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ABSTRACT
This paper reports the results of an empirical comparison of several static analysis tools for
evaluating properties of concurrent software and also reports the results of our attempts to build
predictive models for each of the tools based on program and property characteristics.  Although
this area seems well suited to empirical investigation, we encountered a number of significant
issues that make designing a sound and unbiased study surprisingly difficult.  These experiment
design issues are also discussed in this paper.

1 INTRODUCTION
Concurrent systems are inherently more complex and difficult to understand than sequential ones.
Thus, it is imperative that cost-effective techniques be developed for checking that the behavior of
these systems meets specified requirements.  One class of techniques used for analyzing
concurrent software is static analysis, where compile-time information is employed to prove
properties about a system.  A variety of static concurrency analysis techniques have been
proposed, including reachability analysis (e.g., [Hol91, GW91, Pel94]), symbolic model checking
(e.g., [McM93]), inequality necessary condition analysis (e.g., [CA95]), and data flow analysis
(e.g., [DC94]).

We are interested in understanding the relative strengths and weaknesses of these techniques in
terms of their ability to prove properties of concurrent programs, such as freedom from deadlock
and the mutually exclusive use of resources.  Although proving these properties is typically NP-
hard and most of the static concurrency analysis techniques have exponential worst case analysis
times, each has been  shown to be applicable to some interesting problems. Thus, information
about average case analysis time and consumption of other types of resources may help
differentiate between the techniques in practice.  While average case performance is difficult to
derive formally, experimentation can help develop estimates for each of the techniques.

In general, we would like any static analysis technique to be conservative; for a given property,
the analysis must not overlook cases where the property fails to hold.  To ensure
conservativeness, and in some cases to improve tractability, techniques often overestimate the
behavior of the program being analyzed.  This overestimate may lead to the tool falsely reporting
that the property may be violated.  When a tool reports that a property may be violated, but in
fact these possible violations do not correspond to actual program behaviors, then this is called a
spurious result.  For example, if the program representation contains paths that can never be
executed in the program (commonly called infeasible paths), the tool may report that the property
fails to hold when it only fails on infeasible paths.  Analysis accuracy is therefore also an important
measurement to consider.
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Previously, Corbett [Cor94, Cor96] reported on empirical studies comparing the performance
of several tools in detecting deadlock in Ada tasking programs and we have built upon that work.
Our experiment differed from that of Corbett in that we also considered a data flow analysis tool,
we examined program-specific properties in addition to deadlock, we considered analysis
accuracy and other measures of performance, we carried out careful statistical analysis of the
results to check for various biases, and we developed preliminary predictive models for analysis
time, rate of failure, and accuracy of analysis.

Our long term goals are to use a variety of static analysis tools, on a large, representative
sample of programs and properties, to study the average case performance of those tools and to
develop predictive models to help an analyst estimate the analysis time, rate of failure, and
accuracy of analysis of each tool given a program and property to be checked.  As discussed in
this paper, we are still a long way from achieving these goals.  Only limited conclusions can be
drawn from our empirical comparison, and many of the models developed during our preliminary
predictive modeling efforts do not have strong predictive power.  On the other hand, our work
does provide interesting insights about the tools and about such experimental studies.

The following section discusses the issues we faced and the tradeoffs we had to make while
designing the experiment.  The third section provides the results of our empirical comparison of
the various tools and the fourth section describes our predictive modeling efforts.  The final
section presents our conclusions and a discussion of future work.

2 EXPERIMENT DESIGN ISSUES AND TRADEOFFS
Researchers have pointed out the limited number of empirical studies in software engineering
[TLP+95].  Such studies can be extremely difficult to carry out, however, especially if human
subjects are involved and the measures are subjective (e.g., code understanding and effectiveness
of design methodologies).  From this point of view, a comparison of static concurrency analysis
techniques seems like a straightforward empirical study -- there is relatively little human
involvement in the experiment, and there is little subjectivity involved in the analysis of the results.

When we designed our experiment we expected to encounter a number of difficulties common
in experiment design.  For example, while we would like to compare the performance of a number
of static analysis techniques on a representative sample of concurrent programs, validating a
representative sample of the kinds of properties the developers of such programs would be
interested in checking, we do not believe such representative samples can be selected at this time.
We would also like to compare the performance of the techniques in a way that would include the
full cost of using those techniques, including human resources, but there does not seem to be a
straightforward way to measure the human effort involved.  In addition to these expected
difficulties, there were additional concerns that arose that in hindsight would be common for this
type of experiment.

In this section we discuss all these difficulties and explain the choices we made.  We also
provide an overview of our experiment, including the programs selected for the experiment, the
tools used for analysis, the properties included in the experiment, and the measurements we used
to evaluate performance.

2.1 Tools in the Experiment
We must actually compare analysis tools rather than analysis techniques.  On the one hand, this is
reasonable since developers would actually use the tools and not the techniques.  On the other
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hand, most of the tools are research prototypes that have not been highly optimized and thus the
results may not actually give an honest assessment of the strengths of the underlying techniques.
In our experiment, we considered the reachability analysis tools SPIN and SPIN plus Partial
Orders (SPIN+ PO), the symbolic model checking tool SMV, the inequality necessary condition
analysis tool INCA, and the data flow analysis tool FLAVERS.   Although there are a number of
other concurrency analysis tools, the selected tools represent most of the main approaches to
static analysis of concurrent software.

SPIN
The Simple Promela INterpreter (SPIN) [Hol91] performs reachability analysis, in which the
reachable states of the program being analyzed are enumerated and the property of interest is
checked on the reachable state space.  The program is described in the PROMELA language
[Hol91], a language that was developed for the specification of communication protocols.  Given
a PROMELA description of the program and property, SPIN constructs a C program which,
when compiled and executed, performs the actual analysis.  SPIN automatically checks for
deadlock.  Other properties to be checked must be specified using never claims or assertions.  In
a never claim, the property is represented as a Finite State Automaton (FSA) that should never
reach an accept state.  Assertions are expressions that evaluate to true or false and are inserted at
user-selected points in a PROMELA program.  If at any time during the state space generation a
potential deadlock state is found, the FSA for a never claim reaches an accept state, or an
assertion evaluates to false, the tool reports the error and terminates.

SPIN + Partial Orders
In the worst case, the size of the reachable state space can grow exponentially in the number of
tasks in the program. The partial orders approach of Godefroid and Wolper attempts to reduce
the size of the reachable state space through the use of  sleep sets [GW91].

This method has been implemented as an addition to SPIN, and thus we refer to the resulting
tool as SPIN+PO.  Like SPIN, the SPIN+PO tool takes input in the form of PROMELA, converts
that input into a C program, and checks for deadlock automatically.  The current version of
SPIN+PO does not support the use of never claims for the specification of the property of
interest, so non-deadlock properties are specified as assertions embedded in the PROMELA
input.  SPIN+PO checks those assertions, just as SPIN does during state space generation, and
reports a violation and terminates if an assertion evaluates to false.

We note that another partial order addition [Pel94] to SPIN has been implemented, but since it
does not currently support the use of rendezvous, we did not consider it for this experiment.

SMV
The Symbolic Model Verifier (SMV) [McM93] performs symbolic model checking [BCM+90], in
which the program state space is represented symbolically rather than explicitly. Although SMV
was originally designed as a hardware verification tool, it can also be used for analysis of
concurrent software.  The program is described in the form of a transition relation for the
program states.  The property of interest is specified in the temporal logic Computation Tree
Logic (CTL).  If the property is ever false, SMV reports the violation and terminates.
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INCA
The INCA tool implements the Inequality Necessary Condition Analysis technique [CA95], in
which necessary conditions for an execution of the system to violate a property are formulated as
a system of inequalities.  The program is specified in an Ada-like language or in the S-Expression
Design Language (SEDL).  Properties are given as !-star-less expressions, which specify
sequences of event symbols.   If there is no integer solution to the system of inequalities there can
be no execution that violates the property, and therefore the property must hold for all executions.

FLAVERS
The FLow Analysis VERifier for Software (FLAVERS) tool [DC94] performs data flow analysis
to check properties of concurrent programs.  The tool accepts a set of Control Flow Graphs
(CFGs), annotated with the events of interest, as the specification of the program to be analyzed.
The property of interest is specified as a Quantified Regular Expression (QRE), which gives a
regular expression for a set of event symbols and specifies whether the expression should hold on
all (or no) paths.  Checking for deadlock using FLAVERS is not currently supported.  Many other
properties, however, can be specified as QREs.  The tool reports cases for which the data flow
analysis shows that there may be an execution on which the property is violated.

2.2 Programs in the Experiment
To get a representative sample of concurrent programs, we would need to randomly select the
programs for the experiment from the population of all concurrent programs.  This is not feasible
for several reasons.  We need to restrict the experiment to concurrent programs written in
languages with well-defined concurrency constructs.  Because Ada is one of the few commonly
used languages supporting concurrency, we restricted our experiment to concurrent Ada
programs.  The population of concurrent Ada programs available for such an experiment is quite
limited.  Thus, for this study we selected the toy programs that have been discussed in the
concurrency analysis literature, realizing full well that no general conclusions could be drawn from
this sample but that interesting insights might be obtained.

