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Abstract

Heterogeneity in persistent object systems gives rise to a range of interoperability
problems. For instance, a given object-oriented database (OODB) may contain data ob-
jects originally defined, created and persistently stored using the capabilities provided by
several distinct programming languages, and an application may need to uniformly pro-
cess those data objects. We call such a database polylingual and term the corresponding
interoperability problem the polylingual access problem.

While many of today’s OODBs support multiple programming language interfaces
(we term such systems multilingual), none provide transparent polylingual access to
persistent data. Instead, present day interoperability mechanisms generally rely on ex-
ternal data definition languages (such as ODMG’s ODL), thus reintroducing impedance
mismatch and forcing developers to anticipate heterogeneity in their applications, or
depend upon direct use of such low-level constructs as the foreign language interface
mechanisms provided in individual programming languages. Using such mechanisms
make polylingual access painful.

In this paper we introduce POLYSPIN, an approach supporting polylingual per-
sistence, interoperability and naming for object-oriented databases. We describe our
current realization of POLYSPIN as extensions to the TI/Arpa Open Object-Oriented
Database and give examples demonstrating how our POLYSPIN prototype supports

transparent, painless polylingual access between C++ and CLOS applications.
Keywords: Persistence, Interoperability, Polylingual, Name Management, OODBs

1 Introduction

Over the years, as information systems applications have grown larger and more complex, various kinds of het-
erogeneity have appeared in those applications. As a result, individuals and organizations involved in developing,
operating or maintaining such applications have increasingly been faced with interoperability problems — situations
in which components that were implemented using different underlying models or languages must be combined into
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a single unified application. To aid in overcoming such problems, a range of interoperability approaches have been
employed. As interoperability problems evolve, due in part to evolution of the underlying models and languages
used in information systems applications, interoperability approaches must also evolve.

In applications developed using traditional database technology, there have been two primary sources of hetero-
geneity. One of these is the need or desire to code different components of an application in different programming
languages. The other is the need or desire to make use of two or more different databases in a single application.
These have given rise to two corresponding classes of interoperability problems, which we refer to as the multilingual
access problem and the multiple database integration problem.

One of the important extensions to database technology that has appeared during the last decade has been the
introduction of persistent object systems (POS). By virtually eliminating impedance mismatch, POS technology
can be viewed as a significant evolution of the underlying models and languages used in information systems ap-
plications and hence has many ramifications. Among these are new possibilities for heterogeneity and concomitant
new interoperability problems, which necessitate the evolutionary development of new interoperability approaches.
In particular, a given object-oriented database (OODB) may contain data objects originally defined, created and
persistently stored using the capabilities provided by several distinct programming languages. We call such a
database polylingual. This novel kind of heterogeneity induces new interoperability problems, such as the possi-
bility that an application may need to uniformly process the data objects in a polylingual OODB. We term this
interoperability problem the polylingual access problem. Existing interoperability approaches provide little or no
support for polylingual access, so new approaches must evolve to provide such support.

While many of today’s OODBs support multiple programming language interfaces (e.g., ObjectStore [LLOW91],
GemStone [BOS91]), none provide transparent polylingual access to persistent data. Instead, present day interoper-
ability mechanisms generally rely on external data definition languages (such as ODMG’s ODL [Cat93] or CORBA’s
IDL [OMG92]), thus reintroducing impedance mismatch and forcing developers to anticipate heterogeneity in their
applications, or depend upon direct use of such low-level constructs as the foreign language interface mechanisms
provided in individual programming languages. In addition, many current approaches require that all the data in a
polylingual database be stored using a single common representation, and thus force a substantial amount of data
translation to precede their use. Others, while avoiding data translation through the use of so-called “wrapper”
techniques, often support only a subset of the manipulations that would be available if the data were accessed
from its native language. Because they impose significant additional burdens or restrictions on application devel-
opers, we consider such approaches painful. More detailed comparisons to alternative approaches can be found
in [Kap96, BKW96].

