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ABSTRACT

LEARNING TEXT ANALYSIS RULES
FOR DOMAIN-SPECIFIC
NATURAL LANGUAGE PROCESSING

FEBRUARY 1997
STEPHEN G. SODERLAND
B.Sc., STANFORD UNIVERSITY
M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Wendy G. Lehnert

An enormous amount of knowledge is needed to infer the meaning of un-
restricted natural language. The problem can be reduced to a manageable
size by restricting attention to a specific domain, which is a corpus of texts
together with a predefined set of concepts that are of interest to that domain.

Two widely different domains are used to illustrate this domain-specific
approach. One domain is a collection of Wall Street Journal articles in which
the target concept is management succession events: identifying persons mov-
ing into corporate management positions or moving out. A second domain is
a collection of hospital discharge summaries in which the target concepts are

various classes of diagnosis or symptom.
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The goal of an information extraction system is to identify references to
the concept of interest for a particular domain. A key knowledge source for
this purpose is a set of text analysis rules based on the vocabulary, semantic
classes, and writing style peculiar to the domain.

This thesis presents CRYSTAL, an implemented system that automatically
induces domain-specific text analysis rules from training examples. CRYSTAL
learns rules that approach the performance of hand-coded rules, are robust in
the face of noise and inadequate features, and require only a modest amount
of training data.

CRYSTAL belongs to a class of machine learning algorithms called covering
algorithms, and presents a novel control strategy with time and space com-
plexities that are independent of the number of features. CRYSTAL navigates
efficiently through an extremely large space of possible rules.

CRYSTAL also demonstrates that expressive rule representation is essen-
tial for high performance, robust text analysis rules. While simple rules are
adequate to capture the most salient regularities in the training data, high
performance can only be achieved when rules are expressive enough to reflect

the subtlety and variability of unrestricted natural language.
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CHAPTER 1

INTRODUCTION

With the increasing amounts of on-line text available, the need is growing
for automated text analysis systems that go beyond keywords to extract the
conceptual content of the text. This requires a system that can reliably ex-
tract both the explicitly stated information and that which can be reasonably
inferred.

The popular image in movies is of a person engaging in a philosophical
discussion with a computer. The person tells the computer to read the col-
lected works of Shakespeare to gain more insight into human behavior, which
of course the computer does in about sixty seconds, understanding all the
nuances.

Unfortunately, the amount of knowledge needed for in-depth understand-
ing is overwhelming. The BORIS system [Lehnert et al. 1983], developed by
Michael Dyer and other researchers at Yale in the 1980’s gives an indication
of just how much knowledge is needed. Three years of intensive knowledge
engineering produced a system capable of impressive in-depth understanding
of a two paragraph narrative, but unable to handle input other than those two
paragraphs.

One approach to reducing the knowledge acquisition for text understanding

to a manageable size has been that of information exztraction (IE), in which



the task is restricted to identifying a predefined set of concepts in a specific
domain and ignoring other information. A domain consists of a corpus of texts
together with a clearly specified information need.

In recent years the Natural Language Processing Laboratory at the Univer-
sity of Massachusetts has developed IE systems for a wide variety of domains.
One domain was a collection of news articles about Latin American terrorism,
in which the target concepts to be extracted are terrorist events and the per-
petrators, victims, physical targets, and weapons associate with those events.
This domain was from the ARPA-sponsored Third and Fourth Message Un-
derstanding Conferences [MUC-3 1991, MUC-4 1992].

The MUC-5 conference [MUC-5 1993] used two domains. One was a Joint
Ventures domain whose target concept involves companies forming joint busi-
ness ventures. The other was a Microelectronics domain whose target concepts
are the roles companies play in microchip fabrication technology.

The domains for MUC-3, MUC-4, and MUC-5 were all collections of news
articles. Other domains have been collections of patients’ medical records: a
Hospital Discharge domain in which the target concepts are symptoms and
diagnoses, and a Pediatric Asthma domain in which the target concept was
acute asthma exacerbations. Another domain was a Goldfish Newsgroup do-
main that consisted of messages posted to a Usenet newsgroup for goldfish hob-
byists. The target concept was identifying frequently asked questions about
raising goldfish.

Some types of texts and some target concepts are more appropriate for
an information extraction system than others. Newspaper articles are written

in declarative sentences with a clear, professional writing style. This is much



more amenable to automatic processing than the often poorly written Usenet
newsgroup postings.

Transcriptions of a physician’s handwritten notes are often telegraphic and
filled with idiosyncratic abbreviations and punctuation, making them unsuit-
able for IE technology. Typical entries from Pediatric Asthma notes are,
“ASTHMA: STARTED SUNDAY-WELL CONTROLLED W/MEDS. CLEAR NOW” or
“ASTHMA: MEDS D/C 6/2 DUE TO V,MILD WHEEZ THIS AM,NO DISTRESS PER
MO”. Dictated notes by a physician, such as those in Hospital Discharge texts,
tend to use full sentences and are more accessible to an IE system.

The target concept must be clearly specified if an IE system is to be suc-
cessful. Ideally, two independent human readers who are given the task of
identifying references to the target concept in the same text should have nearly
perfect agreement. If the target concept is so subtle or so ill-formed that hu-
man readers cannot reliably identify the concept, an automated system will
not be able to do so.

A considerable amount of knowledge must be acquired for an automated
text analysis system, knowledge that is highly specific to each domain. Dif-
ferent domains have different information needs, and also involve considerable
differences in vocabulary and writing style.

This thesis presents CRYSTAL [Soderland et al. 1995], a system that au-
tomatically learns domain-specific rules for information extraction. Learning
text analysis rules from examples is critical if information extraction is to be
a feasible technology, since these rules are highly specific to a given domain

and are difficult and time consuming to write by hand.



1.1 Domain-specific Text Analysis

Information extraction operates in the context of a clearly defined infor-
mation need. To illustrate how an IE system works, let us consider the Man-
agement Succession domain, which was used in the MUC-6 performance eval-
uation [MUC-6 1995]. The task for this domain is to analyze news articles and
identify persons moving into top corporate management positions and persons
moving out of those positions. The only information considered relevant is the
persons, positions, and corporations that are directly involved in a manage-
ment succession event. Other persons, positions, and corporations are ignored
as irrelevant to the domain.

The excerpt from a Wall Street Journal article in Figure 1.1 illustrates the

type of information extracted from the Management Succession domain.

Who's News: Topologix Inc.

Donald E. Martella, formerly vice president, operations, was
named president and chief executive officer of this maker of
parallel processing subsystems. He succeeds Jack Harper, a
company founder who was named chairman.

Figure 1.1 A text from the Management Succession domain

This text has three succession events: Donald Martella is moving into a
position that Jack Harper is leaving; Martella is moving out of his old job as
vice president; Harper is moving in as chairman. These succession events can

be represented as three case frames, each case frame having up to four slots:



1

Person_In, Person_QOut, Position, and Organization". The output from this

text is shown in Figure 1.2

Succession_Event:

Person_In: Donald E. Martella
Person_Out: Jack Harper
Position: president and chief executive officer

Organization:  Topologix Inc.

Succession_Event:
Person_Out: Donald E. Martella
Position: vice president, operations
Organization:  Topologix Inc.

Succession_Event:
Person_In: Jack Harper
Position: chairman
Organization:  Topologix Inc.

Figure 1.2 Output from the sample text: three case frames

How can an information extraction system start from the raw text in Figure
1.1 and produce the desired output representation? This is done in several
stages of processing, beginning with syntactic analysis that identifies syntactic
constituents such as subject, verb phrase, direct object, and prepositional
phrases. Each word is also assigned a semantic class.

At this point the IE system applies a set of domain-specific text analysis
rules to identify references to relevant information. Rules that apply to the
text in Figure 1.1 might look for patterns such as those in Figure 1.3.

The exact nature of these rules will vary from system to system, but all

participants in the MUC evaluations included some form of rules that detect

1For the sake of clarity, I am using a somewhat simpler representation than the official
MUC-6 output format.



“<Person> wAs NAMED <Position> ofF <Organization>"
“<Person> succeeps <Person>"

“<Person> FORMERLY < Position>"

“<Person> WHO WAS NAMED < Position>"

=

Figure 1.3 Domain-specific patterns used for information extraction

relevant information based on local context. The rules used by CRYSTAL will
be described in detail in Chapter 3.

Text analysis rules produce a fragmentary view of the text. For exam-
ple, a rule based on the first pattern “<Person> was NAMED <Position> oF
<Organization>" would identify Donald E. Martella as Person_In with a Po-
sttion of president and chief executive officer, but would leave the Person_Out

blank and find only a generic reference for the Organization, as shown below.

Succession_Event:
Person_In: Donald E. Martella, formerly vice president, operations
Position: president and chief executive officer
Organization:  this maker of parallel processing subsystems

Figure 1.4 Information extracted using pattern 1

A rule that looks for the pattern “<Person> succeeps <Person>" would
identify “He” as the Person_In and Jack Harper as Person_QOut, but would not

be able to determine the Position or Organization.

Succession_Event:
Person_In: He
Person_Out: Jack Harper, a company founder

Figure 1.5 Information extracted using pattern 2



An IE system needs to consolidate the output of the text analysis rules
in a later step known as discourse processing. This trims extraneous terms
from case frame slots, handles coreference resolution of pronouns and generic
references, merges related case frames, and infers values for empty slots.

This thesis will concentrate on the rules that extract information based on
local context, keeping in mind that this is only one of many components in a

full IE system.

1.2 The Need for Trainable Systems

Text analysis rules developed for one domain cannot, in general, be trans-
ferred to a new domain. Rules to extract Management Succession events are
of no use in a medical domain. CRYSTAL was also tested on a Hospital Dis-
charge domain in which the relevant information is symptoms and diagnoses
in patient hospital records. Rules for this domain are based on patterns such
as the following, which would apply to the input “Chest x-ray revealed a new

right pleural effusion”.

“<Diagnostic Procedure> REVEALED <Finding>"
Figure 1.6 A pattern used in extraction from a medical domain

These rules also depend on appropriate semantic class assignment of indi-
vidual words. The IE system needs a semantic lexicon that assigns the class
<Diagnostic Procedure> to “x-ray” and the class <Finding> to “pleural ef-
fusion”. Even given such semantic class assignment, creating a sufficient set

of reliable text analysis rules is a difficult and time-consuming task.



Building rules by hand requires both system expertise and domain exper-
tise. This is particularly clear for a highly technical domain such as the Hos-
pital Discharge domain. A computational linguist may understand the text
analysis software, but lack the medical knowledge needed to create reliable
text analysis rules. A medical professional, on the other hand, will understand
the terminology and medical reasoning, but have no idea how to translate that
into rules for a computer system.

A reasonable approach, and the paradigm adopted by the MUC evalua-
tions, is corpus-based system development. Domain experts? take a represen-
tative set of texts and annotate them by hand to create an answer key for
each text. This corpus of annotated texts defines the relevant information
by example, and is used by system developers to guide development of text
analysis rules.

If some of the annotated information is missed by the rules, this indicates
the need for new rules or for broadening of existing rules. If information is
extracted that was not marked as relevant by a domain expert, this indicates
that a rule is overly general and is creating errors.

CRYSTAL automates this method of corpus-based rule generation. A set
of hand-annotated texts serves as an implicit definition of relevant information.
During induction of a rule base, CRYSTAL looks for an instance of relevant
information not covered by existing rules. This instance becomes a seed for
the creation of a new rule. CRYSTAL tests each rule that it proposes against
the entire training corpus to ensure that the rule has not been generalized too

far.

?Domain experts for a medical domain would be physicians or nurses



The goal of CRYSTAL is a turnkey system that can be easily adapted
to the information needs of an end user. The user defines an information
extraction task by annotating a set of training texts. This does not require
expertise in linguistics or computer science. CRYSTAL then induces a set of

text analysis rules automatically.

1.3 Claims

This thesis centers around CRYSTAL, a system that learns text analy-
sis rules from training examples. CRYSTAL makes contributions to natural

language processing and to machine learning.

Claim 1:

CRYSTAL demonstrates that high quality text analysis rules
can be learned from examples, rules which:
a. approach the performance of hand-coded rules
b. are robust in the face of noise and inadequate features
c. require modest training size

Empirical results from Chapter 5 show performance nearly as high as that
of hand-coded rules, depending on the difficulty of the concept being learned
and the adequacy of the training data. Experiments were conducted on two
versions of the Hospital Discharge data with differing amounts of noise. Se-
mantic tagging of words in CRYSTAL’s input for one data set are based on
a generic on-line thesaurus. The other has semantic tagging customized for
the information extraction task. Other experiments show CRYSTAL’s perfor-

mance with various amounts of training data.



Claim 2:

CRYSTAL presents a covering algorithm control strategy that
navigates efficiently in extremely large feature spaces:
a. time and space complexity independent of the feature size
b. a greedy approach that can be improved very little
by using more extensive search

CRYSTAL’s machine learning algorithm belongs to the family of covering
algorithms, which is described in Chapter 8. CRYSTAL is unique in its ability
to handle the extremely large feature sets that can arise in natural language
processing problems. For example, a feature might represent any of thousands
of words occurring in any of several syntactic roles. Experiments in Chapter
5 also show that increasing the amount of search effort does little to improve

CRYSTAL’s performance, and in some cases degrades performance.

Claim 3:

CRYSTAL demonstrates that expressive representation is essential
for high performance, robust text analysis rules.

There is an inherent tension between the need for expressive representation
and the increased difficulty for a machine learning algorithm if the represen-
tation is overly complex. Experiments in Chapter 6 show that performance
suffers when various aspects of CRYSTAL’s representation language are dis-
abled.

The richness and flexibility of CRYSTAL’s rule representation proved to
be important for performance in nearly every case. This is particularly true

when faced with noisy data and sparse training.
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1.4 Organization of the Dissertation

The remainder of the dissertation is organized as follows. Chapter 2
presents the two contrasting domains that will be used to demonstrate CRYS-
TAL. These are the Management Succession domain and the Hospital Dis-
charge domain, both of which have been briefly introduced in this chapter.

The CRYSTAL algorithm is introduced in Chapters 3 and 4. Chapter 3
describes the text analysis rules that CRYSTAL learns, and Chapter 4 presents
the induction algorithm. This is followed by a series of experiments that test
various aspects of CRYSTAL empirically.

Chapter 5 shows performance in each of the two test domains and presents
experiments that assess how close CRYSTAL comes to finding optimal rules,
including comparisons with results from hand-coded rules. Parameter settings
allow a user to optimize for either recall or for precision®. Another experiment
shows that CRYSTAL’s efficient algorithm does not benefit from increasing
the amount of search effort.

Chapter 6 explores the impact of CRYSTAL’s expressive representation by
enhancing and by restricting CRYSTAL’s rule representation.

Related work in natural language processing and in machine learning is
presented in Chapters 7 and 8, respectively. Chapter 9 revisits the main claims
of the thesis, presents conclusions, and points to future work.

Five appendices are included. Appendices A and B have tables of empirical

results for each of the two domains used to test CRYSTAL. Appendices C and

3Recall is the percentage of possible information that the system finds. Precision is the
percentage of information reported that is correct. These metrics are defined more precisely
in Chapter 5.
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D have the semantic hierarchy for each domain. Appendix E list text analysis

rules derived by CRYSTAL for a Management Succession concept.
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CHAPTER 2

TEST DOMAINS

CRYSTAL has been applied successfully to several domains. I have chosen
two domains with sharply contrasting characteristics as a test bed for the ex-
periments presented in this dissertation. The Management Succession domain
involves business-related news articles, while the Hospital Discharge domain

involves medical records with a specialized medical vocabulary.

2.1 The Management Succession Domain

The Management Succession domain was briefly introduced in Chapter 1.
This domain is a corpus of Wall Street Journal texts, in which the informa-
tion to be extracted concerns persons moving into and out of top corporate
management positions.

It is important to be clear about what is not considered relevant in this
domain. Only top management positions in corporations are relevant: not
governmental appointments or union positions. Being a member of the board
of directors is not relevant, although chairmanship of a company is relevant.

Management Succession output is represented as case frames with four
slots: Person_In, Person_QOut, Position, and Organization. One example of

Management Succession output has already been presented in Figure 1.2. The

13



Input text:

Staar Surgical Co.’s board said that it has removed
Thomas R. Waggoner as president and chief executive
officer and that John R. Wolf, formerly executive

vice president, sales and marketing, has been named
president and chief executive officer.

The Staar board also said that John R. Ford resigned
as a director, and that Mr. Wolf was named a member

of the board.

Output representation:

Succession_Event:

Person_In:
Person_Out:
Position:
Organization:

Succession_Event:

Person_QOut:
Position:
Organization:

John R. Wolf

Thomas R. Waggoner

president and chief executive officer
Staar Surgical Co.

John R. Wolf
executive vice president, sales and marketing
Staar Surgical Co.

Figure 2.1 Output from a Management Succession text (being named to or
leaving the board of directors is ignored as irrelevant to the domain)

text in Figure 2.1 shows another text, which has a mixture of relevant and

irrelevant appointments and removals from office.

Sometimes judging whether an event is relevant cannot be done solely on

the basis of local context. The sentence “He succeeded George Adams, who

resigned in July” may or may not be a management succession event. If Mr.

Adams resigned as a corporate officer, then it is relevant. If he was head of a

government agency, editor of a newspaper, or member of a board of directors,
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then it is not relevant. Text analysis rules that are based on local context
cannot make such distinctions and must rely on later discourse processing to
filter out incorrect extractions.

CRYSTAL requires a semantic hierarchy for each domain that shows which
semantic class is a subclass of another class. The Management Succession do-
main needs semantic classes such as <Person Name> (“Mr. Smith”) and
<Generic Person> (“he”), which are subclasses of <Person>. The classes
<Organization Name> (“IBM”) and <Generic Organization> (the “com-
pany”) are likewise subclasses of <Organization>. <Corporate Post> (“chief
executive officer”) and <Generic Position> (the “post”) are subclasses of
<Position>. Appendix C shows the entire hierarchy of 55 semantic classes.

The corpus of Management Succession texts includes the 200 texts provided
by the MUC-6 performance evaluation. I felt that 200 texts might provide
insufficient training examples, so I expanded the corpus with additional texts
from the Wall Street Journal. The texts include a mix of actual management
succession events as well as “near misses” involving irrelevant positions such
as director or editor and irrelevant organizations such as government agencies.

The training for this domain consists of 599 annotated texts with the statis-

tics shown in Figure 2.1%.

2.2 The Hospital Discharge Domain

Hospital discharge summaries are dictated by a physician at the conclusion

of a patient’s hospitalization. The writing style and vocabulary include terms

1A sentence may result in multiple “training instances” depending on how it is syntacti-
cally analyzed. For example a sentence with multiple independent clauses becomes multiple
instances.
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Texts: 599 Person_In: 678
Sentences: 10,053 Person_Out: 714
Instances: 16,325 Position: 1,025

Organization: 833

Table 2.1 Statistics on number of sentences and instances in the Management
Succession domain

and usages peculiar to medical notes and contain a mixture of full sentences
and sentence fragments.
The task in this domain is to identify all references to symptoms and to

diagnoses. These are further broken down into four categories:

Symptom, Present
Symptom, Absent
Diagnosis, Confirmed

Diagnosis, Ruled _Out

Symptom includes both clinical findings and statements by a patient about
his or her condition. Phrases that indicate an abnormal condition are instances
of Symptom,Present, while normal or unremarkable findings are instances of
Symptom, Absent.

Diagnosis means a conclusion drawn by a physician. If the text explicitly
states that the patient does not have a disease or allergy, this is classified
as Diagnosis, Ruled_QOut. Other diagnoses are considered Diagnosis, Confirmed,
whether the diagnosis was made during the current hospitalization or was
previously made. Medical conditions of family members or conditions that are

only suspected are considered irrelevant and not extracted.
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Figure 2.2 shows an excerpt of a Hospital Discharge text. The output has
nine separate case frames, one for each extracted fact. Unlike the Management
Succession domain, in which the output representation has multi-slot case

frames, the Hospital Discharge domain has only single-slot case frames.

Input text:
HISTORY OF PRESENT ILLNESS: ... He also has a medical
history significant for cirrhosis and on a recent screening
chest X-Ray, was found to have new right sided lung nodules. ...

He also is complaining of night sweats but denies any
chest pain, hemoptysis, or shortness of breath. ...

ALLERGIES: He has no known drug allergies.

PHYSICAL EXAMINATION: ... LUNGS: Initially had diffuse

rhonchi and all fields cleared after coughing.
Output representation:

Diagnosis, Confirmed: cirrhosis

Symptom, Present: new right sided lung nodules

Symptom, Present: night sweats

Symptom, Absent: chest pain

Symptom, Absent: hemoptysis

Symptom, Absent: shortness of breath

Diagnosis, Ruled_Out: no known drug allergies

Symptom, Present: diffuse rhonchi

Symptom, Absent: all fields cleared

Figure 2.2 A Hospital Discharge text and a list of extracted facts
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This is a major difference between the two domains. Information in the
Management Succession domain centers around events. Individual facts such
as persons, positions, and organizations are relevant only because of a rela-
tionship between the facts. Extracted facts in the Hospital Discharge domain,
however, stand in isolation from each other. A phrase such as “lung nodules”
will always be a Symptom,Present when it occurs in an affirmative context
(e.g. “was found to have lung nodules”) and a Symptom,Absent if negated
(e.g. “exam revealed no lung nodules”).

The Hospital Discharge domain requires a semantic hierarchy appropriate
to medical texts. CRYSTAL uses a hierarchy of 133 semantic classes adapted
from the Unified Medical Language Systems (UMLS) on-line medical the-
saurus, developed by the National Library of Medicine [Lindberg et al. 1993].
In this hierarchy a <Finding> has two subclasses, <Sign or Symptom> and
<Laboratory or Test Result>. A <Finding> is a <Conceptual Entity>. The
semantic class <Disease or Syndrome> is a <Pathologic Function>, which is
a descendant of the class <Event>. Appendix D shows the entire hierarchy.

The Hospital Discharge corpus consisted of 502 texts with the following
characteristics. This domain is denser in information content than Manage-

ment Succession, with twice as many slot fills per sentence.

Texts: 502 Symptom, Present: 3,915
Sentences: 15,250 Symptom, Absent: 4,309
Instances: 17,500 Diagnosis, Confirmed: 2,100

Diagnosis, Ruled_Out: 446

Table 2.2 Statistics on number of sentences and instances in the Hospital
Discharge domain
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2.3 Annotating the Training Corpora

CRYSTAL is a supervised learning algorithm, and as such needs training
instances that have been annotated by a human expert. CRYSTAL is given a
training set of texts in which every instance of the concept being learned (e.g.
management succession event) has been explicitly marked in the text. Any
phrases not marked as positive instances of the target concept are considered
to be negative instances.

CRYSTAL'’s job is to induce a set of general rules from this training that
will allow it to identify the target concept in previously unseen texts. In
effect, CRYSTAL is learning to imitate the human experts who annotated the
training material.

Training texts for these experiments were annotated by marking relevant
phrases, to label that phrase’s role in a target concept. A point-and-click
interface was developed to facilitate the process by colleagues in the University
of Massachusetts Natural Language Processing Laboratory?.

The sentence in Figure 2.3 has been annotated to show that “night sweats”
is a Symptom, Present (<SP>) and that “chest pain”, “hemoptysis”, and “short-
ness of breath” are Symptom, Absent (<SA>).

The annotation for the Hospital Discharge domain was done by a team of
three nurses under the supervision of the physician who helped to define the
information extraction task. They were able to mark an average of five texts

per hour.

2The text marking interface was developed David Fisher and Fang-fang Feng. It allows a
user to specify a set of short abbreviations for concept slot names. The user then indicates a
word or phrase to be labeled with one or more of those abbreviations. The labeling conven-
tions resemble those used for hypertext links. <SP> marks the start of a Symptom,Present
and </SP> marks the end of the labeled phrase.
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He also is complaining of <SP> night sweats </SP> but denies
any <SA> chest pain </SA>, <SA> hemoptysis </SA>, or
<SA> shortness of breath </SA>.

Figure 2.3 Training annotations in a Hospital Discharge text

In domains with output represented as multi-slot case frames, annotation
must also indicate which phrases participate in the same case frame. In the
Management Succession domain, phrases that play a role in succession event
1 are labeled with “SE=1", and so forth. Figure 2.4 shows a sentence with two
succession events.

<PI SE=1> He </Pl> succeeds <PO SE=1> <Pl SE=2> Jack Harper

</Pl> </PO>, a <SO SE=2> company </SO> founder who was
named <SP SE=2> chairman </SP>.

Figure 2.4 Training annotations for Management Succession

In this sentence, succession event 1 (SE=1) has two slots filled: “he” is
Person_In and “Jack Harper” is Person_Out. Mr. Harper plays the role of
Person_In in succession event 2 (SE=2), which also has an Organization (SO)
and a Position (SP).

Note that generic references and pronouns are marked as valid phrases to
extract. This is done under the assumption that later discourse processing
will resolve these to an actual person or company name. Another decision
that I made in creating training for Management Succession was to mark only
information that could be inferred from the context of the current sentence.
Once I had settled on annotation guidelines, text marking went quickly, at an

average of 20 texts per hour.
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Training annotations are added directly to the texts and make no assump-
tions about what syntactic analysis and semantic tagging will later be done
by the information extraction system. The annotation is also neutral about
the representation language of the text analysis rules. CRYSTAL’s rule rep-

resentation is presented in the following chapter.
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CHAPTER 3

CRYSTAL’S TEXT EXTRACTION RULES

CRYSTAL learns rules to extract concepts of interest to a particular do-
main (e.g. succession events) based on local linguistic context. These rules use
a combination of syntactic, semantic, and lexical evidence to identify references
to the target concept.

How should local linguistic context be represented in the instances pre-
sented as input to CRYSTAL and in CRYSTAL’s text analysis rules? The
representation must be expressive enough to capture the richness of natural
language, yet not so complex that a machine learning algorithm has trouble
finding regularities in the training.

The rules must have access to some level of syntactic knowledge, at least
distinguishing major syntactic constituents such as subject, verb, and direct
object. Otherwise CRYSTAL could not tell who is the Person_In and who is
the Person_QOut in “Mr. A succeeds Mr. B as chairman” and “Mr. B succeeds
Mr. A as chairman”. The rules will also need to distinguish affirmative from
negative phrases and distinguish active from passive verbs.

Expressing rules in terms of semantic classes allows compact rules with
greater generality than rules using only exact words. If semantic classes have
been assigned to words in the input, a rule can, for example, require the class

<Corporate Post> to be found in a prepositional phrase. This would apply to
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instances where someone has been named “as chairman”, “as chief executive
officer”, “as vice president”, and so forth. Semantic classes allow a single rule
to cover a long list of exact words.

The semantic class assignment must be appropriate to the domain. Rules
for the Management Succession domain can be expressed in terms of semantic
classes such as <Person Name>, <Organization Name>, and <Corporate
Post>. The Hospital Discharge domain needs classes such as <Disease or
Syndrome>, <Body Part>, and <Finding>.

Semantic classes alone may not be sufficient in some cases, however. In
the Management Succession domain, the word “former” is a good clue that
someone is a Person_Out (“the former chairman”), while “new” is evidence
for Person_In (“the new chairman”). Using exact words as well as semantic
classes is especially important when the semantic class assignment has not been
fine-tuned to make the distinctions needed for the information extraction task.

Another consideration that applies to both semantic classes and exact
words is the distinction between head terms and modifying terms. The mean-
ing of a word or class may depend on whether it is found as a head or modifier.
For example, the term “cancer” in a hospital discharge report is usually evi-
dence of the concept Diagnosis, but not when it is used as a modifier (“cancer
studies” or “cancer treatment”).

The following section shows how CRYSTAL incorporates these various

types of linguistic evidence in the representation of instances and of rules.
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3.1 Concept Definitions

CRYSTAL'’s text analysis rules, called concept definitions, do not operate
directly on the raw text. The text is first processed by a sentence analyzer to
produce instances for CRYSTAL. These instances have been segmented into
syntactic constituents such as subject, verb, object, and prepositional phrases.
In addition, each word has been tagged with a semantic class.

The concept definitions apply semantic and lexical constraints to syntactic
constituents of the instance. These constraints are conditions that must be
satisfied by the instance in order for the rule to fire. If all constraints are
satisfied, CRYSTAL creates a case frame representing information extracted
from that instance.

Some examples of constraints are a lexical constraint that requires a verb
phrase to include the words “succeeded”, a semantic constraint that requires
a direct object to include the semantic class <Person Name>, and a third
constraint that requires a prepositional phrase to include the class <Corporate
Post>.

These three constraints are all satisfied by a sentence such as “He succeeded
George Henshaw as chairman and chief executive officer.” A concept definition
for the Management Succession domain might use these constraints to identify
instances that have a Person_Out in the direct object and Position in the
prepositional phrase.

CRYSTAL is independent of the syntactic analysis and the semantic class
assignment. It uses whatever syntactic labels and semantic classes are found

in the training instances. Many sentence analyzers transform a sentence into a

24



deeply nested parse tree. The present implementation of CRYSTAL, however,
requires that the instances be presented as a flat list of syntactic constituents
with no nested structure.

Training instances for these experiments were created by the BADGER
sentence analyzer of the University of Massachusetts [Fisher et al. 1995]. The
Hospital Discharge domain used a version of BADGER that segments each
simple clause into constituents such as SUBJ, VERB, OBJ, ADV, and PP
(prepositional phrase). The version used for the Management Succession do-
main uses those syntactic constituents and also has constituents labeled REL-
SUBJ, REL-VERB, REL-OBJ, and REL-PP for relative clauses attached to
the subject, verb, object, and prepositional phrase, respectively.