For this study, we selected 11 scalable programs from the concurrency analysis literature for
our experiment.  Some of the programs had already been coded in Ada by members of the
Arcadia project [Kad92] to demonstrate testing and analysis tools, while for others we acquired
the INCA inputs used by Corbett [Cor96] and converted them to Ada programs.  Since the size of
the programs included in the experiment can be increased by including  more tasks into the
system, it is also interesting to consider how the performance of the tools changes as the problem
size is increased.  Toward this end, we collected experimental data for a range of program sizes.

There are a number of ways we could select the sizes of the programs.  One way is to find a
range of sizes that most of the tools can analyze, which allows comparison between the analysis
tools on the same input domain of programs, properties, and sizes.  For example, we can run all
the tools on an arithmetic progression of sizes, choosing our maximum size as the size on which
at least one of the tools fails to complete the analysis.  This was the approach taken by Corbett
[Cor96] and in our experiment.  As noted by Corbett, however, by choosing to consider only
those sizes that can be analyzed by most of the tools we may restrict some of the tools to only a
small portion of their domains of applicability and may introduce significant bias against those
tools if they incur large overhead on small programs but can be used on very large programs.  A
second approach would therefore be to select different sizes of the programs for each tool based
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on the range of sizes that can be analyzed by that tool.  This approach gives a clearer picture of
each tool’s performance, especially in terms of failures, but also precludes direct comparison  of
the analysis times used by each tool.  Yet a third approach would be to select the range of
program sizes based on the most effective tool for that program and to measure the failures of the
other tools.  We note below that the decision about which range of sizes to include in the
experiment has implications for a number of other issues.

The programs and sizes selected for the experiment were:

• Cyclic program - provides a loosely synchronized ring of processes, where the processes start
in order as the ring is traversed, but each process can complete its task at any time [Mil80].
Sizes:  4, 8, 12, 16, 20, and 24 tasks.

• Divide-and-conquer program - provides a set of solvers that can cooperatively solve a problem
[ACD+94].  Sizes: 11, 21, 31, 41, 51, and 61 tasks.

• Standard Dining Philosophers program - includes a ring of philosophers with a single fork
between a philosopher and its neighbor to the left.  Sizes: 4, 8, 12, 16, 20, and 24 tasks.

• Dining Philosophers with Dictionary program - the philosophers also pass a dictionary around
the ring, and the philosopher currently holding the dictionary cannot eat.  Sizes: 4, 6, 8, 10, 12,
and 14 tasks.

• Dining Philosophers with Fork Manager program- uses a single fork manager to keep track of
the status of all the forks in the system.  Sizes: 3, 4, 5, 6, 7, and 8 tasks.

• Dining Philosophers with Host program - includes a host that only lets a certain number of
philosophers sit in the ring.  Sizes: 5, 7, 9, 11, 13, and 15 tasks.

• Gas Station program - provides a simulation of a self-service gas station [HL85].  Sizes: 4, 5,
6, 7, 8, and 9 tasks.

• Hartstone program - based on the hartstone benchmark program, which iteratively starts and
stops a series of tasks.  Sizes: 11, 21, 31, 41, 51, and 61 tasks.

• Memory management program - based on a set of conservative release and allocate memory
management algorithms [For88].  Sizes: 5, 6, 7, 8, 9, and 10 tasks.

• Ring program - based on a simulation of token ring access to a resource [Cor94].  Sizes: 4, 8,
12, 16, 20, and 24 tasks.

• Readers/writers program - includes a set of readers and a set of writers that may be
simultaneously accessing the same document, with the restriction that when a writer is
accessing the document no readers or other writers can be accessing the document at that time.
Sizes: 5, 9, 13, 17, 21, and 25 tasks.

To illustrate our description of the tradeoffs involved in designing an experiment to compare
the various concurrency analysis tools, we consider the readers/writers program.  This program
uses a task for each reader, a task for each writer, and a single task to control access to the
document.  An example program showing one reader and one writer can be found in Figure 1.  To
increase the size of the example program, we add additional readers and writers with the same
structure as reader_1 and writer_1.

The performance of the analysis tools can be very sensitive to minor changes in the Ada
program.  For example, the control task in the readers/writers program has two unguarded select
alternatives, at the stop_read and stop_write entries, since the structure of the reader and
writer tasks ensures that no calls will be made to these entries unless a reader is currently reading
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task body reader_1 is task body control is

task body writer_1 is

begin
  loop
    control.start_read;
    control.stop_read;
  end loop;
end reader_1;

begin
  loop
    control.start_write;
    control.stop_write;
  end loop;
end writer_1;

  Readers : Natural range 1 .. 1 := 0;
  Writer  : Boolean := false;
begin
  loop
    select
      when (not Writer) =>
        accept start_read;
        Readers := Readers + 1;
      or
        accept stop_read;
        Readers := Readers - 1;
      or when (not Writer) and
              (Readers = 0) =>
        accept start_write;
        Writer := true;
      or
        accept stop_write;
        Writer := false;
    end select;
  end loop;
end control;

Figure 1.  Ada Program for 1 Reader/1 Writer

or a writer is currently writing, respectively.  INCA yields spurious results when checking for
freedom from deadlock because of the unguarded select alternatives.  Adding guards to these
alternatives does not change the semantics of the program, but when we include these guards and
model both the Writer and Readers  variables, as discussed below, we are able to eliminate
the spurious results from INCA.  It might be argued on stylistic grounds that adding the guards
makes the control task more  robust and easier to understand or, to the contrary, more complex
and less clear. The concern is that small differences in programming style can lead to significant
variations in the performance of the analysis tools.  Moreover, how programming style affects
each tool is not well-understood, so we can not avoid biasing our results unintentionally through
our choice of a particular style.

2.3 Translating the Ada Programs
To try to ensure the analysis tools were evaluating the same program, we started with Ada
programs and converted those programs into the program representations for each tool.  Because
these conversions are difficult and potentially error-prone to perform manually, we used a largely
automated conversion process.  This process, depicted in Figure 2, took advantage of the tools
we had on hand, and no attempt was made to optimize it.  With this process, each Ada program
was first converted to a set of CFGs using an automated conversion tool.  The FLAVERS tool
uses CFGs as input directly, so no further conversion was required for FLAVERS.  For the
remaining tools, we converted each CFG to SEDL using another conversion tool.  The INCA tool
uses the SEDL as the program representation, so no further conversion was required for INCA.
The INCA tool was then used to generate a set of FSAs that were then converted to the program
representations for SPIN, SPIN+PO, and SMV using a slightly modified version of Corbett's
conversion tool [Cor96].

The CFGs that are automatically generated from the Ada program are a general abstraction of
program control flow and were not explicitly developed to support one or more of the analysis
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Program
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Input

PROMELA
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FSAs to PROMELA
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SPIN

SMVFSAs to SMV

INCA

SEDLCFGs to SEDLCFGs

FLAVERS

Ada to CFGs

Figure 2.  Translation Process

tools evaluated.  Similarly, the FSAs that are created to represent  the program are a general
abstraction and were not tuned to one or more of the analysis tools.  While we know  that the
CFGs and FSAs are valid representation of the program, using these representations could
introduce bias in the experiment in some unknown manner.

It is not even possible to have each of the tools analyze exactly the same program.  For
example, PROMELA semantics are not exactly the same as Ada semantics.  Specifying a
PROMELA program to behave exactly as the corresponding Ada program would behave is not
quite possible.  We carefully considered the translation process to try to ensure the tools are
analyzing equivalent programs, but differing tool semantics makes this difficult.  While we believe
our approach to this problem is reasonable, there may be other approaches that are more
successful at providing equivalent programs to each of the tools.

There is also a concern that our translation process may introduce bias against some of the
tools.  For example, our translation process could introduce bias against SPIN and SPIN+PO
since specifying each process as a distinct FSA is not standard PROMELA "programming style".
Specifying each process as an FSA would preclude the use of techniques that take advantage of
multiple instantiations of process types to provide more efficient state space generation.  Our
approach, however, greatly facilitates the process of translating from an Ada program to a
PROMELA program.

Similarly, the standard SMV input specification does not allow two processes to change state
simultaneously, as occurs in a synchronous rendezvous communication.  SMV supports an
alternative input specification style that is in terms of the state  transition relation for the system,
and we have used this style.  This input specification style may bias our results against SMV,
however, since techniques that organize the OBDDs to efficiently represent the multiple, duplicate
processes can not be used.  In addition, by using the transition relation for the system, we are
forcing SMV to consider the entire state space of that system, rather than letting it represent the
state space symbolically as it was designed to do.

Thus, although we made extensive efforts to accurately translate each program into equivalent
representations for each tool, we cannot be sure that these representations are indeed precisely
equivalent or that we have not inadvertently introduced bias against one or more of the tools.