In this paper we focus on the polylingual access problem for object-oriented databases. We begin by discussing
heterogeneity and interoperability in OODBs, introducing an example that illustrates various interoperability and
heterogeneity issues and identifying some important facets of OODB interoperability problems, particularly the
polylingual access problem. We then describe POLYSPIN, a framework supporting persistence, interoperability and
naming for polylingual object-oriented databases, and its current realization as extensions to the TI/Arpa Open
Object-Oriented Database [WBT92]. In addition, we show how POLYSPIN can facilitate aspects of interoperability
in polylingual object-oriented databases, returning to our earlier example to illustrate POLYSPIN’s capabilities.
We believe that POLYSPIN represents an initial step toward painless polylingual persistence.

2 0OODB Heterogeneity and Interoperability: An Example

As a simple illustration of heterogeneity and interoperability problems in object-oriented databases, consider the
following example:

At Hypothetical University, two colleges have independently developed information systems appli-
cations, using object-oriented database technology, for managing personnel information regarding their
students and faculty. Although both colleges have in fact utilized the same OODB, the Arts College
has built their application on a CLOS API while the Sciences College has built theirs on a C++ API.
Figure 1 shows a portion of the C++ schema used by the Sciences College, a portion of the CLOS
schema used by the Arts College, and the OODB containing instances of the personnel data object from
both colleges implemented in their respective languages.

The central administration at Hypo U would like to develop some applications making use of person-
nel information from both colleges. Naturally, they cannot hope to convince either college to translate
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Figure 1: OODB Used By Hypothetical University

its personnel information to a representation corresponding to the other’s API. Nor can they expect to
convince other colleges, when they develop their own personnel information systems in the future, not
to use the API of their choosing (e.g., Ada 95 for the Engineering College, Object-Oriented COBOL
for the Business College, etc.). Hence the administrators would like their application to be able to be
oblivious to the implementation languages of individual persistent objects. They would also like to be
able to employ either navigational access or associative access in processing the personnel information
from the various colleges. An example of an OQL-style query (based on [Ins93]) that might be part of
a C++ application, in this case seeking candidates for early retirement incentives, is shown in Figure 2.
Note that the query should be able to be applied to all the personnel data residing in the OODB, i.e.,
independent of the language used to create the persistent objects.

Figure 2: OQL-style Query

Despite the fact that the two college’s personnel information schemas are clearly equivalent, existing OODBs,
even those such as the TI/Arpa Open OODB that provide multiple APIs, do not support the kind of polylingual
access desired by the Hypo U administrators. Several aspects of current OODB technology stand in the way of
polylingual access. In the next section, we briefly discuss interoperability goals and issues in general. Later sections
then indicate how these goals and issues are addressed in our POLYSPIN approach.

3 OODB Heterogeneity and Interoperability: Goals and Issues

Our work on interoperability is, and for several years [WWRT91] has been, motivated by a primary concern for
the impact of an interoperability approach on applications developers. In our view, among the most important
objectives for any approach to interoperability are the following:



e Developers should have maximum freedom to define types of objects that their programs manipulate. In

particular, they should always be able to use the type systems provided by the language(s) in which they are
designing and developing components of their applications.

e Whether a data object is to be shared among an application’s components should have minimal impact on

the components’ developers. In particular, making (or changing) a decision about whether, or with what
other components, a data object may be shared should not affect the definition of, or interface to, the object.
As a corollary, interoperation should not result in an unnecessary reduction in the ways in which the (now
shared) data objects can be manipulated.

Given these objectives, we have noted three major sets of issues regarding interoperability in OODB-based

applications. Briefly, these are:

Naming How are objects in the persistent store accessed by applications that wish to interoperate through sharing

those objects? Current OODBs typically rely on distinct and often incompatible name management mech-
anisms for each of the programming languages or application programming interfaces (APIs) they support.
This results in disjoint persistent stores segregated according to the language used to define the persistent
objects and also leads to inconsistent semantics for the name management capabilities provided by the various
language interfaces.

