be expressed in terms of R and p as follows.

E[M] = i mP[M =m]| = i P(M > m),

m=1

= 1+

M8

(1 - P(M <m)),

Il
—

m

M8

= 1+ (1-(1-pm"

m=1

The sender processing costs of P1 and P2, P3 are same as that for N1 and N2 respectively.
This is because the use of multiple multicast groups only reduces processing of redundant
packets at the receivers. There is no change in the number of NAKs received by the sender
and hence there is no change in the number of packets sent out by the sender. There is
no per—packet join/leave processing cost at the sender. In P1 and P3, the sender does
not have to be a member of any retransmission group because it does not receive anything
on the retransmission groups. In P1, NAKs are received point-to-point and in P3, NAKs
are received on the original transmission multicast address and there is no join/leave cost
associated with a multicast group if one only sends to that group[6]. In P2 the sender has to
be a member of all the retransmission groups before it starts transmitting packets because it
receives NAKs on the retransmission groups. It remains a member until the multicast session
ends. Hence it does not incur any join/leave processing costs during the session. We can
thus use the expressions of sender processing costs from [17]. The mean sender processing
time needed to successfully transmit a packet to all the receivers, for protocols P1, P2 and



P3 is given by the following expressions.

E[Xpl]
E[XPZ] — E[XP3]

E[X™M] = E[M]E[X,] + RpE[X.]/(1-p) (9)
E[X"] = E[M]E[X,] + (E[M]-1)E[X,]. (10)

The overall protocol throughput, for the one-many case, for the family of protocols P1,
P2 and P3 is given by the following definition.

A% = min{A¥, A%}
where we{P1, P2, P3}, AY = 1/E[X“] and AY = 1/E[Y*“]. AY represents the rate at which a

sender could successfully transmit packets to all receivers. A¥ is a measure of the maximum
packet processing rate at a receiver. The overall protocol throughput is the minimum of the
two rates because the overall performance of the protocol would be dictated by the slower
of the send and receive processing rates.

Recall that under the many-many scenario, each of the R+1 end system nodes are equally
likely to be the sender of the randomly chosen packet. Hence the mean packet processing
time is E[X*]/(R+ 1) + RE[Y*]/(R+ 1) and the overall protocol throughput, which is the
inverse of the mean packet processing time, is expressed as

R+1

A = E[X*] + RE[Y¥] (11)

where we{ P1, P2, P3}.

5 Numerical Results

We now examine the relative performance of protocols P1, P2 and P3 and N1 and N2. In
order to do so we need to know the processing times associated with sending/receiving a data
packet and a NAK packet, as well as their interrupt processing times. In order to measure
these values, we instrumented a Linux kernel version 1.2.13 on a 133 MHz Pentium PC.
As we had complete control over the processes running on PC we ensured that the PC had
the minimum possible load and performed all of our measurements inside the Linux kernel.
We considered two packet sizes, 1024 bytes for data packets and 32 bytes for NAK packets.
The results of our measurements are summarized in the Table 2. Each processing time, in
microseconds, was measured 1000 times and averaged. The timer processing time includes
time to set, execute and delete the timer. To determine the join and leave processing time,
we sequentially performed 20 join operations of distinct IP multicast groups followed by 20
leaves operation. The join and leave operations were “local” meaning that no IGMP reports
were sent out on these operations. The concept of “local” join and leave is discussed later
in the section on local filtering.

It is worth noting that several measurement studies have been reported in the literature,
notably [13] and [15]. However, neither of these included measurements of join and leave
processing times thus necessitating the series of measurements described above.
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‘ Operation ‘ Mean Processing Time ‘ Standard Deviation

Send-Data 502 13.8
Send-NAK 87 5.8
Recv-Data 487 12.6
Recv-NAK 86 5.1
Join 75 6.6
Leave 74 6.8
Timer 32 1.5

Table 2: Processing Time(in microseconds)
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We can now compute the mean send and receive processing costs(times) for the protocols
P1, P2 and P3 using equations (5)—(10), for several values of R and p. In the following, we
will directly use the expressions derived in [17] to do the same for protocols N1 and N2.