2.4 Properties in the Experiment
Our access to requirement specifications for these programs is very limited.  Although we derive
properties that we believe a developer would be interested in checking, we can not validate this
claim.  In our experiment, we checked for potential deadlock in all the programs in the
experiment.  We also selected one or two additional program-specific properties to check key
aspects of the functional behavior of each program.  Many of these additional properties check
some form of mutual exclusion, although other kinds of properties were checked as well.
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For example, we selected three properties to check for the readers/writers program.  The first
of these is deadlock, which occurs if the program reaches a non-terminal state in which none of
the tasks can continue executing.  The second property checks whether a reader can read an
empty document.  The third property checks whether two writers can ever be writing at the same
time.  Another property one would expect to check for this program is whether a reader and a
writer can be accessing the document at the same time.  We do not describe this property further
because it is quite similar to the third  property above.

To try to ensure an unbiased tool comparison, we tried to guarantee that the tools were
evaluating the same properties. Automatic translation is even more difficult for property
specifications than for program representations, however, because the semantics of the
specification techniques are so different.  For example, FLAVERS QREs are in terms of events
while SPIN never claims and SMV SPECs are in terms of process states, and SPIN assertions
must be embedded as program statements.  Without an automated property translation process,
our only assurance that we were specifying equivalent properties was a careful, manual reasoning
process applied to each of the properties, for each of the tools.  To illustrate the differences in
property specifications, in Figure 3 we provide a SPIN never claim, SMV specification, INCA
query, and FLAVERS QRE for checking that no reader reads an empty document.   Since all
reader tasks are identical, this property can be checked based on the results for any selected
reader.  Because we selected reader_1, checking this property involves recognizing the event that
reader_1 has started reading and recognizing all events where some writer starts writing.

We encountered several occasions on which we found it necessary to add additional flags to
the PROMELA input in order to recognize when particular events have occurred.  While it is
sometimes possible to infer the event occurrences from the sequence of states traversed by the
processes, thereby avoiding adding these flags, this can be difficult for non-trivial  programs.  We
therefore found it effective to use flags to keep track of the occurrence of events of interest.  For
instance, when a writer writes, we set a wrote  flag to true as the writer moves from one state to
the next; we made use of this flag in the property specification shown in Figure 3.  We also found
it necessary to add additional flags when checking an assertion that involves the states of more
than one process.

Similarly, we found it intuitive to check event sequence properties with SMV by including flags
that keep track of the occurrence of events of interest. It is also possible in SMV to avoid
including these additional flags by specifying the property as an alternative CTL formula.  Because
adding the flags could increase the size of the state space, thereby adversely affecting the analysis
times for SMV, we  checked the event sequence properties using both specification techniques.
We found that, in general, the alternative CTL specifications seemed more complicated (i.e.,
contained more terms and temporal logic operators) than those using additional flags, but this was
not always the case.  We also note that there were many alternative CTL specification from which
we could have picked, so even our selection of the CTL specification used could affect the
analysis times for SMV.

INCA queries are specified in terms of intervals, where events of interest are typically used to
specify the start or end of the intervals.  For some of the properties in the experiment, we found it
intuitive to specify the INCA query using two intervals, which can cause a significant growth in
the size of the inequality system.  In these cases, we also used an alternative property specification
involving a single interval with additional constraints.
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SPIN Never Claim
never {
  do
    :: (wrote == true) -> break
    :: reader__1[reader_1_pid]@state_2 -> goto accept    -- if reader_1 reads, go to accept state
    :: else -> skip
  od;
  do
    :: skip

  od;
accept:
  do
    :: skip

  od;
}

SMV Specification
AG ( reader_1_read -> any_writer_wrote )

INCA Query
(defquery "no_r1w"

      (interval :initial t 

         :forbid '((rend "writer_1;control.start_write"))))))

FLAVERS QRE
{reader_1_read, any_writer_wrote}

[-reader_1_read, any_writer_wrote]*;

reader_1_read;
[reader_1_read, any_writer_wrote]*

Comments
-- make sure the following never occurs:
-- start of first loop
   -- if any writer writes, exit the loop

   -- if neither of above, loop back
-- end of first loop
-- start of second loop
   -- infinite loop - if we get here,

-- end of second loop
-- accept state of never claim
-- start of accept state loop
   -- infinite loop - reader_1 reading before

-- end of accept state loop
-- end of never claim

-- on all paths it must always be true that reader_1
--    reading implies that some writer already wrote

-- define the query no_r1w

--   there is an interval from the start of the program
--   to the point at which reader_1 reads
--   in which writer_1 is NOT allowed to write

none

-- events of interest are reader_1 reading and

-- check that there is no path on which
--   events of no interest occur

--   followed by reader_1 reading
--   followed by any event

   --    the property is not possible

   --    some writer writes

   "nofair"
   (omega-star-less (sequence

         :ends-with '((rend "reader_1;control.start_read"))

-- with no fairness constraints required
-- as a sequence of intervals such that

--    any writer writing

--      (potentially multiple times)

Figure 3.  Example Property Specifications to Check that No Reader Reads an Empty Document

With the small, academic programs in the experiment, we knew which properties should be
violated for each program, property, and set of modeled variables (see Section 2.5).  If we
specified a property that we knew should not be violated and the analysis reported that the
property might be violated, we iteratively modified our property specification until we achieved
the “correct” analysis result, or could no longer see reasonable ways to modify the property
specification.  In some cases, specifying the property was very difficult and reaching a correct
property specification required many iterations.  We used this iterative process to try to factor out
our inexperience using the tools, since the original  spurious results were often caused by our
incorrect property specifications rather than by weaknesses in the tools.  We believe that the
spurious results measured in the experiment, using the final versions of the property
specifications, therefore accurately represent the strengths and weaknesses of the tools rather than
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our skill (or lack of it) specifying the properties.  It can be argued, of course, that our original
property specifications should be used, since they may better reflect how a “ typical” user would
specify the properties.  Additionally, an analyst analyzing a real concurrent program probably does
not know the “correct”  analysis result, and so would not necessarily know when to iteratively
modify the property specification.

Ensuring that each tool checks the same property is difficult.  The property specifications that
we chose for each tool imply the high-level property that we wanted to check but there are many
other ways of specifying these properties, even for a single tool.  The particular property
specifications that we used could therefore introduce bias against one or more of the tools.
Moreover, we have no evidence that the set of properties we selected are representative of the
kinds of properties system developers would be most interested in checking. For instance, our
choice of properties could reflect our past analysis experience, which was largely with event-
based methods.

2.5 Improving Analysis Accuracy
For the tools we examined, users can exert some control over analysis accuracy by deciding which
program variables are modeled.  A representation of the program that allows all variables in the
program to have all possible values at each point that they are used is certainly conservative, but is
likely to include a large number of infeasible paths.  If information about the values of the
modeled variables (at certain points in program executions) can be determined statically and
incorporated into the analysis, the accuracy of the analysis will be improved.

As part of our experiment, we improved the accuracy of the analysis results by selectively
modeling variables.  For example, the Writer variable in the control task of the readers/writers
program ensures that only a single writer can be writing at a time.  The Readers variable
ensures that there is never a situation in which the reader is reading at the same time the writer is
writing.  By modeling the values of one or both of these variables, we can generate program
representations that more accurately describe the control task behavior than one in which neither
variable is modeled.  The choice of which variables to model, however, may well introduce bias
against some of the tools.  For example, SPIN, SPIN+PO, SMV, and INCA all run faster when
both variables are modeled in the readers/writers program.

The problem is that, for a program that contains a large number of variables, trying to model all
the variables might make building the program representations or performing the analysis on those
representations intractable.  One approach would be to add accuracy to the program
representations incrementally.  With this approach, we would start without modeling variables,
and would incrementally model additional variables until the analysis results meets the accuracy
requirements; this is the approach we took in our experiment.  Another approach [Cor94, Cor96]
would model all variables initially, or at least all variables that directly impact the events in the
property.  If we discovered that this variable modeling led to intractable analyses, we would
incrementally remove variable modeling until the analysis was tractable.  For real programs, we
believe an analyst would probably select a set of variables that seemed most relevant, rather than
starting at either extreme.

2.6 Measurements in the Experiment
We are interested in using the results of our experiment to characterize the performance of each
tool.  One way to characterize tool performance is in terms of the consumption of resources,
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especially analysis time.  Another useful measurement is the failure rate for each tool.  The
analysis can fail because the tool takes longer than a specified period of time to complete the
analysis, exhausts available memory, terminates with some internal error, or a program generated
by the tool cannot be compiled (i.e., the C programs generated by SPIN or SPIN+PO).  Although
any time limit is somewhat arbitrary, clearly some time limit is necessary.  Similarly, the memory
available is limited by the configuration of the machine used for the experiment. The performance
of the tools is also affected by the accuracy of their analysis results.  Given the relative simplicity
of the programs included in our experiment, we can determine the correct answer for each of the
analyses and can, therefore, recognize spurious results reported by an analysis tool.  Although this
is an important characteristic of performance, it can be very difficult to measure for larger, more
complex programs than those used in our experiment.  As expected, there does not appear to be a
single measure that will fully characterize any of these aspects of the tools.  Instead, it is necessary
to use a variety of these measures, but the best way to select the measures is not clear.