Timing When is the decision to share data objects among an application’s components made? This question

has a dramatic impact on the suitability of different approaches to interoperability. Three distinct timing
scenarios for interoperability decisions can be characterized by the relationship among the relative times at
which the sharing or shared components are developed and the decision to share them is made, as illustrated
in Figure 3. The salient features of each scenario are:

Easiest case: The decision to share is made before any components are developed. In this case, a common
(e.g., IDL) description of the shared data objects can be created prior to development of the components
that will share them, language-specific descriptions can be directly created by mapping from the common
description, and hence determination of type compatibility is trivial.

Common case: The decision to share is made after one of the sharing components is developed but before
any others are. In this case, a common (e.g., IDL) description of the shared data objects can be created
by mapping from the language-specific description whose existence predates the sharing decision and
then the remaining language-specific descriptions can be directly created by mapping from the common
description, so determination of type compatibility is again trivial.

Megaprogramming: The decision to share is made after the sharing components are developed. In this
case, common (e.g., IDL) descriptions of the shared data objects can be created by mapping from each of
the language-specific descriptions, but determination of type compatibility will then depend upon some
kind of comparison of these synthesized descriptions and hence is nontrivial.

Typing How do developers determine whether the types of objects that they wish to share are of compatible types?

4

For object-oriented database technology, most approaches to addressing this question have been based on use
of a unifying type model [WWRT91], such as the ODMG ODL. While such approaches may suffice for the
easiest and common interoperability scenarios, however, they are inadequate for the megaprogramming case.
Since, as our example scenario suggests, that case is perhaps the most important and offers the greatest
potential rewards, we have focused our research efforts on attempting to handle it.

PolySPIN

PoLYSPIN is a generic, object-oriented framework that unifies persistence and interoperability capabilities in
OODBs from a name management-based perspective.! PoLYSPIN, in particular, provides a uniform name man-
agement mechanism that not only offers application developers a library of useful abstractions for organizing and

IName management is the means by which a computing system allows names to be established for objects, permits objects to

accessed using names, and controls the meaning and availability of names at any point in time in a particular computation [Kap96].
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Figure 3: Interoperability Scenarios

navigating object-oriented databases but, as a byproduct, offers an interoperability mechanism providing transpar-
ent polylingual access to persistent objects, thus allowing applications to manipulate objects as though they were
all implemented in the language of the application. In this section, we begin by briefly describing POLYSPIN’s
approach to name management. Next, we show how an application developer would use POLYSPIN to enable
interoperability in an OODB. The section concludes with a discussion of the internal features of POLYSPIN.
Throughout this section, we will refer to the scenario presented in Section 2 as a means of explicating various
aspects of POLYSPIN. All the POLYSPIN features described in this section have been implemented as extensions
to the TI/Arpa Open Object-Oriented Database [WBT92], using Sun C++ and the Lucid Common Lisp Object
System (CLOS).

4.1 Name Management and Persistence in PolySPIN

While the benefits of orthogonal persistence capabilities offered by OODBs are widely known, relatively little
attention has been to paid to how persistent objects should be organized (from an application’s perspective)
in an OODB. Typically provided by a name management mechanism, existing approaches in OODBs can be
characterized as being relatively ad hoc and weak [KW93]. PoLYSPIN addresses these various shortcomings by
providing a uniform, flexible and powerful approach to name management. Although the details of its interface are
beyond the scope of this paper, the name management mechanism in POLYSPIN allows names to be assigned to
objects in binding spaces (where binding spaces are collections of name-object pairs) and names for objects to be
resolved in contexts (where contexts are constructed from existing binding spaces) [KW94]. In addition, binding
spaces may be assigned names, resulting in the ability to hierarchically organize the name space for objects (similar
to directory structures found in almost all modern file systems). Coupled with the persistent store, this approach
results in a name-based persistence mechanism where any object (including those in its transitive closure) bound
to a name in a binding space reachable from a specially designated root binding space automatically persists. The
approach is based on Galileo [ACO85] and Napier [MBC'93], where environments correspond to binding spaces.
The name management mechanism in POLYSPIN is more general, however, since it supports objects defined in
multiple languages.