Figures 1-3 show how the ratio of receiver processing costs obtained under the N and P
protocols varies with R and p. It can be seen that the family of P protocols always perform
better in all the three graphs. This is because the P protocols, by using multiple multicast
groups, eliminate the reception of unwanted and redundant data packets at the receivers and
hence receiver processing costs decrease. Although there is a slight increase in processing
costs due to the processing of extra joins and leaves at the receivers, this increase is much
less than the benefit obtained by reducing the processing of unwanted packets. Further, the
benefit increases as the loss probability, p and number of receivers, R increases. There are
two factors contributing to this behavior. The first factor is that the cost of processing a
data packet is much higher than the cost of processing a join or a leave operation; Table 2
shows that the cost of processing a data packet at a receiver is almost 6.5 times the cost of
processing a join or leave. The other factor is that only one join and one leave are required to
recover a lost packet at a receiver. Whereas in the case of protocols N1 and N2 the number
of unwanted packets per packet recovery, (E[M]—1)(1—p), at a receiver is greater than one
even for small loss probabilities and small number of receivers. This number increases with
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p and R.

Figures 1 and 2 show the receiver processing improvement of P1 over N1 and P2 over N2
respectively. Observe that the relative performance of P2 over N2 is better than that of P1
over N1. This is because the receiver processing time of N2 is higher than that of N1 [17].
On the other hand the receiver processing times of P1 and P2 are almost same. In fact,
from equations (5) and (7) it can be seen that these are exactly same if E[Y,] = E[Y,], i.e.,
if the processing time to send a NAK is the same as the processing time to receive a NAK.
From Table 2 we see that E[Y,] = 87 microseconds and E[Y,] = 86 microseconds. Hence
the receiver processing times of P1 and P2 are same for any practical purposes.

Figure 3 shows the receiver processing performance of P3 over N2. Although P3 does
not perform as well as P2 it still substantially outperforms N2. Figure 4 shows the receiver
processing times of P2 and P3. We see that P3 incurs higher receiver processing costs than
P2 (and therefore P1), as expected. Recall from section 3 that P3 has to perform extra NAK
processing in comparison to P1 and P2.

So far we have concentrated on the receiver processing costs. We now examine the overall
protocol throughput of the protocols P1, P2 and P3. As noted before, the use of multiple
multicast groups does not have any impact on the sender processing costs. Hence the send
processing rate of protocols P1 is the same as that of N1 and the send processing rate of
P2 and P3 is the same as that of N2. If the send processing rate is the bottleneck then
the overall protocol throughput, for the one-many scenario, defined as the minimum of the
send and receive processing rates, does not change even with the improvement in receiver
processing cost(rate). In [17] it has been shown that the send processing rate is indeed the
bottleneck for protocols N1 and N2. This means that the send processing rate is also the
bottleneck for protocols P1, P2 and P3. Thus, while we see a marked performance advantage
in receiver processing rates, the overall protocol throughput for the one-many model does
not improve with the use of multiple multicast groups. However, this should not minimize
the importance of reducing receiver processing cost. Most receivers are likely to be systems
with multi-tasking operating environments so that the reduction of unnecessary processing
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is highly desirable. Also, one should not let a receiver pay by processing redundant packets
requested by other receivers.