For example, we would like to measure the analysis time required for each tool to analyze a
particular program and property.  The first question is "What exactly constitutes the analysis time
used by the tool?".  We could consider the analysis time to be the time each tool takes to generate
the analysis results starting from its native input.  This time does not include the cost of translating
the Ada programs into each tool's input language as part of the analysis time for that tool, on the
grounds that this translation is an artifact of our methodology.  This is the definition of analysis
time that we use in our comparison.  On the other hand, the translation is necessary to use the
tools on Ada programs, and an analyst using one of these tools as part of the development of a
concurrent Ada program would certainly want to know how long the full analysis would take,
starting from the Ada code.  Analysis time could therefore also be defined to include timing
information for all the translation steps in the analysis process and for the compilation of the C
programs generated by SPIN and SPIN+PO.

One way to compare analysis times is to compare the mean analysis times for each tool, where
the tools with the lower mean times would fare best in the comparison.  Unfortunately, outliers
can have a significant effect on the mean (although standard deviation and scatter plots can help
identify this problem).  For example, a tool with consistently small analysis times, except for a few
very large analysis times, could easily have a larger mean analysis time than a tool that has
consistently larger analysis times but no outliers.  Also, if a tool fails on a large number of cases
but has small analysis times for those cases on which it does not fail, this tool would have a lower
mean analysis time than a tool that fails less often but is slower on the cases for which it does not
fail.  Because means are commonly used for comparison, we compared mean analysis times for
the analysis tools.

Another way to do the comparison is to count the number of cases for which each tool has the
fastest analysis time; tools with the largest numbers of "fastest cases" would fare best in this
comparison.  This measure also has problems, however.  Specifically, a tool that consistently had
the second or third fastest analysis times, but seldom had the fastest, would do worse in this
comparison than a tool that had the fastest analysis times more often than the first tool, but
generally had the slowest analysis times.  We would like a measure that not only captures how
well a tool compares to the others for each case, but also includes some (indirect) measure of
consistency.  We therefore did not use counts of fastest cases to compare the analysis tools.

Another way to compare analysis times is the average ranking for each tool.  For each case, we
rank the tools (1 = fastest, 2 = second fastest, etc.) based on analysis time.  For each tool, we then
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average these rankings across all cases and use this average for comparison, where tools with the
smallest average ranking would fare best in this comparison.  This average can still  be affected by
outliers, but because the worst ranking a tool can have on a given case is given by the number of
tools in the experiment, the effect of outliers is not of much concern.  Because it is an average,
this measure also (indirectly) includes consistency.  Using the average ranking should help identify
tools that perform very well on some programs but very poorly on others.  This measure seems to
be a reasonable way to compare analysis times, so we also used average ranking to compare the
analysis tools.

Thus, the choice of what to compare for analysis times is a difficult one.  All of the above
measures have advantages and disadvantages, but the most useful way to make use of these
measures is not obvious.

It would also be interesting to measure the rates at which analysis time and consumption of
other resources, such as memory, grow as the size of the programs being analyzed increases.
Corbett proposed a measure of such growth for individual programs for a single property
[Cor96].  Although Corbett provides some justification for his calculation of growth rate, it is a
relatively crude measure.  Moreover, it is not clear how we could extend this calculation to
combine data from multiple programs and properties.
 Another issue is how to compare tool failures.  In our experiment, any analysis that took longer
than 5 hours of CPU time was classified as a failed analysis.  Analysis cases that exhausted
available memory, terminated with some internal error, or could not be compiled (for SPIN and
SPIN+PO) were also classified as failures.  Because we selected the range of program sizes in the
experiment so that most of the tools could complete the analyses, our sample does not provide the
best basis for comparing failures.  All the tools failed on at least one analysis case, however, so we
chose to proceed with our failure comparison.

One way to compare failures is to compare the counts of failure cases for each tool; the tools
with the lowest number of failed cases would fare best in the comparison.  Another way to
compare failures is to use percentages of failures instead of failure counts.  For each tool, we
calculate the percentage of analysis cases on which that tool failed.  We can then compare these
percentages across the tools, where the tools with the lowest failure percentages would fare best
in the comparison.  For both these comparisons to be meaningful, all the tools need to be run on
the same analysis cases, as they are in our experiment.  Since the two measures are equivalent, we
used percentages of failures for our comparison.
 A third issue is how to compare spurious results.  One way is to use counts of the spurious
results for comparisons.  Because a spurious result would only be counted on an analysis case that
did not fail, however, and because  the tools are unlikely to fail on the exact same number of
cases, comparing spurious result counts is problematic.  We therefore chose not to use this
measure for comparison.

Another way to compare spurious results is to use percentages of spurious results for
comparison.  For each tool, we calculate the percentage of analysis cases on which the tool
yielded spurious results, and we used these percentages for comparison.

It is difficult to immediately discern and compare the percentage of successful analysis cases
for the tools by using only failure or spurious result percentages.  We define a successful analysis
case as one that runs to completion (does not fail) and yields the correct answer (does not give a
spurious result).  The percentage of successful analysis cases may provide a better point of
comparison than failure or spurious result percentages used in isolation.
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One important quantity that we did not measure in our experiment is how much user effort is
required to apply each of the analysis tools.  This effort includes adding flags to the PROMELA
and SMV inputs for some of the properties, specifying the properties using each tool's
specification formalism, and determining the cause of spurious results using each tool's output.
Especially given the iterative property specification process described above, user effort can be
significant.  Unfortunately, measuring user effort in an unbiased manner would require an
experiment using multiple human subjects, with the extensive additional experimental design
concerns such a human experiment entails.  In addition, such an experiment seems premature until
we have a better understanding of the strengths and weaknesses of each tool.

As expected, there does not seem to be single measure that we can use to capture analysis
time, failures, or spurious results for comparison.  Instead, it is necessary to use a variety of these
measures.  In our experiment we used mean analysis times, ranked analysis times, failure
percentages, spurious result percentages, and successful analysis case percentages.  It is not clear,
however, that this is the best selection from among the measures discussed above and other
possible measures.  Also, because we chose to selectively model (and not model) important
variables in the programs to examine analysis accuracy, it is somewhat misleading to simply
compare the measures over all the analysis cases.  Instead, we compared the measures for the
cases in which we modeled the minimal set of variables required to prove each property.

2.7 Checking for Bias
We want to ensure that our experimental design avoids bias against one or more of the tools as
much as possible.   There are a number of potential sources of bias introduced by the choices we
make about which programs to analyze, how to translate the programs, and how to formulate the
properties in the experiment.  We can check statistically whether some of these potential biases
affect our experimental results.

For example, the sizes of the Ordered Binary Decision Diagrams (OBDDs) used by SMV are
sensitive to the order of the variables in the SMV input.  To account for this, we checked the
tool's performance using the variable ordering that results from our automatic translation and also
using the REORDER option, which applies a heuristic reordering algorithm before generating the
OBDDs for the system.  As previously noted, SMV tends to be more efficient when processes are
used rather than an explicit specification of the global transition relation, since using the transition
relation forces SMV to consider the entire state space of the program.  Modeling the semantics of
the Ada rendezvous using the semantics of the SMV processes is not possible, however.  Thus,
we may have introduced bias against SMV by explicitly specifying the global transition relation,
but we are unable to check for this bias.

There is also a potential bias introduced against SMV when we use additional flags and embed
operations on those flags in the system transitions in order to check certain properties.  Since this
could degrade SMV's performance by increasing the size of the state space, we also specified
event sequence properties using CTL specifications that do not require additional flags.

We specified properties for SPIN using both never claims and assertions to ensure that our
choice of property specification technique did not bias our results against SPIN.

In our implementation of the readers/writers problem, none of the accept statements have
bodies.  This does not affect the tools using inputs based on FSAs because the accept bodies are
collapsed into single FSA states.  Similarly, it does not affect FLAVERS, since this tool optimizes
the empty accept bodies away.  It is not clear, however, whether  this affects the performance of
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INCA.  Therefore, for INCA we ran the analysis cases on a version of the program that had no
accept bodies and on a version containing accept bodies.  We also note that most examples of
INCA input that we have seen represent sets of identical tasks as arrays of task types, while the
Ada program we used as a model contains each reader and writer task specified uniquely.  Since it
is unclear how this affects INCA performance, we ran the analysis cases on INCA with a
conversion from the Ada program and with a conversion from a version with arrays of reader and
writer tasks.  Finally, for some properties,  we found it intuitive to specify the INCA query using
two intervals, which can cause a significant growth in the size of the inequality system.  In these
cases, we also specified the queries using single intervals with additional constraints and ran the
analysis cases using both types of queries.