To participate in this mechanism, an object’s class definition must inherit from a common base class, designated
the NameableObject class. By inheriting from this class, instances of the subclass can be, among other things,
named and resolved using the operations supported by the various abstractions that make up the PoLYSPIN
name management mechanism. For example, Figure 4 shows a (partial) C++ definition for a Person class, a code
fragment showing how a name might be assigned to an instance of Person, and a portion of a persistent store
organization based on this approach.
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Figure 4: Using PolySPIN’s Name Management Mechanism

4.2 Name Management and Interoperability

As suggested above, having a class inherit from NameableObject could, and frequently might, be done quite
independently of any intention to make objects interoperate. Inheriting from NameableObject does, however,
also enable the use of the interoperability capabilities of POLYSPIN. First, having a uniform name management
mechanism in place results in a language-independent method of establishing visibility paths to persistent objects
(i.e., via their assigned names), regardless of the defining language of either the objects or the applications. Second,
the name management mechanism serves as a useful place for capturing and recording language-specific information
about objects, which can be used to support polylingual access. In particular, once an application has established an
initial connection to a persistent object (via its name), the name management mechanism can provide the necessary
information permitting the application to create a data path to an object. In other words, when resolving a name of
some object (on behalf of some application), the name management mechanism can detect the defining language of
the object and initiate the necessary communication medium for manipulating the object. The features supporting
this capability are hidden from application developers within the internals of the POLYSPIN architecture, which
are discussed in Section 4.3.

Given this interoperability mechanism, what is needed to achieve polylingual access is the ability to determine
whether two class interfaces defined in different languages can indeed interoperate, and in the event they can,
to instrument their implementations (including generating any necessary foreign function interface code) such
that the interoperability features of POLYSPIN can be employed. As a step toward automating this process,
we have developed a tool called POLYSPINNER. (A more detailed description of POLYSPINNER can be found
in [BKW96].) The overall objective of POLYSPINNER is to provide transparent polylingual access to objects with
minimal programmer intervention as well as minimal re-engineering of existing source code. The current prototype
uses an ezact signature matching rule [ZW95] in determining the compatibility between C++ and CLOS classes.
It also encapsulates the foreign function interface mechanism for both Sun C++ and Lucid CLOS, as well as the
various internal features of POLYSPIN. (Future versions of our approach can be generalized by replacing the exact
signature matching rule with more relaxed and flexible ones [BKW96].)

To help illustrate how an application developer might use POLYSPINNER, we return to the scenario presented
in Section 2. In this example, the OODB contains instances of a Person class, where some of the instances have
been developed in C++ and others have been developed in CLOS. To take advantage of the naming facilities
offered by PoLYSPIN, we further assume that the original class definitions for each class already inherit from the
NameableObject class, as defined in their respective languages. Thus, prior to any decision to interoperate, the
objects resident in the OODB might be organized as shown in the left hand portion of Figure 5. In this scenario, the
central administration at Hypo U wished to develop an application supporting queries of the kind shown in the right
hand portion of Figure 5.2 Specifically, the C++4 OQL-style query shown here is embedded in a fragment accessing

2 Although a query is given in this example, an update could be applied to the objects in a similar manner.
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Figure 5: PolySPIN-based OODB

both the C++- and CLOS-defined objects and performing the desired query. Note that the implementation of each
object is completely transparent to the C++ OQL-style query. That is, from the application’s perspective both
objects are instances of the C++ Person class, even though one is obviously implemented as a CLOS object. To
accomplish this, the application developer would take the following steps:

1. Apply POLYSPINNER to the interfaces and implementations of both the C++ and CLOS Person classes. For
example, Figure 6 shows the class definitions for the C++ and CLOS Person classes, where the plain face type
represents the original source code and the boldface type represents the code generated by POLYSPINNER.

(a) POLYSPINNER first determines whether or not the two Person classes are compatible by comparing the
class interfaces. Using an exact match rule, it should be clear that the C++ and CLOS class interfaces
shown in Figure 6 are compatible with one another.

(b) Since the C++ and CLOS Person classes are deemed compatible, the tool next generates foreign function
interface code corresponding to each of the operations associated with each of the classes. This permits
calls from C++ to CLOS and vice versa. For example, foreign function interfaces corresponding to each
of the “GetAge” operations provided by each of the classes must be generated.