We next examine the many-many model, using equation (11) to compute the overall
protocol throughput for protocols P1, P2 and P3 and N1 and N2. Figures 5-7 show how
the many-many throughput ratio of the P and the N protocols varies with the number of
receivers for different loss probabilities. We see in Figure 5 that P1 outperforms N1 and in
Figures 6 and 7 that P2 and P3 outperform N2. This follows from the fact that a participant
in a many-many application is much more likely (with probability R/(R + 1)) to perform
receive processing on a packet than send processing. Consequently the throughput ratios
exhibited in Figures 5, 6, and 7 exhibit behavior nearly identical to the mean per packet
receive processing ratios for those protocols in Figures 1, 2, and 3. Among the P protocols,
the overall protocol throughput performance of P2 is the best. This is because through
suppression of NAKs, the sender processing cost of P2 is less than that of P1 and the same
as that of P2. Also, as we have noted before, the receiver processing cost of P2 is also less

than that of P1 and P3.
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In summary, we see a significant reduction of receiver processing costs by using multiple
multicast groups. For the many-many application, we also see a substantial improvement in
overall protocol throughput.

6 Number of Retransmission Multicast Groups

In the previous section we made the assumption that the number of available multicast
groups was infinite. This is unrealistic and even if a very large number of multicast groups
was available, practical considerations such as the size of routing tables within the network
would argue in favor of a smaller number of multicast groups. Recall that the main purpose
for choosing a multicast group per packet was to avoid receiving any unwanted redundant
packets. In this section we demonstrate through analysis that with only a finite and small
number of multicast groups we can keep the overhead of processing redundant packets ex-
tremely low — approaching that achievable with an infinite number of groups.

Our system model is the same as the one-many model in the previous section and we
consider protocol P1. The retransmission of packet ¢z is now done on the multicast address
Aimode where G is the number of retransmission multicast groups. That is, instead of
subscribing to A;, as in the previous section, a receiver trying to recover packet ¢ subscribes
to A;modg. Unlike the case of G = 0o, retransmission of a lost packet on a multicast group
can now be interspersed with the retransmissions of another packet corresponding to the
same group. This interspersion depends upon the rate of retransmission of lost packets with
respect to the rate of transmission of new (first time) packets. For this reason, we must
model the manner in which retransmissions are sent in relation to the new packets. We
consider that the sender multicasts new packets periodically with a fixed time interval A,
and retransmits packets periodically with a fixed interval A if there is a pending NAK for
that packet (equivalently, that the receivers retransmit NAKs with a time interval of A').
We define A' = max, 7, , 7 = 1,2,3, ..., R where 7, is a measure of the round trip time from
the sender to the receiver r. We will observe that A/A’ is a key parameter in our protocol
performance.

6.1 Analysis

In this section our goal is to determine the number of unwanted redundant packets received
by a receiver due to the use of only a finite number(G) of multicast groups into protocol P1.

In order to illustrate the considerations that will impact performance, let us consider an
infinite stream of packets. Let us pick one packet randomly and label it 0. Suppose that
receiver 1 does not receive the original transmission of packet 0. On detecting that it has
not received this packet, it joins retransmission group corresponding to address Aomodg =
Ao. Tt sends a NAK to the sender and sets its NAK retransmission timer to A'. The
sender retransmits packet 0 on Agy. If this packet is lost again then receiver r;’s NAK
retransmission timer expires and it retransmits the NAK. During the time until packet 0
is correctly received at r; other receivers may using the retransmission group Ay to recover
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packets ..., —3G, —2G, -G, G, 2G, 3G, . ... If r; has already received these packets, then any

retransmissions of these packets are received, but are unwanted for »;.

We wish to calculate the number of these unwanted packets at r;. For this purpose
we need to consider the overlap between the retransmissions of packets ..., —3G, —2G,
-G, G, 2G, 3G, . .. and retransmissions of packet 0 during the period of time when r; is
using Ao to receive packet 0. Figure 8 shows the overlap between retransmissions of packets
—G and 0. For simplicity of Figure 8 we have shown GA to be an integral multiple of A’
although this is not a requirement in our analysis. We introduce the random variable U to
denote the number of unwanted packets at r; while it is attempting to receive packet 0, given
that it requires at least one retransmission. Its expectation, E[U], can be expressed as,

EU] = (1 - p) (Y (EIZ(—iG)] + BIZ(G)]) — S (BIZ (—i6)] + BIZ GG (12)

j=1 j=1
where random variables Z(k), k = +1,42,... denote the number of retransmissions of
packet k& due to all the R receivers that overlap with the retransmissions of packet 0 to r;
and random variables Z'(k), k = 41,42, ... denote the number of retransmissions of packet

k due to r; that overlap with the retransmissions of packet 0 to r;. In the remainder of this
section we derive expressions for E[Z(k)] and E[Z'(k)], k = +1,42,.... The notation used
in the analysis is described in Table 3.