In addition to training instances, CRYSTAL is given a semantic hierarchy
for the domain and a data file listing the concepts for the domain. The seman-
tic hierarchy allows rules with class constraints to cover subclasses, for exam-
ple a constraint requiring the class <Person> covers the subclasses <Person
Name> and <Generic Person> in Management Succession instances.

Consider the following sentence, “Paul Herold, who was formerly a senior
vice president, was recently named chairman of this major pharmaceuticals
concern.” Two concept definitions that apply to this sentence are shown in
Figure 3.1. The first identifies Mr. Herold as a Person_Out of a Position found
in a relative clause attached to the subject. The second concept definition
identifies him as a Person_In to a Position found in the direct object.

These concept definitions illustrate the constraints CRYSTAL may apply
to syntactic constituents of an instance. The terms constraint is an unordered

list of words that must be included in the syntactic constituent. The classes
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Concept type: Succession Event
Constraints:

SUBJ::
Classes include: <Person Name>
Extract: Person_Out
REL-SUBJ::

Terms include: FORMERLY
Classes include: <Corporate Post>
Extract: Position

Concept type: Succession Event
Constraints:

SUBJ::
Classes include: <Person Name>
Extract: Person_In

VERB::
Root: NAME
Mode: passive

OBlJ::
Classes include: <Corporate Post>
Extract: Position

Figure 3.1 Two concept definitions that apply to “Paul Herold, who was
formerly a senior vice president, was recently named chairman of this major
pharmaceuticals concern.”

constraint is an unordered list of semantic classes that must be present, either
directly or through an IS-A relationship.

Lexical and semantic constraints may also make a distinction between head
terms or classes and modifier terms or classes. Terms found as the last term
of the phrase, or just before punctuation, before a preposition, or before an
adverb are considered to be head terms. All others are considered modifiers.

The mode constraint is used for “affirmative” or “negative”, “active” or

“passive”. CRYSTAL will accept whatever modes it finds in its input in-
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stances, as assigned by the sentence analyzer. The root constraint uses any
morphological information supplied by the sentence analyzer. Concept defi-
nitions with constraints on a prepositional phrase may also have a constraint
that requires a particular preposition.

Here is a list of constraints used by CRYSTAL.

Constraints on syntactic constituents:
Terms
Head terms
Modifier terms
Classes
Head classes
Modifier classes
Root
Preposition
Mode (affirmative/negative, active/passive)

Figure 3.2 Constraints in a concept definition

If all constraints for each syntactic constituent are satisfied, CRYSTAL
creates a case frame for the target concept. The concept definition specifies the
output concept and associates each case frame slot with a syntactic constituent.
For example, the first concept definition in Figure 3.1 fills the Person_Qut slot
with the subject and the Position slot with the REL-SUBJ. Later processing

will generally be needed to trim extraneous words from the extracted phrases.

3.2 A Few Sample Concept Definitions

Figure 3.3 shows a sentence that has been syntactically segmented and se-

mantically tagged to produce an instance for CRYSTAL. Note that the phrase
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Input Sentence:
He succeeds Jack Harper, a company founder who was
named chairman.

CRYSTAL Instance;

SUBJ:
Terms: HE
Classes: <Generic Person>
Mode:  affirmative
VERB:

Terms: SUCCEEDS
Root: SUCCEED
Classes: <Root Class>
Mode: active, affirmative
OBJ:
Terms: JACK_.HARPER %COMMA% A COMPANY FOUNDER
Classes: <Person Name>, <Generic Organization>,
< Generic Person>
Mode: affirmative

REL-OBJ:
Terms: WHO WAS NAMED CHAIRMAN %PERIOD%
Classes: <Past>, <Event>, <Corporate Post>
Mode: affirmative

Figure 3.3 Syntactic analysis and semantic tagging of Management Succes-
sion input
“who was named chairman” is included in the instance as a REL-OBJ (relative
clause attached to the direct object).

The instance also has semantic classes assigned to each word. The words

“he”, “company”, “founder”, “was”

, “named”, and “chairman” are all found
in the semantic lexicon for this domain, although “succeeds” was not, due
to an oversight. The semantic lexicon and semantic hierarchy were created

specifically for the Management Succession domain. Words not found in the

semantic lexicon are given the class <Root Class>.
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In the Management Succession domain, BADGER augments its semantic
lexicon with a proper name recognizer that identifies persons, organizations,
and locations. This module has assigned the semantic class <Person Name>
to “Jack Harper”.

Figure 3.4 shows a concept definition that applies to the instance in Figure
3.3. This definition tests that the subject contains a word with semantic class
<Person>, that the verb root is “succeed”, and that the direct object contain
the class <Person Name>. If all these constraints are met CRYSTAL creates a
Successton Fvent case frame with the subject of the instance in the Person_In

slot and the direct object in the Person_Qut slot.

Concept type: Succession Event
Constraints:

SUBJ::
Classes include: <Person>
Extract: Person_In
VERB::
Root: SUCCEED
Mode: active
OBlJ::
Classes include: <Person Name>
Extract: Person_Out

Figure 3.4 A concept definition that applies to “He succeeds Jack Harper, a

company founder ...”

CRYSTAL consults a domain-specific semantic hierarchy to test the se-
mantic constraints. The semantic constraint on the subject is met by “he”
since the class <Generic Person> is a subclass of <Person>. All the other

constraints are also satisfied by this instance, so CRYSTAL creates a case
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frame with Person_In filled by “He” and Person_QOut filled by “Jack Harper,
a company founder”.

Figure 3.5 shows a second concept definition that applies to the same in-
stance. This definition looks for Person_In in the direct object and Position in
a relative clause attached to the direct object. Semantic constraints require a
<Person Name> in the direct object and a <Corporate Post> in the relative

clause. The relative clause must also include the terms “who” and “named”.

Concept type: Succession Event
Constraints:

OBlJ::
Classes include: <Person Name>
Extract: Person_In
REL-OBJ::

Terms include: WHO NAMED
Classes include:  <Corporate Post>
Extract: Position

19

Figure 3.5 A concept definition that applies to “... Jack Harper, a company

founder who was named chairman”

After applying this concept definition to the instance in Figure 3.3, CRYS-
TAL creates a case frame with the Person_In slot filled by the phrase “Jack
Harper, a company founder”. The Position slot is filled by the phrase “who
was named chairman”. Each of these phrases includes the desired information,
but also has extraneous words that must be trimmed away by later processing

in a full information extraction system.
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3.3 Finding the Right Level of Generalization

These concept definitions operate properly on the sample instance, but so
would a large range of possible concept definitions. The definition in Figure 3.4
has a class constraint requiring <Person> in the subject. A more restrictive
constraint would work just as well on this particular instance. The constraint
on the subject could require the class <Generic Person> and further require
that there be no modifier term. Figure 3.6 shows a concept definition with

these constraints.

Concept type: Succession Event
Constraints:

SUBJ::
Modifier terms include:  <null>
Head classes include: < Generic Person>
Extract: Person_In
VERB::
Root: SUCCEED
Mode: active
OBlJ::
Classes include: <Root Class>
Extract: Person_Out

Figure 3.6 An alternate concept definition for “He succeeds Jack Harper, a
company founder”

The definition in Figure 3.6 also drops all constraints on the direct object.
Constraining the direct object to have a <Person> is unnecessary, since a
sentence beginning “He succeeds” can have nothing other than a person in the
direct object in this domain.

I am not implying that Figure 3.6 is a better concept definition than that

in Figure 3.4 or vice versa. This example is merely intended to point out
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that a variety of concept definitions can apply to a given instance. Some of
the possible definitions may seem foolish, such as one with a term constraint
requiring a “%comma%” in the direct object. The total number of possible
concept definitions that may be derived from this instance is astonishingly
large, as will be shown in the following chapter.

The challenge for CRYSTAL is to derive concept definitions from training
examples that are neither too restrictive nor too general. An overly restrictive
definition will be unlikely to apply to new instances, for example constraining
the direct object to include “Jack Harper”. On the other hand, an overly gen-
eral definition will make extraction errors and apply to instances that do not
contain the target concept. The next chapter presents CRYSTAL’s strategy

for finding the appropriate level of generalization.
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CHAPTER 4

CRYSTAL’S INDUCTION ALGORITHM

The goal of CRYSTAL is to find a set of concept definitions that are gen-
eralized enough to have good coverage on previously unseen texts, yet con-
strained tightly enough to operate reliably. CRYSTAL’s approach is to begin
with highly specific concept definitions and gradually relax the constraints.
Each proposed generalization is tested for extraction errors on the training
set, which has been hand-tagged with the desired phrases to be extracted.
Generalization continues until further relaxation would lead to a definition
that exceeds a user-specified error tolerance.

CRYSTAL begins by selecting a positive instance of the target concept as
a seed. CRYSTAL then takes the most specific concept definition that covers
this instance and generalizes it. Each proposed generalization is tested on the
training set to ensure that the proportion of negative instances does not exceed
a user-specified error tolerance.

The most general definition within error tolerance is added to the rule
base and another seed is selected from positive instances not yet covered by
the rule base. This is repeated until all positive instances have been covered or
have been selected as seed instances. This methodology in machine learning

is called a covering algorithm (see Chapter 8).
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4.1 Deriving Initial Concept Definitions

The first step of CRYSTAL is to create a set of initial concept definitions,
one from each positive instance of the concept being learned. An initial defini-
tion is the most restrictive one that covers the instance: every term and every
semantic class is required to be identical to the motivating instance. CRYS-
TAL includes all words and classes, since it does not know in advance which
of these features are essential to the concept and which will later be dropped
during generalization.

In a multi-slot concept such as Succession Fvent, some instances will con-
tain only a subset of the case frame slots. In the Management Succession
domain, only 9% of the sentences referring to a succession event contain refer-
ences to all four slots. If the company name has been mentioned in a previous
sentence, only the Person_In and Position might be mentioned, for example.

The most useful approach for information extraction is to have CRYSTAL
learn each subset of slots as a separate concept to be learned!. Any instance
that contains that subset of slots is considered a positive instance of the target
concept. For example, one target concept is succession events that have a
Person_In and a Person_Qut slot. Instances that contain at least these two
slots are positive. All other instances are considered negative instances for this
concept, even though they may be positive for other concepts.

Figure 4.1 shows an initial concept definition from the input “He succeeds

?

Jack Harper, a company founder who was named chairman.” This sentence

IThis results in 2* — 1 combinations of a k-slot concept. A user can specify which of
these combinations are to be learned. For the experiments with the Management Succession
domain, I had CRYSTAL learn all 15 combinations
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has been hand-tagged with a succession event containing “He” as Person_In
and “Jack Harper” as Person_Out’.

This initial concept definition will correctly identify that the subject of the
sentence contains a Person_In and the direct object contains a Person_QOut,
but is so restrictive that it will not be satisfied by a sentence in any other
text. In machine learning terminology, it is the maximally specific concept
description that covers this instance. CRYSTAL must learn which of these
constraints to relax.

Term constraints can be relaxed by dropping terms. The direct object
constraint requiring “Jack Harper %comma% a company founder” has five
terms (Jack_Harper is treated as a single term, as is %comma%). There are
32 possible ways to relax this constraint by dropping a subset of the terms
(2° = 32). There are also four possible relaxations of the two-word head terms
constraint and eight for the three-word modifier terms constraint (22 = 4,
2% = 8). This is equivalent to generalizing a formula in the predicate calculus
by dropping a conjunctive term.

Class constraints may be relaxed by moving up in the semantic hierar-
chy. For example <Generic Person> or <Person Name> may be relaxed to
<Person>, then to <Entity>, then to <Root Class>, which is equivalent to

no constraint. There are 16 distinct relaxations possible for the classes con-

2See Figure 2.4 for the tagged sentence and Figure 3.3 for the syntactic analysis that
forms the basis for a training instance.
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Concept type: Succession Event
Constraints:

SUBJ::

Terms include:

Head terms include:
Modifier terms include:
Classes include:

Head classes include:
Mode:

Extract:

VERB::

Terms include:

Head terms include:
Modifier terms include:
Root:

Mode:

OBlJ::

Terms include:

Head terms include:
Modifier terms include:
Classes include:

Head classes include:

Modifier classes include:

Mode:
Extract:

REL-OBJ::

Terms include:

Head terms include:
Modifier terms include:
Classes include:

Head classes include:

Modifier classes include:

Mode:

HE

HE

<null>

< Generic Person>
< Generic Person>
affirmative
Person_In

SUCCEEDS
SUCCEEDS

<null>

SUCCEED

active, affirmative

JACK_HARPER %COMMA®% A COMPANY FOUNDER
JACK_HARPER FOUNDER

%COMMAY% A COMPANY

<Person Name>, <Generic Organization>,
<Generic Person>

<Person Name>, <Generic Person>
<Generic Organization>

affirmative

Person_Out

WHO WAS NAMED CHAIRMAN %PERIOD%
CHAIRMAN

WHO WAS NAMED %PERIOD%

<Past>, <Event>, <Corporate Post>
<Corporate Post>

<Past>, <Event>

affirmative

Figure 4.1 The initial concept definition for “He succeeds Jack Harper, a

company founder ...”
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straint on the direct object®, 6 for the head classes constraint, and 4 for the
modifier classes constraint.

With over one thousand possible ways? to relax constraints on the direct
object, over one thousand for the REL-OBJ, and over one hundred each for
the subject and the verb, there are more than one billion ways to generalize
the initial concept definition in Figure 4.1.

CRYSTAL must search among this enormous space of possible concept
definitions for an acceptable level of generalization. CRYSTAL needs a search
control strategy that allows it to drop quickly those constraints that are merely
accidental features of the motivating instance and to retain those constraints

that are essential to the target concept.

4.2 Generalizing the Initial Definitions

CRYSTAL gradually relaxes constraints on the initial concept definition,
which typically covers only a single positive instance. Each generalization step
relaxes constraints enough to increase the number of positive training instances
covered. Each proposed generalization is then tested on the entire training set
to ensure that it does not cover an excessive proportion of negative training

instances.

3Let GP=<Generic Person>, PN=<Person Name>, P=<Person>, GO=<Generic
Organization>, O=<Organization>, E=<Entity>, R=<Root Class>. There are 16
distinct relaxations of the classes conmstraint: (GP,PN,GO), (GP,PN,0), (GP,PN,E),
(GP,P,GO), (GP,P,0), (GP,P,E), (P,PN,GO), (P,PN,0), (P,PN,E), (P,GO), (P,0), (P,E),
(E,GO), (E,0), (E), (R).

“There are 32 possible relaxations for the terms constraint, 4 for head terms, 8 for
modifier terms, 16 for the classes constraint, 6 for head classes, 4 for modifier classes, and
2 for the mode constraint. If these are relaxed independently there are 32 x4 x8x 16 x 6
x 4 x 2 = 786,432 combinations. Some of these are functionally equivalent, but there are
several thousand distinct relaxations for constraints on the direct object.
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The key insight of CRYSTAL is to guide this relaxation by finding the most
similar initial concept definition. CRYSTAL creates a proposed generalization
by dropping constraints that are not shared by the similar definition. This is
equivalent to relaxing constraints just enough to cover the most similar positive
instance, since each initial concept definition corresponds to a positive training
instance.

Unifying the term constraint “Harold _Archer %comma% former chairman
of Atlas” with “Mr. Green %comma% chairman since 1982” results in dropping
all terms from the constraint but “%comma%” and “chairman”. In the case
of class constraints, unification means moving up in a semantic hierarchy to
a common ancestor. For example, unifying <Person Name> with <Generic
Person> results in a class constraint of <Person>. Unifying <Person Name>
with <Event> results in <Root Class>.

This strategy has several beneficial results. Features that are merely ac-
cidental properties of a particular instance will be dropped quickly. Features
that are shared with a similar positive instance are retained. These tend to
include essential characteristics of the target concept. The intractable problem
of finding an optimal generalization is thus reduced to the simpler problem of
finding a similar initial concept definition.

Figure 4.2 shows CRYSTAL’s generalization mechanism graphically. The
actual instance space has an extremely large number of dimensions, but this
two dimensional figure can give some insight into how CRYSTAL operates.

The plus signs are positive instances and the minus signs are negative

instances of a target concept in instance space. A concept definition defines a
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region in instance space, and is shown as an oval that initially covers only a
single seed instance, as shown in Part A of the diagram.

Part B of the diagram shows the first proposed generalization of this initial
definition. The current definition covers only the seed instance, shown as a
dark boundary. CRYSTAL has relaxed constraints on this current definition
just enough to cover the nearest instance. The proposed generalization is
shown as a boundary in lighter ink, since CRYSTAL is not yet committed to
accepting this definition.

After testing the proposed definition of Part B, CRYSTAL finds that it
covers two training instances with no errors. This definition becomes the
current definition in Part C of the figure. The next proposed generalization in
part C covers four instances with no errors.

In part D of Figure 4.2 CRYSTAL has a current definition that covers four
instances with no errors. When this definition is relaxed enough to cover the
nearest positive instance will also cover two negative instances.

What CRYSTAL does at this point depends on the error tolerance parame-
ter. The proposed concept definition covers seven training instances with two
errors. At error tolerance 0.30, this would be an acceptable definition, and
generalization would continue as before. At an error tolerance of 0.20, CRYS-
TAL would halt generalization. The proposed generalization that exceeds the
error tolerance is discarded and CRYSTAL adds the current definition (which

covers four instances with no errors) to the rule base.
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Generalizing from a Seed Instance
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Figure 4.2 Each generalization step relaxes constraints just enough to cover
the nearest positive instance.
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4.3 Finding Similar Concept Definitions

The similarity metric used by CRYSTAL counts the number of relaxations
that would be needed to unify the current concept definition with an initial
definition. Dropping one word from a term constraint counts as a single re-
laxation, as does dropping a mode or root constraint. Moving up one level
in the semantic hierarchy counts as one relaxation. Entirely dropping a class
constraint is equivalent to the number of relaxations needed to reach the root
class.

CRYSTAL applies the similarity metric to all initial concept definitions
that extract the same slot values from the same constituents as the current
definition. Thus, if CRYSTAL is generalizing a definition that extracts Per-
son_In from the subject and Position from a prepositional phrase, it will only
look for similar definitions that extract these slots from the same constituents.

All constraints on a syntactic constituent are dropped if no corresponding
constituent is found in the other definition. Suppose that the current definition
has two PP’s (prepositional phrases) “as president” and “in 1983” and an
initial definition has one PP “as chairman”. CRYSTAL matches the most
similar PP’s, and leaves “in 1983” unmatched®.

When CRYSTAL looks for the most similar definition, it considers all initial
definitions that are not already covered by the current definition. Although
initial definitions covered by the existing rule base are not used as seed defi-

nitions, they are still available to guide generalization.

SWhen there are more than one of the same-named constituents, such as multiple PP’s,
CRYSTAL should ideally find a mapping that maximizes the similarity. CRYSTAL approx-
imates this with a greedy assignment based on the similarity between each pair of possibly
matching constituents.
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CRYSTAL includes a mechanism for biasing the similarity metric to give a
greater weight to certain constraints and to certain syntactic constituents than
to others. These weights are passed as parameters to CRYSTAL. The settings
used in these experiments count relaxation of verb constraints as 1.5 times the
weight of other constituents. This weight factor is based on an intuition that
verbs tend to be a somewhat more important part of the context than other
constituents.

Similarly, the preposition seems to be more important than other words
in a prepositional phrase, so it has been given a weight of four times that of
other words. No attempt has been made to tune these settings for particular
domains, although this could be done. I have experimented very little with
the effect of various settings for the distance metric. The impact on system
performance seems to be slight. Getting exactly the right similarity metric
may not be critical to CRYSTAL’s performance, due to the robustness of its

search strategy.

4.4 The CRYSTAL Algorithm

Let us now turn to a more formal statement of the CRYSTAL algorithm.
CRYSTAL starts with an empty rule base and a set of initial concept defini-
tions, one for each positive training instance. CRYSTAL repeatedly selects as
a seed an initial concept definition that is not yet covered by the rule base.
A concept definition is generalized from this seed and added to the rule base.
This continues until all the initial definitions have either been selected as seeds

or are covered by the rule base.
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The CRYSTAL Algorithm:

Rules = NULL
Derive an initial concept definition from each positive instance
Do for each initial definition D not covered by Rules
Loop:
D’ — the most similar initial definition to D
If D’ = NULL, exit loop
U — the unification of D and D’
Test U on the training set
If the error rate of U > error tolerance
Exit loop
Set D=U
Add D to the Rules
Return the Rules

CRYSTAL belongs to a class of machine learning algorithms known as cov-
ering algorithms, which find a set of concept descriptions that cover the pos-
itive instances and do not cover negative instances. Covering algorithms are
discussed more fully in Section 8.3. Where CRYSTAL differs from other cov-
ering algorithms such as A? [Michalski 1983], CN2 [Clark and Niblett 1989],
and the candidate elimination algorithm [Mitchell 1978, Mitchell 1982] is in
the method used to find generalized concept descriptions.

To generalize a concept definition D, CRYSTAL relaxes the constraints by
finding a similar initial definition D’ and creating the unification U of D and
D’. This process of generalization is repeated until one of two things happens.
If no D’ can be found, this means that D already covers all possible candidates
for similar definition and will not profit from further relaxation.

The more likely situation is that some essential constraint has been relaxed
too far in creating the proposed definition U. If the error rate of U exceeds

a user-defined error tolerance, then U is discarded. CRYSTAL backs up one
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generalization and adds the definition D to the rule base. This is the most
general definition found that was within tolerance.

The error rate of a proposed definition is computed by applying the defi-
nition to each instance in the training set. These instances have been created
from training texts that were hand-annotated to indicate which constituents,
if any, contain slot values of the target concept. If all the constraints of a
definition are satisfied, but the appropriate slot values are not found, this is

counted as an extraction error.

4.5 Robustness of CRYSTAL

Why does CRYSTAL include an error tolerance parameter? This gives
CRYSTAL robustness with respect to noisy training data and prevents an
otherwise good definition from being blocked by an occasional negative in-
stance. See Sections 8.3.2 and 8.5 for a discussion of the pruning techniques
used by the CN2 covering algorithm and by decision tree algorithms to handle
noise.

A certain amount of noise tolerance is desirable when processing unre-
stricted text. One source of noise is the human annotators, who may make
errors or be inconsistent in labeling references to the target concepts. In par-
ticular, if a phrase is overlooked that should have been marked as a positive
instance, this will be considered a negative instance by CRYSTAL. Other
sources of noise are parsing mistakes by the sentence analyzer, or semantic
tagging that is too coarse to distinguish a negative instance from positive

instances.
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One unavoidable source of noise comes from the local nature of CRYSTAL
instances. Local evidence may not be sufficient to distinguish a relevant from
an irrelevant reference. In such cases it may be best to generate rules that
sometimes extract negative instances (i.e. irrelevant information). Later pro-
cessing in an information extraction system can often make use of evidence
beyond the local sentence to filter out irrelevant extractions.

For example, a Management Succession text may have a sentence that
says “Mr. A will succeed Mr. B” but not mention any company name or
corporate post in that sentence. CRYSTAL should create a succession event
case frame, even though there is only an 80% probability that this is relevant
information for this domain. A previous sentence may indicate that Mr. B
was head of a government agency, which makes Mr. A’s new job irrelevant to
the domain. CRYSTAL is followed by a discourse processing module that can
filter CRYSTAL’s output based on information outside the local sentence.

CRYSTAL is robust in another way. There is a built-in redundancy in
the concept definitions induced by CRYSTAL that tends to overcome sub-
optimal choices made during the induction. Once a similar definition has been
chosen for unification, CRYSTAL never backtracks to try alternate choices.
Unifying with the “most similar” initial definition is not guaranteed to lead to
an optimal generalized definition.

It turns out that this is not a serious problem. When CRYSTAL generates
a sub-optimal rule, the positive instances that are not covered are available
as later seed instances. CRYSTAL continues to add rules until the training

instances that were missed earlier have been covered.
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Suppose that CRYSTAL is generalizing from a seed instance, and a def-
inition exists that covers 100 positive instances including that seed. What
happens if CRYSTAL takes a wrong turn and arrives instead at a definition
that covers only 5 of these instances? The other 95 positive instances remain
to be chosen as seeds. This gives CRYSTAL 95 more chances to find the
high-coverage definition. If it is found, the sub-optimal definition becomes
redundant and causes no harm.

Even if CRYSTAL never finds a single definition to cover all 100 instances,
CRYSTAL guarantees that the region in instance space containing these in-
stances will still be covered. Several lower-coverage definitions, when taken
together, may actually give better performance than a single high-coverage
definition. Experiments reported in Section 5.5 show that a compact set of
high-coverage rules has a greater tendency to make errors on blind test in-

stances than an overlapping set of lower-coverage rules.

4.6 Time and Space Complexity of CRYSTAL

CRYSTAL has an efficient search control strategy for dealing with instances
spaces with extremely large numbers of features. This is important in natu-
ral language processing, where the number of word-based features can be ex-
tremely large, as discussed in Section 8.2. If a corpus has thousands of distinct
words and a feature represents a particular word in one of several syntactic
roles, there can be tens of thousands of features.

Let n be the total number of training instances, p be the number of posi-

tive instances. Finding a similar definition requires inspecting up to p initial
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definitions. The proposed generalization is then tested on n instances. This
gives computation time of O(p + n) = O(n) for each generalization step.

Let k& be the average number of generalizations per seed, which turns out
to be small enough that it can be treated as a constant (k ~ 3 for the Hos-
pital Discharge training sets). The number of times CRYSTAL selects a seed
to generalize is equal to r, the number of rules generated. This gives time
complexity of O(rn).

Ideally » depends only on the underlying concept being learned and is
independent of n and p. With noisy data, however, a seed is selected O(p)
times. This gives time complexity of O(pn).

The above analysis is for learning a single concept. If a domain has several
concepts, the time required for each is O(pn), where n is the same for all
concepts and p is the number of positive instances of a given concept.

Note that the size of the feature set does not enter into the time or space
requirements of CRYSTAL. The space required is proportionate to the number
of instances. Each instance is represented only in terms of the words and
semantic classes that actually appear in the instance. There may be thousands
of words and hundreds of semantic classes that do not appear in the subject,
thousands of words that do not appear in the direct object, thousands that do
not appear as the object of the preposition “with”, and so forth.

It is the bottom up nature of CRYSTAL that allows it to focus on a
small number of features at a time. This will also be true of other machine

learning algorithms® that operate bottom up, such as instance based learning

6given an appropriate implementation
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[Aha et al. 1991, Cost and Salzberg 1993] and some covering algorithms that
start from “seed” instances [Michalski 1983].

Algorithms that operate from the top down, on the other hand, typically
include a step that considers features exhaustively’. This is the case with
top down decision tree induction [Quinlan 1993] or decision list induction
[Pagallo and Haussler 1990], and some covering algorithms that operate top
down [Clark and Niblett 1989]. Extremely large feature sets can have a seri-
ous impact on computation time for these algorithms.

Mitchell’s candidate elimination algorithm combines aspects of top down
and bottom up processing [Mitchell 1978, Mitchell 1982]. The number of fea-
tures considered in a basic step of candidate elimination is small at first, but

may grow quite large during the course of induction.

4.7 A Walk-through Example

This section presents a trace in which CRYSTAL generalizes from a seed
instance that has a management succession event with a Person_In slot and
a Person_QOut slot. The training set used in this example was from 359 Man-
agement Succession texts (60% of the total corpus, selected randomly), which
produced 10,570 training instances. Of these 112 were positive instances of a
succession event including both a Person_In and a Person_QOut.

Let us take as a seed the initial definition that has already been presented

in Figure 4.1. The most similar initial concept definition is shown in Figure

7 An exception to this is a system by Yali Amit, Donald Geman, and Ken Wilder that uses
decision trees for optical character recognition [Amit et al. 1995]. It handles an extremely
large set of features by considering randomly selected subsets of the features. Multiple trees
were built in this way and allowed to vote on the classification.
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4.4. For the sake of clarity, I have shown just the motivating sentences for

these concept definitions in Figure 4.3.

Seed:
He succeeds Jack Harper, a company founder
who was named chairman.

Most similar:
He succeeds Delbert W. Yocam, a longtime Apple executive
who has held many posts at Apple, including chief operating officer.

Figure 4.3 The input sentences for a seed and the most similar instance.

CRYSTAL found this most similar initial definition by computing the sim-
ilarity between the seed and each initial definition that extracts Person_In
from the subject and Person_QOut from the direct object. The most similar
initial definition in Figure 4.4 has much in common with the seed. They have
identical subjects and identical verbs. The direct objects of each include a
<Person Name> and <Organization>. The direct object has an appositive®
in both cases. Each sentence ends in a relative clause attached to the direct
object that contains the class <Corporate Post> and <Past>.

Unifying the seed with this instance produces the generalized concept def-
inition shown in Figure 4.5. CRYSTAL tests this new definition on the entire
training set and finds that it covers two instances with no errors.