Unless it can be formally established that these variations have no effect on the experimental
results, it is important that any experiment using these tools check for potential bias.  The
variations, or configurations, that we considered in our experiment are shown in Table 1.  Given
the various static analysis tools in the experiment, the configurations in Table 1, the 11 programs,
the 6 sizes of each program, and the properties we checked in the experiment, we needed to
execute 1,812 distinct (tool, configuration, program, size, property) tuples.  To account for the
possibility of run time variations, we needed to execute each of these tuples a number of times;
since we did not observe significant variation in these run-times, we opted to execute each tuple 5
times.  We therefore conducted a total of 9,060 runs, some of which took hours to complete.
Thus, checking for bias greatly increased the amount of time required to conduct the experiment
but seemed essential because of the sensitivity of the tools and the numerous opportunities for
bias.

To check for potential biases we performed a standard form of hypothesis testing.  In
hypothesis testing, a null hypothesis (H0) and an alternative hypothesis (H1) are formed,  a set of
data is collected, and the probability of collecting that set of data given that the null hypothesis is
true is calculated.  If this probability is very small (less than 0.05 is typically considered
significant), we can reject the null hypothesis (and accept the alternative hypothesis) with a small
probability of doing so incorrectly.  Incorrectly rejecting the null hypothesis is called a Type I
error, while not rejecting the null hypothesis when we actually should have is called a Type II

Tool Property Style REORDER Accept Bodies All Arrays
Never Claims

Assertions
SPIN

SMV

INCA

No
Yes
No
Yes

No
No
Yes
Yes
No
No
Yes
Yes

No
Yes
No
Yes
No
Yes
No
Yes

Additional Variables
Additional Variables
Alternative CTL Spec
Alternative CTL Spec

Multiple Intervals
Multiple Intervals
Multiple Intervals
Multiple Intervals

Additional Constraints
Additional Constraints
Additional Constraints
Additional Constraints

Table 1.  Tool Configurations
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error.  Nonetheless, if we do not reject the null hypothesis, we have not proved it -- we have
simply been unable to reject it given the data at hand.

As an example, consider the hypotheses for checking to see whether using assertions rather
than never claims introduces bias against SPIN.  The null hypothesis for our example was that
analysis times using assertions were equal to analysis times using never claims.  For our
alternative hypothesis, we checked whether the analysis times were different.  Hypothesis
formulation for checking the other biases is similar.

To perform the actual hypothesis testing we used the sign test, a nonparametric test for
comparing the means of two distributions [Spr93].  While the paired-sample t-test is a more
common way to compare means when cases need to be paired in the calculation, the paired-
sample t-test assumes that the differences between the cases are normally distributed.  We used
the Kolmogorov-Smirnov test to examine the probability that the distributions of differences were
normal and found that we could reject the null hypothesis that they were normal in all cases.  We
therefore chose to use the sign test, which does not make assumptions about the distributions of
analysis times or the distribution of the differences between them.

The results of the hypothesis testing in our experiment indicated that, with statistical
significance, SPIN using assertions yielded smaller analysis times than SPIN using never claims,
SMV using reorder yielded smaller analysis times than SMV without reorder, SMV using
additional flags yielded smaller analysis times than SMV using a CTL specification without those
flags, and INCA using unique tasks yielded smaller analysis times than INCA using arrays of
tasks.  However, these results do not prove that these potential areas of bias will affect an
experiment using other programs, properties, or program sizes.  For example, our statistical tests
indicated that we did not introduce bias into our experiment using two intervals, rather than one
with additional constraints, in our INCA queries, but we know that this choice would introduce
bias for larger program sizes.  Therefore, any experiment using these tools should incorporate a
means of checking for any identified areas of potential  bias.

3 COMPARISON RESULTS
In this section, we describe the result of our empirical comparison, with a more complete
discussion provided in [Cha96].  We found that there was no single best tool for the programs and
properties in our experiment, but our comparison results require some discussion.

Based on the results of our hypothesis testing, we simplify the discussion below by only
presenting the results for SPIN using assertions, SPIN+PO, SMV using the REORDER option
and additional flags, INCA using no accept bodies, unique tasks, and properties specified using
multiple intervals, and FLAVERS.  We note that data for FLAVERS is not included for three of
the programs.  The hartstone program uses arrays of task types (CFGs for tasks generated from
an array of task types are not currently supported in FLAVERS), and our analysis of the memory
management and ring programs indicated bugs that we have reported to the FLAVERS
developers.

  The data we used for our analysis time comparisons is provided in Table 2.  Recall that we
only compare analysis times (and failures and spurious results) for those cases in which we
modeled the minimal set of variables required to prove each property.  When we compared mean
analysis times checking for deadlock, we found that SPIN+PO yielded the best mean times (16.24
sec), followed after a large gap by INCA (45.16 sec), which was followed after another large gap
by SPIN (63.42 sec).  For checking non-deadlock properties, INCA had the best mean analysis
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SPIN+PO
SMV
INCA
FLAVERS

Deadlock Other Properties

SPIN
Mean Rank Mean

Average
Rank

Average

16.24

-
45.16

63.42

-

1.97
2.14

2.15

113.65

79.02

53.93
54.50

12.99
1.86

2.05
2.57

3.23 2.70
198.61 4.18

Table 2.  Analysis Time Data

SPIN+PO
SMV
INCA
FLAVERS

Deadlock Other Properties

SPIN
Failures Results Cases

Spurious

- -

Successful Successful
CasesFailures

Spurious
Results

-
97.0
95.4
92.4

1.5

7.6
4.6

0.0
0.0
0.0
1.5 0.0

7.1
0.0
0.0
0.0
0.0

100.0
92.9
83.8
80.810.6 89.4 19.2

16.2

13.2 0.0 86.8

Table 3.  Failure, Spurious Result, and Success Percentages

times (12.99 sec) followed after a large gap by SMV (53.93 sec) and SPIN+PO (54.50 sec).
When we used the average ranking described above, SPIN+PO (1.97), SMV (2.14), and SPIN
(2.15) had the best average rankings checking for deadlock, while SMV (1.86), SPIN (2.05) and
SPIN+PO (2.57) had the best average rankings checking non-deadlock properties.  Note that
comparing mean analysis times yielded significantly different results than comparing average
rankings, particularly for non-deadlock properties.  We point out that the average rankings for
deadlock and non-deadlock properties do not add up to 10 and 15, respectively, as might be
expected.  This occurs because we do not give a tool a ranking (nor an analysis time) for a case
on which it failed, although we recognize that this makes interpretation of the comparison results
somewhat more difficult.

The data we used for our comparisons of failures, spurious results, and successful analysis
cases are provided in Table 3.  When we compared failure percentages checking for deadlock, we
found that INCA (1.5%) yielded the smallest failure percentage, followed by SMV (4.6%) and
SPIN+PO (7.6%).  For checking non-deadlock properties, INCA (0.0%) again yielded the
smallest failure percentage, followed after a large gap by SMV (7.1%) and FLAVERS (13.2%).

When we compared spurious result percentages we found that, for the cases in which they did
not fail, SPIN, SPIN+PO, and SMV all had no spurious results checking for deadlock, followed
closely by INCA (1.5%).  For non-deadlock properties, all the tools had no spurious results.

Finally, we compared the successful analysis case percentages as described above.  We found
that INCA (97.0%), SMV (95.4%), and SPIN+PO (92.4%) had similar successful analysis case
percentages checking for deadlock. For non-deadlock properties, the comparison reduces to a
comparison of failure percentages since none of the tools yielded spurious results on non-
deadlock properties.

We again caution the reader that drawing general conclusions from the results of this relatively
small experiment is unwise since we know that the sample of programs and properties is not
representative of the population of concurrent Ada programs and concurrency properties.  We do
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note that the experiment has provided significant insight into the strengths and weaknesses of each
of the tools and has also given us valuable experience designing this type of experiment.

4 PREDICTIVE MODELING RESULTS
We hypothesize that there are certain characteristics of programs that affect the feasibility of
analysis and the accuracy of the analysis results for those programs.  In addition, we believe that
certain characteristics of a property being checked may also affect feasibility and analysis accuracy
for that property on a given program.  Our primary goal was to use statistical regression
techniques to determine how well each of the program and property characteristics predicts the
values of the response variables (i.e., the measurements discussed above).  The resulting
regression equations could then be used as predictive models to predict each tool's analysis
performance given a specific program and property.

4.1 Metrics
For our purposes, a metric is defined as a measurement of some characteristic of the program or
property of interest.  We divided our metrics into three categories: program metrics, internal
representation metrics, and property metrics.  The program metrics are used to capture
characteristics of the Ada programs being analyzed.  The internal representation metrics are used
to capture characteristics of the set of FSAs for that program, the set of Task Interaction Graphs
(TIGs, [LC89]) for that program, and the state space and transition relation for SMV.  The
property metrics are used to capture characteristics of the SPIN never claim and assertions, INCA
query, and FLAVERS Property Automaton for each property.  We treated the program, internal
representation, and property metrics as predictor variables in the experiment.

