
TINTIN: A System for Retrieval in Text Tables

Pallavi Pyreddy and W. Bruce Croft
Center for Intelligent Information Retrieval

Dept. of Computer Science
University of Massachusetts

Amherst, MA 01003
pyreddy,croft @cs.umass.edu

Abstract

Tables form an important kind of data element in text retrieval. Often, the gist of an entire
news article or other exposition can be concisely captured in tabular form. In this paper, we
examine the utility of exploiting information other than the key words in a digital document
to provide the users with more flexible and powerful query capabilities. More specifically,
we exploit the structural information in a document to identify tables and their component
fields and let the users query based on these fields. Our empirical results have demonstrated
that heuristic method based table extraction and component tagging can be performed effec-
tively and efficiently. Moreover, our experiments in retrieval using the TINTIN system have
strongly indicated that such structural decomposition can facilitate better representation of
user’s information needs and hence more effective retrieval of tables.

1 Introduction
Much of the current literature in information retrieval deals with word based retrieval[6, 1, 7].
We are interested in exploiting the information available in the regularities encountered in text to
augment the capabilities of such word-based retrieval systems. Next generation information access
tools need to incorporate notions of structure in a document into indexing and retrieval in order to
give users additional power and flexibility in query specification. In this paper we deal with one
kind of structural element in documents - text tables.

Tables form an important kind of data element in text retrieval. Often, the gist of an entire
news article or other exposition can be concisely captured in tabular form. Extracting tabular
data, decomposing it into its constituent elements such as table entries, captions, column and row
headings, and exploiting the information in these data may lead to enhanced accuracy in word-
based intelligent information retrieval systems. Such tabular data may be embedded in the text of
a document and there may be no SGML markers separating it from the rest of the text. In many
digital library environments, the data is likely to be highly heterogeneous and such tags are often
not available. In this paper, we present the Table INformation-based Text INquery (TINTIN)
system that uses heuristic methods to extract structural elements from text and separates out tables.

1

TINTIN incorporates a capability to exploit various weighting heuristics to index and retrieve
information based on the structural features of the extracted tables.

2 Related Work
The work that is most closely related to ours is that of Rus and Subramanian and Rus and Allan[5, 4].
They are primarily interested in the notion of incorporating cues from structural regularities in
a document into indexing and retrieval. Structural elements include pictures, graphs, tables,
paragraph and section boundaries. Rus and Subramanian[5] use a data structure called a White
Space Density Graph, similar to our Character Alignment Graph (explained later), for extracting
tables from documents. However, they do not distinguish between various table components and
hence their work lacks the notion of structured queries on fields in the table. Thus, while Rus and
Subramanian have a more general notion of structural elements in a document, our work has a
deeper notion of the constituent structural elements of a document. Much of the work in TINTIN
went into distinguishing the structural elements within a table.

Some related work also exists in the automated document structuring community. Much of the
work in this community deals with bit-mapped images[3, 2, 8] (unlike ASCII text documents) and
it is primarily concerned with detecting structure in the documents for traditional image processing
and pattern recognition tasks. On the other hand, our work is primarily motivated by the need to
empower users of information retrieval systems through detection and exploitation of structure in
digital documents.

3 The TINTIN System
The TINTIN system consists of an initial preprocessing stage where it looks at a regular text
database and extracts table data from text documents. The preprocessing stage also tags the
components of a table as caption, headline or table entries. The table output of this stage is then
indexed and the users are allowed to query on this structured document database. Figure 1 shows
the architecture of the TINTIN system. We will now discuss each of these components in detail.

Document Preprocessing Module

Table
Extractor

Component
Tagger

Indexing RetrievalDocs

Query

Document
Database

Structured
Document
Database

INQUERY

Figure 1: Architecture for the TINTIN System

2

3.1 Preprocessing Module
The preprocessing module uses a number of structural heuristics to separate a table from the rest
of the textual data and to tag the elements of the table as captions or table entries. It consists of
two stages: Table Extractor and Component Tagger.