This may not seem to be much progress, but it actually represents six-
teen individual relaxations on the seed definition: twelve terms, head terms,
or modifier terms dropped, and four classes, head classes, or modifier classes

have been relaxed one level. <Generic Organization> has been relaxed to

8An appositive is two juxtaposed noun phrases, such as “Jack Harper, a company
founder”.
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Concept type: Succession Event
Constraints:

Head classes:
Mod. classes:

Head classes:
Mod. classes:

Mode:

SUBJ::
Terms: HE
Head terms: HE
Mod. terms: <null>
Classes: < Generic Person>
Head classes: <Generic Person>
Mode: affirmative
Extract: Person_In
VERB::
Terms: SUCCEEDS
Head terms: succeeps
Mod. terms: <null>
Root: SUCCEED
Mode: active, affirmative
OBlJ::
Terms: DELBERT_W._.YOCAM %COMMA% A LONGTIME
APPLE EXECUTIVE
Head terms: DELBERT_W..YOCAM EXECUTIVE
Mod. terms: %COMMA% A LONGTIME APPLE
Classes: <Person Name>, <Generic Post>,

<Organization Name>
<Person Name>, <Generic Post>
<Organization Name>

Mode: affirmative
Extract: Person_Out
REL-OBJ::

Terms: WHO HAS HELD MANY POSTS AT APPLE %COMMA%
INCLUDING CHIEF_OPERATING_OFFICER %PERIOD%

Head terms: CHIEF.OPERATING_OFFICER

Mod. terms: WHO HAS HELD MANY POSTS AT APPLE %COMMA%
INCLUDING %PERIODY%

Classes: <Past>, <Event>, <Corporate Post>,

<Generic Post>, <Organization Name>
<Corporate Post>

<Past>, <Event>, <Generic Post>,
<Organization Name>

affirmative

Figure 4.4 Most similar initial concept definition to the seed definition
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Concept type: Succession Event
Constraints:

SUBJ::

Terms include:

Head terms include:
Modifier terms include:
Classes include:

Head classes include:
Mode:

Extract:

VERB::

Terms include:

Head terms include:
Modifier terms include:
Root:

Mode:

OBlJ::

Terms include:
Modifier terms include:
Classes include:

Head classes include:

Modifier classes include:

Mode:
Extract:

REL-OBJ::

Terms include:
Modifier terms include:
Classes include:

Head classes include:

Modifier classes include:

Mode:

HE

HE

<null>

< Generic Person>
< Generic Person>
affirmative
Person_In

SUCCEEDS
SUCCEEDS

<null>

SUCCEED

active, affirmative

%COMMAY% A

%COMMAY% A

<Person Name>, <Organization>
<Person Name>

<Organization>

affirmative

Person_Out

WHO %PERIODY%

WHO %PERIODY%

<Past>, <Corporate Post>
<Corporate Post>

<Past>

affirmative

Covers 2 training instances with 0 errors

Figure 4.5 Unification of “He succeeds Jack Harper, a company founder”
and “He succeeds Delbert W. Yocam, a longtime Apple executive who has
held many posts at Apple, including chief operating officer”
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<Organization>, and <Generic Person> relaxed to <Person>, which is re-
dundant in the presence of a constraint requiring <Person Name>.

If any fewer than these sixteen relaxations had been made, the definition
would still cover only the seed instance. A search control mechanism that
considered all combinations of single relaxations, then pairs of relaxations,

and so forth, would founder before it made enough relaxations to observe any

46-45

progress. The seed definition has 46 single constraints, 5> pairs of con-

: 46-45-...31
straints, and <3>=%

combinations of sixteen constraints.

Since the definition in Figure 4.5 has error rate of zero, CRYSTAL continues
the generalization. After unifying with “He succeeds William F. Murdoch, 58,
who takes the title of vice chairman.” CRYSTAL arrives at the definition in
Figure 4.6. This has dropped the constraint requiring an <Organization> in
the direct object and <Past> in the relative clause. There are no changes
to constraints on the subject and verb. This definition covers four training
instances with no errors.

Note that this definition still requires the class <Corporate Office> in
the relative clause. This class has been engineered to include only job titles
that are considered relevant to the Management Succession domain. The next
relaxation unifies with “He succeeds Mark Stephens, 48, who resigned in May.”
This no longer includes the class <Corporate Post>, and lacks any reliable cues
that distinguish it from irrelevant instances such as succeeding to a government
post or on a board of directors.

After dropping the <Corporate Post> constraint, the definition covers six

training instances with one error, giving it an error rate of 0.167 on the training
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Concept type: Succession Event
Constraints:

SUBJ::
Terms include:
Head terms include:
Modifier terms include:
Classes include:
Head classes include:
Mode:
Extract:

VERB::
Terms include:
Head terms include:
Modifier terms include:
Root:
Mode:

OBlJ::
Terms include:
Modifier terms include:
Classes include:
Head classes include:
Mode:
Extract:

REL-OBJ::
Terms include:
Modifier terms include:
Classes include:
Head classes include:

Mode:

HE
HE

<null>

<Generic Person>
<Generic Person>
affirmative
Person_In

SUCCEEDS
SUCCEEDS

<null>

SUCCEED

active, affirmative

%COMMAY%
%COMMAY%
<Person Name>
<Person Name>
affirmative
Person_Out

WHO %PERIOD%

WHO %PERIOD%
<Corporate Post>
<Corporate Post>
affirmative

Covers 4 training instances with 0 errors

Figure 4.6 Class constraints for <Organization> in OBJ and <Past> in
REL-OBJ have been dropped after unifying with “He succeeds William F.
Murdoch, 58, who takes the title of vice chairman”
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data. If the error tolerance has been set at 0.00, CRYSTAL halts and adds
the definition in Figure 4.6 with coverage 4 and no errors to the rule base.
At an error tolerance of 0.25, CRYSTAL will continue generalizing and
eventually arrive at the definition in Figure 4.7. This covers 72 training in-
stances with 14 errors for an error rate of 0.194. The definition no longer
requires a relative clause, has dropped all term constraints, and has even
dropped the requirement of a <Person> in the direct object and dropped

the requirement that <Person> be the head term of the subject.

Concept type: Succession Event
Constraints:

SUBJ::
Classes include: <Person>
Head classes include: <Entity>
Mode: affirmative
Extract: Person_In
VERB::
Root: SUCCEED
Mode: active, affirmative
OBlJ::
Classes include: <Entity>
Head classes include: <Entity>
Mode: affirmative
Extract: Person_Out

Covers 72 training instances with 14 errors

Figure 4.7 CRYSTAL finally reaches a high coverage definition

If the error tolerance is set at 0.20, CRYSTAL will still find this gener-
alization, but not directly from the first seed. Generalization from this seed

halts at a lower-coverage definition with error rate 0.214. One of the positive
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instances not covered by this sub-optimal definition is later chosen as a seed
and produces the definition in Figure 4.7 after all.

Which error tolerance gives the best performance on unseen texts? Rule
sets created at tolerance 0.00, 0.10, 0.20, and 0.25 were tested on a blind
set of 240 texts that consisted of 6,106 instances. Even with error tolerance
0.00, CRYSTAL generates rules that are able to identify more than half of the
positive test instances of this concept.

As the error tolerance is raised, the number of rules generated decreases,
since the average coverage of each rule is greater. At tolerance 0.25, CRYSTAL
produces 15 rules that find nearly 80% of the positive test instances, with some
decrease in precision.

Performance is measured in terms of recall and precision, where recall is the
percentage of positive instances that were extracted by the rule base. Precision

measures the percent correct of instances extracted by the rule base®.

Tolerance # Rules Recall Precision

0.00 41 53.7 87.8
0.10 34 61.2 87.2
0.20 24 77.6 75.4
0.25 15 79.1 74.6

Table 4.1 Recall and precision for Person_In,Person_QOut rules at various error
tolerance settings

The following chapter presents empirical results for CRYSTAL in both the

Management Succession domain and the Hospital Discharge domain.

9See Section 5.1 for a discussion of recall and precision.
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CHAPTER 5

EMPIRICAL RESULTS IN TWO DOMAINS

5.1 Methodology and Performance Metrics

Experiments in both the Management Succession domain and the Hospital
Discharge domain were conducted by partitioning the hand-annotated corpus
into a randomly chosen training set and a blind test set. The Management
Succession corpus has 599 texts with 16,325 instances. The Hospital Discharge
domain has 502 texts with 17,500 instances.

CRYSTAL used the training data to induce a set of concept definitions,
which were then applied to the blind test set. The case frames produced by
the concept definitions were compared to the hand annotations in the test
instances. If every slot contained the desired information, the extraction was
counted as correct, otherwise as an error.

The 599 Management Succession texts were randomly partitioned with
119 as training, with 239 as training, and with 479 as training for experiments
that show the effect of training size. Other experiments are trained on 239
texts. The 502 Hospital Discharge texts are similarly partitioned with 50, 150,
and 351 texts as training for the learning curve experiments and with 251 as
training for all other experiments.

Except as noted, all results are averages of ten random partitions of the

texts. When statistical significance is mentioned, a two-tailed, paired t-test is
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used with p<0.05. Experiments that involve hand-engineered semantic tagging
or hand-coded rules were done on a single partition of the corpus. The test
set was not consulted during the knowledge engineering.

Performance is measured in terms of recall and precision. Recall is the
percentage of positive instances of the target concept that were correctly iden-
tified. Precision is the percentage of extractions made that were correct. These

metrics are defined more formally in Figure 5.1.

TP

Recall = ——— Reported as | Actually
TP +FN TP (true pos) pos pos
FN (false neg) neg pos
Precision = TP __ TN (true neg) neg neg
TP +FP FP (false pos) pos neg
Accuracy = TP +TN

TP+ FP + TN + FN

Figure 5.1 Definitions of Recall, Precision, and Accuracy

Recall and precision are more useful metrics than accuracy when there is
an extremely unbalanced distribution of positive and negative instances. With
a data set that is 99% negative, it is trivially easy to get accuracy of 99%. Just
classify all the instances as negative. Recall and precision focus on how well
the system does with the positive instances, which are the ones that matter.

Instances for text extraction typically have only a tiny percent positive.
For the Management Succession domain, instances ranged from 99% negative
to over 99.9% negative depending on the combination of slots being extracted.’

Hospital Discharge extraction ranged from 90% negative to over 99% negative

!Instances are positive or negative with respect to extraction of particular slots from
particular constituents. For example, less than 1% of the Management Succession instances
are positive instances of a Person_In in the subject and a Position in the direct object.
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instances. Figure 5.2 compares the accuracy metric with recall and precision

for an instance space with 10,000 instances that is 99% negative instances.

TP FN TN FP || Rec Pre Acc
0 100 9,900 0 0 - 99.0
1
80

1 99 9,801 99 1 98.0
80 20 9,820 80 50 99.0
60 40 9,880 20 60 75 99.4

rODO -

Figure 5.2 Examples of Recall, Precision, and Accuracy

Figure 5.2 shows performance from four hypothetical systems. The first
uses the dominant class as a default, and extracts nothing. Recall is zero and
precision is undefined (zero divided by zero). Even though this is a totally
useless information extraction system it has an impressive accuracy of 99.0%.
The second system randomly assigns one percent of the instances as positive.
Recall is 1%, precision is 1%, and accuracy is 98.0%.

The next two have more realistic performance. System three correctly
identifies 80 out the 100 positive instances. This gives recall of 80%. The
system also has 80 false positives, giving it precision of 50%. This would be an
extremely useful system for some purposes. A user would need to review only
160 extractions rather than read all the documents corresponding to 10,000
instances. The accuracy for this system, however is identical to that of the
system that extracts nothing. System four has recall of 60% (identifies 60
out of 100 positive instances) and has precision of 75% (60 correct out of 80
extractions). Accuracy is 99.4%.

For most of the experiments, the error tolerance parameter is set at 0.20,
which tends to give roughly balanced recall and precision on these data sets.

Concept definitions that cover only one training instance have been discarded,
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since they are too tightly constrained to cover test instances and have a neg-

ligible effect on performance.

5.2 Assessing Performance in Information Extraction

When presented with empirical results for an information extraction sys-
tem, the question arises, “How close to optimal are these results?” It is unreal-
istic to expect perfect performance from an automated system. Even humans
fall considerably short of perfect performance on an information extraction
task.

Performance is measured by comparing a system’s output with a hand-
annotated answer key for the text. Any differences from the answer key are
counted as errors. Unfortunately, it is not always clear exactly what the “cor-
rect” output should be for a text. Texts often contain ambiguous references
that are open to a variety of interpretations.

An experiment [Will 1993] was conducted that measured the amount of
inter-coder disagreement between four human analysts. These were profes-
sional analysts, each with years of experience at manual information extrac-
tion, who annotated the collection of training texts for one of the Fifth Message
Understanding Conference domains [MUC-5 1993]. This was a domain of news
stories about companies involved in microelectronic chip manufacturing.

The experiment had pairs of analysts read the same texts and indepen-
dently create output representing the relevant information. One analyst’s out-
put was evaluated by treating another analyst’s output as the answer key.
Different analysts’ output for the same text agreed less than 80% on the aver-

age. The average recall was 77% at average precision of 79%.
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Keep in mind that these are skilled human analysts doing their most careful
job. Each of the analysts can be assumed to fully “understand” the text, but
is penalized by a limitation built into the scoring process. Real text is open
to a variety of reasonable interpretations, which makes formal evaluation by
an answer key somewhat arbitrary.

While this is only one rather small experiment in a particular domain,
it points to a ceiling on text analysis performance, whether by humans or
automated systems. These results are consistent with human performance
in previous Message Understanding Conferences. The conference organizer,
Beth Sundheim, estimated that the upper limit on human performance for the
MUC-4 task was 75% recall and 85% precision [Sundheim 1992].

Not surprisingly, automated systems have somewhat lower performance.
The best automated systems in MUC conferences have had recall and precision
between 50% and 60% [MUC-3 1991, MUC-4 1992, MUC-5 1993, MUC-6 1995].
Despite different domains and some differences in scoring metrics, there seems
to be a ceiling of about 60% recall and precision for current information pro-
cessing technology.

CRYSTAL is one component of an information extraction system and can-
not be directly compared to performance of a full system. In some respects
performance of a module that applies text analysis rules should be higher than
that of a full system. An extraction by CRYSTAL is counted as correct if it
identifies the syntactic constituent (e.g. subject, direct object, or prepositional
phrase) containing the relevant information. Such a constituent will typically
contain extraneous words that must be discarded for a full system to be judged

correct. The full system also faces the difficult task of merging together related
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information from separate sentences, and be penalized for any errors made in
merging.

On the other hand, formal scoring is more strict in some respects for CRYS-
TAL than for a full system. Multiple references to the same information are
often found in a text. CRYSTAL’s recall is penalized unless it finds all of the
redundant references. A full system merges redundant references into a single
output and has full recall even if some redundant references were missed.

A module that applies text analysis rules takes its input from previous
automated steps in text analysis must also cope with noisy input. Errors
in syntactic analysis are inevitable. If an abbreviation ends with a period
that also marks the end of a sentence, an automated sentence analyzer might
miss a sentence boundary. If a part-of-speech tagger does not recognize an
infrequently occurring verb, it may be taken as a noun and the sentence will
be badly mis-analyzed. If a word is not found in a semantic lexicon it will not
be given its proper semantic class. An automated semantic tagger will often
choose the wrong semantic class for ambiguous words.

Researchers familiar with the current state of information extraction tech-
nology would be pleased by recall and precision of 60% for a module such as
CRYSTAL that applies text analysis rules, and delighted by recall and preci-
sion of 80%. The question of optimal results that was posed at the start of this
section might be rephrased as follows. How close does CRYSTAL come to the
best possible performance given noisy training data and imperfect evaluation
criteria?

This chapter includes two experiments that address this question. Section

5.4 compares CRYSTAL with hand-coded rules that operate on the same input
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data and are developed from the same training set as CRYSTAL. Section 5.5
shows results of a beam search version of CRYSTAL that increases the amount

of search for optimal generalizations from each seed.

5.3 Empirical Results and Learning Curves

Results will be shown for the Management Succession domain and for two
versions of input for the Hospital Discharge domain. The second version is
after semantic class assignment of individual words has been customized for

the information extraction task.

5.3.1 Management Succession Performance

The Succession FEvent case frame has four slots, Person_In, Person_QOut,
Position, and Organization (abbreviated in performance graphs as In, Out,
Post, and Org). Since not all instances have all possible slots, CRYSTAL
learns each of the fifteen possible combinations of one, two, three, or four slot
concepts.

The graphs in Figure 5.3 show recall and precision for each of these con-
cepts. The number of positive training instances is shown for each concept.

CRYSTAL is able to achieve recall and precision in the 60’s and 70’s for
the single-slot concept Person_In, for Person_Qut, for Position, and for the
two-slot concepts that combine these slots. Performance was a little lower for
Organization and for multi-slot concepts that include an Organization.

Multi-slot concepts have a smaller number of positive training instances

than single slot concepts. For example, there are 505 training instances of
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Figure 5.3 Management Succession performance: averages of 10 random par-
titions into 479 training texts and 120 blind test texts

Person_In, but only 52 of them are part of a Successton Event that has Per-
son_In together with Person_Out and Organization.

Was the amount of training adequate for these concepts? Would CRYS-
TAL’s performance increase if more texts were annotated? The learning curves
shown in Figure 5.4 give an indication that CRYSTAL had not reached a ceil-
ing in performance at this level of training. Another doubling of the number
of training texts should produce another increase in performance. At some

point, diminishing returns set in, and further training will have little effect.
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Figure 5.4 Learning curves for the Management Succession domain

Recall and precision are shown for four representative Management Suc-
cession concepts® as training size is increased from 20% of the texts to 40%
of the texts to 80% of the texts. The number of positive training instances is
shown below each set of recall and precision.

Recall increases with each doubling of the training size, while there is no
significant difference in precision®. This has the biggest impact on the multi-
slot concepts, which seem to be under-trained. Precision remains fairly level
as an artifact of the error tolerance parameter. The error tolerance was kept
at 0.20, which would result in precision of about 80 if error rates on the test
set exactly mirrored error rates on the training.

Table 5.1 shows the number of concept definitions generated from one of
the partitions of 479 training texts. These are broken down by how many

training instances they cover. Note that the concepts with high coverage

2A table with learning curve results for all fifteen combinations of slots is given in Ap-
pendix A.

3The difference in recall from 40% training to 80% was statistically significant in every
case. The recall had wider variance at lower training levels, which made some of the dif-
ference from 20% training to 40% only marginally significant. None of the differences in
precision is significant.
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Definitions with coverage:
Concept

2-4 5-9 10-49 50+ | Total
In 62 29 26 8 125
Out 75 37 31 2 145
Post 62 62 43 8 175
Org 99 59 30 0 198
In,Out 6 10 12 1 29
In,Post 49 12 18 4 83
In,Org 52 16 16 0 84
Out,Post 66 30 18 0 114
Out,Org 55 28 12 0 95
Post,Org 66 56 35 0 157
In,Out,Post 7 2 4 0 13
In,Out,Org 9 5 1 0 15
In,Post,Org 49 16 10 0 75
Out,Post,Org 40 22 11 0 73
In,Out,Post,Org 6 3 1 0 10

Table 5.1 Number of concept nodes for Management Succession, broken down
by coverage
definitions (covering 50 or more training instances) are those with the highest

performance as shown in Figure 5.3.

5.3.2 Hospital Discharge Performance

Experiments were also run on the Hospital Discharge domain, which has
four single-slot concepts: Symptom,Present and Symptom,Absent; Diagno-
sts, Confirmed and Diagnosis, Ruled_Out. Figure 5.5 shows results for each of
these concepts at three different training sizes*. This first set of results uses
semantic class assignment of individual words based on a medical thesaurus
that was not customized to make distinctions needed for this domain®. Results

with fine-tuned semantic tagging are presented later in this section.

4These results are listed in a table in Appendix B.
5The Unified Medical Language System thesaurus of the National Library of Medicine
[Lindberg et al. 1993].
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Figure 5.5 Learning curves for the Hospital Discharge domain

As in the Management Succession domain, recall increases with further
training, while precision stays fairly flat®. It appears that recall for Symp-
tom,Absent may be starting to level off at three thousand training instances
and Diagnosis, Ruled_Out at three hundred.

The number of concept definitions generated from a partition with 351
training texts is shown in Table 5.2. A large proportion of the definitions
cover fewer than five training instances, but these low coverage definitions
contribute little to performance. Rules for Symptom,Present generated from
these 351 texts were tested on the remaining 151 texts. When all rules with
coverage > 2 are used, recall is 44.1 at precision 65.0. Using only rules with
coverage > b gives recall 42.2 at precision 69.5. The low coverage definitions
contribute little to recall that is not also covered by higher coverage definitions.
They also contribute more errors than correct extractions from the test set,

thus lowering precision.

6All differences in recall are statistically significant. The differences in precision for
Symptom,Present and Symptom,Absent are significant, but not for the other two concepts.
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Definitions with coverage:
Concept
2-4 5-9 10-49 |50-99 | 100+ Total
Symptom,Present 643 206 83 6 4 942
Symptom,Absent 263 128 133 23 15 562
Diagnosis,Confirmed 254 71 81 14 5 425
Diagnosis,Ruled_Out 26 8 11 6 0 51

Table 5.2 Number of concept nodes for Hospital Discharge, broken down by
coverage

As the amount of training increases, a larger proportion of the recall comes
from higher coverage definitions. Figure 5.6 shows performance for Hospital
discharge rules when rules that cover fewer than ten training instances are

discarded.
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Symptom, Symptom, Diagnosis, Diagnosis,
Present Absent Confirmed Ruled Out

Figure 5.6 Only rules that cover ten or more training instances have been
used in this Hospital Discharge learning curve.

With the low coverage definitions removed, precision is closer to the ideal
of 80 that would be expected at error tolerance 0.207. A comparison with
Figure 5.5 shows that a growing proportion of the recall comes from defini-
tions that cover at least ten training instances. When over 90% of the recall

comes from higher coverage definitions, as is the case for Symptom, Absent and

7All of the differences in recall and none of the differences in precision are statistically
significant
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Diagnosis, Ruled_QOut, this is another indication that the level of training is
approaching the point at which more training will increase performance only

slightly.

5.3.3 Fine-tuned Semantic Tagging for Hospital Discharge

It should be pointed out that CRYSTAL is faced with considerable noise in
the data for this domain. This makes it difficult to find features that character-
ize the target concepts reliably (hand-coded rules face the same difficultly, as
will be discussed in the following section). Noisy data is inevitable when deal-
ing with automatic analysis of unrestricted text. The syntactic analysis and
the semantic class assignment will make errors or may be too coarse to make
the necessary distinctions. Human annotators also make errors in marking the
training texts and produce inconsistent training data.

One source of noise that I was partially able to control was the coarse fit
between the semantic tagging of individual words and the information extrac-
tion task. A generic medical thesaurus, the Unified Medical Language System
(UMLS) [Lindberg et al. 1993] had been used with only minor customization.

Unfortunately, class assignment based on UMLS did not correlate closely
with annotations of the target concepts. In particular, the class <Sign or
Symptom> was a poor predictor of the concept Symptom, Present. Only 27%
of the phrases annotated as Symptom,Present contained a word with class
<Sign or Symptom>, and only 71% of the affirmative phrases with that class
were annotated as Symptom, Present. This is equivalent to recall of 27 and

precision of T1.
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For the experiment with “fine-tuned” semantic tagging, I modified the
semantic hierarchy to make distinctions useful for the Hospital Discharge do-
main. [ set aside half of the corpus as a blind test set and used the remaining
251 texts as a training set. I then tabulated how often each term in the training
was associated with annotations for each of the target concepts.

The semantic class assignments were modified according to a term’s cor-
relation with Symptom, Present or Symptom,Absent or with Diagnosis. The
same modifications were also made on the blind test set.

After fine-tuning the semantic tagging, performance increases as shown in
Figure 5.7. Recall and precision are now in the 60’s to 80’s for all four concepts,

with Symptom, Present still lagging behind the others.
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Present Absent Confirmed Ruled Out

sem1 = original semantic tagging
sem2 = fine-tuned semantic tagging

Figure 5.7 Hospital Discharge results with fine-tuned semantic tagging

With less noise in the training instances, CRYSTAL was able to achieve
this increase in performance with a more compact set of rules, as shown in

Table 5.3. Each concept has less than half as many concept definitions as in
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Definitions with coverage:
Concept
2-4 5-9 10-49 |50-99 | 100+ Total
Symptom,Present 203 83 79 11 13 389
Symptom,Absent 90 66 67 18 16 257
Diagnosis,Confirmed 65 24 27 6 13 135
Diagnosis,Ruled_Out 9 4 4 6 0 23

Table 5.3 Number of concept nodes for Hospital Discharge after semantic
tagging has been fine-tuned
Table 5.2, and the proportion of high-coverage definitions is also greater when

noise in the training has been reduced.

5.4 Comparison with Hand-coded Rules

The question still remains of how close to optimal are the rules CRYSTAL
learns, given limited and imperfect training data and imperfect evaluation
criteria as discussed in Section 5.2. This section presents experiments that
compare CRYSTAL with hand-coded rules in an effort to address this question.

I created rules by hand for the Hospital Discharge domain, one set of rules
for input with the original semantic tagging and another set of rules based on
fine-tuned semantic tagging. Each set of rules took two weeks, and was done
after I had been working with CRYSTAL in this domain for one and a half
years. I also created rules by hand for four of the Management Succession
concepts.

I believe that I was able to put aside any conflict of interest and make the
best set of hand-coded rules I could. Anyone else who might have been avail-
able to create the rules would have produced an inferior set of rules. Manual
engineering of text analysis rules requires someone who is knowledgeable about

the domain and intimately familiar with the information extraction system.
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5.4.1 Methodology

Fifty percent of the Hospital Discharge texts were set aside as a blind
test set and rules were developed without consulting these texts. For the
Management Succession domain, forty percent of the texts were used as a blind
test set, and rules were developed from the remaining sixty percent. These
test sets were not perfectly blind, since I had been seen all of them during
previous experiments with CRYSTAL. Creating reliable text analysis rules is
delicate enough that any vague impressions I had from previously seeing the
eight or ten thousand test instances was negligible.

The representation for the hand-crafted rules was the same as that of
CRYSTAL’s rules. The concept definitions for the Hospital Discharge do-
main were augmented to include exceptions, which explicitly list classes and
terms to be excluded. This is described more fully in Section 6.1. Rules for
Management Succession were created without exceptions, both for CRYSTAL
and hand-coded rules.

The methodology for creating rules by hand was similar to CRYSTAL’s.
I worked through the training texts, a portion at a time, to find positive
instances not covered by existing rules. New rules were created to cover these
instances and each new rule was tested on the entire training set. Constraints
were relaxed as far as possible while keeping the error rate low.

Functions from CRYSTAL assisted by creating an initial concept definition
for each positive instance missed by the rules. I edited these initial definitions
to remove constraints that did not seem essential to the target concept. Func-
tions from CRYSTAL then tested these hand-crafted rules against the entire

training set, listing the correct extractions and extraction errors for each rule.
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After several rounds of refinement, the new rules were added to the rule
base and this process was repeated for another portion of the training texts.
High-coverage concept definitions were discovered early on. As development
continued, the additional definitions tended to have either low coverage or high

error rate, until no further useful rules could be found.

5.4.2 The Nature of the Instance Space

This diminishing rate of learning useful rules comes from an inherent char-
acteristic of the training data. Only a portion of the positive instances could be
identified by high coverage rules. Before semantic fine-tuning, rules that cover
20 or more training instances accounted for only 25% of the Symptom, Present
instances, 51% of the Symptom,Absent, 61% of the Diagnosis, Confirmed, and
42% of the Diagnosis,Ruled_Out. After fine-tuning, these percentages are
raised to 59%, 71%, 72%, and 60%, respectively.

The remaining positive instances are what I will call the “hard” instances.
Many of these have semantic classes that are usually not associated with the
target concept and must be identified by more restrictive constraints. The
evidence that distinguished these instances as positive was often the occurrence
of a low-frequency term or combination of terms.

An example of a hard instance is one in which the phrase “under significant
family stress” was marked as a Symptom, Present. The semantic class assigned
to “stress” is <Pathologic Function>, which was associated with diagnoses
more often than with symptoms. This was the only occurrence of “under

stress” in the training data, and it was not found at all in the test set.
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A example of a hard instance from Management Succession is “..

. at Riggs
National Bank, which brought in Paul Homan as its president and CEO in
June.” This was the only instance in the training set with Organizationin a PP
(prepositional phrase) and Person_In in a REL-PP (relative clause attached
to a PP). Many of the hard instances for Management Succession were due to
syntactic complexity such as extraction from relative clauses.

When such idiosyncratic positive instances occur only in the blind test
set, they will be missed by the rules, whether hand-coded or generated by
CRYSTAL. This places a ceiling on the performance possible, given a limited
training set. As training size increases, the problem due to low-frequency terms
i1s somewhat abated. A region with only five positive instances may have ten
when training is doubled, and a region with only two may have four.

Keep in mind that CRYSTAL can never expect clean training data, since it
receives its input from other components of an information extraction system.
The components that perform the syntactic bracketing and semantic tagging
of unrestricted text are liable to make errors. The texts themselves and the
hand-annotations used in training may also have errors. Any of these sources

of error can account for some of the instances that are beyond the reach of

text analysis rules, whether hand-coded or learned by CRYSTAL.

5.4.3 Results

Table 5.4 compares the performance of CRYSTAL with hand-coded rules
both before and after semantic fine-tuning. CRYSTAL used an error tolerance

of 0.20 for these inductions. The last column in the table uses the average of
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Before semantic fine-tuning:

c CRYSTAL Hand-coded Ratio of
oncept

R P Avg R P Avg Avg. R,P
Symptom,Present 412 | 58.5 | 49.8 51.4 81.6 | 66.5 75.0
Symptom,Absent 73.8 | 747 | 74.2 747 | 93.3 | 84.0 88.4

Diagnosis,Confirmed 594 | 64.0 | 61.7 69.5 78.5 | 74.0 83.4
Diagnosis,Ruled_Out 59.8 | 80.0 | 69.9 71.8 86.6 | 79.2 88.3

After semantic fine-tuning:

CRYSTAL Hand-coded Ratio of
Concept
R P Avg R P Avg ||Avg. R,P
Symptom,Present 619 | 656 | 638 [[649 [79.3 | 721 88.4
Symptom,Absent 80.0 | 789 | 794 [[|796 |91.9 | 858 92.6

Diagnosis,Confirmed 74.8 | 69.1 72.0 768 | 775 |77.2 93.3
Diagnosis,Ruled_Out | 73.5 | 83.1 | 78.3 81.2 |[87.2 |84.2 93.0

Table 5.4 A comparison of CRYSTAL to hand-coded rules for Hospital Dis-

charge

recall and precision to compute the ratio of CRYSTAL’s performance to that
of the hand-coded rules.