(c¢) The tool also modifies the implementations of each of the operations defined by a class. The modifications
essentially wrap each operation with switching logic that determines the language in which an object is
actually implemented and makes the callout to the code generated in the previous step, if need be. For
example, if the C++ application invokes the “GetAge” operation on what is in reality a CLOS object,
the CLOS “GetAge” operation should be invoked; otherwise the original C++ code implementing the
C++ “GetAge” operation should be executed.

2. Re-compile the modified class (method) implementations and the generated source code.
3. Re-link the application.

As should be evident, neither the class interfaces nor the persistent data are modified by the POLYSPINNER
tool. Only the class implementations must be re-compiled, along with the generated source code. In addition, the
original application remains unchanged, although it must be re-linked to accommodate the changes made to the class
implementations. Note that, in Figure 6, some of the POLYSPINNER generated code contains references to CIDs
and TIDs. (We describe CIDs and TIDs more completely in Section 4.3.1.) Although transparent to applications,
these abstractions enable polylingual access in POLYSPIN. In the remainder of this section, we describe these and
other internals of POLYSPIN that enable polylingual access.

4.3 The Internal Features of PolySPIN

The fact that objects themselves may be implemented in different languages is completely hidden within PoLy-
SPIN’s name management mechanism. To support this level of transparency in applications, the POLYSPIN
framework utilizes the following components:



class Person : public NameableObject { (defclass Person (NameableObject)
private: ((born :accessor born
i . :type Date
pgg]ibc?m’ :izﬁform "MM/DD/YY")
int GetAge (); ))
; . ;; GetAge method
// GetAge member function (defmethod GetAge ((this Person))
int Person::GetAge () { (declare (return-values Integer))
if (this->language == CLOS) (cond ((EQUAL (language this) CLOS)
return ( (E—("zl“%ckl ((lljom this)) th ) ot
11 L P Age(this->tidF j H anguage this
else({_ca out_CLOS_Person_GetAge(this->tidForObject)); ““Callout gPP Pereon GetAge (tid this)))
nt rfsfhfg% born: );; Callout C++ Person GetAge
result = - bort, (DEF-ALIEN-ROUTINE ("__ Callout_CPP_Person_GetAge"
return (result); __POLYSPIN_CPP_Person_GetAge)
}} int (self TID )
// Callout CLOS Person GetAge 33 Callout from C++ into CLOS
extern "C" int __Callout_CLOS_Person_GetAge (TID this); (DEF-FOREIGN-CALLABLE
// Callout from CLOS into C++ (l Callout CLOSt Pertson GetrtAge
extern "C" int __Callout_CPP_Person_GetAge (TID self ) { E (atrlilgsu"?' f))c)) (:return-type int))
Person* object = (Person *) TidToCid (self); .
return (object->GetAge(); ’ (GetAge (tid-to-cid this))
C++ Person Class CLOS Person Class

Figure 6: Results of Applying PolySPINner

e A three-level object identifier hierarchy.
e A common base class encapsulating language-specific information for transient objects.
e A universal object representation encapsulating language-specific information for persistent objects.

As we illustrate in the remainder of this section, these abstractions, together with their interactions with one
another, form a suitable foundation for providing transparent polylingual access.

4.3.1 The Object Identifier Hierarchy

A common solution to the interoperability problem involves converting between data representation formats. For
example, to achieve interoperability in the scenario described earlier, it might be possible to simply translate C++
Person objects into CLOS objects (and vice versa). Unfortunately, even when hidden from users and applications,
such techniques can be prone to error and computationally expensive, especially for large and complex objects.