For k = —1,-2,-3,..., i.e., for packets transmitted before packet 0, Z(k) is determined
by considering the minimum of the number of retransmissions of packet 0 and any retrans-
missions of packet k, over all the receivers, after r; starts using Ag for recovering packet 0.
The quantity L—kA/A'J determines the number of possible retransmissions of k& before r;
starts using Ag to recover 0. Therefore,

Z(k) = min(N, max(0, max (N, — L_kA

max =) (13)

For k= 1,2,3,..., ie., for packets transmitted after packet 0, Z(k) is determined by consid-
ering the maximum number of retransmissions of packet k, over all receivers, until r; finishes
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Z(k) — the number of retransmissions of packet k, due to R receivers,
that overlap with the retransmissions of packet 0 to receiver rq
Z (k) — the number of retransmissions of packet k, due to 7,
that overlap with the retransmissions of packet 0 to ry
— number of NAKs generated by receiver ry for packet 0
number of NAKSs generated by receiver r for any packet

==z
|

— number of unwanted packets received at a receiver per packet recovery
— the loss probability at a receiver

— the number of retransmission multicast groups

the time interval between successive transmissions from the sender

— the time interval between successive retransmissions from the sender

> D>Qs g
|

— the total number of receivers

Table 3: Notation

recovering packet 0.
kA

Z(k) = min(max(0, N — LTJ), max N,). (14)

1<r<R

In equations (13) and (14), P(N =n) = (1 —p)p™ ! forn > 1 and P(N, =n) = (1 — p)p"
for n > 0. The difference in P(N = n) and P(N, = n) arises from the fact that N can take
only values greater than or equal to 1 because we start with the assumption that r; loses
the original transmission of packet 0. On the other hand, N, can be zero when receiver r
receives the original transmission of packet k and does not need a retransmission of k. These
two probabilities can be used to derive the following two relations.

P(N<n) = 1-p", n>1
P(N,<n) =1 — pntl) n>0
Let Z; and Z, be two independent random variables. We have the following useful relations.
P(min(Z1,2,)<z) = 1—(1—P(Z; <2))(1 - P(Z, < z))
P(max(Zy,2Z,) <z) = P(Z; <2)P(Zy < z)

Based on these equations it is easy to derive

P(Z(k)<2) = 1-p(1—(1—p R/AT)RY k= g o
E[Z(k)] = 1—(1—plTa/aU+)R
P (Lt RAAURY g (15)
z=1

Using a similar approach we can obtain the following expression for E[Z(k)] for k = 1,2,.. ..

BIZ(k)] = p/3 (1 — (1 - p)R) + S p a1 (1 p*)R), k=1,2,... (16)

z=1
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Figure 9: % =1 and R = 1000
By setting R =1 in (15) and (16) we obtain
1
, plFIA/A" 41
- P

The expressions in (16)and (17) can be substituted into (12) to yield E[U].

6.2 Numerical Results

We now examine the number of retransmission groups required to achieve a receiver through-
put that is “close” to the receiver throughput obtained by using an infinite number of re-
transmission groups. We also see how this number changes with loss probability p, the ratio
A/A" and the number of receivers R. For this purpose, we define a performance metric v,
which is the ratio of receiver throughput with G = g to receiver throughput with G = oo,
where g > 0. For P1, v is defined as

B E[yPl]
7~ EYP + pE[U]E[Y,)

Recall that E[U] depends on the values of G, p, R and A/A" and thus v depends on these

variables too.