CRYSTAL achieves 93% the performance of hand-coded rules for three of
the concepts and 88% for the fourth after semantic fine-tuning. Performance is
lower for both CRYSTAL and for hand-coded rules in the noisier situation in
which semantic tags have not been customized for the information extraction
task. CRYSTAL’s performance ranges from 75% to 88% that of hand-coded
rules. CRYSTAL is able to compensate for noisy training to a certain degree,
but is more likely than a human developer to be misled by spurious regularities.

Table 5.5 compares CRYSTAL to hand-coded rules in the Management
Succession domain for four concepts that I chose arbitrarily. CRYSTAL achieves
over 90% of the performance of hand-coded rules for these four concepts, with
performance equal to hand-coded for one of them.

One of the primary advantages a human coder has over CRYSTAL is bring-

ing in outside knowledge to find rules for the hard instances. When the feature
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CRYSTAL Hand-coded Ratio of
Concept
R P Avg R P Avg |[|Avg.RP
Person_In 67.2 | 66.9 | 67.0 70.6 75.0 | 72.8 92.0
Person_lIn,Person_Out 77.6 | 75.4 | 76.5 79.1 80.3 | 79.7 96.0
Person_In,Position 60.0 | 715 [ 658 [[61.7 | 86.0 | 71.8 91.6
Person_In,Organization 52.1 | 69.5 | 60.8 47.9 | 72.0 | 60.0 101.3

Table 5.5 A comparison of CRYSTAL to hand-coded rules for Management

Succession

that makes an instance positive is a feature shared by only a few other train-
ing instances, CRYSTAL may find instead an irrelevant feature also shared by
positive instances. With sparse training data, there is no margin of error if
CRYSTAL relaxes the wrong constraint.

In Table 5.6, rules based on fewer than twenty training instances have been
eliminated. CRYSTAL comes closer to human performance in the regions of
instance space containing at least twenty positive training instances than it
does for the more sparsely represented regions.

Before semantic fine-tuning:

c CRYSTAL Hand-coded Ratio of
oncept

R P Avg R P Avg Avg. R,P
Symptom,Present 239 (789 |[514 25.1 92.5 | 58.8 87.4
Symptom,Absent 64.9 | 804 | 72.7 51.2 96.1 | 73.7 98.6

Diagnosis,Confirmed 47.6 | 70.4 | 59.0 614 | 81.7 [ 71.5 82.5
Diagnosis,Ruled_Out 449 | 87.5 | 66.2 41.9 85.2 | 63.5 104.3

After semantic fine-tuning:

CRYSTAL Hand-coded Ratio of
Concept
R P Avg R P Avg ||Avg.R,P
Symptom,Present 57.3 | 74.2 | 65.8 58.8 [83.3 |[71.0 92.7
Symptom,Absent 75.7 | 83.0 | 79.3 71.0 [93.9 | 825 96.1
Diagnosis,Confirmed 722 | 73.9 | 73.1 722 |77.9 | 751 97.3
Diagnosis,Ruled_Out | 67.5 | 86.3 | 76.9 59.8 [89.7 |[74.8 102.8

Table 5.6 Using only rules that cover twenty or more training instances for

CRYSTAL-generated and hand-coded rules

Another way to assess how well CRYSTAL performs is considered in the

next section. If CRYSTAL expends more effort searching for an optimal gen-
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eralization from each seed, will this raise the over-all performance of the rule

base?

5.5 Beam Search

CRYSTAL is able to navigate so efficiently through a large space of pos-
sible concept definitions because of the “greedy” nature of the algorithm. At
every step in generalizing a concept definition, CRYSTAL is faced with several
choices of constraints to relax. CRYSTAL makes the choice that seem to be
the best at the time, even though a different choice may turn out later to have
been better.

I tried an alternate approach that is more computationally expensive, but
has a greater chance of making optimal choices. A beam search tries several
paths in a search space in parallel. The amount of search effort is controlled by
two parameters, the beam width w and branching factor 5. When CRYSTAL
generalizes from a seed instance, a beam set of size w is maintained. These are
the best w generalized concept definitions found so far.

For each definition in the beam set, CRYSTAL finds b distinct relaxations
by unifying with the most similar initial definition, the next most similar, and
so forth. This produces a list of wb generalized definitions, which is sorted
to keep the best w distinct definitions. The metric I used to choose the best
definitions is to count the number of positive training instances covered. If
two definitions cover the same number of positive instances, the definition
that covers fewer negative is considered better.

The CRYSTAL algorithm as described in Section 4.4 is equivalent to a

beam search with b = 1 and w = 1. I ran experiments for the Management
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Succession domain and the Hospital Discharge domain at a range of beam
sizes. Beam width was set to 1, 2, 5, and 10, with branching factor equal to
the beam width.

Figure 5.8 shows results at beam size 1, 2, 5, and 10 for four representative
Management Succession concepts. Figure 5.9 shows results of a similar beam
search experiment for the Hospital Discharge domain with no semantic fine-

tuning. The shaded dot indicates the average of recall and precision.

I Recall D Precision 9Avg R,P
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1 2 5 10 1 2 5 10 1 2 5 10 1 2 5 10
In In,Out In,Org In,Out,Org

Figure 5.8 Management Succession results at beam width 1, 2, 5, and 10
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Figure 5.9 Hospital Discharge results at beam width 1, 2, 5, and 10
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The total computation time® for all four Management Succession concepts
averaged 14 minutes at b = w = 1, 18 minutes at b = w = 2, 36 minutes at
b =w =5, and 82 minutes at b = w = 10. Computation for the Hospital
Discharge concepts took longer, since there were ten times as many positive
instances, but a similar ratio held: 1.7 hours at 6 = w = 1, 2.8 hours at
b=w=2,7.1 hours at b=w =5, and 17.3 hours at b = w = 10.

Increasing the beam width results in a gain in recall that is almost exactly
offset by a drop in precision. The greatest change in recall and precision
comes in moving from beam width 1 to beam width 2. There is little effect
from moving from beam width 5 to 10. This holds for nearly all concepts
in both domains. Most of the changes in recall and precision are statistically
significant, but few of the changes in average recall and precision are significant,

as shown in Figure 5.10.

1-2 2-5 5-10 1-2 2-5 5-10

R P Avg|R P Avg |R P Avg R P Avg|R P Avg [R P Avg
In X X X X X X Symptom,Present | X X X X X X X X
In,Out X Symptom,Absent | X X X X X X
In,Org X X X Diag,Confirmed |X X X |X X X X
In,Out,Org Diag,RuledOut X X X X

x = significant at p < 0.05

Figure 5.10 Statistical significance of changes in beam width

The increase in recall is easy to understand. CRYSTAL was searching for
reliable generalizations that had the largest coverage possible. More search
effort results in rules of greater coverage on the training that are likely to
cover more test instances as well.

Why should precision go down? This is a case of a well known phenomenon

in machine learning called overfitting. A machine learning algorithm may

8on a DEC ALPHA AXP 3000
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create a concept description that fits accidental characteristics of the training
as well as finding features that truly represent the target concept. Overfitting
will appear to increase accuracy when measured on the training data, but will
actually reduce accuracy on the test set.

Quinlan and Cameron-Jones [95] point out a type of overfitting that results
from expending too much effort searching for optimal rules. Among a very
large set of possible concept descriptions will be a few “flukes” with high
coverage that seem to be highly reliable on the training data, but perform
poorly on the test set. A modest amount of search will capture the most
salient regularities in the data, but more extensive search is likely to discover
a fluke concept description.

Another reason that an increase in recall is offset by a decrease in precision
comes from an inherent trade-off between recall and precision. CRYSTAL
without beam search is able to find all the positive instances that can be
identified reliably. The remaining positive instances are in contexts that are
difficult to distinguish from negative instances. Rules that are generalized
enough to cover some of these positive instances will also erroneously cover

some negative instances. Thus recall is raised at the expense of precision.

5.6 Manipulating a Recall-Precision Trade-off

A graphic illustration of the trade-off between recall and precision is shown
in Figure 5.11. In this instance space many of the positive instances (+) are
surrounded by negative instances (-). A set of concept definitions can avoid

these regions of instance space and maintain high precision at the expense of
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Generalizing at Error Tolerance = 0.0: Recall=52, Precision=85

Training Test set

Generalizing at Error Tolerance = 0.30: Recall=82, Precision=66

Training Test set

== positive instance

o (O concept definition
— negative instance

Figure 5.11 An instance space in which high recall or high precision is pos-
sible, but not both
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recall. An alternate set of concept definitions could gain high recall at the
expense of precision.

If error tolerance is set at 0.0, CRYSTAL will find concept definitions that
avoid covering any negative training instances, as shown in the upper part of
the diagram. This will tend to produce an overlapping set of low-coverage
definitions.

With a higher error tolerance of 0.30, CRYSTAL will tend to find concept
definitions with high coverage, as shown in the lower half of the diagram. There
are still a few isolated positive instances that cannot be generalized without
covering the adjacent negative instances.

The right side of Figure 5.11 shows the blind test instances associated with
the training instances on the left. The test instances are similar, but not
identical to the training set.

The definitions generated at error tolerance 0.0 cover 52% of the positive
test instances with precision of 85%. At error tolerance 0.30, the definitions
cover 82% of the positive test instances with precision of 66%.

The behavior on test instances illustrated here is typical of a real instance
space. Concept definitions that cover a single training instance are so tightly
constrained that they are useless on the test set. Low coverage definitions are
poor at predicting behavior on blind test instances. A definition that covers
four training instances with no errors will frequently cover fewer test instances
and will often cover negative as well as positive instances.

In an instance space such as the one in Figure 5.11, the trade-off between

recall and precision is inherent to the geometry of the instance space. Many
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of the positive instances can only be covered at the expense of covering neigh-
boring negative instances.

In a real instance space, these positive instances that are surrounded by
negative instances may be an artifact of the features used to represent in-
stances. Suppose that the semantic class assignment for Management Succes-
sion makes an error and fails to recognize a company name and gives it the
class <Person Name>. A positive instance of Organization with that semantic
tag will be indistinguishable from negative instances.

The inability to distinguish positive from negative instances may also be
due to limitations in syntactic analysis or in the expressive power of CRYS-
TAL’s concept definitions. A concept definition in the Hospital Discharge
domain that correctly identifies “history of cancer” as a Diagnosis, Confirmed
will also cover “history of cancer in father”, which is a negative instance.

CRYSTAL includes two parameters than can be used as knobs to manip-
ulate the trade-off between recall and precision deliberately. One of these is
the error tolerance parameter. Increasing the error tolerance allows concept
definitions of greater generality, even if they have a greater tendency to cover
some negative instances as well as positive. This has the effect of increasing
recall at the expense of precision.

Figures 5.12 and 5.13 show the effects of varying the error tolerance in the
Management Succession and Hospital Discharge domains. Recall increases and
precision decreases for every concept in these two domains as error tolerance
goes from 0.0 to 0.40. The gain in one metric is almost exactly compensated by

a loss in the other, leaving the average of recall and precision fairly flat. Each
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of the differences in recall and in precision shown in both figures is statistically

significant®.
100
90
80
70 |:|
60 Precision
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40 Recall
30 o
20 Avg R,P
10
0.0 0.10 0.20 0.30 0.40 0.0 0.10 0.20 0.30 0.40
Person_In Person_In,Organization

Figure 5.12 Management Succession results at error tolerance 0.0 to 0.40

100
90
80
70 |:|
60 Precision
50
40 Recall
30 o
20 Avg R,P
10

0.0 0.10 0.20 0.30 0.40 0.0 0.10 0.20 0.30 0.40

Symptom, Present Symptom, Absent

Figure 5.13 Hospital Discharge results at varying error tolerance

Another parameter operates on the completed rule base after induction.
The min-coverage parameter allows rules to be discarded that do not cover
at least a minimum number of training instances. Low coverage definitions

tend to be unreliable predictors of performance on the test set. Raising the

°The one exception to this is the change in precision from tolerance 0.0 to 0.1 in Per-
son_In,Organization. The differences in average recall and precision are small and only a
few are significant.
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min-coverage has the effect of increasing precision at the expense of lowering
recall. This may produce a small increase or small decrease in the average of
recall and precision, depending on the concept.

Figure 5.14 shows the interaction of error tolerance and min-coverage'®. At
error tolerance 0.0, precision approaches 100 as min-cover is raised. At error
tolerance 0.20, precision approaches 80 or a little above as min-cover is raised.

This behavior is true for all concepts in both domains.

100 — —
90 —
80
70 |:|
60 Precision
50
40 Recall
30 °
20 Avg R,P
N i |

0 |l |

Min Min Min Min Min Min Min Min Min Min Min Min

2 10 20 2 10 20 2 10 20 2 10 20
Tol. 0.0 Tol. 0.20 Tol. 0.0 Tol. 0.20
Symptom, Present Symptom, Absent

Figure 5.14 Effect of minimum coverage parameter at error tolerance 0.0 and

0.20

The combination of error tolerance and min-cover allow a user to control
for the relative importance of recall and precision. For some applications,
precision is critical and recall of 36 at precision 97 is better than recall of 72

at precision 76. For other applications the reverse may be true.

10All of the changes in recall and in precision are statistically significant. All changes in
average recall and precision are significant except for Symptom,Present from min-coverage
10 to 20 at tolerance 0.20.
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5.7 Run-time Efficiency

The time complexity of CRYSTAL is given in Section 4.6 as O(pn), where
p is the number of positive training instances and m is the total number of
training instances. Actual computation time is consistent with this analysis.

Table 5.7 shows the CPU time required to generate rules for two represen-
tative concepts at different levels of training. This was run on a DEC ALPHA
AXP 3000 with 64 Mb of memory. The last column shows the rate of growth
of the CPU time'’.

Concept Positive Total CPU Ratio
Insts. Insts. Seconds | CPU sec

In 123 3,525 30.1 1.00

243 6,910 116.2 3.86

376 10,570 250.4 8.32

505 13,548 435.7 14.51

|nyOut‘Org 12 3,525 3.7 1.00

25 6,910 11.9 3.25

40 10,570 25.2 6.87

52 13,548 43.3 11.80

Table 5.7 Growth of computation time as training size increases

The training size in this chart is growing at roughly a ratio of 1:2:3:4, which
gives a predicted ratio of 1:4:9:16 for computation time. The actual CPU times
for training sizes used in these experiments show a growth rate a bit slower
than pn. The concept In has about ten times as many positive instances as
In,Out,Org, and has the predicted ten-fold increase in computation time.

As long as the entire set of training instances fits into memory (as is the

case for the training sizes reported in this chapter), clock time closely matches

11CPU time was measured with the UNIX command, “time”. This is slightly contami-
nated by CPU cycles used in reading or writing to disk. This is small compared to compu-
tation time to induce the concept definitions.
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CPU time. If resident memory is exceeded, frequent memory swapping can

greatly reduce CPU efliciency unless care is taken with memory allocation.

5.8 Discussion of Results

What conclusions about CRYSTAL’s performance can be drawn from the
empirical results presented in this chapter? In particular, how close does
CRYSTAL come to generating rules with optimal performance, given limited
training data and imperfect input, and evaluated against somewhat arbitrary
annotations in a test set?

CRYSTAL is able to learn rules from noisy training data that approach the
performance of hand-coded rules. Noise can come from several sources when
dealing with unrestricted text: inadequate syntactic analysis, inadequate se-
mantic tagging, and inconsistent hand-annotation of the training texts. These
sources of noise were reduced, but not eliminated, in the Management Succes-
sion data and the fine-tuned Hospital Discharge data.

CRYSTAL achieved an average of recall and precision that was over 90%
as high as hand-coded rules for Management Succession, equaling that of the
hand-coded rules for one concept. For the fine-tuned Hospital Discharge data,
CRYSTAL did 93% as well as hand-coded rules for three concepts and 88%
as high for a fourth concept. In a noisier version of the Hospital Discharge
data, performance was lower both for CRYSTAL and for hand-coded rules,
with CRYSTAL’s performance from 75% to 88% that of hand-coded rules.

CRYSTAL’s covering algorithm approach gives it robustness in the face of
noisy data and hard-to-classify instances. Some regions of instance space may

contain such a mix of positive and negative instances, that no single rule will
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cover only the positive. CRYSTAL will find a set of tightly constrained rules,
each rule covering a portion of the positive instances. Taken together, this set
of rules covers all but the most difficult to distinguish positive instances.

CRYSTAL has two parameters that give a user control over how CRYSTAL
compensates for noise and for sparse data. Raising the error tolerance param-
eter increases recall at the expense of precision, while raising the min-coverage
parameter has the opposite effect.

Another way to assess CRYSTAL’s optimality is to increase the amount
of search for an optimal generalization from each seed instance. This turns
out merely to raise recall at the expense of precision. Even though CRYSTAL
makes sub-optimal choices in generalizing from a particular seed, the positive
instances it thus misses become seeds for later generalizations. The aggregate
set of rules cannot be improved by more extensive beam search.

The limit to CRYSTAL’s performance comes from noise in the data, inad-
equate features to represent the instances, or insufficient training data. How
much training is enough? Performance increases monotonically with more
training for the range of training sizes used in these experiments. Diminishing
returns eventually set in. The amount of training required depends on the
difficulty of the concept being learned.

Diagnosis, Ruled_QOut reached recall 60 at precision 73 from only 134 positive
training instances. Symptom,Present needed 2,741 positive training instances
to reach recall 44 at precision 64. A similar disparity held between Manage-
ment Succession concepts. Person_In, Person_QOut had recall 65 at precision 80
from only 69 positive instances, while 617 positive instances of Organization

gave recall of 54 at precision 63.
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Creating an annotated training corpus is moderately labor intensive. The
Hospital Discharge texts were annotated at a rate of about five per hour, and
the Management Succession texts at about twenty per hour. This can be done
by an end user with no background in linguistics or computer science. The
annotated corpus is not an additional cost over a hand-coded approach. For
all but the simplest concepts, an annotated training set is also needed to guide
hand-coded rule development.

A system developer can make a greater impact on performance by refin-
ing the components that produce CRYSTAL’s input than by increasing the
amount of training data. A boost in performance results from customizing the
semantic class assignment of individual words to the information extraction
task. The modest training sizes required by CRYSTAL is due to the power of
semantic class representation of the input instances. This allows single rules
to cover a large number of instances, and to generalize to words not found in
the training set.

CRYSTAL’s robustness comes from its rich representation that combines
both semantic classes and lexical terms. The following chapter explores the

impact of CRYSTAL’s rule representation.
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CHAPTER 6

IMPACT OF RULE REPRESENTATION

How much of CRYSTAL’s performance and robustness in the face of noisy
data comes from the flexibility and expressiveness of its rules? This chapter
first explores the impact of an enhancement to CRYSTAL’s rule representation,

then the impact of restricting CRYSTAL’s representation in various ways.

6.1 Learning Exceptions to Rules

CRYSTAL’s concept definitions are expressed solely in terms of positive
constraints: specifying semantic classes or terms that must be found in the
instance. There is no provision for a concept definition to specify a word or
class that must not occur. This can be remedied by adding explicit exceptions
to CRYSTAL’s representation.

The lack of negative constraints appeared to be a serious limitation, par-
ticularly in an earlier version of Hospital Discharge that did not label phrases
as affirmative or negative. CRYSTAL had no mechanism to express a concept
definition for Symptom, Present that excluded instances containing words such
as “no” or “not”.

The concept definition shown in Figure 6.1 looks for the pattern “revealed

<Sign or Symptom>" to identify Symptom,Present. It operates correctly on
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Concept type: Symptom,Present
Constraints:

VERB::
Terms include: REVEALED
Mode: active
OBJ:
Classes include: ~ <Sign or Symptom>
Extract: Symptom,Present

Figure 6.1 An under-constrained definition for Symptom, Present

instances such as “Her lungs revealed bibasilar rales” or “A CT revealed a
large intra-abdominal mass”.

Unfortunately, this concept definition does not exclude instances in which
the <Sign or Symptom> is negated. About half the time the definition erro-
neously applies to negative instances such as “Examination revealed no masses
and no axillary lymphadenopathy”.

There is less need for exceptions when each phrase in the input has been
labeled as affirmative or negative. This allows a concept node to exclude
negative phrases by adding a constraint that requires the affirmative mode.
Even then, cases still remain in which exceptions to a rule could lower the
error rate of a concept definition.

In the Hospital Discharge domain, a definition that looks for “history of
<Disease or Syndrome>” is fairly reliable at identifying instances of Diagno-
sts, Confirmed. This definition makes extraction errors, however, when it is a
history of disease in a family member rather than in the patient.

Figure 6.2 shows how exceptions can be added to a concept definition

to exclude these errors. This definition covers “history of coronary artery

90



Concept type: Diagnosis,Confirmed
Constraints:
SUBJ::
Terms include: HISTORY
Classes include:  <Disease or Syndrome>

Mode: affirmative
Extract: Diagnosis,Confirmed
Exceptions:
Exception:
SUBJ::
Terms include: FAMILY
Extract: Diagnosis,Confirmed
Exception:
PP::

Classes include:  <Family Group>

Figure 6.2 A concept definition with two exceptions

disease”, but does not cover “family history of coronary artery disease” or
“history of coronary artery disease in father”.

An exception can use any of the constraints used in a concept definition:
terms, head terms, modifier terms, root, preposition, classes, head classes,
modifier classes, mode. A definition with exceptions applies to an instance if
all of the positive constraints and none of the exceptions are satisfied.

Examples in which exceptions are useful can be found in any domain. Sec-
tion 4.7 presented a definition for Person_In,Person_QOut in the Management
Succession domain that looks for the pattern “<Person> succeeds <Person>".
This definition has an error rate of nearly 20%, which could be reduced by ex-
ceptions that exclude “succeeds to the board”, “succeeds as <Government

Position>” and so forth.
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In many regions of instance space there will be a predominance of positive
instances, but pockets of negative instances. Two approaches are possible to
identify the positive instances. CRYSTAL can create several concept defini-
tions without exceptions, each of which covers a relatively small region that
avoids the pockets of negative instances. This approach is likely to miss some
of the positive instances that are hard to separate from the negative ones.

The alternative is for CRYSTAL to create a single over-generalized defini-
tion that covers the entire region, including the negative sub-regions. Excep-
tions are then added to exclude as many of the negative instances as possible.
This approach will tend to have higher recall than the first, but may have

lower precision if exceptions fail to exclude all of the negative instances.

6.1.1 An Algorithm for Learning Exceptions

The usefulness of adding exceptions to concept definitions depends on an
algorithm for automatically learning exceptions. CRYSTAL with exception
learning follows the basic algorithm up to the point at which a proposed gen-
eralization is found to exceed error tolerance. At that point, the basic CRYS-
TAL algorithm would halt generalization and discard the over-generalized def-
inition.

CRYSTAL with exception learning does not halt when it reaches a defini-
tion with excessive errors. Instead it identifies features that characterize the
negative instances but not the positive instances covered by the definition. If
the instances covered by the definition include sub-regions in which negative
instances are clustered together, an exception can be added to exclude each

of these negative sub-regions. After adding exceptions, CRYSTAL tests the
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error rate again and continues generalizing if the definition is now below error
tolerance.

Adding exceptions will not always reduce the error rate of the definition
sufficiently. The proposed definition before exceptions are added covers a
region of instance space with an excessive proportion of negative instances. If
these negative instances are randomly scattered throughout the region covered,
CRYSTAL will be unable to find exceptions that exclude the negative instances
without also excluding the positive. In such a case, CRYSTAL will halt and
discard the over-generalized definition.

There is a more subtle situation in which CRYSTAL should abandon a
definition rather than add exceptions. It might be possible to find exceptions
that are so specific to the training examples that they fail to exclude any
negative instances in the test set. In this case the error rate will appear
to have been reduced, but will still exceed the error tolerance on previously
unseen test instances, which is what really matters.

The region of instances covered by a definition will generally contain a
much smaller number of training instances than the entire training set. In this
small sample of instances, nearly every negative instance will include some
words or even semantic classes that are unique to that instance.

It may be the only instance with the prepositional phrase “since last April”.
Even though this phrase has nothing to do with making this a negative in-
stance, an exception that excludes instances with “since last April” will reduce
the error rate on the training. Such an exception will probably not apply to any
test instances covered by the definition and may exclude a positive instance if

it does.
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To avoid such spurious exceptions, CRYSTAL only considers features found
in at least two extraction errors as a candidate for an exception. The feature
is tested on all instances covered by the definition. If it is found primarily
in negative instances and not positive, it is added as an exception to the
definition. A new parameter, the exception tolerance (XTol), may be set
greater than 0.00 to allow an exception to exclude a percentage of positive
instances as well as negative.

Exclusion of negative instances may have brought the error rate within er-
ror tolerance. If so, generalization continues. A second, possibly more restric-
tive, error tolerance (Tol2) is used for a rule with exceptions. If the exceptions
do not reduce errors sufficiently, CRYSTAL halts, discards the definition, and
adds the previous version to its rules.

Note that this method of learning exceptions is quite different from simply
applying CRYSTAL recursively. I will refer to this method as “single-feature”
exception learning to emphasize the difference.

The basic CRYSTAL algorithm begins with the most specific definition that
covers a seed instance and generalizes as far as the training allows. When the
training set is sparse, the definitions it learns tend to be too tightly constrained
to have good coverage on the test set.

In contrast to this, exception learning begins with highly generalized ex-
ceptions. All but a single feature of the negative instance has been dropped.
This increases the likelihood that the exceptions will apply to test instances as
well as training instances. This is an important consideration since exceptions

are learned from a limited training sample.
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The CRYSTAL algorithm with exceptions:
Rules = NULL
Derive an initial concept definition from each positive instance
Do for each initial definition D not covered by Rules
Loop:
D’ = the most similar definition to D
If D’ = NULL, exit loop
U = the unification of D and D’
Test U on the training set
If the error rate of U > Tolerance
Call Add_Exceptions(U)
If the error rate of U > Tol2
Exit loop
Set D=U
Add D to the Rules
Return the Rules

Add_Exceptions(U)
Covered = instances covered by definition U
If no more than half the covered instances are negative
Do for each negative instance N in Covered
Add each feature of N to list of possible exceptions
Do for each feature F in possible exceptions
If F is found in at least two negative instances
Excluded = instances in Covered with feature F
If percentage of positive instances in Excluded < XTol
Add F to Exceptions of U
Update the error rate of U
Return U

Figure 6.3 The CRYSTAL algorithm with exception learning
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Where the basic CRYSTAL algorithm uses the entire training set to gen-
erate a definition, an exception must be learned in the context of the region
of instance space covered by a single definition. This tends to be two or three
orders of magnitude smaller than the entire instance space. In such a small
training set, overfitting becomes a serious problem.

CRYSTAL does not even try to learn exceptions when a definition is so
overgeneralized that it covers more negative instances than positive. In such
cases it 1s unlikely that exceptions can bring the error rate back within toler-
ance, but considerable computation time will be expended.

Learning exceptions increases CRYSTAL’s time complexity, particularly
when e, the number of extraction errors, becomes large. Computation time
of the basic CRYSTAL algorithm is proportional to n for each proposed gen-
eralization, where n is the number of training instances. Learning exceptions
adds O(e?) computations to assemble the list of features found in at least two
errors and O(e?) computations to test the candidate exceptions on instances
covered by the definition.

This brings the amount of computation for each generalization to O(n + €?)
when exceptions are being learned and O(n) otherwise. The overall compu-
tation time with exceptions is O(pn + pe?), as compared to O(pn) without
exceptions.

For the training sets used in these experiments, e* was generally less than
n. The actual computation time with exceptions was typically about one and

a half times as long as without exceptions.
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How much does this increase in computation time buy in terms of precision
and recall? It depends on the characteristics of the instance space, as shown

in the next section.

6.1.2 Empirical Results

In the following experiments CRYSTAL was run with and without ex-
ception learning at error tolerance 0.20. Error tolerance of definitions with
exceptions (Tol2) was set at 0.10 and exception tolerance (XTol) at 0.20.

Figure 6.4 shows results from the Management Succession domain and

Figure 6.5 from the Hospital Discharge domain.
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Figure 6.4 Comparison of Management Succession results with no exceptions
and with exception

Learning exceptions with the parameter settings used here has little effect
in the Management Succession domain, and causes a small increase of recall

at the expense of precision in the Hospital Discharge domain.

97



100
90
80
70 |:|
60 Precision
50
40 Recall
30 °
20 Avg R,P
10
0

no_ex ex no_ex ex no_ex ex no_ex ex

Symptom, Symptom, Diagnosis, Diagnosis,

Present Absent Confirmed Ruled Out

Figure 6.5 Comparison of Hospital Discharge results with no exceptions and
with exception

Of the Management Succession concepts shown here, only In,Out has a
statistically significant difference from learning exceptions'. Even that is only
a tiny drop in performance.

Each Hospital Discharge concept gets a small, but statistically significant
boost in recall from exceptions. The gain in recall is slightly more than the
loss in precision. The gain in average recall and precision is significant for all
but Diagnosis, Ruled_Out.

There is an intuitive appeal to including negative as well as positive con-
straints in a concept definition. It is possible that another strategy for learning
exceptions would allow CRYSTAL to boost precision without sacrificing re-
call. The methods I have tried so far, have not succeeded in showing this to
be possible.