3.1.1 Table Extractor

The Table Extractor is based on the relatively simple and intuitive idea of looking for aligned
white spaces. However, text can be noisy and tables tend to have intermittent irregularities that can
adversely affect a straightforward algorithm.

Our table extractor relies on a data structure called the Character Alignment Graph (CAG). A
CAG is formed by checking for whitespace alignment in blocks of contiguous lines of text. A
number of other heuristic parameters like holes (number of blanks between columns) and gaps
(number of such contiguous blanks per line) are used to check for the gap structure in a block of
data. The intent is to make the extractor as flexible and error tolerant as possible. It is important to
note that the table extractor and the subsequent component tagger do not rely on SGML or similar
tags to extract the tables. In fact the Wall Street Journal Database that we use does not demarcate
the tables from the rest of the text in which they are embedded using any kind of SGML markers.

The CAG data structure is a histogram of the number of characters that appear in a particular
location in ‘k’ (a tunable parameter) contiguous lines. Within the CAG array, we detect “gaps”
by looking for contiguous locations whose histogram values are below a threshold. Such “gaps”
are identified as potential column separators and the ‘k’ lines are potentially a part of a table. The
tolerance of the extractor not only makes it error tolerant but also performs the important function
of acquiring the potential caption data that surrounds the table lines. We experimentally determined
a value of k=3 to give good results for the Wall Street Journal Database and the minimum number
of gaps (number of contiguous blanks per line) to be 3 for a line to belong to a table.

Figure 2 shows an example of an extracted table. The column and row headings, and the
relevant captions are extracted along with the table entries. However, they are not yet tagged as
such. This is the job of the component tagger.

3.1.2 Component Tagger

The output of the table extractor is a text table along with the associated captions, column headings
and legends. However, the table extractor does not distinguish between these elements. This is the
job of the component tagger. Even though this initially looked like a simple thing to do, it turned
out to be the most challenging and interesting part of the work due to the numerous formats in
which textual tables occur. We had to appeal to a range of heuristics to filter, separate, undo the
interactions between previous applications of heuristics and to take into account idiosyncrasies of
the databases.

We approached the task of recognizing captions and table lines using largely syntactic heuristics
as opposed to semantic ones. Column headings are also treated as captions. Table lines were tagged
using<TABLE> ... </TABLE> tags and the captions using<CAPTION> ... </CAPTION>.
In order to first convince ourselves that syntactic heuristics can be effective, we used a simple but
interesting technique. We replaced each of the characters in the extracted tables by a “*” and left
the blanks as they are. Figure 3 shows an example of such a “star table”. It is apparent that the

3

Such overtime throughout the past year helped Ford boost 1988-model
car and truck production 19% from 19-7 levels, the company said.

Auto Production

Fourth-quarter U.S. auto production
PERCENT

1988 1987 CHANGE
GM 964,653 843,908 +14.3%
Ford 456,954 461,150 - 0.9
Chrysler 294,998 283,062 + 4.2
Honda 86,330 80,227 + 7.6
Mazda 59,464 3,800 ----
Nissan 24,604 15,289 +60.9
Toyota 19,600 0 ----
Nummi 16,156 38,901 -58.5
Diamond Star 2,316 0 ----
TOTAL 1,925,075 1,726,337 +11.6%

First-quarter U.S. auto production
PERCENT

1989 1988 CHANGE
GM 925,000 780,213 + 18.7%
Ford 475,000 479,263 - 0.9
Chrysler 271,000 261,433 + 3.7
Honda 99,360 92,156 + 7.8
Mazda 61,510 16,800 +266.1
Nissan 29,522 36,324 - 18.7
Toyota 25,000 ------ ------
Nummi 48,000 41,479 + 15.7
Diamond Star 10,000 ------ ------
TOTAL 1,945,392 1,707,673 + 13.9%

NOTE: Estimated from industry and company sources. Vehicles are counted by
manufacturer; the Mazda to-al includes cars built for Mazda and Ford;Diamond-
Star includes Chrysler and Mitsubishi cars and Nummi -ncludes Chevrolet and
Toyota cars.