The metrics were selected in a number of ways.  Characteristics that affect analysis
performance based on the theoretical bounds of the techniques are included, as are other
characteristics that we believe may have an effect on analysis performance.  Metrics that have
been proposed in the concurrency analysis literature are also included.

Program Metrics
The program metrics are used to capture certain characteristics of the Ada program being
analyzed.  These characteristics include several measures of the size of the program, various
measures of nondeterminism in the program and other characteristics of the program structure,
and a metric indicating how many variables are modeled in the representations.

The theoretical upper bound on the number of possible program states for a concurrent
program is exponential in the number of tasks in that program.  We therefore included the number
of tasks in the program (T) as one of the program metrics.

We suspect that the number of possible communications in a program affects the number of
reachable states for that program.  To calculate the number of communications, Ci, for a task Ti,
we add the number of accept statements in the task to the number of entry calls in the task.  We
use two measures of communication size as metrics - the average number of communications for

the set of tasks in the program, given by C
T

Ci
i

T

=
=
"

1
1

 and the maximum number of

communications in the set of tasks for the program, given by MaxC Ci= max( ) .
One of the characteristics of concurrent Ada programs that makes them particularly difficult to

analyze is nondeterminism.  None of the metrics above try to account for nondeterminism in the
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program being analyzed.  Damerla and Shatz [DS92] propose several metrics that we also
included in our experiment that are intended to quantify the nondeterminism in Ada programs.  A
metric called Alpha is used to account for the nondeterminism in entries when several tasks can
make entry calls on those entries (entry nondeterminism).  Alpha is given by ( )Callsii

e
#

=
" 1

1
, where

e is the number of entries not contained in selects and Callsi is the number of calls on entry i.  The
one is subtracted because an entry with only one caller is deterministic.  A metric called Alpha' is
similar to Alpha, but also takes into account the clustering and spreading of entry calls.  Entry
calls on a given accept are clustered when they occur in a single task; entry calls on a given accept
are spread when they occur in multiple tasks.  For example, if all the entry calls on a given accept
are clustered in the same task, the entry nondeterminism for this accept should be 0.  Alpha' for a
particular accept a is given by ia ix TT' ( ) * ( ( ))Alpha = # +$ 2 1 , where xi is the sum of entry calls in
task i on the accept a and T is the number of tasks making calls on the accept.  Alpha' is given by

aa

e 'Alpha
=
"

1
.  The metric Beta is used to account for the nondeterministic selection of rendezvous

within select statements (select nondeterminism).  Beta is given by ( )Callsii

s
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, where s is the

number of selects and Callsi is the number of calls on entries within select i.  The one is
subtracted because a select with only one call on an entry within the select is deterministic.
Similarly to Alpha' , a metric Beta' is defined to account for entry call spreading and clustering.
Beta' for a particular select a is given by ia ix TT' ( ) * ( ( ))Beta = # +$ 2 1 , where xi is the sum of entry
calls in task i on alternatives in the select and T is the number of tasks making calls on alternatives
in the select.  Beta' is given by aa

s 'Beta
=
"

1
.  The metrics Gamma (Alpha + Beta) and Gamma'

(Alpha' + Beta') are used to account for total nondeterminism.
Levine and Taylor [LT93] propose a metric similar to Gamma called Cnd to account for

nondeterminism.  Cnd is given by  ( ) ( )Callsii
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entry calls on entry i and Calledi is the number of select alternatives with one or more callers.
The difference between Cnd and Gamma is that Cnd includes entry nondeterminism for all entries
(as opposed to excluding those in selects) and counts the number of select alternatives with one or
more callers when calculating select nondeterminism.  To account for clustering and spreading,
Cnd' is defined as
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Ti is the number of task with calls on entry or select statement i, xij is the number of entry calls in
task j on entry i, Ri is the smaller of Ti and the number of alternatives of select statement i with
one or more callers, and zij is the number of entry calls in task j on entry alternatives in select
statement i (if Ri = Ti) or the number of alternatives in select statement i with one or more calls in
task j.

Levine and Taylor also propose a metric, Cif, for capturing the communication structure or
information flow for the tasks comprising the program. Cif is given by

( )( )
ln

in edgesi out edgesii

T T
# #

=
"

1
,
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where T is the number of tasks in the program, in-edgesi is the sum of task entries and shared
variables read in task i, and out-edgesi is the sum of entry calls and shared variables written by
task i.  Cnd, Cnd', and Cif were also included in our experiment.

As discussed earlier, we sometimes chose to model certain variables to try to improve the
accuracy of the analysis.  When we did so, both the accuracy and the time to complete the analysis
were almost always affected.  While we capture some of the effects of this modeling indirectly
through the metrics described above, we also explicitly included a metric, Vars, that specifies the
number of variables that are modeled in the program.

Internal Representation Metrics
The internal representation metrics are used to capture characteristics of the set of FSAs for a
given program, the set of TIGs for that program, and the state space and transition relation for the
SMV representation of the program.  These characteristics include several measures of the sizes
of the representations and a measure of the graph theoretic complexity of the program in terms of
TIGs.

As noted above, the upper bound for the number of states in a concurrent program is
exponential in the number of tasks, T.  When the program is represented by a set of FSAs, the

upper bound is given by NT, where N is given by 1
1T

ni
i

T

=
"  and ni is the number of states in task

i.  We therefore included N as a metric in the experiment.  We also included the maximum number
of states in an FSA, MaxN ni= max( ) , as a metric, because a large number of states in an FSA for
one of the tasks could significantly affect N.  Wampler has proposed the metric NT/2 as a good
predictor of reachability graph size, at least for some programs [Wam85] and we included the
WFSA (for Wampler, FSAs) metric in our experiment as well.

Because we believe the communications between the FSAs will affect the analysis, we included
two measures of communication size for the FSAs, noting that in general transitions in the FSAs
represent accepts or entry calls in the original program.  We included the average number of

transitions in the set of FSAs for the program, given by TRANS
T

Transi
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 and the

maximum number of transitions in the set of FSAs for the program, given by
MaxTRANS Transi= max( ).

The above metrics can also be calculated for the set of TIGs for a given program (rather than
the set of FSAs).  We call the average number of nodes in the set of TIGs TN, the maximum
number of nodes MaxTN, the average number of edges TE, the maximum number of edges
MaxTE, and the Wampler metric WTIG (for Wampler, TIGs).  We calculate these metrics for
TIGs as well because a TIG is a conceptually different representation of a task than an FSA.  The
key difference is that the FSAs include information about choices in the task based on variable
values, while TIGs abstract that information away.  We note that the elision of variable
information tends to  yield TIGs that are smaller, in some cases much smaller, than the FSAs for
the same tasks.

Levine and Taylor  [LT93] propose a metric, called Cgt,  intended to capture the graph
theoretic complexity of the program.  Cgt is given by E - N + T + 1, where E is the number of
entry calls and accepts in the program, N is the number of TIG nodes in the program, and T is the
number of tasks in the program.  Cgt was included as a metric in the experiment.
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In addition to the metrics above, we also included two characteristics of the SMV system.  We
include the total number of task states (SMV St) because this number is related to the total
number of sequential regions in the program.  We also include the number of transitions in the
transition relation (SMV Tr) as a metric in the experiment, because each transition represents a
possible communication in the program.

Property Metrics
We believe that characteristics of the property being analyzed might affect the feasibility and
accuracy of analysis of that property on a given program.  We therefore attempt to capture
characteristics of these properties through certain metrics on the property specifications for the
tools.  The property metrics are used to capture characteristics of the SPIN never claim and
assertions, INCA query, and the property automaton FLAVERS generates from the QRE for each
property.

Since expressing a property as an FSA seems to be a general and intuitive technique, we
included three metrics on FLAVERS Property Automata to capture the size of the property.  We
included the size of the event alphabets (i.e., number of events of interest) and the number of
states in the automaton as metrics.  We included the number of transitions in the automaton that
do not directly lead to a violation of the property, which gives us another measure of the size of
the property.

We can capture the number of events of interest in the property by considering the INCA query
as well, so we included the number of distinct events in the INCA query as a metric.  We also
included the number of intervals in the INCA query, since multiple intervals in the query can
significantly increase the size of the system of inequalities.

While FLAVERS QREs and INCA queries tend to be in terms of events, checking a property
in SPIN entails specifying the property in terms of states.  The SPIN never claim is essentially an
FSA for the property, so we included the number of states and transitions in the never claim as
metrics in the experiment.  We also included the number of assertions and the number of
assignments to variables used in the assertions as measures of the amount of information needed
to check the property.

4.2 Building Predictive Models
Linear regression models can be used as approximations of the functional relationship between a
response variable and a set of predictor variables [MP82].  We used linear regression to build our
predictive models of analysis time based on the set of metrics selected for inclusion using the
preprocessing discussed above.