An alternative approach involves utilizing object references (or L-values) for identifying objects. This solution
has the obvious benefits in terms of efficiency and maintainability. One drawback, however, is that different
programming languages use distinct and incompatible object reference mechanisms. For example, native references
to objects in C++ can not be interchanged with references to CLOS objects (and vice versa). Instead, a distinct
mechanism must be used in a CLOS application to identify a C++ object. Languages supporting garbage collection
(e.g., CLOS) present further complications since the value of an object identifier may change over the course of a
computation. Although transparent to CLOS applications, garbage collection may cause subsequent accesses by a
C++ application using a native CLOS object identifier to result in invalid or dangling references. The addition of
persistence yields yet another identifier mechanism that must be managed despite the fact that persistent identifiers
are generally hidden from applications. In particular, when an object is designated as being persistent, a persistent
identifier is assigned to the object, where the persistent identifier is typically bound to some user-level name. When
the object is retrieved from the database, the persistent identifier is first used to locate the object. A reference
(i.e., an L-value) must then be created for the object so that the application can access and manipulate the object.

As a step toward relieving application developers from managing separate object identifier mechanisms or
building special-purpose ones, the POLYSPIN framework maintains a three-level identifier hierarchy, as shown in
Figure 7. The hierarchy, in order of increasing lifetime, consists of:
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Figure 7: PolySPIN’s Three Levels of Identifiers

e A compultation identifier (or CID), which is an L-value or reference used by applications for identifying,
accessing and manipulating objects defined in the same language. A CID for a particular object may change
over the the course of a computation, although such changes are intended to be invisible to programmers. An
object’s (virtual) memory address is an example of a CID.

e A transient identifier (or TID), which is an active-computation-unique identifier for an object. Once as-
signed during some active computation, it is assumed that a TID does not change over the course of that
computation’s lifetime.

e A persistent identifier (or PID), which is a globally unique identifier for a persistent object. When an object
is made persistent, a PID is assigned to the object. A PID is assumed to be immutable over the course of
the object’s lifetime.

In addition, for each language, POLYSPIN provides two-way TID<CID and CID<PID mapping mechanisms,
where the former map can be implemented using a traditional hash table, and the latter map is often supplied by
the underlying persistence mechanism provided by the OODB. PoLYSPIN’s maintenance of these identifiers, along
with functions for mapping between them, means that applications can simply use CIDs to manipulate objects. Any
required identifier translations are handled by POLYSPIN. For example, when an application retrieves an object
from the persistent store (i.e., via name resolution), a CID identifying the object is returned to the application.
As we will show in the following sections, the CID points to an object that, from the application’s point of view,
looks and behaves as if the object were defined in the same language as the application.

4.3.2 The NameableObject Class

As noted earlier, inheriting from the NameableObject class offers applications developers the ability to use POLY-
SPIN’s improved name management mechanism. At the same time, the NameableObject class encapsulates var-
ious language-specific information for an object including a defining language, a TID, and various type-related
information. As shown in Figure 8, values for this information can be computed when an object (derived from
NameableObject) is instantiated. For example, the constructors for the C++ Person and NameableObject classes
in Figure 8 illustrate how this information is computed and recorded. (The same information is computed in an
analogous fashion for CLOS.)

When an operation is invoked on an object, the data maintained by the NameableObject can be used to
determine the actual implementation of an object. Since this is hidden from users, however, all instances of the
class can be viewed and accessed through a single language interface, even though various instances may in fact
be implemented in various languages. Returning to the C++ and CLOS classes shown in Figure 6, the “GetAge”
operation for the C++ Person class first checks the value of the defining language for the object. If the object is
implemented in C++, then the C++ implementation of the “GetAge” operation is used. If, on the other hand,



/I NameableObject class
class NameableObject {
private:
Languageld language;
TID tidForObject;
Classld classInfo;
public:
// Constructor for NameableObject
NameableObject() {
language = C++;
tidForObject = CidToTid (this);

// Constructor for Person class

Person::Person () {

// Tmplictly invokes NameableObject

// Then set type information
classInfo = "Person";

-

Figure 8: The NameableObject Class

the object is implemented in CLOS, then the corresponding CLOS operation must be invoked (on the CLOS
object). This involves making a call-out to a CLOS function (in this example, using the foreign function interface
mechanisms of C++ and CLOS) and passing the CLOS object’s TID and a value for the increment parameter.
On the CLOS side, the TID is first mapped into its CID value and then the actual CLOS “GetAge” operation is
invoked.