An attempt to enhance the expressiveness of CRYSTAL’s rule representa-

tion made only a tiny performance improvement in one domain and no im-

!The significance test used here and elsewhere is a two-tailed, paired t-test with p<0.05.

98



provement in another. The next section presents experiments that restrict

CRYSTAL'’s representation.

6.2 Restricting CRYSTAL’s Representation

CRYSTAL was designed with the assumption that a rich and flexible repre-
sentation was needed to express the variability of unrestricted text. Semantic
class constraints and the ability to drop all but one or two constraints allow
CRYSTAL to learn highly general rules that give broad coverage on previously
unseen instances.

On the other hand, CRYSTAL needs the ability to use a wide variety of
evidence to find reliable rules when semantic class constraints alone are not
adequate for the extraction task.

This section presents a series of experiments that test these assumptions. It
is not certain that increasing the complexity of the rule representation will help
performance. Overly complex rules increase the dimensionality of the search
space and may tend to make learning more difficult. With more possible ways
to relax constraints, CRYSTAL will have more ways to make wrong choices.

I selected four aspects of CRYSTAL’s representation to be crippled. The
first is CRYSTAL’s ability to either keep or drop verb constraints. This ability
is lacking or quite limited in other systems that learn text analysis rules (see
Chapter 7). How much does CRYSTAL gain from its ability to drop verb
constraints? The results labeled with a “V” are from a version of CRYSTAL
that never generalizes away the verb of the seed instance.

This was accomplished by restricting the candidates for most similar defini-

tion to those with the same verb root. All generalizations from a seed instance
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included a verb constraint with at least the same root form. Seed instances
from sentence fragments with no verb were unified only with instances with
no verb and produced definitions that require a null verb.

A second aspect is the distinction between head terms and modifiers for the
term constraints and class constraints. This distinction is unique to CRYS-
TAL. The version labeled “M” has term constraints and class constraints, but
omits the head and modifier constraints on terms and classes from the initial
definitions. The generalized definitions lack these constraints as well.

A third aspect is the inclusion of all syntactic constituents as possible
constraints in the concept definition. Other systems that learn text analysis
rules include only certain constituents, such as the verb plus those contain-
ing extracted information. The version of CRYSTAL labeled “X” omits all
constraints from initial definitions but those on the verb and on extracted
constituents. For example if the seed instance has information extracted from
the direct object, the initial definition will have only the verb and direct object.
The subject and any prepositional phrases will be immediately dropped.

A fourth aspect is the ability to use either term constraints or semantic
constraints on any syntactic constituent. Other systems allow term constraints
only on a “trigger” word, typically the verb or verb root. The version labeled
“T” retains the root constraint on verbs, but does not include any term con-
straints.

Results also include the baseline CRYSTAL system with none of these re-
strictions and a version labeled “4” that has all four restrictions. The number
of possible features for this last version is much smaller than for the baseline

system. If the features remaining are sufficient to describe the target concept,
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it may be an advantage to eliminate the unnecessary features. If these re-
strictions have removed features that are essential to distinguish the positive
instances, performance should drop drastically.

Figure 6.6 shows results for two of the Hospital Discharge concepts. These

are representative of all four concepts in this domain.
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X = keep constraints only on extracted constituents and verb,
T = drop all term constraints, 4 = all four (V,M,X,T)

Figure 6.6 The effects of restricting CRYSTAL’s representation in the Hos-
pital Discharge domain

Single restrictions tend to cause a moderate drop in recall and a rise in
precision?. Of the single restrictions, dropping terms hurt recall the most.

This suggests that CRYSTAL’s representation offers enough alternate ways
to describe the positive instances that CRYSTAL can compensate for mild
crippling of its representation. When all four restrictions are applied, recall
plummets. The severely crippled representation is insufficient to distinguish

many of the positive instances.

2All the differences from the baseline system for Symptom, Absent are significant, except
for the difference in precision for “V”. Most changes for Symptom,Present are significant,
except recall for “X”, precision for “M”, and average precision and recall for “M”.
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I had expected that the effects of restricting representation would be much
less pronounced after semantic fine-tuning. Figure 6.7 shows the same pattern
of results, however, as before semantic fine-tuning. The effect of dropping term

constraints is less pronounced with better semantic tagging.
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M = drop distinction between modifier and head,

X = keep constraints only on extracted constituents and verb,
T = drop all term constraints, 4 = all four (V,M,X,T)

Figure 6.7 Restricting CRYSTAL’s representation with fine-tuned semantics
in the Hospital Discharge domain

Figure 6.8 shows results of these restrictions in two of the Management
Succession concepts. The behavior of Person_In is characteristic of most of
the Management Succession concepts. Any single restriction had a minor effect
on performance. Precision tends to be a little higher and recall a little lower
for each of the restrictions®. The average of recall and precision is only slightly
different from the baseline system for any single restriction. Applying all four

restrictions causes a large drop in recall.

3The drop in recall from the baseline system is statistically significant only for versions
“X”, “T” and “4”. The increase in precision is significant for all but “T”. The change in
average recall and precision is significant only for “V”, “T” and “4”.
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Figure 6.8 The effects of restricting CRYSTAL’s representation in the Man-
agement Succession domain

For some of the multi-slot concepts, the severely restricted representation
was more nearly adequate. For three of the fifteen Management Succession
concepts, including Person_In,Organization, applying all four restrictions in-
creased precision more than it hurt recall. No single restriction affected recall

for Person_In,Organization and “V” and “T” raised precision somewhat*

6.3 Discussion of Results

The results in this chapter indicate that representation can have a major
impact on performance and on the ability to learn text analysis rules. The
instance representation and the rules must be expressive enough to represent

the essential characteristics of the concept being learned. If this minimum

“The only significant change in recall from the baseline system was for version “4”. The
increase in precision and in the average of recall and precision was significant only for “V?”,
«rm» UAq”

T”, and “4”.
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expressiveness has been met, adding unnecessary features will only hinder a
machine learning algorithm.

For the concept Person_In,Organization in the Management Succession
domain, a simple rule representation was sufficient. Adding exceptions to the
rules only lowered precision with no gain in recall. Each of the restrictions
to CRYSTAL either had no impact on this concept or raised precision with
no change to recall. Applying all the restrictions lowered recall slightly, but
produced a gain in precision.

One way to look at this behavior is in terms of the nature of the instance
space for Person_In,Organization. Simple rules are sufficient to describe one
third of the positive instances reliably. The remainder are the “hard” instances
(as discussed in Section 5.4.2). Increasing the expressive power of CRYSTAL
has two conflicting effects. It allows rules that identify more of the hard
instances, but at the same time increases the potential for CRYSTAL to relax
the wrong constraint while generalizing a definition.

For most of the other other concepts in these two domains, a simple repre-
sentation is inadequate to identify more than a small fraction of the positive
instances. An example of this is the concept Symptom,Present in the Hospi-
tal Discharge domain. This was the most difficult concept of either domain,
particularly before semantic fine-tuning. Most of the positive instances were
“hard” instances. CRYSTAL needed all its expressiveness including excep-
tions to gain recall for this concept. Nearly all the restrictions to CRYSTAL
lowered the average recall and precision.

The only aspect of CRYSTAL’s representation that did not help for this

concept was constraints on non-extracted constituents. The verb and the
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phrase containing the Symptom,Present are generally enough to identify a
reference to this concept.

No aspect of CRYSTAL'’s representation is either essential for all concepts
in all domains or unnecessary for all concepts. Any restriction that hurt per-
formance for one concept turn out to help another concept. Each of these
possible restrictions have been left as options for the CRYSTAL system, with

the default being the full representation.
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CHAPTER 7

RELATED WORK IN NATURAL LANGUAGE
PROCESSING

Most research in applying machine learning to natural language processing
has been primarily at the level of lexical or semantic disambiguation of individ-
ual words [Brill 1994, Cardie 1993, Yarowsky 1992, Church 1988] and in learn-
ing heuristics to guide probabilistic parsing [Charniak 1995, Magerman 1995].
Little work has been done, however, in using corpus-based techniques for a
higher level of inferencing that goes beyond the meaning of individual words.

The work most closely related to CRYSTAL has come from participants
in recent Message Understanding Conferences [MUC-4 1992, MUC-5 1993,
MUC-6 1995]. Nearly all MUC participants use some form of pattern matching
rules or finite state automata to identify references to concepts of interest.

Although most MUC participants build these rules by hand, the methodol-
ogy looks uncannily like a hand-simulation of CRYSTAL. Actually it is CRYS-
TAL that automates the iterative development cycle a human uses. A knowl-
edge engineer applies an existing rule base to a set of annotated training texts,
selects a phrase not covered by the rules, and adds a new rule or generalizes
an existing rule to cover it. The modified rules are tested on the training set
to ensure that new rules do not create excessive errors.

Both the human developer and CRYSTAL rely heavily on examples from

a representative set of texts. The human has the advantage of outside knowl-
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edge that helps predict which features are important to include in a rule and
how far a rule may be safely generalized. The quality of semantic tagging of
individual words and the expressiveness of the rules themselves play a critical
role, whether the rules are learned or hand-crafted.

Three of the MUC participants have developed systems that learn text
analysis rules. The remainder of this section will compare CRYSTAL with
these other systems, plus another system based on a MUC domain. The first is
the AutoSlog dictionary construction tool [Riloff 1993] used by the University
of Massachusetts in MUC-4 and MUC-5. AutoSlog combines machine learning
with a “human in the loop” who edits the proposed rules.

The second system is PALKA [Kim and Moldovan 1992], developed by the
University of Southern California for their MUC-5 system. A third trainable
system appeared in MUC-6, the HASTEN system from SRA [Krupka 1995].
The fourth system described in this chapter is LIEP [Huffman 1996] that was
developed on the MUC-6 domain. By the time of the MUC-6 conference, the
University of Massachusetts had moved from AutoSlog to CRYSTAL.

7.1 AutoSlog

The AutoSlog dictionary construction tool was developed by Ellen Riloff
at the University of Massachusetts [Riloff 1993]. AutoSlog passes through the
training texts a single time and proposes concept definitions from instances of
the concepts to be extracted.

AutoSlog uses “one shot” learning with no generalization phase and no
testing of proposed rules on the training data. Instead, it uses heuristics to

craft the best concept definition it can from a single motivating example. An
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AutoSlog concept definition assigns a fixed level of semantic constraint to
the extracted phrase. A more recent version of AutoSlog [Riloff 1996] has no
semantic constraints at all on the extracted phrase. This version assumes that
later processing in an information extraction system will filter out extraction
errors by overgeneralized AutoSlog concept definitions.

Each AutoSlog definition also has an exact word constraint on a trigger
word, which is determined by a set of rules. When extracting a concept from
the subject, AutoSlog selects the verb as trigger, in some cases including the
direct object or infinitive complement as well. Extraction from a direct object
is likewise triggered by the verb. Extraction from a prepositional phrase may
be triggered either by the preceding noun or by the preceding verb.

One major difference between CRYSTAL and AutoSlog is AutoSlog’s rela-
tively limited representation. The phrase being extracted must always have a
fixed level semantic constraint, specified in advance by the user, and never has
an exact word constraint. No other phrase in the instance may have a seman-
tic constraint. Every concept definition must have an exact word constraint
on a trigger word. No other phrases may be included in the definition.

Another difference is AutoSlog’s lack of a mechanism for automatically
testing its proposed concept definitions on the training corpus. AutoSlog relies
on human review before the concept definitions are finally accepted. This
human review requires only a few hours and typically retains about 30% of
the proposed concept definitions as reasonable.

AutoSlog does remarkably well despite its limitations, when supported by
carefully engineered semantic tagging and subsequent discourse processing that

filters out extracted phrases that are irrelevant to the extraction task. An Au-
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toSlog dictionary achieved 98% of the performance of a hand-crafted concept
dictionary that took an estimated 1500 hours of effort to create for the MUC-3
evaluation.

The system presented in the next section uses a covering algorithm ap-

proach that resembles CRYSTAL more closely than AutoSlog does.

7.2 PALKA

The PALKA system [Kim and Moldovan 1992] was developed by Jun-Tae
Kim and Dan Moldovan for the University of Southern California MUC-5
system. PALKA (Parallel Automatic Linguistic Knowledge Acquisition) uses
a method similar to the candidate elimination algorithm (See Section 8.3.4)
to generate text analysis rules from training instances. As PALKA considers
each new instance, it generalizes rules to include positive instances not yet
covered and specializes rules to avoid covering negative instances.

PALKA represents its rules as FP-structures (Frame-Phrasal pattern struc-
tures), which have a constraint on the verb root and semantic constraints on
each extracted phrase. An FP-structure may be generalized by moving a se-
mantic constraint upwards in a semantic hierarchy or by adding a disjunctive
term to the semantic constraint.

If an FP-structure has a constraint on class A, but a negative instance
has class A’ (a subclass of A), PALKA will specialize by moving lower in
the semantic hierarchy and enumerating all classes except A’ PALKA lacks
CRYSTAL'’s error tolerance mechanism and will specialize a FP-pattern based
on a single negative instance even if this excludes several positive instances as

well.
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PALKA maintains a single rule for each phrasal pattern, which may have
several disjunctive terms in each semantic class constraint. Here is an example
of a possible FP-pattern for a Bombing case frame, with Instrument and Target
slots. The subject must have class dynamite or grenade; the verb must have
roots “be” and “hurl”; the object of the preposition “at” must be of class
physical_object. This would cover an instance such as “Dynamite sticks were

hurled at U.S. Embassy facilities.”

Bombing
(Instrument: dynamite V grenade)
BE HURL
AT

(Target: physical_object)

Like AutoSlog, PALKA has a more restrictive representation than CRYS-
TAL. Each FP-structure requires a constraint on the root form of a verb, but
can have no other exact word constraints. The subject, direct object, and
each extracted phrase have semantic constraints, but PALKA does not allow
constraints on prepositional phrases other than those containing information
to extract.

In some ways, PALKA’s representation is even more limited than Au-
toSlog’s. FP-structures cannot express exact word constraints on a noun in-
stead of a verb, and hence cannot represent the rule: “ATTACK ON (Target:

physical object)” where “attack” is a noun.
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7.3 HASTEN

The next trainable text analysis system, HASTEN, uses a form of instance
based learning similar to PEBLS, which will be introduced in Section 8.4.
George Krupka developed HASTEN [Krupka 1995] for the SRA Corporation’s
MUC-6 text analysis system.

HASTEN stores each training instances as an Fgraph, which associates
structural elements of the sentence with semantic classes and also with case
frame slots of an extracted concept. A new instance is classified by computing
its similarity to each stored Egraph. If the similarity to the nearest Egraph
is above a threshold, HASTEN extracts information from the new instance
based on the Egraph case frame.

The following example is an Egraph for the input “Armco also named John
C. Haley, 64 years old, chairman.” This example contains a Management
Succession event with Organization, Person_In, and Position. An Egraph also
has an anchor, which is the main element of the instance, generally a verb

phrase. This is similar to the trigger in AutoSlog.

Succession
Organization: NP sem=not-govt
Anchor: VP root=name
Person_In: NP sem=person
(irrelevant): AGE
Position: LIST sem=post

HASTEN uses a similarity metric to find the most similar Egraph to a new
input sentence. This metric considers how many structural elements match,

how well the semantic contents match, and whether relative ordering and
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adjacency of elements are maintained. A number of tunable parameters are
used in the similarity metric.

Some Egraphs will do a more reliable job of identifying concepts than oth-
ers. HASTEN evaluates the classification performance of each Egraph on the
other training instances and assigns it an eztraction bias. HASTEN multiplies
the similarity measure by this extraction bias to reduce the effective similarity
to Egraphs with poor classification performance.

HASTEN also has a user-defined threshold that manipulates a trade-off
between recall and precision just as CRYSTAL’s error tolerance does. If the
computed similarity between an input sentence and the most similar Egraph
falls below the threshold, nothing is extracted. A high threshold makes HAS-
TEN more cautious and increases precision, while a low threshold increases
recall.

CRYSTAL’s representation of rules is in some ways more flexible than
HASTEN’s representation. CRYSTAL can set constraints on certain struc-
tural elements of a sentence and not others, depending on the particular con-
cept definition. HASTEN’s similarity metric uses the same weight for a given
structural element for all Egraphs.

If HASTEN’s similarity metric gives a high weight to the anchor, then in
effect HASTEN cannot drop constraints on the verb from its implicit rules.
CRYSTAL rules can also be selective about including semantic class con-
straints on some elements and exact word constraints on others, but HASTEN
has no such flexibility.

The examples of Egraphs in the published account had only semantic con-

straints and not word constraints on the sentence elements used as slot fillers.
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The Egraph anchor had a constraint on the verb root, and the irrelevant sen-

tence element had no constraints.

7.4 LIEP

The last system to be discussed in this chapter is Scott Huffman’s LIEP
(Learning Information Extraction Patterns) [Huffman 1996]. LIEP uses a set
of heuristics to create rules, called eztraction patterns, from single training
instances. There is also a mechanism to generalize extraction patterns slightly.

LIEP learns patterns for multi-slot concept extraction, such as Manage-
ment Succession events. Unlike AutoSlog’s heuristics that operate on single
slots, LIEP’s heuristics operate only on multiple slots. In many ways, LIEP
functions as a multi-slot version of AutoSlog.

A key word filter is applied to input sentences before presenting instances
to LIEP’s extraction rules. This gives LIEP a training corpus that consists
almost entirely of positive instances, although not all phrases of the instances
will be relevant and particular extraction patterns will apply to only a fraction
of the entire training.

Extraction rules have syntactic constraints on pair-wise syntactic relation-
ships between sentence elements. LIEP finds relationships that link the ex-
tracted phrases in an instance, and includes non-extracted sentence elements
only if needed to form a path between extracted elements. These additional
sentence elements are typically verbs and prepositions.

For example, a pattern from the instance “Bob was named CEO of Foo

”

Inc.” has the following syntactic constraints. The verb “named” and the
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preposition “of” are included to link the extracted constituents “Bob”, “CEQ”,

and “Foo Inc.”.

subject(Bob,named)
object(named,CEOQ)
post_nominal_prep(CEOQ,of)
prep_object(of,Foo Inc)

Extraction patterns also have semantic constraints on the extracted phrases.
LIEP uses whatever semantic class it finds in the motivating instance and does
not generalize the semantic constraints. Non-extracted elements have exact
word constraints, and in the case of verbs a constraint on active or passive
voice.

LIEP proposes up to three rules from each example and then tests each
one on the training set. Of the alternatives proposed, LIEP keeps the best one
according to a metric that combines recall and precision®.

A limited amount of generalization of extraction patterns is done. When
two patterns are identical except for word constraints, LIEP builds a synonym
list from those words. For example, “named”, “appointed”, and “elected” are
synonyms in Management Succession patterns. Any pattern that includes a
word in a synonym list has the word constraint generalized to a constraint on
the synonym list.

This will not help LIEP generalize to words not found in training. Huffman

suggested use of a knowledge source such as WordNet [Miller et al. 1990] to

replace or augment the learned synonym lists.

!The “F-measure” used in MUC evaluations to combine recall and precision
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There does not seem to be a mechanism to discard unreliable extraction
patterns. Perhaps the key word filter eliminates enough of the negative in-
stances before they are presented to LIEP that overgeneralized extraction

patterns are not a major problem.

7.5 Contrast of CRYSTAL and Other NLP Algorithms

The four systems described in this chapter have a wide range of strategies
for learning text analysis rules. At one extreme, AutoSlog and LIEP rely
on heuristics to derive an extraction rule from a single positive instance. At
the other extreme, PALKA uses a computationally expensive learning method
that generalizes a rule to include other positive instances and specializes to
avoid negative instances. HASTEN takes an instance based learning approach
and bases its classification on comparing a new instance to stored training
instances. What HASTEN learns is weights that indicate the classification
accuracy of each stored instance.

One thing in common to all four is a much more limited rule represen-
tation than CRYSTAL’s. CRYSTAL’s concept definitions may have either
term constraints or semantic constraints on any syntactic constituent in the
instance. No distinction is made in advance between sentence elements that
contain extracted information and those that do not.

The other systems allow only semantic constraints on extracted sentence
elements. Only certain non-extracted elements (e.g. the verb, “trigger”, or
“anchor”) are included, and these have term constraints, but not semantic

constraints.

115



These restrictions in representation can be viewed as a strong bias in the
learning algorithms. Very little search is needed for an appropriate rule if
certain decisions are made in advance. In the case of AutoSlog the restrictions
are so strong that no search is done at all, and hardly any search in the case
of LIEP.

HASTEN uses the same distance function for all its stored examples, rather
than learning what features of an instance are essential for classification. The
essential features are decided in advance by the way HASTEN represents its
stored instances.

PALKA does extensive search, but with a learning algorithm that cannot
navigate large search spaces efficiently. PALKA restricts the search space
to a manageable size by considering only semantic constraints for extracted
sentence elements.

CRYSTAL'’s expressive representation is made possible by its efficient search
strategy. CRYSTAL can include any feature in its representation that might
possibly be useful. Features that are irrelevant to the target concept are
quickly dropped when generalizing a concept definition.

In most cases, the essential features turn out to be those included in the
representation of the other systems. The semantic class of extracted phrases
together with the verb root is often sufficient context for a text analysis rule.
However, as experiments in Section 6.2 show, this is often not enough. Includ-
ing a wide array of features in CRYSTAL’s representation allows CRYSTAL

to learn rules that could not be otherwise expressed.

116



CHAPTER 8

RELATED WORK IN MACHINE LEARNING

This chapter compares CRYSTAL with related machine learning algo-
rithms. Since the other algorithms discussed here are classifiers that assign a
class such as positive or negative to each instance, I begin by discussing how
CRYSTAL could be transformed into a classifier. I then discuss the extremely
large number of features that arise from CRYSTAL’s rule representation and
how these features could be expressed in the predicate calculus or as the fea-
ture vectors that some algorithms expect. One point of comparison with other
algorithms is how well they handle large feature spaces.

The first class of related machine learning algorithms I discuss are covering
algorithms, the family to which CRYSTAL belongs. Next, CRYSTAL’s use
of a distance function is contrasted to instance based learning, or “k-nearest
neighbor” algorithms. Lastly, CRYSTAL is compared to the well-known fam-
ily of decision tree and decision list algorithms. The chapter concludes with
some observations on the contrast between CRYSTAL and these other machine

learning algorithms.

8.1 CRYSTAL as a Machine Learning Classifier

Among machine learning algorithms, classifiers are those that take each

instance and assign to it one of k disjoint classes. A broad range of problems
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can be formulated in terms of classification. An instance might represent a
situation and the classes might be several alternate actions that could be taken,
depending on the situation.

Information extraction can be turned into a classification problem. A set
of concept definitions classify an instance as positive if the target concept is
found in the instance and negative, otherwise. The evaluation procedure I
use to compute the recall and precision of a set of concept definitions treats
CRYSTAL as such a classifier. What percentage of the positive instances does
CRYSTAL classify correctly? Of the instances that CRYSTAL classifies as
positive, what percentage are true positives?

Text analysis rules must go further, however, than simply to decide whether
an instance contains the target concept. The rules must also indicate where to
extract information from the instance. In terms of CRYSTAL’s concept defi-
nitions, this means specifying a mapping between slots in the target concept
and syntactic constituents of the instance. This is comparable to a binding
problem in a predicate calculus representation.

Consider the sentence in Figure 8.1 from the Hospital discharge domain.
It has been annotated with a Symptom, Absent (“regular rate”) in one preposi-
tional phrase and a Symptom, Present (“early beats”) in another prepositional
phrase. A concept definition for Symptom, Absent must specify that the target
information is in the first prepositional phrase, while a concept definition for
Symptom, Present must specify the second prepositional phrase.

Note that the concept definitions for a domain cannot be viewed as a
single classifier with a class for each possible concept, plus the classification of

“none” for irrelevant sentences. That would not work, since a sentence may
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Input Sentence:
The heart was notable for a <SA> regular rate </SA>
with occasional <SP> early beats </SP>.

CRYSTAL Instance:
SUBJ:
Terms: THE HEART
Classes: <Body Part>
Mode: affirmative

VERB:
Terms: WAS
Root: BE

Classes: <Exist>

Mode: active, affirmative
PP:

prep: NOTABLE_FOR

Terms: A REGULAR RATE

Classes: < Temporal Concept>

Mode: affirmative

Extract: Symptom,Absent
PP:

prep: WITH

Terms: OCCASIONAL EARLY BEATS

Classes: < Temporal Concept>

Mode: affirmative

Extract: Symptom,Present

Figure 8.1 An annotated instance with Symptom,Absent in one prepositional
phrase and Symptom, Present in another.
contain references to multiple concepts or more than one reference to the same
concept. The instance in Figure 8.1 cannot be classified as Symptom, Absent
and as Symptom,Present simultaneously.

Would it be sufficient for each concept in the domain to have its own
classifier that takes one of CRYSTAL’s instances and classifies it as positive or
negative? That would not be enough to specify where the target concept was

to be found in the instance. Even a classifier with a separate class for each
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possible syntactic constituent would not do the job. If a Symptom,Absent
classifier returned the class of “PP” for the instance in Figure 8.1, this would
still not be specific enough to find “a regular rate” in the instance.

Creating a classifier equivalent to a CRYSTAL concept definition is a bit
tricky. A single instance for CRYSTAL must be presented as multiple in-
stances, each one designating a particular mapping of syntactic constituent
and concept slots. If the concept has s slots and the instance has k syntactic
constituents, the CRYSTAL instance would be transformed into sk separate
instances for the classifier.

The concept Symptom,Absent has one slot and the instance in Figure 8.1
has four syntactic constituents, so a Symptom,Absent classifier is presented
with four instances. Figure 8.2 shows the four mappings and their classifica-
tion. A Symptom, Present classifier is presented with the same four instances,

but returns different classifications.

Symptom, Absent classifier :

Symptom,Absent in Subj? negative
Symptom,Absent in Verb? negative
Symptom,Absent in First PP? positive

Symptom,Absent in Second PP? negative

Symptom, Present classifier:

Symptom, Present in Subj? negative
Symptom, Present in Verb? negative
Symptom, Present in First PP? negative

Symptom, Present in Second PP?  positive

Figure 8.2 Mapping of concept slots to syntactic constituents.

Multi-slot concepts, such as those in the Management Succession domain

require a separate instance for every mapping of concept slots and syntactic
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constituents in the instance. A CRYSTAL instance with four syntactic con-
stituents would be transformed into twelve instances for a classifier for the
three slot concept with Person_In, Position, and Organization.

Consider the sentence “XYZ Inc. named Mr. A as president, replacing Mr.
B”. This sentence has five syntactic constituents (subject, verb, direct object,
prepositional phrase, and relative clause) and fifteen possible mappings of the
three slots to these five constituents. The only positive instance is the one
that designates that Organization is in the subject, Person_In is in the direct
object, and Position is in the prepositional phrase.

Now that CRYSTAL concept definitions have been shown to be function-
ally equivalent to a classifier, it may be compared to other machine learning
classifiers. The only thing to bear in mind is that if CRYSTAL has n instances,
a classifier will need skn instances, where s is the number of concept slots and
k is the average number of syntactic constituents in an instance. As long as
both s and k are small, this may be treated as a constant factor in the amount

of computation time needed for machine learning classifiers.

8.2 Extremely Large Feature Sets for Natural Language
Processing

In CRYSTAL’s representation language, each instance has only a small
number of features, but thousands of features may be needed to express con-
straints on all the distinct terms and semantic classes found in a training
corpus. This is considerably larger than the typical number of features for

experiments reported in the machine learning literature.
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Some of the data sets often used in published results are from the UC Irvine
repository of machine learning data sets. A data set on predicting recurrence
of breast cancer has instances with nine features, of which four take integer
values. A data set on recognizing digits in a faulty LCD display has seven
Boolean features, one for each of the lines that form the displayed digit. A
data set on determining the winner of chess end games has instances that use
39 Boolean features to represent board positions.

Published accounts of the algorithms that I discuss in this chapter report
experiments on data sets that have a fairly small number of features. A data
set on diagnosing soybean diseases was used by Michalski to test the A? al-
gorithm. Each instances has 35 features with a total of 106 feature-value
pairs [Michalski 1983]. Clark and Niblett report tests of CN2 on three med-
ical data sets with eighteen, nine, and seventeen features and two artificial
domains with twelve features [Clark and Niblett 1989]. Mitchell used mass
spectroscopy data to test the candidate elimination algorithm. Each instance
represents an molecule with four features for each of ten to twenty atoms in the
molecule [Mitchell 1978]. Pagallo and Haussler tested GREEDY3 on artificial
data sets with instances created by randomly selecting from among sixteen
Boolean features [Pagallo and Haussler 1990] in some tests and from eighty in
others.

I have not seen any machine learning papers that describe a data set with
more than several dozen features. There often seems to be an implicit as-
sumption that the number of features will be fairly small, and certainly much
smaller than the number of instances. This is not the case when text analysis

rules are learned using CRYSTAL’s representation.
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My motivation for creating CRYSTAL was to have a learning algorithm
that could handle extremely large numbers of features easily. I had run into
the problem of extremely large number of features in an earlier system called
WRAP-UP [Soderland and Lehnert 1994] that learns to make inferences dur-
ing the discourse processing stage of information extraction. Features are
created that represent particular words in particular syntactic roles, such as
being the subject of a particular verb, the object of a particular verb, or the
object of a particular preposition. This results in over a thousand features,
even after discarding features that are not found in at least ten texts. Inducing
decision trees! with such a large number of features took an excessive amount
of memory and computation time.