Figure 2: A table extracted from the Wall Street Journal Database by the table extractor

4

exact semantics of the words in the table are not needed to infer that the first 4 lines are captions.
This technique was extremely helpful in letting us view the structural patterns in tables without
being confounded by the semantics of the words during the component tagger development phase.

******* *** ******
*********** ****** ** ***********

*************** ******
********* *********

****** *** ******* ***
******* ** ****** **
****** ** *** ****** **
******* ** ******* **
*** ****** ** ******* **

Figure 3: What are the captions here?

Some of the heuristics we found useful are:

Gap Structure Heuristic: Large empty spaces (big gaps) in the middle of the line (not at
beginning or end of the line) indicate that it is a potential table line. Note however, that
column headings, which should be tagged as captions, may also be mistakenly tagged as
table lines by this heuristic. The later heuristics take care of undoing these mistakes.

Alignment Heuristic: If the gaps and characters of two or more lines are aligned in the middle
(as opposed to beginning or end of the line), then it is most likely to be a table entry.

Pattern Regularity Heuristic: Context information or regularity can also be used to separate
table lines from captions. For example, in the following pattern the third and fifth lines are
more likely to belong to the table rather than captions. The captions occurring between table
lines in such patterns are often table lines that have a different gap structure than the other
table lines.

Caption
Table-Line
Caption
Table-Line
Caption
Table-Line

Figure 4 is a sample table illustrating this.

5

<CAPTION> While 52% of consumers surveyed in March by Leo J. Shapiro &\
Associates said Sears was the best place to-buy power tools, only 1%\
said it was the best place to buy a woman’s dress blouse.</CAPTION>
<CAPTION> New Sears prices vs. the competition </CAPTION>
<CAPTION> SEARS PENNEY WAL-MART WARD TARGET </CAPTION>
<TABLE> Levi 501 jeans men </TABLE>
<TABLE> $ 19.96 $ 19.99 N.A. N.A. N.A. </TABLE>
<CAPTION> Vanderbilt one-ounce eau de toilette spray </CAPTION>
<TABLE> 15.96 15.50 $ 13.84 $15.50 $ 13.95 </TABLE>
<CAPTION> Fruit of the Loom men’s underwear (three-pack) </CAPTION>
<TABLE> 3.96 N.A. 3.96 N.A. 3.99 </TABLE>
<CAPTION> Prestone antifreeze </CAPTION>
<TABLE> 7.62 N.A. 7.47 7.99 7.99 </TABLE>
<CAPTION> Sealy mattress queen size </CAPTION>
<TABLE> 549.95 557.75 N.A. 549.99 N.A. </TABLE>
<CAPTION> Lego basic building set </CAPTION>
<TABLE> 9.99 N.A. 9.57 9.99 9.99 </TABLE>
<CAPTION> Etch a Sketch </CAPTION>
<TABLE> 8.99 N.A. 6.97 8.99 8.99 </TABLE>

Figure 4: An erroneously tagged table (by the earlier heuristics) that is later rectified by the Pattern
Regularity Heuristic

On the other hand, in the following pattern, the fourth line is more likely to be a caption.

Table-Line
Table-Line
Table-Line
Caption
Table-Line
Table-Line
Table-Line

Figure 5 is a sample table illistrating this.

Differential Column Count Heuristic: If at the beginning of a table, the first few lines have
fewer columns than the average columns in the table, then these lines are potential captions.
For example, if there are 4 columns in a table and a line has only 3 columns and is at the
beginning of the table, it is a potential caption. An illustration of the use of this heuristic can
be seen in Figure 6.

Differential Gap Structure Heuristic: Any lines at the beginning or end of a table whose gap
alignment does not match the average gap alignment for that table are potential captions. An
illustration of the use of this heuristic can be seen in Figure 7.