While linear regression is a widely used for predicting continuous response variables, it is not
appropriate for predicting dichotomous response variables [Agr84].  Because linear regression
assumes that the response variable has a continuous range of values, it can not be applied when
the response variable can only have two values (true and false, for instance).  Logistic regression
is the proper technique for these variables, so we used logistic regression to build our predictive
models for failure and presence of spurious results.

It has been noted in the literature that high linear correlations between several (or many) of our
predictor variables can cause problems [Bla70] in both of the regression techniques that we use.
It was therefore necessary for us to preprocess our experimental data, removing predictor
variables that are highly correlated to other predictors.
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One relatively straightforward way to detect multicollinearity is to consider the pairwise
Pearson correlation coefficients for the predictor variables [NWK85].  Pearson's correlation
coefficient provides an estimate of the linear relationship between two variables x and y.  The
coefficient ranges from -1.0 to 1.0, with a coefficient magnitude close to 1.0 indicating a strong
relationship and a magnitude close to 0.0 indicating no linear relationship.  We note that a low
correlation only indicates that the variables are not linearly associated; they could still be related in
some non-linear way.  If we find a high correlation coefficient between two predictor variables,
this provides strong evidence that the variables are collinear, implying that we should elide one of
them from the model.

Before omitting certain variables from the model, we would like some assurance that the
correlation coefficients represent a systematic linear relationship and did not simply occur by
chance.  Standard statistical tests are not applicable, since our concern is about distributions of the
correlation coefficients rather than distributions of the mean.  However, we can use randomization
tests, in conjunction with correlation, to test the hypothesis that two samples are linearly
dependent [Coh95].

To conduct the randomization test, we randomly paired up values of the first and second
variables and calculated the correlation coefficient.  This gave us a single point in the distribution
of correlation coefficients that are possible for our set of data, given the null hypothesis that the
two variables are in fact linearly independent.  We then repeated the random pairing and
coefficient calculation many times (in our case, 1000) to build a distribution of possible
correlation coefficients.  We then took the correlation coefficient with the true pairing (i.e.,
matching variable values for the same analysis cases) and determined where this correlation
coefficient falls on the generated distribution.  If the coefficient fell below the 5th value in the
distribution or above the 995th value (conceptually, p < 0.05), we rejected the null hypothesis
with high confidence, i.e., we can state that there is a linear dependence between the two variables
with only a small probability that we are wrong.  We conducted the randomization test on all
variable pairs that have a correlation coefficient magnitude greater than 0.75.  We note that
randomization tests do not provide results that are generalizable to populations, so the two
variables could in fact be linearly independent over the set of all possible data.  The tests do,
however, provide sufficient power given our specific data set.

When we discovered a set of variables that were collinear to each other, we removed all but
one of those variables from the regression analysis.  The decision about which collinear variables
to elide was not critical from the standpoint of the fit of the model we created, since the reason
we were omitting the variables was because they provided essentially the same influence as the
variables we included in the model.  In an effort to make the predictive models more intuitive,
however, our tendency was to prefer variables representing the program metrics over those
representing the internal representation metrics, and to prefer simpler internal representation
metrics over more complicated ones.  The sets of collinear metrics and our selections for inclusion
in the models are given in Table 4.

To determine how well a predictive model fits the data used, we need some measure of how
well the model captures the variance in the data.  For linear regression, the standard measure of
this is the Multiple Correlation Coefficient Squared, or R2.  R2 is given by 2 1R SS

S
E

yy
= # .  The

21



Set of Collinear Metrics Selected Metric
{ N, MaxN, TRANS, TE, MaxTE, Cgt } N

{ TRANS, MaxTRANS, SMV Trans }

{ WFSA, WTIG }

{C, Alpha, Gamma, Cnd, TN } C

{ MaxC, MaxTN }

{ Cnd', Beta', Gamma' }
{ Cnd, Beta, Gamma }

{ T }
{ Vars }

{ Alpha' }
{ Cif }

{ QRE Alphabet, QRE Trans }
{ Never States, Never Trans }
{ Assertions, Assignments }

{ QRE States }
{ Query Events }

{ Query Intervals }

Cnd'
Beta

MaxTRANS
MaxC
WFSA

T
Vars

Alpha'
Cif

QRE Alphabet
Never States
Assertions
QRE States

Query Events
Query Intervals

Table 4.  Collinear Sets of Metrics

residual sum of squares, SSE , is given by 2

1
( )iy iy

i

N
#

=
" , which squares the difference between the

actual and predicted value of the response variable (called the residual) at each data point.  Syy is
a measure of the total variability in the response variable.  Thus, R2 measures how much of the
variance in the response variable is captured by the predictive model.  R2 ranges from 0 to 1, with
a magnitude near 1 indicating that the model explains most of the variance in the data.

In logistic regression, the deviance can be used to measure the amount of deviation captured by
the fitted model.  The deviance in logistic regression is analogous to the residual sum of squares in
linear regression, since the deviance quantifies how much of the variance in the data is captured by
a specific model (with a smaller deviance indicating a better fit).  We found, however, that it was
more useful to use the percentage of correct predictions for a given model to capture its
predictive power.
 For both of the regression techniques, unrealistically large coefficients or standard errors of the
coefficients are indicative of numerical problems in the analysis.  They can indicate
multicollinearity that was not removed by our preprocessing, and they can also support the
inference that the model has been overfit to the data.  We therefore checked for these problem
indicators in our models, as well as performing residual analysis to confirm that the underlying
assumptions of the regression techniques have not been violated.

For the linear regressions we used four standard regression techniques: including all
preprocessed variables in the linear regression (enter method), using backward elimination, using
forward selection, and using stepwise regression.  We then selected the regression model with the
best fit, barring signs of overfitting.  Similarly, for the logistic regressions we used three standard
techniques: including all preprocessed variables in the regression, using backward stepwise
elimination, and using forward stepwise selection.  We then selected the model based on the
percent of the predictions by the model that are correct, barring signs of overfitting or other
numerical problems.
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4.3 Predicting Analysis Time
We used linear regression to build the predictive models for analysis time, where analysis time was
measured from the native input for each tool.  Because analysis time is not meaningful for those
analysis cases that failed, the regression only includes analysis cases that did not fail, regardless of
whether or not sufficient variables were modeled to check the property.  We would expect an
analyst to use the predictive models for failure first to check whether or not the analysis will fail,
then use the predictive models for analysis time if the analysis is not predicted to fail.  Because
most of the tools provide automatic checking for deadlock (or, for INCA, a "pre-canned" query),
the property metrics are not meaningful for checking deadlock.  We therefore generated two
models for each tool - one for deadlock, using only the program metrics as independent variables,
and one for the other properties, using both the program and property metrics as independent
variables.  The R2 values for each of the linear regressions are provided in Table 5.

SPIN, Never Claims
Method

     Deadlock
     Other Properties
SPIN, Assertions
     Other Properties
SPIN+PO
     Deadlock
     Other Properties

     Deadlock
     Other Properties

SMV

     Deadlock
     Other Properties

INCA

     Other Properties
FLAVERS

Regression
Enter Backward

Elimination
Forward
Selection

Stepwise

0.415 0.387 0.387 0.387

0.218 0.178 0.156 0.156

0.176 0.109 0.109 0.109

0.572 0.537 0.537 0.537

0.350 0.333 0.333 0.333

0.468 0.452 0.426 0.426

0.128 0.052 0.052 0.052

0.223 0.178 0.076 0.076

0.902 0.897 0.897 0.897

0.500 0.304 0.304 0.957

Table 5.  R2 Values for Linear Regression Models

In general, an R2 value greater than 0.800 can be considered to indicate a model with a
reasonably good fit, and therefore reasonably good predictive power, at least across the domain of
the given data set.  Table 5 indicates that most of the models generated will not provide good
predictions - only the model for INCA (checking other properties) seems to provide a good fit
and therefore potentially good predictive power.  In this model, which is provided in Figure 4, the
QRE States, Never States, and Query Events metrics had the largest effect on predicted analysis
time.

Analysis Time = 21.303073 + 7.24986E-08*Cnd' + 0.017519*MaxTRANS - 6.985987*QRE States - 
2.814540*Query Events + 3.342872*Never States + 0.577033*Assertions

Figure 4.  Predictive Model for INCA Analysis Time, Non-Deadlock Properties
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4.4 Predicting Failure
We used logistic regression to build the predictive models for failure.  The regression (obviously)
included all analysis cases, both those that did and did not fail, regardless of whether or not
sufficient variables were modeled to check the property.  We note that using all cases for each
tool yields different failure percentages than those presented in Section 3; failure percentages for
all cases are therefore provided in Table 6.  As discussed above, the property metrics are not
meaningful for checking deadlock.  We therefore generated two models for each tool - one for
deadlock, using only the program metrics as independent variables, and one for the other
properties, using both the program and property metrics as independent variables.  The percent of
correct predictions for each of the selected models are provided in Table 7.