An extremely large number of features also arises for CRYSTAL in learn-
ing text analysis rules. A corpus of texts will typically include thousands of
distinct words that can occur in a variety of syntactic roles, resulting in tens
of thousands of combinations of word and syntactic role. Figure 8.3 shows the

features occurring in a training instance with “Chest x-ray” in the subject.

SUBJ-Terms-CHEST
SUBJ-Terms-X-RAY
SUBJ-Mod_Terms-CHEST

SUBJ-Head Terms-X-RAY
SUBJ-Classes-Body _Location
SUBJ-Classes-Diagnostic_Procedure
SUBJ-Mod _Classes-Body_Location
SUBJ-Head _Classes-Diagnostic_Procedure
SUBJ-Mode-affirmative

Figure 8.3 Boolean features derived from “Chest x-ray” in the subject.

1T used a slightly re-implemented ID3 decision tree algorithm [Quinlan 1986]
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These features are listed in a format that indicates the syntactic constituent
(SUBJ), followed by the constraint (e.g. Terms), followed by the word or
semantic class. The feature SUBJ-Terms-CHEST has the value “true” for this
instance as does the feature SUBJ-Terms-X-RAY.

The constraints on an instance can also be represented in the predicate
calculus. One encoding scheme is to treat constraints as predicates with two
arguments. The predicate name is the constraint (e.g. Terms), the first ar-
gument is the syntactic constituent, and the second is the word or semantic
class. The term “chest” in the subject is expressed as Terms(SUBJ, CHEST)

and the term “x-ray” as Terms(SUBJ, X-RAY). This is shown in Figure 8.4.

Terms(SUBJ, CHEST)

Terms(SUBJ, X-RAY)

Mod_Terms(SUBJ, CHEST)
Head_Terms(SUBJ, X-RAY)

Classes(SUBJ, Body _Location)
Classes(SUBJ, Diagnostic_Procedure)

Mod _Classes(SUBJ, Body_Location)
Head_Classes(SUBJ, Diagnostic_Procedure)
Mode(SUBJ, affirmative)

Figure 8.4 Predicate calculus representation of “Chest x-ray”

Can the constraints in CRYSTAL’s representation can be converted into
features that take multiple values? If a feature took as its value any of thou-
sands of terms, only a small number of features would be needed, although
the number of feature-value pairs would not be changed. Such an encoding
scheme will not work, however, since a given syntactic constituent may have
multiple terms, multiple classes, and so forth. If the value of SUBJ-Terms is

“CHEST?”, the same feature cannot simultaneously have the value “X-RAY”.
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The list of possible syntactic constituents will vary according to the syn-
tactic analyzer used to create input for CRYSTAL. In the Hospital Discharge
domain, there are five syntactic constituents used: subject, verb, direct object,
indirect object, and prepositional phrase. When term constraints, head term
constraints, and modifier term constraints are taken into account, a constraint
may specify any of fifteen syntactic roles for a given word. Some of these
combinations will not actually occur in the training data for a particular word
or class, and can be ignored.

The corpus of 502 Hospital Discharge documents contains 10,710 distinct
words, which results in 54,902 features, where each distinct combination of
a word or semantic class occurring in a syntactic role is considered to be
a feature?. This number can be reduced somewhat by discarding low fre-
quency features, although this runs the risk of discarding some potentially
useful features. After discarding those not found in at least ten documents,
4,697 features remain.

Expressing an instance as a Boolean feature vector requires space propor-
tional to the total number of features found in the training corpus. Only a
tiny fraction of these features will be true for a given instance. CRYSTAL’s
representation or a predicate calculus representation takes space proportional
to the features that are true for each instance and is independent of the total
number of features.

With such a large number of features, it is desirable to use an algorithm
with computation time that does not depend on the total number of features.

In the following sections, I pay close attention to the computational complexity

2This was computed by creating instances for a classifier that determine whether the
subject contains the concept Symptom,Present.
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of various algorithms, in particular, how well the algorithm would scale up to

thousands of features.

8.3 Covering Algorithms

CRYSTAL falls into a class of machine learning algorithms known as cov-
ering algorithms. Covering algorithms build a set of concept descriptions that
cover the positive training instances while avoiding negative instances. Con-
cept descriptions may either be generalized to include additional positive in-
stances or specialized to exclude negative instances. As each new concept
description is generated, the instances covered by the new description are
eliminated from consideration in generating further concept descriptions.

This general methodology is not new, and goes back at least to John Stuart
Mill in 1843. Each covering algorithm has a different strategy for making the
problem computationally feasible. The covering algorithms described here are
Michalski’s A? algorithm, Clark and Niblett’s CN2. I include Vere’s concept
induction algorithm and Mitchell’s candidate elimination algorithm in this

section as well.

8.3.1 A?¢

Ryszard Michalski and his students have published several versions of the
A9 covering algorithm [Michalski 1983] and the INDUCE inductive learning
program. Peter Clark and Tim Niblett also offer a readable explanation of A?
[Clark and Niblett 1989].

The basic methodology of A? has much in common with CRYSTAL. A¢

begins with a set of labeled training instances and builds a disjunctive set
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of concept descriptions, which taken together cover all the positive instances
and none of the negative. This set of concept descriptions, called the cover,
is analogous to CRYSTAL’s set of concept definitions. Like CRYSTAL, each
step of A9 selects a positive instance not yet covered and derives a general
concept description from this seed.

A? generates this description by first building a star of all maximally general
descriptions that cover the seed and do not cover any negative instances. A?
appears to have an implicit error tolerance of 0.0, although the algorithm could
be modified to be more noise tolerant.

A? selects the best description from the star according to a goodness metric
that favors high-coverage, compact descriptions. This description is added to
the cover and A? continues its induction with a new seed instance.

Since actually finding all such maximally general descriptions would be
computationally prohibitive, A? approximates this with a beam search. A star
begins with single-attribute descriptions that cover the seed. A? maintains a
set of the best s concept descriptions, those that cover the most positive and
fewest negative instances. At each stage in the search, A? considers specializa-
tions that add a single attribute to each of the s best descriptions. The door
is left open as well for domain-specific heuristics that create new attributes.

Each proposed description is tested on the training set to determine the
number of positive and negative instances covered. The best s of these new
descriptions are retained in the star. A number of parameters is used to guide
the generation of a star, including one that halts generation when a desired

number of descriptions have been found that cover no negative instances.
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Building a star is computationally expensive, particularly when the feature
set is extremely large. The published descriptions of A? seem to assume an
implementation in which each step of specializing a concept description con-
siders O(a) specializations, where a is the number of attributes in the feature
set. Each of these specializations is then tested on all n training instances.
This is done for each of the s concept definitions in the star. The average
number of steps in building a star is bounded by k, the maximum number of
attributes per description.

Treating k as a constant, this gives O(asn) computations to build each star.
Let r be the number of stars built. Ideally, » depends only on the underlying
concept and is independent of n. An upper bound for » is O(p), where p is
the number of positive training instances. (Note the parallel between k and r
in the analysis of CRYSTAL’s time complexity in Section 4.6.)

This gives A? a total computational time of O(asrn) or O(aspn), as op-
posed to CRYSTAL’s time complexity of O(rn) or O(pn). The dependency
on the star size s, makes A? resemble the beam search version of CRYS-
TAL. It seems that A? performs best with a fairly large star size. Clark
and Niblett report using s = 15 for experiments with medical data sets®
[Clark and Niblett 1989].

So long as A? is only tested on features sets with a few dozen attributes,
it does not matter that computation time is proportional to a. For data sets
in which a is extremely large, A? would need to be re-implemented to avoid

considering all possible attributes for specializations of a star.

3Lymphomography, breast cancer, and primary tumor data sets from the University
Medical Center in Ljubljana, Yugoslavia
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Suppose that A? is used to learn text analysis rules using a representation
similar to CRYSTAL’s. Only a small fraction of the entire feature set could
possibly be selected for a concept description covering a seed instance. There
is no point in considering features for words or semantic classes* that do not
occur in the instance. These features cannot cover the seed instance.

Assume that a seed instance has an average of ¢ terms. A? would need
to examine each of the constraints that are based on those ¢ terms when
specializing a concept definition. This takes O(t) computations. The average
number of semantic classes in a sentence is bounded by the average number
of terms, so O(t) computations will take care of both term constraints and
semantic constraints. Constraints based on terms or classes not found in the
seed instance can be ignored.

If t is treated as a constant, A? would take O(sn) computations to build
a star using a representation similar to CRYSTAL’s. This would give A? a

time complexity that does not depend on a, similar to a beam search version

of CRYSTAL.

8.3.2 CN2

CN2 [Clark and Niblett 1989], developed by Peter Clark and Tim Niblett,
combines aspects of A? with those of decision trees and decision lists. Each
step of the CN2 algorithm adds a new concept description to a list of rules
and then removes instances covered by the description from the training set.
This is repeated until all instances are covered. Unlike A? and CRYSTAL,

which build an unordered set of concept descriptions, CN2 builds a decision

“or ancestors of classes found in the instance, according to a semantic hierarchy
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list [Rivest 1987] of rules that are applied in order. This handles exceptions
naturally. An earlier rule can remove instances that would otherwise be errors
to a later rule.

Like A?, CN2 builds concept descriptions in a top down fashion, succes-
sively adding attributes to specialize a description. CN2 does not begin from
a seed instance, but starts by considering all possible descriptions with a sin-
gle attribute. CN2 uses a beam search similar to that of A? and successively
specializes the best s concept descriptions.

The metric CN2 uses to select the best descriptions is the information-
theoretic measure, Shannon entropy. Entropy is defined as follows, where
(p1,...pr) is a probability distribution among k classes for the instances covered

by a concept description.

Entropy = — Y _ piloga(p;)

Entropy forms the basis of metrics used in many decision tree algorithms,
as well. Minimizing entropy favors adding an attribute that comes closest to
perfectly partitioning the instances into blocks of a single class. CN2 uses
dynamic pruning to halt specialization of a concept description when no ad-
ditional attribute makes a statistically significantly reduction in entropy.

Building a star in CN2 requires considering each of O(a) attributes as the
next attribute to add when specializing a star, then testing each specialization
on all n training instances. This is done for each of the s concept descriptions in
the star. If we treat the average number of attributes added to each description

as a constant, each CN2 rule requires O(asn) computations.
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Unlike A?, CN2 cannot avoid examining attributes exhaustively, since it
does not use a seed instance. Any re-implementation that considers only fea-
tures found in a seed would be a fundamental change to CN2. The entire
decision list requires O(asrn) computations, where » is the number of rules.

The number of rules is bound by n, giving a worst-case time complexity of

O(asn?).

8.3.3 Vere’s Induction Algorithm

Steven Vere [Vere 1975] created a concept induction algorithms based on
a predicate calculus representation. His main emphasis was on creating a
provably correct algorithm that is guaranteed to find all concept descriptions
consistent with the training data.

The basic step of Vere’s algorithm unifies pairs of positive instances, finding
the set of mazimal, consistent unifying generalizations (mcg’s). These are the
most specific concept description that covers both instances and do not cover
any negative instances. A later extension to the algorithm [Vere 1980] allows
an mcg to include a list of exceptions, called counterfactuals that in turn may
have counterfactuals.

The unification is actually performed on a pair of product graphs that rep-
resent instances or mcg’s. The resulting subgraph isomophism problem is
more efficient than direct manipulation in predicate calculus. The operation
of computing all possible maximal unifying generalizations is still computa-
tionally expensive, however. Vere was more concerned with completeness and

correctness than with computational efficiency.
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A pair of positive instances will generally produce multiple mcg’s. Each
of these is further generalized by unifying with additional positive instances.
Vere gives no time complexity analysis, but acknowledges in the 1980 paper

that his approach is only “potentially analytically tractable”.

8.3.4 The Candidate Elimination Algorithm

Tom Mitchell’s candidate elimination algorithm [Mitchell 1978, Mitchell 1982]
also identifies all concept descriptions that are consistent with the training
data. The candidate elimination algorithm takes advantage of a partial or-
dering of concept descriptions to avoid enumerating the consistent concept
definitions.

If a concept description s covers all the positive training instances, then so
will any description d that is a generalization of s. The candidate elimination
algorithm maintains a set S of the most specific concept descriptions that
cover all the positive instances without covering any negative instances.

Similarly, if a concept description g avoids covering any negative training
instances, then so will any description d that is a specialization of g. A second
set G 1s maintained of the most general concept descriptions that cover all the
positive and none of the negative instances.

These two sets, S and @, define the boundary of all concept descriptions
that are consistent with the training. Only one pass is made through the
training instances, updating S and G after each instance is read.

Mitchell analyzes the time complexity as O(sg(p+n) + s’p+ g°n), where s
is the length of S, g is the length of G, and p and n are the number of positive

and negative training instances. Care must be taken to avoid an explosion
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in the length of S or G. Mitchell suggests alternating positive and negative
training instances to help inhibit growth in the version space boundary.

The basic candidate elimination algorithm works only with perfectly con-
sistent data. An inconsistent training instance will cause the version space of
consistent descriptions to collapse to the empty set. This is a serious draw-
back when dealing with naturally occurring data: some instances may have
incorrect feature values, and the features themselves may be inadequate to
distinguish different classes of instances.

Mitchell’s solution to the problem of inconsistency is to maintain multiple
copies of the version space, each one consistent with as many training instances
as possible. There does not seem to be a computationally efficient way to do
this.

How well could the candidate elimination algorithm learn text analysis
rules using CRYSTAL’s representation? A tiny example from the Manage-
ment Succession domain will help illustrate this. Figure 8.5 has four training
instances. For clarity, only the motivating sentence is shown rather than the
CRYSTAL instance. The target concept here is Person_In in the subject and

Position in the direct object.

1. (pos) Mr. A was named chairman.

2. (pos) Mr. C will be the new president of XYZ Inc.
3. (neg) The board of ABC Corp. ousted the chairman.
4. (neg) Mr. C has been chairman since 1983.

Figure 8.5 Four instances to illustrate the candidate elimination algorithm
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Figure 8.6 shows the concept definitions in the S set and the G set after
instance 1 and instance 2 have been read. The S set has a single concept
definition that is identical to CRYSTAL’s unification of the initial definitions
from instances 1 and 2. I am showing this in a simplified format, but s; is
actually a concept definition. The G set has a concept definition with no

constraints, since there are no negative instances to avoid yet.

S set:
81  Subj has term “Mr.” and class <Person Name>,
Obj has the class <Corporate Post>
G set:

g1 A concept definition with no constraints

Figure 8.6 The S set and G set after the first two instances have been read.

Figure 8.7 shows S and G after instance 3 has been read. The S set is
not changed by a negative instance, but the G set must now be specialized to

avoid a negative instance with a <Corporate Post> in the direct object.

S set:
81  Subj has term “Mr.” and class <Person Name>,
Obj has the class <Corporate Post>
G set:
g1 Subj has term “Mr.” and class <Person Name>

Figure 8.7 The S set and G set after three instances have been read.

After reading the fourth instance, the version space collapses. The new
negative instance has “Mr.” and class <Person Name> in the subject, which

means that g; no longer covers only positive instances. There are no concept
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definitions that cover both positive instances while avoiding both negative
instances.

These four training instances are not inconsistent. Mitchell refers to this
situation as a disjoint concept that cannot be expressed by a single concept
definition. The candidate elimination algorithm copes with disjoint concepts
by maintaining multiple version spaces and also allows for some amount of
disjunction in the representation language.

CRYSTAL would arrive at a rule base with two concept definitions, one
to cover each of these positive instances. With more training, these concept
descriptions would become generalized, but separate concept definitions would
still be needed to cover instance 1 and instance 2.

CRYSTAL does something akin to building an S set when it generalizes
a seed instance. CRYSTAL’s similarity metric finds the most useful positive
instance to consider next in creating this generalization. By finding a simi-
lar positive instance, CRYSTAL continues working on the same portion of a
“disjoint” concept.

The main function of the G set is to form a compact represention of the
negative training instances. As the example from Figure 8.5 suggests, a G
set 1s quite fragile given CRYSTAL’s representation and would collapse eas-
ily. CRYSTAL opts to consult the negative training instances directly when

evaluating a proposed generalization, rather than build a G set.

8.4 Instance Based Learning

Both CRYSTAL and instance based learning (IBL) use a distance met-

ric in a critical step in the algorithm, although the distance metric plays a
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fundamentally different role. IBL uses this metric directly in classifying new
instances by finding the most similar training instances or ezemplars. Some
systems look for a single most similar exemplar, while others let the “k nearest
neighbors” vote on a classification.

The distance metric in CRYSTAL is used as a search heuristic, and not
used to classify instances. The class (the concept being learned) is already
known and CRYSTAL applies the similarity metric only to instances of that
class.

Two IBL algorithms with different strategies for handling noisy training
instances are David Aha’s IB3 [Aha et al. 1991] and Scott Cost and Steven
Salzberg’s PEBLS [Cost and Salzberg 1993]. Each of these algorithms tabu-
lates classification performance statistics on each exemplar to reduce the effect
of noisy training instances.

IB3 bases its classification of new instances only on instances that pass a
statistical significance test as reliable classifiers. Those with performance sig-
nificantly worse than chance are discarded. IB3 uses the confidence thresholds
of its significance tests to control the rate of acceptable classification errors in
somewhat the same way that CRYSTAL uses its error tolerance parameter.
IB3 also saves space by only keeping misclassified instances, which are the
most likely to be useful in refining a concept boundary.

PEBLS keeps the entire training set as exemplars and assigns to each a
weight based on its performance in classifying the rest of the training instances.
PEBLS classifies a new instance by computing its distance to each of the

exemplars and then multiplying this similarity measure by the weight assigned
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to the exemplar. This increases the effective distance to unreliable exemplars
and limits their influence in classification.

Both CRYSTAL and instance based learning use a bottom up approach to
define local regions in instance space. CRYSTAL explicitly describes a region
boundary by the constraints in a concept definition. The region expands from
a seed instance until further growth is inhibited by negative instances. In-
stance based learning implicitly defines a region surrounding a stored training
instance. The region contracts when a nearby instance is added to the exem-
plars and expands when a nearby exemplar is discarded. In PEBLS a large
weight causes the region affected by an exemplar to shrink.

Training IB3 or PEBLS is less computationally expensive than it was for
the covering algorithms. Compiling performance statistics on each exemplar
requires computing the distance between it and each of the n training in-
stances. The published versions of IB3 and PEBLS apparently consider all
possible attributes a when computing the distance. This gives O(an) compu-
tations for each of O(n) potential exemplars, for an overall time complexity of
O(an?).

If an instance representation and distance function such as CRYSTAL’s
were used, the only attributes considered would be those actually found in the
two instances being compared. This would eliminate the dependency on a and
give IB3 and PEBLS a time complexity of O(n?).

The memory required for instance based learning during training is pro-
portional to n, as it is for CRYSTAL. After training, however, CRYSTAL can
discard the training instances and use the set of learned rules, which will be

much smaller in general than the full set of instances. IB3 discards much of
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the training set, but PEBLS retains all training instances, which can become

expensive in terms of memory.

8.5 Decision Tree Algorithms

A well known family of machine learning algorithms is top down induction
of decision trees. I will use Ross Quinlan’s C4.5 [Quinlan 1993] as a represen-
tative of decision tree algorithms and use Giulia Pagallo and David Haussler’s
GREEDY3 algorithm [Pagallo and Haussler 1990] to represent decision lists,

which are a special case of decision trees.

8.5.1 C4.5

A decision tree algorithm such as C4.5 begins with an empty tree and
recursively adds tests at each tree node to partition the instance space. The
key step in top down induction of a decision tree is to select a feature at
each node whose values best separate different classes into different partitions.
Some decision tree algorithms such as OC1 [Murthy et al. 1994] also allow
the test at a node to be a linear combination of features. This increases the
computational cost of selecting a test as each node.

Many decision tree algorithms, including C4.5, base the feature selection
metric on the information-theoretic measure, Shannon entropy, shown in Sec-
tion 8.3.2. Another basis for a “goodness of split” metric is the Gine diversity

index [Breiman et al. 1984].

Giniandex = Zpipj
J#
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Experiments by John Mingers suggest that the particular feature selection
metric used may not be critical to performance [Mingers 1989], although the
right choice of metrics can increase performance for a particular data set.

With its recursive partitioning, top down decision tree induction tends to
fragment the instance space. Nodes near the leaves of the tree are often based
on a small number of training examples and have low predictive accuracy. De-
cision tree algorithms have a mechanism that serves much the same function
as CRYSTAL’s error tolerance parameter. Pruning away branches of a deci-
sion tree will often improve classification accuracy, although no distinction is
generally made between optimizing for recall and optimizing for precision.

How well can decision trees handle extremely large number of attributes?
The C4.5 algorithm tabulates statistics on how often each of a attributes is
found in instances of each class (e.g. positive or negative). Each level of the
tree has up to n training instances, which results in computation time of O(an)
for each level of the tree. The total computation time is O(adn), where d is
the tree depth.

The O(adn) computations required by C4.5 are much simpler operations
than CRYSTAL’s O(rn) operations. C4.5’s basic operation is to tabulate
how often a value in a feature vector is associated with particular classes.
CRYSTAL’s basic operation is to test a proposed concept definition against
a training instance, which can be much more expensive than C4.5’s basic
operation.

In an ideal, noise-free instance space the tree depth d would depend only
on the underlying concept being learned. Tree depth is bounded by a, since no

path may have more than a tests. If a is greater than n (which may actually be
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the case in learning text analysis rules), a badly skewed tree may have depth
of O(n). This would make the time complexity O(an?). This is a pessimistic
analysis, since in practice d tends to grow more slowly than n. Growth of
tree depth as n increases is analogous to the growth of the number of rules in
CRYSTAL and other covering algorithms.

C4.5 represents training instances as a feature vector with length O(a). All
n instances must be repeatedly consulted while building a decision tree, which

gives a space requirement of O(an).

8.5.2 GREEDY3

A variant of decision trees is the decision list, introduced by Ronald Rivest
[Rivest 1987]. Each node of a decision list has a test that splits the instance
space into exactly two partitions, at least one of which must be a leaf node.
Thus each node separates off a set of training instances from the remaining
instances. This has been characterized as “separate and conquer” as opposed
to a decision tree’s “divide and conquer” strategy.

Decision lists are able to reach a leaf node with every test by using a
multivariate test, one that evaluates multiple features. This makes the decision
list equivalent to a list of rules, each rule having several constraints.

The GREEDY3 algorithm [Pagallo and Haussler 1990] uses a top down
approach to building the test at each node of a decision list. GREEDY3 adds
one feature at a time to the test, selecting the feature that has the highest
probability of being found in a positive instance. This requires tabulating how

often each literal is associated with positive instances.

140



When enough features have been added to the test that it covers only
positive instances, GREEDY3 adds the test as a node of the decision list.
Instances covered by the test are removed from training set in much the same
way that a covering algorithm eliminates instances covered by each new rule.
GREEDY3 continues creating additional nodes until the decision list cover all
positive instances. At that point GREEDY3 terminates the decision list with
a leaf node for “negative”.

Like decision tree algorithms, GREEDY3 includes a pruning step to im-
prove performance. Pruning can remove the last feature that was added to
a rule or remove the rule entirely if it does not improve performance on an
independent set of instances.

GREEDY3 has much in common with C4.5 and other top down decision
tree algorithms. It operates in a top down fashion, considers all features
exhaustively when selecting a feature to add to a node, and uses a selection
metric based on how each feature performs on the training instances.

The computation required to select a feature to add to a rule is O(an),
where a is the number of features (attributes) and n is the number of training
instances. Let r be the number of rules in the decision list and k be the number
of features in each rule. Time complexity to build the entire decision list is
O(arn), if k is treated as a constant.

In an extremely pessimistic worst case, » = O(n) and k = O(a), giving time
complexity of O(a®n?). In practice, the » in GREEDY3’s time complexity is
likely to have a growth rate similar to the » in CRYSTAL’s time complexity
of O(rn).

141



Could GREEDY3 be re-implemented to avoid exhaustive consideration
of features? Like C4.5 and CN2, there seems to be no way to avoid this.
GREEDY3 does not have a designated “seed” instance to limit the selection

of features.

8.5.3 An Experiment with C4.5

I conducted some preliminary experiments in applying C4.5 to learn text
analysis rules. These experiments were abandoned due to the excessive com-
putation time taken when even 30% of the Hospital Discharge texts are used
as training. I built C4.5 trees for the concept Symptom, Present.

Each C4.5 instance contained features representing the same syntactic-
lexical or syntactic-semantic constraints as a CRYSTAL instance. Boolean
features were created as described in Section 8.2. Each feature represents a
particular constraint (e.g. Head terms) on a particular word or semantic class
in a particular syntactic constituent (e.g. subject).

Each CRYSTAL instance was turned into multiple C4.5 instances, each
designating one of the syntactic constituent in the instance. If, for example, a
CRYSTAL instance had a subject, verb, direct object, and two prepositional
phrases, it was turned into five C4.5 instances. The first instance had a positive
classification if the subject contained Symptom,Present. The second instance
was positive if the verb contained Symptom, Present, and so forth.

Section 8.1 discusses why a classifier needs multiple copies of a CRYSTAL
instance. To avoid this five-fold increase in training instances, a separate C4.5

tree was built for each constituent: SUBJ, VERB, OBJ1, OBJ2, and PP°®.

SSubject, verb, direct object, indirect object, and prepositional phrase, respectively.
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The set of possible features was pruned by discarding any feature not found
in at least ten training texts. Only these high frequency features were used in
the C4.5 feature vectors. Even after eliminating the low frequency features,
each tree still had extremely large feature vectors. OBJ1 had 2,356 instances
with 2,268 features; PP had 3,389 instances with 4,308 instances; and so forth.

The main difficulty in running C4.5 with such large feature vectors turned
out to be the space requirement. The instances for OBJ1 took 27Mb of memory
on an DEC ALPHA 3000 workstation. This fit into resident memory and the
OBJ1 decision tree was induced in 18 minutes. The instances for the PP tree
took 67Mb with only half of that as resident memory. The computer ran so
inefficiently from continual swapping that C4.5 was still selecting a test for the
second tree node after 41 hours.

The trees were finally completed on a different machine that handled the
memory swapping more efficiently. Recall and precision was comparable to
CRYSTAL'’s on this data set. C4.5 had recall 34 at precision 66, while CRYS-
TAL had recall 36 at precision 61°.

Not too much can be made of comparing this single data point. Average
recall and precision were two points higher for C4.5 for this concept. C4.5
was also run for two concepts trained on the Management Succession data.
Average recall and precision for C4.5 was 6 points lower than CRYSTAL for

one concept and 10 points higher for the other”.

6This was run on with older version of syntactic analysis that did not label phrases as
affirmative or negative. CRYSTAL was run with exception learning at error tolerance 0.20
and min-coverage 5.

"These were concepts from an earlier set of experiments, Person Name and Organization
Name.
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The trees learned by C4.5 show a strong bias toward single-feature rules.
The trees were so badly skewed that they were essentially decision lists. The
root node of the OBJ1 tree was a test for “gravida” as a modifier term in the
direct object. This identified 26 out of the 2,356 training instances as positive.
The next node tested for the term “mass” in the direct object, which identified
another 15 instances as positive.

The PP tree showed the same behavior. The root node identified 12 pos-
itive instances out of the 3,389 training instances. The test was for the term
“shortness of breath” in the prepositional phrase.

A re-implementation of C4.5 could reduce its memory footprint by using
a sparse vector representation that explicitly records only the true-valued fea-
tures. This would allow C4.5 to handle larger training sets. In fairness to
C4.5, CRYSTAL would face the same problem of exceeding memory capacity

if the Hospital Discharge corpus grew much larger.

8.6 Contrast of CRYSTAL and Other ML Algorithms

Some of the differences between CRYSTAL and the other algorithms de-
scribed in this chapter are superficial. CRYSTAL’s instance representation
is a natural way to encode the syntactic, semantic, and lexical features of a
clause. However, much the same information can be expressed in terms of
Boolean features or predicate calculus, depending on the input requirements
of the machine learning algorithm. Paths in a decision tree are functionally
equivalent to rules in a decision list or to concept descriptions in CRYSTAL

and other covering algorithms.
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Other differences are more fundamental to how the algorithm operates.
Many of the algorithms described in this chapter operate in a top down fashion.
They start from very general rules with a single constraint and then specialize
the rule by adding further constraints. This applies to A?, CN2, C4.5, and
GREEDY3. CRYSTAL works from the opposite direction, beginning with
maximally specific descriptions and generalizing by relaxing constraints.

This gives CRYSTAL a different “learning bias” from the top down algo-
rithms. CRYSTAL tends to relax constraints just enough to cover a group of
positive training instances, even if some of the constraints could be dropped
without covering any additional negative instances. Top down algorithms add
just enough constraints to avoid negative instances, even if further constraints
could be added without excluding any positive instances.

Instance based learning operates from the bottom up, but has a radically
different way to classify instances. IBL does not create anything analogous to
rules. For this reason, it is hard to characterize the difference in learning bias
between CRYSTAL and IBL. IBL keeps both positive and negative instances
as exemplars that define positive or negative regions of instance space by prox-
imity. CRYSTAL define a region of instance space by constraints in a concept
definition. Portion of instance space not covered by a concept definition are
negative by default.

Candidate elimination algorithm builds one boundary of the version space
from the top down and another from the bottom up at the same time. Vere’s
algorithm operates from the bottom up. Both of these algorithms identify all
concept descriptions that are consistent with the training data, which makes

learning bias less of an issue.

145



It is not clear that one learning bias is more appropriate than another in
general. A bias that gives high performance on one data set will not necessarily
be the best on another data set. The difference in bias will be most noticeable
when the training data is noisy or insufficient.