4.3.3 The Universal Object Representation

PoLYSPIN unifies the persistent store by permitting the co-existence of objects implemented in different languages.
Furthermore, access to the persistent store is provided by a name management mechanism that is uniformly available
across multiple programming languages. To support polylingual access to persistent objects, POLYSPIN introduces
a level of indirection in bindings between names and (persistent) objects called a universal object representation
or UOR.

Like the NameableObject class, a UOR encapsulates various language-specific information about objects, in-
cluding an object’s PID. A UOR is created for an object when that object is assigned a name. In particular, the
information stored by the NameableObject is transferred to the UOR. If the object is later designated as being
persistent (as described above), then a value for the object’s PID is also set in the UOR. Later, when the object is
accessed (by resolving the name of the object), the name management mechanism can use the information stored
in the UOR to return an appropriate object to the application.

UOR © NameableObject
C A P ++
P E St + TIDTI3
crson + Person Class
* ‘l’ PID=P1729 \ @ / Born 1961 CID 0x9215
. Get CID 0x9215
a Persistent
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i - .
UOR NameableObject NameableObject
A JOK / ® \ ¢ CLOS TID T91
Person ol » TID TCQII mmnu> CLOS
PID=P9821 S Bzrr;ngm?;z Person Class CID 0x7412
@ @ CID 0x7412

Figure 9: Accessing Objects Via UORs

For example, Figure 9 shows the various tasks POLYSPIN performs on behalf of a C++ application accessing
two instances of the Person class, where one object, bound to the name “Alan,” is implemented in C++ and



the other, bound to the name “Jack,” is implemented in CLOS. When the object named “Alan” is accessed,
PoLYSPIN examines the UOR for the object (1), determining the object’s defining language and its PID. Based
on this information, the object is retrieved from the store (2) and a transient, C++ version is constructed (3).
Since the language of the application and the language of the object are the same, the object (i.e., its CID) is
simply returned to the application (4). When the object named “Jack” is accessed, POLYSPIN again examines
the UOR for the object (5), determining the object’s defining language and its PID. Based on the information,
the object is retrieved from the store (6) and a transient, CLOS version is constructed (7). Since the language of
the application and the language of the object are in this case different, POLYSPIN creates a C++ Person object
(8), which acts as a “surrogate” for its corresponding CLOS version. The surrogate’s defining language is set to
“CLOS” and its TID is set to the TID of the CLOS object. The rest of the data associated with the C++ Person
surrogate is simply ignored (as indicated by the shaded portion of the surrogate object in the figure). Finally, the
CID of the surrogate is returned to the application (9).

Subsequent accesses to both objects will (eventually) invoke the implementing object (as described in Sec-
tion 4.3.2). For example, the query shown in Figure 5 calls the “GetAge” operation for both objects. As shown in
Figure 6, for the object named “Alan,” the original C++ “GetAge” operation is called, while for the object named
“Jack,” the CLOS “GetAge” operation is invoked. Thus, the query is able to access and process both objects,
despite the fact that one object is implemented in C++ and the other in CLOS.

5 Conclusion

In this paper, we have described a new class of interoperability problem for OODBs, namely the polylingual access
problem. We have also described POLYSPIN, an approach supporting persistence, interoperability and naming in
OODBs, and we have shown how POLYSPIN can be used to painlessly overcome the polylingual access problem in
OODBs. We have briefly described POLYSPINNER, a tool to help automate the use of POLYSPIN and illustrated
its capabilities using a simple, but representative, example of a polylingual OODB application. Finally, we have
discussed how our approach has been realized in a prototype implementation of POLYSPIN and POLYSPINNER
supporting polylingual access between C++ and CLOS, built as an extension to the TI/Arpa Open OODB.

We believe the work reported in this paper represents an important extension to object-oriented database
technology. While modern OODBs often provide multiple language interfaces, interoperating among the various
languages can be a painful (i.e., cumbersome and complex) process, thus limiting their overall potential. POLYSPIN
provides transparent, polylingual access to objects (of compatible types), even though the objects may have been
created using different programming languages. Thus, application developers are free to work in their native
languages without precluding the possibility of interoperating with foreign language objects or applications.
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