If there is a line after a caption and its format is different from that of the average table
format, then it is subjected to further tests by the following heuristics.

1. Captions are text whereas the table entries are mostly numerical.
2. The column headings are in upper case (capital letters) while table entries are lower

case or mixed.

6

<CAPTION> Market Share in Europe </CAPTION>
<CAPTION> (Figures are percentage for 1987) </CAPTION>
<CAPTION> Central-office telephone-switching lines </CAPTION>
<TABLE> Alcatel 40.0% </TABLE>
<TABLE> Plessey/GEC 16.7 </TABLE>
<TABLE> Ericsson 13.6 </TABLE>
<TABLE> Siemens 10.2 </TABLE>
<TABLE> Italtel 8.4 </TABLE>
<TABLE> Others 11.1 </TABLE>
<TABLE> TOTAL SHIPMENTS: 9.6 million lines </TABLE>
<CAPTION> Semiconductors </CAPTION>
<TABLE> Philips 14.6 </TABLE>
<TABLE> SGS-Thomson 8.6 </TABLE>
<TABLE> Texas Instruments 7.7 </TABLE>
<TABLE> Motorola 7.5 </TABLE>
<TABLE> Siemens 7.5 </TABLE>
<TABLE> National Semiconductor 5.4 </TABLE>
<TABLE> Intel 4.5 </TABLE>
<TABLE> NEC 3.9 </TABLE>
<TABLE> ITT 3.8 </TABLE>
<TABLE> Advanced Micro Devices 3.7 </TABLE>
<TABLE> Plessey 2.4 </TABLE>
<TABLE> TOTAL MARKET: $6.36 billion </TABLE>
<CAPTION> Source: Dataquest Inc. </CAPTION>

Figure 5: A table with intermittent caption

<CAPTION> The percentage change is since year-end. </CAPTION>
<CAPTION> % This </CAPTION>
<CAPTION> Nov 15 Nov 14 Year </CAPTION>
<TABLE> U.S. 248.1 247.5 + 8.1 </TABLE>
<TABLE> Britain 548.1 545.4 + 6.3 </TABLE>
<TABLE> Canada 350.7 349.6 0.0 </TABLE>
<TABLE> Japan 1350.8 1340.1 + 32.1 </TABLE>
<TABLE> World index 478.9 476.1 + 17.4 </TABLE>

Figure 6: Lines 2 and 3 are tagged captions by the Differential Column Count Heuristic

<CAPTION> 12/31/89 LOANS MARKET INTEREST </CAPTION>
<CAPTION> NAME (In billions) SHARE CARDS* RATE </CAPTION>
<TABLE> Citicorp $25.0 16.9% V/MC 19.80 </TABLE>
<TABLE> Chase Manhattan 9.0 6.1 V/MC 19.80 </TABLE>
<TABLE> Sears 8.5 5.8 D 19.80 </TABLE>
<TABLE> First Chicago 6.6 4.5 V/MC 19.80 </TABLE>
<TABLE> BankAmerica 6.0 4.1 V/MC 19.80 </TABLE>
<TABLE> MNC Financial 5.3 3.6 V/MC 19.80 </TABLE>
<TABLE> American Express 5.2 3.5 O 16.25 </TABLE>
<TABLE> Bank of New York 3.8 2.6 V/MC 16.98 </TABLE>
<TABLE> Manufacturers Hanover 2.9 2.0 V/MC 19.80 </TABLE>
<TABLE> Wells Fargo 2.5 1.7 V/MC 19.80 </TABLE>
<TABLE> Total for top 10 $74.8 </TABLE>
<CAPTION> (or about 51% of industry vs. about 47% in 1987) </CAPTION>
<CAPTION> *V=Visa; MC=MasterCard; D=Discover; O=Optima </CAPTION>
<CAPTION> Sources: Individual issuers; RAM Research Bankcard </CAPTION>

Figure 7: Line 2 is tagged caption by the Differential Gap Structure Heuristic

7

Additional heuristics that may be applicable to several other databases include:

1. Centered lines that do not display average gap alignment characteristics are potential
captions.

2. If the length of a line is very different from other lines in the table, then it is very likely
a caption.

3. Lines with words like “Table” or “Figure” are likely captions.
4. For a multi-line caption, continue until a period is encountered. If the period occurs in

the middle of a line, continue until the next blank line is encountered.