The greatest contrast between CRYSTAL and the other machine learning
algorithms described here is in time complexity. The covering algorithms A?
and CN2 require O(asrn) computations, where a is the number of attributes
and s is the “star” size used in a beam search. A? could be re-implemented to
consider only those features found in the seed instance, which would reduce
its time complexity to O(srn). GREEDY3 requires O(arn) computations.
The 7 in these time complexity analyses, the number of “rules”, has a slightly
different meaning for each algorithm.

Inducing a C4.5 decision tree requires O(adn) computations, where d is the
decision tree depth, somewhat analogous to r in the above time complexities.
Although C4.5 cannot avoid computation time proportional to a, its basic
operation is quite cheap: incrementing a counter based on a feature vector
value. This allows it to handle fairly large feature sizes before it becomes
overwhelmed.

Training requires O(an?) computations for the instance based learning al-
gorithms IB3 and PEBLS and could be re-implemented to take O(n?). Com-
putation time for the candidate elimination algorithm grows with the square
of the boundary set sizes, which may become quite large.

CRYSTAL requires O(rn) computations where r is the number of rules
learned and n is the total number of training instances. This is bounded by

O(pn), where p is the number of positive training instances. CRYSTAL’s time
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and space requirements are independent of a, allowing it to handle extremely

large feature sets easily.
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CHAPTER 9

CONCLUSIONS

CRYSTAL'’s richly expressive representation language and its efficient al-
gorithm for navigating extremely large feature spaces are two sides of the
same coin. Formulating text analysis rules for unrestricted natural language
requires flexibly combining syntactic, semantic, and lexical evidence. An ex-
pressive representation can pose problems for a learning algorithm, however,
and requires an efficient search strategy that is not misled by irrelevant fea-
tures.

The few existing systems that learn text analysis rules from training exam-
ples, all have limited rule representation. Rules may have semantic constraints,
but not lexical constraints, on phrases to be extracted. Certain sentence ele-
ments are always included in the rules and others never included.

CRYSTAL’s approach is to include any lexical or semantic constraints on
any syntactic constituent of the instance. A corpus of several hundred texts
may contain enough distinct words that this leads to thousands of features®.

CRYSTAL’s learning algorithm can handle such a large number of features

because of space and time requirements that do not depend on the size of

the feature set. CRYSTAL has a bottom up strategy that begins with a

'When instances from a training set of 150 Hospital Discharge texts were converted into
Boolean features, there were over 4,000 such features. This was after discarding any feature
not found in at least ten texts.
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seed instance and guides generalization by finding the most similar positive
instance. Features not found in the seed instance or in the similar instance
are not considered.

Relaxing constraints to unify with a similar positive instance has the result
of quickly dropping features that are simply accidental to the seed instance,
while tending to retain essential features. CRYSTAL is not slowed down by
irrelevant features. Including as many features as possible that maght be useful

increases CRYSTAL’s performance and robustness with respect to noisy data.

9.1 Contributions

The major contributions of this work are presented in the next three sub-

sections:

1. Learning high quality text analysis rules
2. An efficient covering algorithm

3. The impact of expressive representation

9.1.1 Learning High Quality Text Analysis Rules

CRYSTAL demonstrates that high quality text analysis rules
can be learned from examples, rules which:
a. approach the performance of hand-coded rules
b. are robust in the face of noise and inadequate features
c. require modest training size

CRYSTAL has been tested on multiple domains. Its performance, in terms

of recall and precision, varies according to a number of factors: the degree of
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regularity in how references to the target concept are worded, the amount of
training, and the amount of noise in the data.

Experiments were conducted that compare CRYSTAL’s performance with
that of hand-coded rules. CRYSTAL achieved over 90% the average recall and
precision of hand-coded rules on input that had high quality semantic tagging.
On a version of one domain with coarser semantic tagging, CRYSTAL had over
80% the performance of hand-coded rules.

One aspect of CRYSTAL that allows it to compensate for noisy training
data is CRYSTAL’s expressive representation. When one source of evidence,
such as semantic class assignment is unreliable, CRYSTAL falls back on other
evidence. Experiments were done that compare input with fine-tuned semantic
tagging to input with semantic tagging based on a generic thesaurus. CRYS-
TAL relied more on exact word constraints with the lower quality semantic
tagging and generated twice as many rules.

CRYSTAL has an error tolerance parameter that allows it to accommodate
noise in the data. Together with a minimum coverage parameter, this gives
the user a knob to manipulate a trade-off between recall and precision.

The amount of training data required is a concern for a supervised learning
algorithm such as CRYSTAL. A domain expert must select a corpus of rep-
resentative texts and then label each reference to the concepts of interest for
the domain. CRYSTAL’s job is to learn rules that will imitate these human
annotations on previously unseen texts.

The Management Succession corpus used in this thesis took about one week
of human effort to annotate and the Hospital Discharge corpus took about

three weeks. While this is not an insignificant investment of time, I feel that
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I can call this a modest amount of training. The training corpus for Hospital
Discharge consisted of less than 150,000 words. Statistical corpus-based tech-
niques often require tens of millions of words of training [Church et al. 1991].

It is a combination of the limited domain and the use of semantic class
information that allow CRYSTAL to work with such a comparatively small
amount of training. David Fisher and Ellen Riloff have shown that statistically
significant co-occurrence frequencies can be derived from a small corpus in a
limited domain [Fisher and Riloff 1992].

The amount of training can be viewed as modest from another point of
view. Developing a set of rules by hand also requires a set of annotated exam-
ples to guide development for all but the simplest of information extraction
tasks. This means that CRYSTAL’s training corpus is not an additional ex-

pense over a manual engineering approach.

9.1.2 An Efficient Covering Algorithm

CRYSTAL presents a covering algorithm control strategy that
navigates efficiently in extremely large feature spaces:
a. time and space complexity independent of the feature size
b. a greedy approach that can be improved very little
by using more extensive search

CRYSTAL belongs to the family of machine learning algorithms known as
covering algorithms. This family of algorithms generates a set of rules from
training examples such that each rule covers as many positive instances as
possible, while avoiding negative instances. New rules are added to the rule

base until all positive training instances have been covered.
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What distinguishes CRYSTAL from other covering algorithms, and from
top down decision tree and decision list induction, is its ability to handle
extremely large numbers of features. Rather than considering all possible
attributes exhaustively, CRYSTAL considers only the attributes found in a
seed instance and in one similar instance at a time. This give CRYSTAL time
and space requirements that do not depend on the total number of features.

CRYSTAL'’s efficient algorithm permits it to have an expressive rule rep-
resentation with no limit on the number of features. CRYSTAL’s features
include any of thousands of exact words in any of several syntactic roles?.
Large feature sets arise naturally when applying machine learning techniques
to the analysis of unrestricted text.

CRYSTAL is also efficient because of its “greedy” control strategy. At each
step in generalizing a concept definition, CRYSTAL finds the relaxation that
appears best and never goes back to considers alternate possibilities.

Experiments were conducted that use a beam search version of CRYSTAL.
Rather than commit to a single possible generalized definition, a beam search
maintains the best w definitions found so far, where w is the beam width.
A large beam width increases the amount of search effort and increases the
likelihood that CRYSTAL will find optimal generalizations from each seed
instance.

A large beam width produces compact rule sets, but generally produces
no improvement in average recall and precision on a blind test set. Increasing

the beam width raises recall but lowers precision. The more extensive search

%2e.g. SUBJ-Head_Term-ANGINA and PP-IN-Modifier_Term-SUBSTERNAL in the Hos-
pital Discharge domain.
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results in concept definitions that seem reliable on the training set, but are
often overgeneralized on the test set.

Other covering algorithms, A? and CN2, rely on a beam search approach.
CRYSTAL is unique among covering algorithms in attaining high performance

from beam width of one.

9.1.3 The Impact of Expressive Representation

CRYSTAL demonstrates that expressive representation is essential
for high performance, robust text analysis rules.

A richly expressive representation is not guaranteed to improve perfor-
mance. A larger feature set results in a higher dimensionality of the instance
space. This could make learning more difficult and increase the likelihood that
a learning algorithm will be misled.

Empirical studies show that CRYSTAL’s expressiveness has a positive im-
pact on performance. Experiments compared the basic CRYSTAL system
with other versions that included various restrictions to CRYSTAL’s represen-
tation as well as one enhancement. The enhancement was to add exceptions to
CRYSTAL’s rules. The restrictions were each motivated by aspects of CRYS-
TAL’s representation that are missing in other published systems that learn
text analysis rules.

Taken singly, the enhancement or restrictions had a small effect on per-
formance. For some concepts in some domains, learning exceptions increased

the average of recall and precision slightly. Restrictions tended to hurt perfor-
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mance, although in some cases a restricted representation had slightly better
performance on some concepts than the baseline system.

When four restrictions were applied at once to CRYSTAL’s representa-
tion, the results were generally disastrous. Recall plummeted in most cases,
although it was essentially unchanged for a few concepts. While simple rule
representation may be sufficient for some concepts in some domains, CRYS-

TAL’s expressiveness is needed for high performance in general and increases

CRYSTAL’s ability to handle noise and limited training data.

9.2 Future Work

I will outline two areas of future exploration. The first includes modifica-
tions to CRYSTAL itself. The second suggests ways to improve CRYSTAL’s

utility as an information extraction module.

9.2.1 Enhancements to CRYSTAL

CRYSTAL is a fairly mature system, as software goes, having been tested
on several domains over the course of two years. The most obvious attempts
to enhance the basic CRYSTAL algorithm have already been tried: learning
exceptions to rules and increasing the search effort with a beam search. Several
minor changes to the system remain to be explored that each promise small
improvements in performance.

CRYSTAL currently selects seed instances in an arbitrary order and often
makes a few false starts on the way to learning a high coverage concept defini-

tion. There would be fewer irrelevant features to lead CRYSTAL astray if the
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seed instances were sorted so that those with fewest features are selected first.
This may result in a smaller set of rules with somewhat higher performance.

The current method of learning exceptions is also not satisfactory. When
adding exceptions to a proposed definition brings it back within error tolerance,
CRYSTAL tries to relax constraints further. This tends to result in concept
definitions that are badly overgeneralized before exceptions are added. The
net effect is to raise recall and lower precision.

I plan to experiment with alternative methods of adding exceptions to rules.
CRYSTAL could add exceptions in a separate step after it has generalized
a concept definition. Generalization would halt as in the basic algorithm
and return a definition that is within error tolerance without exceptions. At
that point CRYSTAL would learn a set of exceptions sufficient to exclude the
training errors covered by the definition. Even if only some of the exceptions
apply to blind test instances, this would raise precision somewhat without
lowering recall.

Hardly any experimentation has been done on the distance function used
to find the most similar instance. My assumption has been that getting ex-
actly the right distance function is not critical, but this has not been tested.
Several parameters have been built into the distance function and others could
be devised to bias which instance is selected as most similar. Should CRYS-
TAL have a tendency to consider semantic similarity as more important than
words in common? Are similarities in extracted phrases more important than
similarities in other phrases? Is the verb more important than other sentence

elements?
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While doing experiments in which I built rules by hand, I noticed that
I had a strong bias towards rules with only a few constraints. CRYSTAL’s
bottom up approach has a strong tendency to produce rules with many more
constraints. It would be interesting to change CRYSTAL’s bias by adopting a
top down version of CRYSTAL.

CRYSTAL would begin with a seed instance and consider all possible
single-constraint rules derived from features of the seed instance. If all of
these covered too many negative instances, CRYSTAL would add additional
constraints, one at a time. This would probably require a beam search like
that of the A? covering algorithm for best results.

The advantage of a top down CRYSTAL is that its learning bias might give
better performance in terms of recall and precision on some data sets. The dis-
advantage is more certain than the possible advantage. Performance in terms
of computation time would be one or two orders of magnitude greater than
the current CRYSTAL. For some information extraction tasks it is worthwhile
to spend hours rather than minutes of CPU time if this produces better rules.

A last area for improvement is in efficiency of implementation. In particu-
lar, space efficiency of representing an instance becomes vital if CRYSTAL is

to hold large training sets resident in memory.

9.2.2 Versatility as an Information Extraction Module

CRYSTAL does not function in a vacuum. Its performance in an informa-
tion extraction (IE) system depends on the syntactic and semantic analysis of
its input. Its contribution to the IE system also depends on the granularity of

its input and output.
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It is vital to design a level of syntactic analysis that gives CRYSTAL the
most useful input possible. The flat structure of CRYSTAL’s instance repre-
sentation, which does not allow nested structures, make this a challenge. The

input text in Figure 9.1 illustrates this problem.

Nicholas Mihalas, SmartCard’s 51-year-old president and chief
executive officer, was named to the additional post of chairman,
succeeding Mr. Lessin, whose resignation was effective last Monday.

Figure 9.1 A text with appositives and relative clauses

This sentence has a syntactic complexity that poses a severe challenge to
the flat structure of CRYSTAL’s instance representation. Nicholas Mihalas
is separated from “was named” by a lengthy appositive. The relationship
between Mihalas and Mr. Lessin is indicated by a reduced relative clause
“Nicholas Mihalas ... succeeding Mr. Lessin”. Additional evidence that Lessin
1s a Person_Qut comes from a relative clause “whose resignation ...”.

CRYSTAL needs the entire sentence presented as a single instance if it is to

find the relationship between Mihalas and Lessin. Figure 9.2 shows the style

of syntactic analysis used for experiments in this thesis.

SUBJ: Nicholas Mihalas, SmartCard 's 51-year-old president
and chief executive officer

VERB: was named

PP: to the additional post of chairman

REL-VERB: succeeding Mr. Lessin, whose resignation was
effective last Monday.

Figure 9.2 Syntactic analysis that lumps an appositive with the subject and
lumps together words in relative clauses
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This analysis lumps together a person name, a company name, and two
positions in the subject. Even if CRYSTAL learns a concept definition that
correctly extracts a Person_In from the subject, it does not specify which part
of the subject contains the relevant information. This is left to later processing
in an IE system.

The REL-VERB in this instance (relative clause attached to the verb) is
also presented as a bag of undifferentiated words. Relative clauses may be
long and contain embedded clauses, as this one does.

Given instances at the proper level of granularity, CRYSTAL could learn
rules that identify exactly which simple noun phrase to extract. The most
promising approach is to present CRYSTAL with multiple views of the input
text. The high level view of the sentence is given in Figure 9.2. An additional

instance would break apart the relative clause as shown in Figure 9.3.

SUBJ: Nicholas Mihalas, SmartCard 's 51-year-old president
and chief executive officer

VERB: succeeding

OBJ: Mr. Lessin

REL-OBJ: whose resignation was effective last Monday.

Figure 9.3 A second view of the sentence that breaks apart the REL-VERB

This second view of the input shows the syntactic relationship between
“succeeding” as a verb and “Mr. Lessin” as a direct object. Heuristics are
needed to allow a relative clause to inherit its subject from the main clause.
This second instance not only provides better syntactic information, but al-

lows a concept definition to pinpoint “Mr. Lessin” as the Person_Out. A
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third instance would also be created to break apart the relative clause “whose

” and its inherited subject “Mr. Lessin”.

resignation ...

A different approach is needed for appositives and lists such as that found
in the subject “Nicholas Mihalas, SmartCard ’s 51-year-old president and chief
executive officer”. A second pass of CRYSTAL could learn text analysis rules

at the level of noun phrase analysis. For this, the complex noun phrase would

be presented as a list of simple noun phrases separated by delimiters.

NP: Nicholas Mihalas
DELIM: %comMmA%

NP: SmartCard

DELIM: s

NP: president

DELIM: and

NP: chief executive officer

Figure 9.4 An instance for noun phrase analysis to identify relevant informa-
tion within a complex noun phrase

To make best use of CRYSTAL for noun phrase analysis, the concept def-
initions would need to include an ordering constraint. Order of constituents
is implicit in the names SUBJ, VERB, and OBJ, but CRYSTAL would need
explicit constraints to distinguish the NP that immediately precedes the de-
limiter “’s” from the NP that follows the delimiter.

Multiple constituents with the same name also raise problems for the low-
level CRYSTAL functions that compute distance. There will be many possible
mappings between two instances with several NP’s. Some of these mappings
will preserve ordering of the NP’s and others will not. The distance between

the two instances is ideally based on the mapping that optimizes similarity.
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CRYSTAL needs a scheme to find a nearly optimal mapping that takes into

account ordering constraints as well as pair-wise similarity of constituents.

9.3 Implications for System Development

At the heart of this research lies the problem of knowledge acquisition for
domain-specific text analysis. Each new domain or information need requires a
new set of text analysis rules to be learned that identify references to concepts
important to that domain.

These rules depend critically on the quality of the supporting knowledge
sources, such as the semantic tagging of individual words. At one extreme,
there may be a semantic tag that corresponds perfectly with a target concept.
In this case the text analysis rules can be expressed simply in terms of the
corresponding semantic tag and are trivially easy to learn. Suppose our target
concept is Person, Name and every person name in the input has the semantic
tag <Person Name>.

At the other extreme, there may be no semantic tags at all for a new
domain, or an extremely weak correlation between semantic tags and the target
concepts. In this case, much more complicated text analysis rules are needed.
A large set of rules will be needed to account for the many contexts in which
a concept occurs, often expressed as exact word constraints. Generating a
set of text analysis rules is difficult whether done manually or using machine
learning techniques, when the semantic tagging has not been tailored to the
target concepts.

The starting point in developing an information extraction system for a

new domain is typically between these two extremes. A generic semantic
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lexicon and semantic hierarchy may be available, but one that only roughly
fits the target concepts. The semantic hierarchy may fail to make necessary
discriminations and the semantic lexicon may lack coverage of important terms
for the target concepts. Tailoring a semantic lexicon and semantic hierarchy
to a particular information need is a time consuming manual task.

In many cases the target concepts are not clearly known in advance. Early
development will be based on a set of concepts that are assumed to be use-
ful and easy to extract automatically. The exact boundaries of these target
concepts may be refined later. The first pass of text annotation is bound
to contain inconsistencies as the annotators come to grip with what exactly
should count as a positive example of each concept.

All of this creates a noisy situation when adapting a system to a new
information extraction task. Text analysis rules must operate robustly in the
face of limited coverage by a semantic lexicon, poor fit of a semantic hierarchy,
imperfect syntactic analysis, and inconsistent training annotations.

CRYSTAL demonstrates that text analysis rules can be learned automati-
cally, even when faced with all these difficulties. A robust, fully automatic tool
such as CRYSTAL allows good system performance from the beginning. Later,
when semantic tagging and syntactic analysis have been customized to the in-
formation need and inconsistent annotations have been minimized, CRYSTAL

will take advantage of these refinements to boost system performance.
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APPENDIX A

TABLES OF MANAGEMENT SUCCESSION

RESULTS
Concept Pos. Min.Cover 2 Min.Cover 10 Min.Cover 25
Train R P Avg R P Avg R P Avg
In 123 | 58.3 67.9 63.1 | 47.6 74.4 61.0 | 28.2 69.2 48.7

243 | 62.6 69.8 66.2 | 55.1 754 65.3 | 40.1 77.1 58.6

505 | 71.5 66.9 69.2 | 66.1 71.6 68.9 | 57.7 73.2 654

Out 129 | 48.9 62.3 55.6 | 30.2 72.7 515 0.0 0.0 0.0
264 | 55.1 68.2 61.6 | 47.3 77.8 62.5 | 16.6 69.3 42.9

529 | 63.4 68.9 66.1 | 57.3 77.8 67.5 | 48.9 82.0 654

Post 191 | 59.1 65.7 62.4 | 46.6 T71.4 59.0 | 28.1 65.8 46.9
383 | 64.7 66.9 658|579 71.8 64.8 | 357 71.8 53.8

772 | 72.1 66.4 69.2 | 674 699 68.7 | 604 744 674

Org 154 | 39.5 b58.0 48.8 | 21.1 68.1 44.6 8.9 43.6 26.2
305 | 44.2 59.3 51.7 | 31.1 66.2 48.6 | 14.8 73.4 44.1

617 | 53.8 63.3 585|439 71.5 b57.7 | 226 T77.0 49.8

In,Out 33 | 56.9 785 67.7 | 35.0 62.6 48.8 0.0 0.0 0.0
69 | 64.8 79.6 72.2 | 55.2 81.8 685 | 27.0 54.8 40.9

145 | 756.3 76.6 75.9 | 68.8 76.8 72.8 | 56.7 77.0 66.9

In,Post 94 | 53.6 T77.8 65.7 | 38.3 85.2 61.7 | 28.6 785 53.5
190 | 60.6 74.1 67.3 | 49.2 785 63.9 | 38.2 79.8 59.0

383 | 69.6 T71.5 70.6 |61.9 73.5 67.7|48.1 76.5 62.3

In,Org 72 | 33.5 644 48.9 | 22.2 76.1 49.1 1.9 7.5 4.7
142 | 38.5 65.9 52.2 | 24.7 754 50.1 | 175 725 45.0

290 | 49.7 68.5 59.1 | 3356 76.2 b54.9 | 19.1 77.9 485

Out,Post 104 | 43.1 66.6 b54.8 | 23.2 73.2 48.2 0.0 0.0 0.0
213 | 50.5 69.2 59.8 | 38.9 80.1 59.5 8.7 60.2 345

424 | 61.7 T72.0 66.8 | 52.8 81.6 67.2 | 38.8 86.0 62.4

Table A.1 Management Succession results at error tolerance 0.20 (continued
on next page)
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Concept Pos. Min.Cover 2 Min.Cover 10 Min.Cover 25
Train R P Avg R P Avg R P Avg
Out,Org 81| 27.0 59.4 43.2| 6.3 40.0 23.1| 0.0 0.0 0.0
165 | 35.1 63.0 49.1 | 19.6 704 450| 05 7.9 4.2
327 | 46.5 71.0 58.8 | 36.5 81.0 58.8 | 15.8 90.4 53.1
Post,Org 136 | 38.7 65.9 52.3 |20.0 729 46.5| 9.9 384 24.2
271 | 45.2 66.3 55.7 | 29.9 69.3 49.6 | 16.0 71.9 44.0
548 | 55.3 70.9 63.1 | 43.3 75.8 59.5|20.9 76.3 48.6
In,Out,Post 17 | 25.7 88.7 57.2| 00 00 00| 0.0 0.0 0.0
37 |1 39.1 87.3 63.2|18.1 673 427 | 0.0 0.0 0.0
76 | 53.2 82.5 67.9 | 49.0 83.7 66.3 | 11.7 32.8 22.3
In,Out,Org 12| 78 678 378| 00 00 00| 0.0 0.0 0.0
25| 13.2 60.7 370| 00 00 00| 0.0 0.0 0.0
52 | 28.4 81.1 54.8 | 19.7 86.7 53.2| 0.0 0.0 0.0
In,Post,Org 65 | 30.0 69.8 49.9 222 795 509 | 21 7.5 4.8
130 | 36.8 69.3 53.1 | 24.7 74.8 49.8 | 19.4 69.5 445
266 | 45.5 71.8 58.7 | 30.5 73.8 52.1|21.5 774 494
Out,Post,Org 73| 224 659 44.1| 57 316 186 | 0.0 0.0 0.0
151 | 32.8 66.5 49.7 | 16.6 724 445 | 0.5 8.3 44
300 | 47.0 74.1 60.5 | 37.6 85.0 61.3 | 10.4 85.3 47.8
In,Out,Post,Org 9| 55 386 220| 00 00 00| 00 0.0 0.0
22 | 11.6 728 422 | 0.0 0.0 00| 0.0 0.0 0.0
46 | 26.0 86.7 56.3 | 25.0 86.7 558 | 0.0 0.0 0.0

Table A.2 Management Succession results at error tolerance 0.20 (continued
from previous page)
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APPENDIX B

TABLES OF HOSPITAL DISCHARGE RESULTS

Concept Pos. Min.Cover 2 Min.Cover 10 Min.Cover 20
Train R P Avg R P Avg R P Avg
Present 393 | 33.0 57.4 45.2 | 222 742 48.2 | 18.0 82.0 50.0

1192 | 39.8 61.0 50.4 | 299 74.0 51.9 | 24.0 79.8 519

2741 | 44.0 63.9 54.0 | 35.8 T74.3 55.0 | 29.6 78.8 54.2

Absent 444 | 61.6 73.1 67.4 | 51.5 79.8 65.6 | 35.5 84.6 60.0
1312 | 70.0 76.0 73.0 | 63.0 794 T71.2 | 56.3 82.0 69.1

3025 | 73.6 T77.1 753 | 68.3 79.9 741 |63.8 813 725

Confirmed 208 | 53.4 66.5 59.9 | 424 723 57.4|33.2 754 543
625 | 57.4 67.5 62.5 | 489 726 60.8 | 42.5 T4.3 584

1426 | 62.3 67.7 65.0 | 55.3 71.3 63.3 | 48.6 72.6 60.6

Ruled_Out 43 | 45.7 74.5 60.1 | 28.0 67.7 47.9 2.8 5.8 4.3
134 | 59.5 73.2 66.3 | 49.5 76.2 62.9 | 46.0 79.7 62.8

310 | 62.7 75.4 69.1 | 56.9 77.1 67.0 | 49.8 76.3 63.0

Table B.1 Hospital discharge results at error tolerance 0.20

Concept Pos. Min.Cover 2 Min.Cover 10 Min.Cover 20
Train R P Avg R P Avg R P Avg
Present 1890 sem-1 | 42.5 63.6 53.0 | 33.5 73.6 53.5 | 28.2 78.5 53.4
sem-2 | 61.9 65.6 63.8|59.8 720 659 |57.3 74.2 65.8
Absent 2167 sem-1 | 72.3 77.3 74.8 | 66.1 80.4 73.3|59.6 82.0 70.8

sem-2 | 80.0 78.9 795|775 81.6 79.5 | 757 83.0 79.3

Confirmed 1031 sem-1 | 59.0 67.9 63.5 | 50.7 724 61.6 | 48.3 73.5 60.9
sem-2 | 74.8 69.1 719 | 73,5 724 73.0 | 722 739 73.1

Ruled_Out 211 sem-1 | 62.0 76.3 69.2 | 474 79.3 63.3 | 474 793 633
sem-2 | 73.5 83.1 783 | 67.5 86.3 76.9 | 67.5 86.3 76.9

Table B.2 Hospital discharge at 50% training before (sem-1) and after (sem-2)
semantic fine-tuning at error tolerance 0.20
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APPENDIX C

SEMANTIC HIERARCHY FOR MANAGEMENT

SUCCESSION
Class Parent Class
Root_Class
Event Root_Class
Entity Root_Class
Person Entity
Person_Name Person
Person _Title Person
Generic_Person Person
Organization Entity
Org_Name Organization
Org_Desig Organization
Generic_Org Organization
Position Entity
Corporate_Post Position
Generic_Role Position
Name Entity
Irrel Org Entity
Government Irrel Org
Location Entity
Country Location
City Location
Region Location
State Location

Figure C.1 Semantic hierarchy for Management Succession (continued on
next page)
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Class

Artifact

Product

Natural _Resource
Technology
Facility
Conceptual _Entity
Idea_or_Concept
Temporal _Concept
Date
Absolute_Date
Relative_Date
Duration

Time
Spatial_Concept

Parent Class

Entity

Artifact

Artifact

Artifact

Entity

Entity

Conceptual _Entity
Idea_or_Concept
Temporal _Concept
Date

Date

Temporal _Concept
Temporal _Concept
Idea_or_Concept

Qualitative_Concept Idea_or_Concept
Nationality Qualitative_Concept

Quantitative_Concept Idea_or_Concept

Number Quantitative_Concept
Percentage Number

Money Quantitative_Concept
Communicate Event

Hire Event

Fire Event

Keep_Job Event

Leave_Job Event
Former_or_Current Event

Start Event

Exist Event

Past Exist

Posess Event

Create Event

Purchase Event

Hypothetical Event

Figure C.2 Semantic hierarchy for Management Succession (continuation of
previous figure)
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APPENDIX D

SEMANTIC HIERARCHY FOR HOSPITAL

DISCHARGE
Class Parent Class
Root_Class
Entity Root_Class
Conceptual _Entity Entity
Idea_or_Concept Conceptual _Entity
Finding Conceptual _Entity
Laboratory_or_Test Result Finding
Sign_or_Symptom Finding
Temporal _Concept Idea_or_Concept
Date Temporal _Concept
Absolute Date Date
Relative _Date Date
Duration Temporal _Concept
Qualitative_Concept Idea_or_Concept
Quantitative_Concept Idea_or_Concept
Spatial_Concept Idea_or_Concept
Body_Location_or_Region Spatial_Concept
Body_Space_or_Junction Spatial_Concept
Group Conceptual _Entity
Professional or_Occupational Group  Group
Population_Group Group
Patient_or_Disabled _Group Group
Age Group Group
Family_Group Group

Figure D.1 Semantic hierarchy for Hospital Discharge (continued on next
page)
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Class

Event

Phenomenon _or_Process

Injury _or_Poisoning

Natural Phenomenon_or_Process
Biologic_Function
Pathologic_Function

Cell_or Molecular_Dysfunction
Disease_or_Syndrome

Mental_or _Behavioral_Dysfunction
Activity

Behavior

Social_Behavior

Individual _Behavior
Daily_or_Recreational _Activity
Occupational Activity
Health_Care_Activity
Laboratory_Procedure
Therapeutic_or_Preventive_Procedure
Diagnostic_Procedure
Educational_Activity

Governmental or_Regulatory_Activity
Research_Activity

Molecular_Biology _Research_Technique
Machine_Activity
Physiologic_Function

Cell_Function

Molecular_Function
Organism_Function

Mental Process
Organ_or_Tissue_Function
Genetic_Function

Experimental Model _of Disease
Human caused Phenomenon_or_Process
Environmental Effect_of Humans