Figure 9 shows how v varies with number of retransmission groups,g for several loss
probabilities. In this figure A/A" =1 and R = 1000. We found that as g increases the mean
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Figure 10: G* vs R for % =1,v>0.99

number of unwanted packets, E[U] falls very sharply to zero(not shown in the figure). This
is because the larger the number of multicast groups, the larger will the separation (in time)
between recovery of packets mapped to the same retransmission group. As a result v in
Figure 9 approaches 1 very fast. Let us define G* be the minimum number of retransmission
groups required to make v > 0.99. We found that G* = 3 for p = 0.10 and G* = 5 for
p = 0.20.

Figure 10 shows how G* varies with the number of receivers for different loss probabilities,
with A/A" = 1. We see that G* increases very slowly with increasing number of receivers.
For p = 0.20, G* = 5 for R = 1000, G* = 6 for R = 5000 and G* = 7 for R = 10000. On
the other hand, as the number of receivers decrease to a small value, the minimum number
of retransmission groups does not drop considerably. For p = 0.20, even for 50 receivers we
need at least 4 retransmission groups to keep v > 0.99.

Thus we see that even for a very large number of receivers and relatively high loss
probabilities the minimum number of retransmission groups required to achieve a receiver
throughput that is close to the the receiver throughput with G = oo is very small. In the
above numerical results we have considered the ratio A/A’ to be 1. Next we see how this
ratio affects G*.

Figure 11 shows the behavior of G* with A/A’, for R = 1000, for several loss probabilities.
We see that G* is very sensitive to small values of A/A'. This is because the likelihood of
overlap between retransmissions corresponding to the same retransmission group increases
as A/A" decreases. This behavior diminishes as A/A’ increases. In fact beyond a certain
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value G* becomes insensitive to A/A’, as seen in Figure 11. Figure 11 also shows that for a
given A/A', G* is higher for higher loss probabilities. This increase can be attributed to the
fact that there are more packets being recovered and hence an increasing chance of overlap
between recovery of packets belonging to the same retransmission groups. Interestingly, with
increase in A/A’, G* becomes insensitive to p. This is because the retransmissions of packets
belonging to the same group are significantly separated. Hence, it is clear that A/A’ plays
an important role in determining the mean number of retransmission groups. The value of
A/A" depends upon many factors, such as application requirements, network topology and
network stability.

In summary, we see that for a wide range of system parameters we need a very small
number of multicast groups to get a receiver throughput that is within 1% of the maximum
achievable receiver throughput. If we choose a less stringent requirement and can tolerate

unwanted processing slightly greater than 1% of the ideal case then we need even fewer
multicast groups.

6.3 The Multiple Sender Case

In section 6.1 we analyzed the mean number of unwanted packets at a receiver due to a
finite number of multicast groups for the one-many model. We now extend the analysis to
the many-many scenario where each node is a receiver as well as a sender. Hence, instead
of a single sender, we now have multiple senders. The protocol we consider is still P1. As
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Figure 12: Many-Many Scenario, % =1 and R = 1000

before, there are G retransmission groups in addition to the group for original transmissions.
A receiver on losing a packet ¢ from sender j joins the multicast group A;mo.dac and sends a
NAK to sender j. The sender j retransmits the packet on A;n,.4g. After correctly recovering
packet 7 from sender j the receiver leaves A;noac.

For the convenience of analysis we model the multiple senders by a single global sender.
That is, we assume that all the transmissions and retransmissions are originating from the
global sender. Let the time between original transmissions be A and let the time between
retransmissions be A’ (note that the A and A’ for a global sender could be different from
those for individual senders). A stream of original transmissions of packets from the global
sender would look like (s1,7n1), (s2,7m2), (s3,m3),... where s; is the source of the ith packet
and n; is the sequence number of that packet with respect to sender s;.