All of the above heuristics have been implemented in TINTIN except the last set of additional
heuristics that were not relevant to the the test database we used.

3.2 Indexing
We created our structured document database by field indexing the tagged output from the pre-
processing module using the “inbuild” indexing program . Field indexing here involves creating
terms specific to the “caption” and “table” fields.

3.3 Retrieval
We used INQUERY[7, 1], a probabilistic retrieval engine, to retrieve tables from the structured
document database. Since the table documents were field indexed on caption and table fields, the
user has the flexibility to query based on these fields. Occurence of words in caption versus their
occurence as a table entry could carry a different import to the user. For example, a query like
“health insurance united states” could represent a variety of user requirements. It could mean that
the user really wants to know about health insurance in general with some association to the United
States or she could be wanting to know specifically about health insurance in the United States.
In the former case “health insurance” should occur in the caption and get more weight whereas in
the latter case the entire set of words in the query should get equal weight. Another example is
a query like “Stock prices of oil companies”. A table that has all the words in the caption field
is likely to be more relevant than a table with “stock prices” in captions and “oil companies” as
table entry or “oil companies” in captions and “stock prices” as table entry. A table with “stock”
and “companies” in captions and “prices” and “oil” as table entries is highly likely to be irrelevant.
Thus, weighting the query based on fields can give the user the flexibility and power to manipulate
and express her needs better.

Inbuild and INQUERY (used for retrieval) are a part of a suite of tools for IR systems developed at the Center for
Intelligent Information Retrieval, University of Massachusetts, Amherst.

8

4 Experiments

4.1 The system
The table extraction process itself is subject to a version of precision versus recall trade-off.
Precision (getting only the table lines with no extraneous information) may have to be sacrificed
in order to improve recall (getting all tables in the text along with some non-table lines) or vice
versa. The preprocessing module can be tuned by adjusting precision and recall parameters. If
the parameters are highly constrained, precision improves but recall drops. We have experimented
with two variations of the system: high precision and high recall versions. For example, with the
precision-oriented version of the TINTIN system, many lines of Figure 4 like “Vanderbilt one-ounce
eau de toilette spray”, “Fruit of the Loom men’s underwear(three-pack)” were not recognized as
being a part of the table. The recall-oriented version of the TINTIN system extracts all these lines
along with one extraneous line “While 52% of consumers surveyed in March by Leo J. Shapiro &
Associates said Sears was the best place to-buy power tools, only 1% said it was the best place to
buy a woman’s dress blouse.” .

We believe that it may be better to tune the system for higher recall. The intuition behind this is
that it is highly improbable that a query term will match a randomly extracted word in an extraneous
line. Hence, even if higher recall brings in extraneous lines, it may not effect the retrieval of the
relevant tables. In addition, using proper weighting functions will eliminate the significance of
randomly extracted sentence words versus relevant words.

4.2 Results of extraction and tagging
We ran the preprocessing module for table extraction and tagging on the 6 year (1987 – 1992) Wall
Street Journal database. Table 1 shows the statistics for this process. The final structured document
database was built using the collated set of 6509 tables.

Wall-Clock Table Number of
Database Size Time db Size Tables
WSJ87 131MB 17 min 3.7MB 1857
WSJ88 109MB 15 min 3.4MB 1701
WSJ89 38MB 4 min .3MB 222
WSJ90 73MB 10 min 2.4MB 930
WSJ91 145MB 20 min 4.3MB 1417
WSJ92 34MB 5 min 1.1MB 382
TOTAL 530MB 71 min 15 MB 6509

Table 1: Table Extraction & Component Tagging Statistics

Table 2 and Table 3 show the accuracy statistics for a set of 100 documents with 50 tables in

Even though the figure shows it as three lines, due to the limitations of the word processor we use, in the actual
table document this was just one long line.