SPIN+PO
SMV
INCA
FLAVERS

Deadlock Other Properties

SPIN
Failures Cases Percentage

Total

- -

PercentageFailures
Total
Cases

-
0.8
9.2
8.3

1

10
11

120

13

180

7.2

21.715 12.5 39

24 140 17.1

Failure Failure

120
120
120 0

180
180
180 0.0

18.934

Table 6.   Failure Percentages, All Cases

SPIN+PO
SMV
INCA
FLAVERS

Deadlock Other Properties

SPIN
Failure Success Total

- -

TotalFailure Success

-
98.3
95.8
97.5

0.0

80.0
72.7

99.1
99.1
98.2
99.2 -

46.2
-

100.0
97.3
96.5

-
96.1
94.4
91.773.3 95.8 74.4

82.4

66.7 94.8 90.0

Table 7.  Percents Correct for Selected Failure Models

To illustrate how to interpret the data in the Table 7, we consider the percentages for the
model using SPIN to check for deadlock.  The percentage for failure indicates that 73.3% of the
time the model predicts a failure that actually occurs in practice and 26.7% of the time the model
predicts success when a failure actually occurs in practice.  The percentage for success indicates
that 99.1% of the time the model predicts a successful (non-failure) analysis that actually occurs in
practice and 0.9% of the time the model predicts a failure when a success actually occurs in
practice.  The total percentage indicates that 95.8% of the time the model predicts success or
failure correctly.

As we tried to run these regressions with the statistical package SPSS, we often encountered
numerical problems, especially with the enter and backward elimination methods.  When we
encountered such numerical problems, we either selected one of the models that was successfully
created or we removed the property metrics from the regression.  We plan to investigate the cause
of these numerical problems further, and will also consider trying these regressions with other
statistical analysis packages.
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Metric
N
C

Cnd'
Beta

MaxTRANS
MaxC
WFSA

T
Vars

Alpha'
Cif

QRE Alphabet
Never States
Assertions
QRE States

Query Events
Query Intervals

Constant

Deadlock Other Deadlock Other Deadlock Other Deadlock Other Other
SPIN SPIN+PO SMV INCA FLAVERS

-4.04

1.3E-07
8.0E-09

0.08
-
-
-
-
-
-
-
-

-
-
-
-
-
-

5.9E-07

6.61

0.27

-1.42

-0.13

-1.8E-08

0.37

-0.23

-2.82
-
-
-
-

-
-

-

-
-

-6.78

0.07

0.05

7.0E-04

-
-

-
-
-
-
-
-
-
-
-
-
-
-

7.3E-07

7.39

-1.43

0.23

0.21

-1.37

-0.80
-

-
-
-

-

-
-
-
-
-

-

-6.7E-07

-14.58

0.41

3.69

-2.01

-1.0E-04

0.10
-4.1E-09

0.39

9.0E-05

1.6E-19

-0.14

-
-
-
-
-
-

6.0E-04

-4.29

0.05

-
-
-
-
-
-
-
-
-

-
-

-
-
-
- -

-
-
-

-

-
-
-
-
-
-

-
-
-
-
-
-
--11.09

0.05
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-2.8E-06

0.04

0.31

-0.69

0.01

0.13
-1.2E-08

0.22

1.0E-04

1.2E-17

0.89

-4.98

-
-
-
-
-
-

Table 8.  Coefficients in Selected Failure Models

Table 7 implies that we can build reasonably good predictive models for failure within our data
set.  Note that, for INCA (checking other properties), we did not have any failures, so we were
unable to build a model in this case.  The coefficients for each metric in each of the selected
models are provided in Table 8.  We note that there does not seem to be a single metric or set of
metrics with a large effect on predicted failures that consistently appears in the models.

4.5 Predicting Spurious Results
We used logistic regression to build the predictive models for spurious results.  Because a result
can not be spurious in an analysis case that fails, the regression only includes analysis cases that
did not fail, regardless of whether or not sufficient variables were modeled to check the property.
We note that using all non-failure cases for each tool yields different spurious result percentages
than those presented in Section 3; spurious result percentages for all non-failure cases are
therefore provided in Table 9.  As discussed above, the property metrics are not meaningful for
checking deadlock.  We therefore generate two models for each tool - one for deadlock, using
only the program metrics as independent variables, and one for the other properties, using both
the program and property metrics as independent variables.  The percent of correct predictions by
the selected models are provided in Table 10.  We experienced the same numerical problems as in
the failure regressions, and we followed the same approach to resolve them.

Table 10 implies that we can build reasonably good predictive models for spurious results
within our data set, though we note that the percents correct are not quite as high as those for the
failure models.  In all of the models, the number of variables modeled in the analysis had by far the
largest effect on whether or not spurious results were predicted.  This is not surprising, however,
because we added variable modeling explicitly to remove spurious results.
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SPIN+PO
SMV
INCA
FLAVERS

Deadlock Other Properties

SPIN
Results Cases Percentage

Total

- -

PercentageResults
Total
Cases

-
45.4
31.2

54
34

13 11.2

Spurious Spurious

109
119

Spurious Spurious

12 146

116

10.2

35
38

105
110

33.3
34.5

11

17
23

141

167
180

7.8
8.2

12.8

Table 9.  Spurious Result Percentages, All Cases

SPIN+PO
SMV
INCA
FLAVERS

Deadlock Other Properties

SPIN
Spurious Spurious Total

Not

- -

TotalSpurious
Not

Spurious

-
95.0
87.2
87.3

92.6

81.6
76.5

90.0
90.3
92.0
96.9 65.2

58.8
96.8
96.7
97.8
98.5

92.8
92.8
95.9
96.585.7 88.6 72.7

75.0

69.2 97.1 94.0

Table 10.  Percents Correct for Selected Spurious Result Models

4.6 Summary of Predictive Modeling Results
Before performing our regression analyses, we preprocessed our data to remove metrics that were
collinear with others since this collinearity can cause problems in both the linear and logistic
regression techniques.  This preprocessing reduced the number of program metrics included from
26 to 11, and reduced the number of property metrics from 9 to 6.  We conducted randomization
tests to ensure we have not removed metrics with apparent (but not real) collinearity; the results
of these tests indicate that we only removed metrics that were truly collinear in this dataset.

The results of our linear regressions are disappointing.  We used a threshold of 0.800 for the
R2 value to indicate a good fit, and 9 out of the 10 linear models we built have R2 values less
than 0.54.  Because these models do not capture much of the variance in the experimental data,
they are unlikely to provide good predictive power for real programs.  We also checked to see if
one or more of the metrics commonly appear in the models, indicating that there are certain
characteristics of the program or property that affect the analysis times for all the tools.  We find
no such common characteristics in the linear regression models.

The results of our logistic regressions to predict failure of analysis runs are more encouraging.
For all our selected predictive models for failure, the overall percent correct value was greater
than 90%.  This indicates that these models may provide reasonable predictive power for real
programs.  We again do not find any common characteristics that appear in all the models.

The results of our logistic regressions to predict spurious results for analysis runs are also
encouraging, with all our selected predictive models having overall percent correct values greater
than 87%.  Again, this implies that these models may provide reasonable predictive power for real
programs.  All of the models had the strongest effect on the results from the number of variables
modeled.  This is not surprisingly, because when an analysis run yielded a spurious result, we
added additional variable modeling to try to improve the accuracy of the analysis.
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5 CONCLUSIONS
We have conducted an experiment comparing a number of static concurrency analysis tools,
checking several properties on each of several Ada programs appearing in the concurrency
analysis literature.  This paper describes the results of that experiment, as well as a number of
important issues and tradeoffs we faced during its design.

To ensure that an empirical comparison is valid, the experiment must be designed with great
care.  While an empirical comparison of static concurrency analysis tools appeared to be a
relatively straightforward endeavor, it was surprisingly difficult to design an unbiased experiment.
In this paper, we have presented the significant issues and tradeoffs involved in designing such an
experiment.  These issues include the difficulties associated with selecting programs for the
experiment, ensuring each tool analyzes the same program, selecting realistic properties and
ensuring each tool checks the same property, avoiding or at least recognizing biases introduced in
the experiment, and deciding what to measure and how to compare and interpret those measures.

The results of our experiment have changed our future plans.  While our predictive models for
failure and spurious results were encouraging, our predictive models for analysis time were
disappointingly weak.  We believe that it will be difficult to develop such predictive models
because the performance of each tool seems to be so sensitive to a wide variety of issues and
interdependencies.  A future goal was to perform case studies on several "real" programs we have
acquired.  We now believe that most of the tools will not be robust enough to handle such
programs and that conducting such case studies will probably entail a large amount of effort trying
to generate representations of the programs that the tools can successfully use.

Empirical comparisons of static concurrency analysis tools are essential to determine which
techniques are useful  and to provide valuable feedback to researchers in concurrency analysis.
Carrying out such a comparison initially appeared to be fairly straightforward, avoiding many of
the most difficult problems plaguing empirical work in software engineering.  Even this relatively
straightforward experimental work, however, turns out to involve a large number of difficult
issues and to require tradeoffs between conflicting goals. Despite these problems, such work is
extremely important. We believe our findings, as reported in this paper, should help others
undertake similar studies.
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