Let us assume that traffic streams from senders are independent of each other. Hence a
packet in the combined packet stream from the global sender is equally likely to belong to
any of the retransmission groups. In other words, the probability of a packet belonging to a
certain retransmission group(say g) is 1/G. As before, we choose a packet from the global
stream at random and call it 0. The expected number of unwanted packets received at a
receiver r; when it is trying to recover packet 0 can be expressed as

1 o0

ElU] = (1 =p)(5Q_(BIZ(k)] + E[Z(=k)]) - iE[Z'(k)] +E[Z(=K)))))  (18)

Using equations (15)—(17) we can compute the value of E[U] for different values of G, p, R
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Figure 13: Many-Many Scenario, G* vs % for R = 1000, v > 0.90

and A/A’. We compute v, as defined in section 6.2, for different values of g. Figure 12 shows
how ~ varies with g for A/A" =1 and R = 1000. We see that - increases very fast for small
values of g, but then the rate of increase decreases as g increases. Still even for p = 0.20 we
can get v > 0.90 with just 5 retransmission groups. This means that with 5 retransmission
groups we could get 90% of the benefit when using an infinite number of retransmission
groups. We now define G* to be the minimum number of retransmission groups required to
keep ¥ > 0.90. Figure 13 show how G* varies with A/A’ for several loss probabilities for
R = 1000. We can see from Figure 13 a wide range of values of A/A’, G* takes moderate to
low values. Thus even for the multiple sender case we can get 90% of the benefit of infinite
groups by actually using only a moderate or small number of groups. However, now the
receivers must be prepared to tolerate a slightly larger number of unwanted packets than in
the one-many case.

We end this section by making two observations. The first observation is that in a
pathological case all the traffic streams from the senders might synchronize in transmitting
packets such that packets with same sequence number get bunched together. If A;n.4¢ 1s
the retransmission group of packet 7 irrespective of the sender then a bunch of 1s(or 2s or
3s ...) would correspond to the same retransmission group and there is likely to be a great
deal of overlap in their recovery. This would then result in a large number of unwanted
packets at the receivers involved in recovering these packets. To reduce the likelihood of
such a synchronization we could use certain deterministic rules. An example of one such
rule is that each sender uses the retransmission groups in a different order, i.e. if there are
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say b retransmission groups then sender 1 might use the retransmission groups in the order
[1,4,3,0,5,2] and sender 2 might a different order like [5,3,2,0,4, 1] and so on. This means
that sender retransmits packet 0 on group 1, packet 2, on group 4 , packet 3 on group 3 and
so on. The receivers know the order of retransmission group usage for each sender and hence
join the appropriate group, depending on the the sender, for recovering packet z instead of
joining A;moedq for all the senders.

Our second observation is that if the senders in the system send packets in batches
then with the increase in batch size the separation between packets belonging to the same
retransmission group would increase leading to a lesser degree of overlap between recovery of
packets belonging to the same group. This would decrease the number of unwanted packets
at the receivers and hence reduce the number of multicast groups needed.

7 A Scheme for Local Filtering

Even though the number of multicast groups required for achieving reliable multicast is not
large, their use imposes demands on the network in the form of join and leave operations.
In the current networks supporting IP multicast routing, a join or leave from a receiver
is detected by the nearest multicast router, the one attached to the subnet of the receiver,
through the IGMP protocol [7]. This information is then propagated to the nearest branching
point of the multicast tree, rooted at the sender [6], or to a suitable core, in the case of
core based trees [2]. Each join and leave message, results in processing overhead at all the
intermediate routers thereby potentially reducing the router throughput. The significance of
this processing burden is highly topology dependent. For example, if the network topology
is such that there is always at least one receiver on the same subnet which is a member
of the multicast group which another receiver in the same subnet wants to join, then the
joining overhead on the network would be considerably reduced. More generally, the closer
the branching point is to a receiver, the lower the join or leave overhead on the network. In
order to minimize this signaling overhead we have designed a scheme that does local filtering
at a receivers network interface. This introduces no additional signaling (i.e. join/leave
packets to be sent to/from routers) in the network. Instead, all packets belonging to both
the original transmission and all retransmission groups are always allowed to reach the local
network to which the receiver is attached and then all unwanted packets are filtered out by
the network interface hardware of the receiver.