9

them. The table extractor did not miss any table in its entirety. The errors were few and spread
out. In the case of the component tagger, the errors were highly localized. Given the low error
rate, this is a positive trait as this implies that most of the tables were correctly tagged for all their
components.

Total number of lines in 100 docs 6205
Total number of table and caption lines 1005
Total number of lines extracted by table extractor 1041
Total number of table and caption lines missed 18 1.8 %
Total number of extraneous lines extracted 54 5.4 %

Table 2: Accuracy results for the Table Extractor

Actual number of captions 265
Number of captions mis-tagged as table lines 25 9.4%
Actual number of table lines 740
Number of table lines mis-tagged as captions 55 7.4 %

Table 3: Accuracy results for the Component Tagger

4.3 Retrieval Results
We evaluated the TINTIN system using two types of queries - natural language query and structured
query (with field retrieval on caption and table fields). Query Set I contained 25 natural language
queries. The relevance judgement set for each query was obtained by looking at the top 100
tables retrieved for that query. Query Set II contained 25 structured queries derived by manually
reformulating the natural language queries from Set I. Table 4 shows the precision statistics . The
precision measure is defined as follows:

It can be seen from Table 4 that the structured queries perform significantly better than the natural
language queries. The average precision values improved by 20.9%. More importantly, it can be
seen that the structured queries do even better in the top 20 tables. This strongly indicates that they
are very good for interactive querying where the users are usually interested in the top 15 to 20
documents.

We would now like to discuss a few queries in detail to illustrate the additional searching power
field retrieval operators give to the user.

We did not look at the recall statistics because we did not have an exhaustive relevance judgement set.

10

Precision (% change) 25 queries
Natural

Language Structured
Tables Query Query
5 72.0 84.0 (+16.7)
10 58.8 71.6 (+21.8)
15 48.0 62.4 (+30.0)
20 42.0 51.8 (+23.3)
30 33.3 39.1 (+17.4)
100 12.8 13.6 (+6.3)
200 6.4 6.8 (+6.3)
500 2.6 2.7 (+3.8)
1000 1.3 1.4 (+7.7)
Average 52.6 63.6 (+20.9)

Table 4: A comparison of precision values of natural language and structured queries

1. Natural Language Query: Stock prices of oil companies

Reformulated Query:

#wsum (6.0 (2.0 #field(CAPTION oil))
(2.0 #field (CAPTION stock))
(1.0 #field(CAPTION company))
(1.0 #field(CAPTION prices)))

The reformulated query should be interpreted as follows: (2.0 CAPTION oil) means
that the occurrence of “oil” in the CAPTION field gets a weight of 2.0 on a scale of 6.0.
The average precision value for the natural language query was 49.5% and for the structured
query was 57.7%. The structured query performed 16.4% better than the natural language
query. With the natural language query, many irrelevant tables related to oil matters other
than stock prices and tables concerning stock prices of companies other than oil companies
were retrieved. The structured query has the power to specify, that “oil” and “stocks” should
get more weight if they occur in caption and that “company” and “price” are not as important.