Parent Class

Root_Class

Event

Phenomenon _or_Process
Phenomenon _or_Process
Natural Phenomenon_or_Process
Biologic_Function
Pathologic_Function
Pathologic_Function
Disease_or_Syndrome
Event

Activity

Behavior

Behavior

Activity

Activity

Occupational Activity
Health_Care_Activity
Health_Care_Activity
Health_Care_Activity
Occupational Activity
Occupational Activity
Occupational Activity
Research_Activity
Activity
Biologic_Function
Physiologic_Function
Physiologic_Function
Physiologic_Function
Organism_Function
Physiologic_Function
Molecular_Function
Pathologic_Function
Phenomenon _or_Process
Human _caused Phenomenon_or_Process

Figure D.2 Semantic hierarchy for Hospital Discharge (continued on next

page)
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Class

Physical Object
Anatomical _Structure
Embryonic_Structure
Acquired_Abnormality
Congenital_Abnormality
Fully Formed_Anatomical Structure
Body_Part_or_Organ
Cell_Component

Cell

Tissue
Macromolecular_Structure
Gene_or_Genome
Organism

Animal

Invertebrate

Vertebrate

Bird

Amphibian

Fish

Mammal

Human

Reptile

Bacterium

Plant

Alga

Alga

Fungus

Virus
Rickettsia_or_Chlamydia
Substance
Body_Substance
Chemical

Food

Parent Class

Entity

Physical Object

Anatomical _Structure

Anatomical _Structure

Anatomical _Structure

Anatomical _Structure

Fully Formed_Anatomical Structure
Fully Formed_Anatomical Structure
Fully Formed_Anatomical Structure
Fully Formed_Anatomical Structure
Fully Formed_Anatomical Structure
Macromolecular_Structure

Physical Object

Organism

Animal

Animal

Vertebrate

Vertebrate

Vertebrate

Vertebrate

Mammal

Vertebrate

Organism

Organism

Plant

Plant

Organism

Organism

Organism

Physical Object

Substance

Substance

Substance

Figure D.3 Semantic hierarchy for Hospital Discharge (continued on next

page)
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Class Parent Class

Chemical_Viewed Functionally Chemical
Pharmacologic_Substance Chemical Viewed Functionally
Indicator_or_Reagent Chemical Viewed Functionally
Hazardous_or_Poisonous_Substance Chemical_Viewed Functionally
Biologically_Active_Substance Chemical_Viewed Functionally
Neuroreactive_Substance Biologically_Active Substance
Hormone Biologically_Active Substance
Enzyme Biologically_Active_Substance
Vitamin Biologically_Active Substance
Prostaglandin Biologically_Active Substance
Immunologic_Factor Biologically_Active Substance
Chemical Viewed Structurally Chemical

Inorganic_Chemical Chemical Viewed _Structurally
Element_or_Ton Inorganic_Chemical

Isotope Inorganic_Chemical
Inorganic_Compound Inorganic_Chemical
Organic_Chemical Chemical Viewed _Structurally
Alkaloid Organic_Chemical
Amino_Acid_or_Peptide_or_Protein Organic_Chemical
Carbohydrate Organic_Chemical

Eicosanoid Organic_Chemical

Lactam Organic_Chemical

Lipid Organic_Chemical
Nucleic_Acid_or _Nucleotide Organic_Chemical

Steroid Organic_Chemical
Organophosphorus_Compound Organic_Chemical

Biomedical or_Dental Material Chemical_Viewed Functionally
Manufactured _Object Physical Object

Medical _Device Manufactured _Object
Research Device Manufactured _Object

Figure D.4 Semantic hierarchy for Hospital Discharge (continued on next
page)
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Class Parent Class

Occupation_or_Discipline Conceptual _Entity
Biomedical _Occupation_or_Discipline Occupation_or_Discipline
Intellectual Product Conceptual _Entity
Classification Intellectual Product
Regulation_or_Law Intellectual Product
Amino_Acid_Sequence Molecular_Sequence
Carbohydrate_Sequence Molecular_Sequence
Nucleotide_Sequence Molecular_Sequence
Group_Attribute Conceptual _Entity
Functional_Concept Idea_or_Concept
Body_System Functional_Concept
Molecular_Sequence Spatial_Concept
Geographic_Area Spatial_Concept
Organism_Attribute Conceptual _Entity
Language Conceptual _Entity
Organization Conceptual _Entity

Health_Care_Related _Organization Organization
Health_Care_Related _Organization Organization
Professional _Society Organization
Self_help_or_Relief_Organization Organization

Figure D.5 Semantic hierarchy for Hospital Discharge (continuation of pre-
vious figure)
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Class Parent Class

Symptom_Absent Conceptual _Entity
Symptom _or_Diagnosis Conceptual _Entity
Diagnosis Pathologic_Function
Diagnosis_Preexisting Diagnosis
Diagnosis_Past Diagnosis
Symptom _Modifier Idea_or_Concept
Symptom_Absent_Modifier Symptom _Modifier
Symptom Present_Modifier Symptom _Modifier
Diagnosis_Modifier Idea_or_Concept
Diagnosis_Preexisting Modifier Diagnosis_Modifier
Diagnosis_Past_Modifier Diagnosis_Modifier
Diagnosis_or_Symptom Biologic_Function
Questionable Conceptual _Entity

Figure D.6 Semantic classes added for fine-tuned Hospital Discharge tagging
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APPENDIX E

AUTOMATICALLY DERIVED CONCEPT
DEFINITIONS FOR PERSON_IN, POSITION

These concept definitions were generated by CRYSTAL for the Manage-
ment Succession concept Person_In,Position. Induction was done at error
tolerance 0.20 from 479 randomly selected training documents. This is a com-
plete list of definitions with coverage of at least five training instances.

Semantic classes have a prefix “ws_” rather than the angle brackets. The
extracted syntactic constituent is marked with “==>”. Coverage and errors
on the training set (used by CRYSTAL’s search control) is recorded for each
concept definition. I have also included coverage and errors on a blind test
set. The test set is one fourth the size of the training set.

The order of syntactic constituents is not necessarily the order that they
are found in an instance. The current implementation of CRYSTAL does not
include any ordering constraints on the syntactic constituents.

The two highest coverage definitions in this rule base (ID: 8833 and ID:
9130) extract Person_In from the subject and Position from the direct object.
The verb is constrained to be “was named” for 8833 and the subject and object
are virtually unconstrained. In 9130 the subject must have the semantic class
<Person>, and the object must have the semantic class <Position>, but any

passive verb including “was” will do.
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CN-type Succession

ID: 8833

Status: GENERALIZED

Constraints:

VERB::
mode:
root:
terms:
mod terms:
head terms:
classes:
mod class:
head class:

OBJ::
mode:
classes:
mod class:
head class:

SUBJ::
mode:
classes:
mod class:
head class:

Coverage: 133, Errors:

CN-type Succession

passive affirmative
name

WAS NAMED
WAS

NAMED
ws_Past
ws_Past
ws_Root_Class
==> Position
affirmative
ws_Entity
ws_Root_Class
ws_Root_Class
==> PersonIn
affirmative
ws_Root_Class
ws_Root_Class
ws_Root_Class

25 ( Coverage on test set: 36, Errors:

ID: 9130

Status: GENERALIZED

Constraints:
VERB::
mode:
terms:
mod terms:
classes:
mod class:
head class:
SUBJ::
mode:
classes:
mod class:
head class:
OBJ::
mode:
classes:
mod class:
head class:

Coverage: 125, Errors:

passive affirmative
WAS

WAS

ws_Past
ws_Past
ws_Root_Class
==> PersonIn
affirmative
ws_Person
ws_Root_Class
ws_Person
==> Position
affirmative
ws_Position
ws_Root_Class
ws_Root_Class

10 ( Coverage on test set: 40, Errors:
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CN-type Succession

ID: 8849

Status: GENERALIZED

Constraints:
VERB::
mode:
root:
terms:
head terms:
classes:
mod class:
head class:
SUBJ::
mode:
classes:
mod class:
head class:
OBJ::
mode:
classes:
mod class:
head class:

Coverage: 119, Errors:

CN-type Succession

affirmative
name
NAMED
NAMED
ws_Root_Class
ws_Root_Class
ws_Root_Class
==> PersonIn
affirmative
ws_Person
ws_Root_Class
ws_Person
==> Position
affirmative
ws_Position
ws_Root_Class
ws_Entity

11 ( Coverage on test set: 34, Errors:

ID: 8795

Status: GENERALIZED

Constraints:

OBJ::
mode:
classes:
mod class:
head class:

VERB::
mode:
classes:
mod class:
head class:

SUBJ::
mode:
terms:
mod terms:
classes:
mod class:
head class:

Coverage: 61, Errors:

==> Position
affirmative
ws_Position
ws_Root_Class
ws_Position

affirmative
ws_Root_Class
ws_Root_Class
ws_Root_Class
==> PersonIn
affirmative
%COMMA%
%COMMA%
ws_Person Name, ws_Corporate Post
ws_Root_Class
ws_Person Name

( Coverage on test set: 22, Errors:
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CN-type Succession

ID: 8749

Status: GENERALIZED

Constraints:
OBJ::
mode:
classes:
mod class:
head class:
VERB::
mode:
terms:
mod terms:
classes:
mod class:
head class:
SUBJ::
mode:
classes:
mod class:
head class:
Coverage: 35, Errors: 1

CN-type Succession

==> Position
affirmative
ws_Entity
ws_Root_Class
ws_Entity

passive affirmative
WAS

WAS

ws_Past

ws_Past
ws_Root_Class
==> PersonIn
affirmative
ws_Idea_or_Concept, ws_Person Name
ws_Root_Class
ws_Person Name

( Coverage on test set: 10, Errors: 1)

ID: 8818

Status: GENERALIZED

Constraints:
SUBJ::
mode:
classes:
mod class:
head class:
OBJ::
mode:
classes:
mod class:
head class:
VERB::
mode:
terms:
mod terms:
classes:
mod class:
head class:
REL-VERB::
mode:
classes:
mod class:
head class:
Coverage: 35, Errors: 7

==> PersonIn
affirmative
ws_Person Name
ws_Root_Class
ws_Person Name
==> Position
affirmative
ws_Entity
ws_Root_Class
ws_Root_Class

passive affirmative
WAS

WAS

ws_Past

ws_Past
ws_Root_Class

affirmative
ws_Event
ws_Root_Class
ws_Root_Class

( Coverage on test set: 6, Errors: 1)
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CN-type Succession ID: 8984
Status: GENERALIZED

Constraints:

SUBJ:: ==> PersonIn
mode: affirmative
classes: ws_Person Name
mod class: ws_Root_Class
head class: ws_Person Name

VERB::
mode: passive affirmative
terms: WAS
mod terms: WAS
classes: ws_Past
mod class: ws_Past
head class: ws_Root_Class

PP:: ==> Position
mode: affirmative
classes: ws_Corporate Post
mod class: ws_Root_Class
head class: ws_Root_Class

Coverage: 31, Errors: 6 ( Coverage on test set: 6, Errors: 2 )

CN-type Succession ID: 9180
Status: GENERALIZED

Constraints:

SUBJ:: ==> PersonIn
mode: affirmative
classes: ws_Person
mod class: ws_Root_Class
head class: ws_Person

PP:: ==> Position
mode: affirmative
classes: ws_Corporate Post
mod class: ws_Root_Class
head class: ws_Corporate Post

VERB::
mode: affirmative
terms: WAS
mod terms: WAS
classes: ws_Past
mod class: ws_Past
head class: ws_Root_Class

Coverage: 31, Errors: 5 ( Coverage on test set: 7, Errors: 2 )
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CN-type Succession

ID: 8918

Status: GENERALIZED

Constraints:
VERB::
mode:
root:
classes:
mod class:
head class:
SUBJ::
mode:
classes:
mod class:
head class:
OBJ::
mode:
classes:
mod class:
head class:

Coverage: 30, Errors:

CN-type Succession

active affirmative
become

ws_Start
ws_Root_Class
ws_Start

==> PersonIn
affirmative
ws_Person
ws_Root_Class
ws_Person

==> Position
affirmative
ws_Corporate Post
ws_Root_Class
ws_Entity

5 ( Coverage on test set: 7, Errors: 0 )

ID: 8946

Status: GENERALIZED

Constraints:
SUBJ::
mode:
classes:
mod class:
head class:
VERB::
mode:
classes:
mod class:
head class:
PP::
prep:
mode:
terms:
classes:
mod class:
head class:

Coverage: 28, Errors:

==> PersonIn
affirmative
ws_Person Name
ws_Root_Class
ws_Person Name

affirmative
ws_Root_Class
ws_Root_Class
ws_Root_Class
==> Position
TO
affirmative
TO
ws_Position
ws_Root_Class
ws_Position

5 ( Coverage on test set: 7, Errors: 3 )
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CN-type Succession

ID: 8771

Status: GENERALIZED

Constraints:

VERB::
mode:
root:
terms:
mod terms:
head terms:
classes:
mod class:
head class:

SUBJ::
mode:
terms:
mod terms:
classes:
mod class:
head class:

OBJ::
mode:
classes:
mod class:
head class:

Coverage: 26, Errors:

CN-type Succession

passive affirmative

name

WAS NAMED

WAS

NAMED

ws_Past

ws_Past

ws_Root_Class

==> PersonIn

affirmative

%COMMA%

%COMMA%

ws_Person Name, ws_Corporate Post
ws_Root_Class

ws_Person Name, ws_Corporate Post
==> Position

affirmative

ws_Position

ws_Root_Class

ws_Position

0 ( Coverage on test set: 9, Errors:

ID: 9038

Status: GENERALIZED

Constraints:
VERB::
mode:
classes:
mod class:
head class:
SUBJ::
mode:
classes:
mod class:
head class:
PP::
mode:
classes:
mod class:
head class:
OBJ::
mode:
terms:
mod terms:
classes:
mod class:
head class:

Coverage: 15, Errors:

active affirmative
ws_Root_Class
ws_Root_Class
ws_Root_Class

affirmative
ws_Entity
ws_Root_Class
ws_Entity

==> Position
affirmative
ws_Corporate Post
ws_Root_Class
ws_Corporate Post
==> PersonIn
affirmative
%COMMA%
%COMMA%
ws_Person Name
ws_Root_Class
ws_Person Name

2 ( Coverage on test set: 5, Errors:
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CN-type Succession

ID: 8873

Status: GENERALIZED

Constraints:
SUBJ::
mode:
classes:
mod class:
head class:
VERB::
mode:
root:
terms:
head terms:
classes:
mod class:
head class:
OBJ::
mode:
classes:
mod class:
head class:

Coverage: 15, Errors: 3

CN-type Succession

==> PersonIn
affirmative
ws_Person Name
ws_Root_Class
ws_Person Name

affirmative
appoint
APPOINTED
APPOINTED
ws_Event
ws_Root_Class
ws_Event

==> Position
affirmative
ws_Corporate Post
ws_Root_Class
ws_Corporate Post

( Coverage on test set: 5, Errors: 0 )

ID: 8757

Status: GENERALIZED

Constraints:
PP::
prep:
mode:
terms:
classes:
mod class:
head class:
VERB::
mode:
root:
classes:
mod class:
head class:
OBJ::
mode:
classes:
mod class:
head class:
SUBJ::
mode:
classes:
mod class:
head class:

Coverage: 12, Errors:

==> Position

AS

affirmative

AS
ws_Corporate Post
ws_Root_Class
ws_Corporate Post

active affirmative
succeed
ws_Root_Class
ws_Root_Class
ws_Root_Class

affirmative
ws_Person
ws_Root_Class
ws_Person

==> PersonIn
affirmative
ws_Person Name
ws_Root_Class
ws_Entity

( Coverage on test set: 6, Errors: 1)
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CN-type Succession ID: 9072
Status: GENERALIZED

Constraints:

PP:: ==> Position
prep: AS
mode: affirmative
terms: AS
classes: ws_Corporate Post
mod class: ws_Root_Class
head class: ws_Entity

SUBJ:: ==> PersonIn
mode: affirmative
classes: ws_Person Name
mod class: ws_Root_Class
head class: ws_Person Name

VERB::
mode: active affirmative
root: succeed
classes: ws_Root_Class
mod class: ws_Root_Class
head class: ws_Root_Class

Coverage: 12, Errors: 0 ( Coverage on test set: 6, Errors: 1)

CN-type Succession ID: 8912
Status: GENERALIZED

Constraints:

VERB::
mode: active affirmative
root: name
terms: NAMED
mod terms: <null>
head terms: NAMED
classes: ws_Root_Class
mod class: ws_Root_Class
head class: ws_Root_Class

SUBJ::
mode: affirmative
classes: ws_Org_Name
mod class: ws_Root_Class
head class: ws_Org_Name

OBJ:: ==> Position, Person_In
mode: affirmative
classes: ws_Person, ws_Corporate Post
mod class: ws_Entity
head class: ws_Corporate Post

Coverage: 12, Errors: 2 ( Coverage on test set: 1, Errors: 0 )
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CN-type Succession

ID: 9027

Status: GENERALIZED

Constraints:
VERB::
mode:
classes:
mod class:
head class:
OBJ::
mode:
classes:
mod class:
head class:
SUBJ::
mode:
classes:
mod class:
head class:

Coverage: 12, Errors:

CN-type Succession

2

active affirmative
ws_Root_Class
ws_Root_Class
ws_Root_Class

==> Position, Person_In

affirmative

ws_Person, ws_Corporate Post

ws_Person
ws_Corporate Post

affirmative
ws_Organization
ws_Root_Class
ws_Organization

( Coverage on test set: 1, Errors: 0 )

ID: 8858

Status: GENERALIZED

Constraints:

VERB::
mode:
root:
terms:
head terms:
classes:
mod class:
head class:

SUBJ::
mode:
classes:
mod class:
head class:

OBJ::
mode:
terms:
mod terms:
classes:
mod class:
head class:

Coverage: 11, Errors:

active affirmative
name

NAMED
NAMED
ws_Root_Class
ws_Root_Class
ws_Root_Class

affirmative
ws_Entity
ws_Root_Class
ws_Entity

==> Position, Person_In

affirmative
OF
OF

ws_Person Name, ws_Corporate Post

ws_Entity
ws_Corporate Post

( Coverage on test set: 0, Errors: 0 )
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CN-type Succession ID: 9104
Status: GENERALIZED

Constraints:

VERB::
mode: affirmative
root: appoint
terms: APPOINTED
head terms: APPOINTED
classes: ws_Event
mod class: ws_Root_Class
head class: ws_Event

SUBJ:: ==> PersonIn
mode: affirmative
classes: ws_Entity
mod class: ws_Root_Class
head class: ws_Entity

OBJ:: ==> Position
mode: affirmative
terms: OF
mod terms: OF
classes: ws_Corporate Post
mod class: ws_Root_Class
head class: ws_Corporate Post

Coverage: 11, Errors: 2 ( Coverage on test set: 6, Errors: 0 )

CN-type Succession ID: 9010
Status: GENERALIZED

Constraints:

SUBJ:: ==> PersonIn
mode: affirmative
terms: %COMMA%
mod terms: %COMMA%
classes: ws_Person Name
mod class: ws_Root_Class
head class: ws_Person Name

VERB::
mode: active affirmative
terms: WILL
mod terms: WILL
classes: ws_Root_Class
mod class: ws_Root_Class
head class: ws_Root_Class

PP:: ==> Position
prep: AS
mode: affirmative
terms: AS
classes: ws_Corporate Post
mod class: ws_Root_Class
head class: ws_Entity

Coverage: 11, Errors: 2 ( Coverage on test set: 3, Errors: 2 )
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CN-type Succession

ID: 9052

Status: GENERALIZED

Constraints:
VERB::
mode:
mod terms:
classes:
mod class:
head class:
OBJ::
mode:
classes:
mod class:
head class:
SUBJ::
mode:
classes:
mod class:
head class:
PP::
mode:
terms:
mod terms:
classes:
mod class:
head class:

Coverage: 10, Errors: 1

CN-type Succession

active affirmative
<null>
ws_Root_Class
ws_Root_Class
ws_Root_Class
==> PersonIn
affirmative
ws_Entity
ws_Root_Class
ws_Entity

affirmative
ws_Entity
ws_Root_Class
ws_Entity

==> Position
affirmative
THE OF

THE OF
ws_Generic_Role
ws_Root_Class
ws_Generic_Role

( Coverage on test set: 2, Errors:

ID: 9157

Status: GENERALIZED

Constraints:
SUBJ::
mode:
classes:
mod class:
head class:
OBJ::
mode:
terms:
mod terms:
classes:
mod class:
head class:
VERB::
mode:
root:
classes:
mod class:
head class:

Coverage: 10, Errors: 2

==> PersonIn
affirmative
ws_Person Name
ws_Root_Class
ws_Person Name
==> Position
affirmative

THE OF

THE OF
ws_Entity
ws_Root_Class
ws_Entity

active affirmative
assume
ws_Root_Class
ws_Root_Class
ws_Root_Class

( Coverage on test set: 2, Errors:
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CN-type Succession

ID: 8781

Status: GENERALIZED

Constraints:
SUBJ::
mode:
classes:
mod class:
head class:
VERB::

mode:

mod terms:

classes:
mod class:
head class:
OBJ::
mode:
classes:
mod class:
head class:
REL-VERB::
mode:
terms:

mod terms:
head terms:

classes:
mod class:
head class:

Coverage: 8, Errors: 1

CN-type Succession

affirmative
ws_Entity
ws_Root_Class
ws_Entity

active affirmative

<null>

ws_Root_Class
ws_Root_Class
ws_Root_Class

==> Position, Person_In
affirmative
ws_Corporate Post
ws_Root_Class
ws_Corporate Post

affirmative

%COMMA% %PERIOD%
%COMMA%

%PERIOD %

ws_Entity

ws_Root_Class
ws_Root_Class

( Coverage on test set: 1, Errors:

ID: 8802

Status: GENERALIZED

Constraints:
VERB::

mode:

mod terms:

classes:

mod class:

head class:
OBJ::

mode:

terms:

mod terms:

classes:

mod class:

head class:
PP::

mode:

terms:

mod terms:

classes:
mod class:
head class:

Coverage: 7, Errors:

active affirmative
<null>
ws_Root_Class
ws_Root_Class
ws_Root_Class
==> PersonIn
affirmative
%COMMA%
%COMMA%
ws_Person Name, ws_Corporate Post
ws_Root_Class
ws_Person Name
==> Position
affirmative

THE

THE

ws_Position
ws_Root_Class
ws_Position

( Coverage on test set: 0, Errors:
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CN-type Succession

ID: 9002

Status: GENERALIZED

Constraints:
VERB::

mode:

mod terms:

classes:
mod class:
head class:
OBJ::
mode:
classes:
mod class:
head class:
SUBJ::
mode:
classes:
mod class:
head class:
REL-VERB::
mode:
terms:

mod terms:

classes:
mod class:
head class:

Coverage: 7, Errors: 1

CN-type Succession

active affirmative
<null>
ws_Root_Class
ws_Root_Class
ws_Root_Class
==> PersonIn
affirmative
ws_Person Name
ws_Root_Class
ws_Person Name

affirmative
ws_Organization
ws_Root_Class
ws_Entity

==> Position
affirmative

TO

TO
ws_Corporate Post
ws_Root_Class
ws_Root_Class

( Coverage on test set: 0, Errors:

ID: 9078

Status: GENERALIZED

Constraints:

OBJ::
mode:
classes:
mod class:
head class:

VERB::
mode:
root:
classes:
mod class:
head class:

REL-OBJ::
mode:
terms:

mod terms:

classes:
mod class:
head class:
SUBJ::

mode:
classes:
mod class:
head class:

Coverage: 7, Errors:

==> PersonIn
affirmative
ws_Person Name
ws_Root_Class
ws_Person Name

active affirmative
succeed
ws_Root_Class
ws_Root_Class
ws_Root_Class
==> Position
affirmative

WHO WAS
WHO WAS
ws_Corporate Post, ws_Past
ws_Past
ws_Root_Class

affirmative
ws_Person
ws_Root_Class
ws_Person

( Coverage on test set: 1, Errors:
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CN-type Succession ID: 9111
Status: GENERALIZED

Constraints:
PP:: ==> Position
prep: AS
mode: affirmative
terms: AS
classes: ws_Corporate Post
mod class: ws_Root_Class
head class: ws_Corporate Post
VERB::
mode: active affirmative
classes: ws_Event
mod class: ws_Root_Class
head class: ws_Event
OBJ:: ==> PersonIn
mode: affirmative
classes: ws_Person Name
mod class: ws_Root_Class
head class: ws_Person Name
Coverage: 7, Errors: 1 ( Coverage on test set: 2, Errors: 1)

CN-type Succession ID: 8969
Status: GENERALIZED

Constraints:

VERB::
mode: active affirmative
mod terms: <null>
classes: ws_Root_Class
mod class: ws_Root_Class
head class: ws_Root_Class

SUBJ::
mode: affirmative
classes: ws_Organization
mod class: ws_Root_Class
head class: ws_Entity

REL-VERB:: ==> Position
mode: affirmative
terms: TO %PERIOD%

mod terms: TO
head terms: %PERIOD%

classes: ws_Corporate Post
mod class: ws_Entity
head class: ws_Root_Class

OBJ:: ==> PersonIn
mode: affirmative
classes: ws_Person Name
mod class: ws_Root_Class
head class: ws_Person Name

Coverage: 6, Errors: 1 ( Coverage on test set: 0, Errors: 0 )
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CN-type Succession

ID: 9200

Status: GENERALIZED

Constraints:
SUBJ::
mode:
classes:
mod class:
head class:
VERB::
mode:
classes:
mod class:
head class:
OBJ::
mode:
classes:
mod class:
head class:
REL-OBJ::
mode:
terms:
mod terms:
classes:
mod class:
head class:
Coverage: 6, Errors: 1

CN-type Succession

affirmative
ws_Entity
ws_Root_Class
ws_Entity

active affirmative
ws_Root_Class
ws_Root_Class
ws_Root_Class
==> PersonIn
affirmative
ws_Person Name
ws_Root_Class
ws_Person Name
==> Position
affirmative

WHO WAS
WHO WAS
ws_Entity, ws_Past
ws_Past
ws_Entity

( Coverage on test set: 1, Errors:

ID: 8894

Status: GENERALIZED

Constraints:
VERB::
mode:
classes:
mod class:
head class:
OBJ::
mode:
classes:
mod class:
head class:
SUBJ::
mode:
classes:
mod class:
head class:
PP::
prep:
mode:
terms:
classes:
mod class:
head class:
Coverage: 5, Errors: 0

active affirmative
ws_Event
ws_Root_Class
ws_Event

==> PersonIn
affirmative
ws_Person Name
ws_Root_Class
ws_Person Name

affirmative
ws_Entity
ws_Root_Class
ws_Entity

==> Position

AS

affirmative

AS
ws_Corporate Post
ws_Root_Class
ws_Corporate Post

( Coverage on test set: 1, Errors:
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CN-type Succession

ID: 8975

Status: GENERALIZED

Constraints:

OBJ::
mode:
classes:
mod class:
head class:

REL-VERB::
mode:
terms:

head terms:

classes:

mod class:

head class:
VERB::

mode:

mod terms:

classes:
mod class:
head class:
SUBJ::

mode:
classes:
mod class:
head class:

Coverage: 5, Errors:

CN-type Succession

==> PersonIn
affirmative
ws_Corporate Post
ws_Root_Class
ws_Entity

==> Position
affirmative
%PERIOD %
%PERIOD %
ws_Corporate Post
ws_Corporate Post
ws_Root_Class

active affirmative
<null>
ws_Root_Class
ws_Root_Class
ws_Root_Class

affirmative
ws_Organization
ws_Root_Class
ws_Entity

( Coverage on test set: 0, Errors: 0 )

ID: 9088

Status: GENERALIZED

Constraints:
SUBJ::
mode:
classes:
mod class:
head class:
VERB::
mode:
root:
terms:

head terms:

classes:
mod class:
head class:
OBJ::
mode:
classes:
mod class:
head class:
Coverage: 5, Errors:

==> PersonIn
affirmative
ws_Person Name
ws_Root_Class
ws_Person Name

active affirmative
be

BE

BE

ws_Exist
ws_Root_Class
ws_Exist

==> Position
affirmative
ws_Corporate Post
ws_Root_Class
ws_Corporate Post

( Coverage on test set: 4, Errors: 1)
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CN-type Succession ID: 8933
Status: GENERALIZED

Constraints:
SUBJ::
mode: affirmative
classes: ws_Entity
mod class: ws_Root_Class
head class: ws_Entity
VERB::
mode: active affirmative
classes: ws_Root_Class
mod class: ws_Root_Class
head class: ws_Root_Class
OBJ:: ==> Position, Person_In
mode: affirmative
terms: THE
mod terms: THE
classes: ws_Person Name, ws_Generic_Role
mod class: ws_Entity
head class: ws_Entity
Coverage: 5, Errors: 1 ( Coverage on test set: 0, Errors: 0 )

CN-type Succession ID: 9062
Status: GENERALIZED

Constraints:
VERB::
mode: active affirmative
root: serve
terms: WILL SERVE

mod terms: WILL
head terms: SERVE

classes: ws_Root_Class
mod class: ws_Root_Class
head class: ws_Root_Class
SUBJ:: ==> PersonIn
mode: affirmative
classes: ws_Person
mod class: ws_Root_Class
head class: ws_Person
PP:: ==> Position
prep: AS
mode: affirmative
terms: AS
classes: ws_Corporate Post
mod class: ws_Root_Class
head class: ws_Corporate Post
Coverage: 5, Errors: 1 ( Coverage on test set: 1, Errors: 1)
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