In our scheme we distinguish between two kinds of join/leave operations. The first kind,
which we call non-local join and non-local leave, is the regular join and leave as described
above. The second kind, which we call local join and local leave, has to do only with the local
network interface at a receiver. A local join or leave message travels only to the receiver’s
network interface hardware. No IGMP messages are sent to the nearest IP multicast router.
A local join or leave is simply an indication to the hosts network interface to filter packets
locally.

We now describe the scheme for local filtering. As a first step a receiver joins, non-locally,
both the original transmission and all of the retransmission multicast groups. This results
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in the transmission of IGMP messages to the nearest IP multicast router and transfer of
subsequent graft messages towards the branching point. Subsequently, the receiver locally
leaves all of the retransmission groups. From this point on, whenever the receiver needs to
recover a packet it does a local join to the appropriate multicast group. Once the packet has
been received correctly, the receiver does a local leave. Hence, as far as the network routing
tables are concerned the receiver is always a member of all the groups and all packets to these
groups are duly forwarded to the local interface of the receiver. It is left to the local interface
to filter out the unwanted packets, based on the information provided by the local join and
leave operations, to save the receiver from processing these packets. When a receiver wants
to drop out of the multicast session it non-locally leaves all of the multicast groups.

Since the filtering is done locally at a receiver, this scheme does not reduce the data
traffic in the network, and hence does not prevent wastage of network bandwidth. At the
same time it does not add any extra traffic in comparison to the scenarios that use a single
multicast group. The closer we move the filtering point to the sender the more we are able
to save in terms of extra traffic towards a receiver, but then the cost of join and leave on the
network would increase.

Note that our local filtering scheme does not require any changes at the network routers.
There is, however, a need to modify the networking code at the receiver. This change appears
not to be excessive. It is clear that for this scheme to work, the network interface hardware
at a receiver must provide support for filtering. The Ethernet interface provides multicast
filtering in the hardware. Finally, it should be noted that even with local filtering it is still
necessary for the routers to include entries in the multicast routing table for each of the
multicast groups.

8 Conclusions

In this paper we have examined an approach for providing reliable, scalable multicast com-
munication by using multiple multicast groups for recovery of lost packets. In this approach,
rather than having all receivers receive all retransmitted packets (regardless of whether a
given receiver had already received a given packet correctly), the multiple multicast groups
are used to allow only those receivers that actually want a particular packet to actually
receive that packet.

We considered the idealized case of an infinite number of multicast channels as well as
the more realistic scenario of using a small, fixed number of multicast channels. We also
considered two different models of sender behavior: the one-many scenario and the many-to-
many scenario. Our analytic models have demonstrated that significant performance gains
(in terms of reduced receiver overhead, and an overall increased protocol throughput in the
case of many-many communication) can be realized in such environments, and over a range
of system parameters. We also presented a local filtering scheme for minimizing join/leave
signaling when multiple multicast groups are used.

Our work can proceed in several directions. There is a need to study the affect of using
finite number of groups in the context of protocols P2 and P3. We have considered a
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round-robin approach in reusing the multiple retransmission groups; other approaches are
also possible. Also, we have assumed that losses are spatially and temporally independent.
In [19], Yajnik et al. have observed some long bursts of losses on the MBone. They have
also observed some spatial correlation in loss. We have grouped packets in such a way that
packets belonging to a group are recovered on a separate multicast channel. It would be
interesting to combine our approach with the previously studied approach of destination set
grouping [1] in which receivers are grouped based on their capabilities. Our local filtering
reduces the processing overhead at the receivers but does not help in reducing the used
network bandwidth. Hence there is also a need to study better mechanisms for filtering to
be able to save on both receiver and router processing overheads and network bandwidth.
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