2. Natural Language Query: Export of computers

Reformulated Query:

#wsum (5.0 (2.0 #field (CAPTION exports))
(2.0 #field (CAPTION computers))
(1.0 #field (TABLE computers)))

11

The average precision value for the natural language query was 80.6% and for the structured
query was 64.5%. The natural language query performed 20.1% better than the structured
query. The natural language query performs better because the reformulatedquery gives more
weight to computers. So anything related to computers such as computer parts, computer
prices, and computer companies were all retrieved and there were a large number of computer
related tables in the database.
This query illustrates an important caveat about the structured queries. While it is true
that they give better expressibility to the user it is also true that they are susceptible to bad
reformulations leading to poor retrieval results. Also note that a structured query, at the very
least, can be made to perform the same as the natural language query by giving equal weight
to all the words occurring in all the fields.
For example, the following structured query is the same as the natural language query from
which it was derived:

#wsum (4.0 (1.0 #field (CAPTION exports))
(1.0 #field (CAPTION computers))
(1.0 #field (TABLE computers))
(1.0 #field (TABLE exports)))

5 Conclusion
The central point of this paper is to highlight the utility of exploiting information other than the
key words in a document to empower the users with more flexible and powerful query capabilities.
More specifically, we exploit the structural information in a document to identify tables and
their component fields and let the users query based on these fields. Our empirical results have
demonstrated that heuristic method based table extraction and component tagging can be performed
effectively and efficiently. Moreover, our experiments in text table retrieval using the TINTIN
system have strongly indicated that such structural decomposition can facilitate better representation
of user’s information needs and hence more effective retrieval of tables.

Presently, the system distinguishes between caption and table entries of a table. Enhancing
the system to make further distinctions like the caption, column and row headings and table entry
components could lead to a more effective query formulation and retrieval. The weighting function
can be modified in such a way that caption gets the highest weighting, column and row headings
get the next highest weighting and table entries get the least weighting. There are also many
other possibilities like slicing the table into columns and treating each column as a document.
The column header and body content occurring together indicates more specificity and could be
a source of multiple evidence for the corresponding table. For example, if the query is “China
Exports Slippers” and we have a table with “China” and “slippers” occurring together in a column,
this should get more weight than the case where “Romania” and “slippers” occur in one column
and “China” occurs in another one. Here co-occurrence in a column indicates higher relevance.

Incorporating the kinds of enhancements discussed above into TINTIN remains high on our
agenda for future work.

12

Acknowledgements
We would like to express our gratitude to James Allan and M V Nagendra Prasad for their insights
and helpful comments. We would like to thank Vasantha Kumar, Stephen Harding and Sandhya
Kasera for their help with the internals of INQUERY and also many helpful discussions. Our
thanks go to Daniela Rus, James Callan and Fred Lenherr for their encouragement to work on these
ideas. We would also like to thank Jay Ponte, Warren Greiff, Lisa Ballesteros, and Russell Swan
for providing useful feedback on the draft versions of this paper.

This material is based on work supported in part by the National Science Foundation, Library of
Congress and Department of Commerce under cooperative agreement number EEC-9209623. This
material is based on work supported in part by NRaD Contract Number N66001-94-D-6054. Any
opinions, findings and conclusions or recommendations expressed in this material are the author(s)
and do not necessarily reflect those of the sponsor(s).

References
[1] J. P. Callan, W. Bruce Croft, and S. M. Harding. The INQUERY retrieval system. InProceedings

of the 3rd International Conference on Database and Expert Systems Applications, pages 78–
83, 1992.

[2] H Fujisawa, Y Nakano, and K Kurino. Segmentation methods for character recognition: From
segmentation to document structure analysis. Proceedings of the IEEE, 80(7), 1992.

[3] G Nagy, S Seth, and M Vishwanathan. A prototype document image analysis system for
technical journals. Computer, 25(7), 1992.

[4] Daniela Rus and James Allan. Does Navigation Require More than One Compass. In AAAI 95
Fall Symposium on AI Applications in Knowledge Navigation and Retrieval, pages 116–122,
Cambridge, MA, November 1995.

[5] Daniela Rus and Devika Subramanian. Customizing Information Capture and Access. ACM
Transactions on Information Systems, 1997. To appear.

[6] G Salton. The smart document retrieval project. In Proceedings of the Fourteenth Annual
International ACM/SIGIR Conference on Research and Development in Information Retrieval,
pages 356–358, 1991.

[7] H. R. Turtle. Inference Networks for Document Retrieval. PhD thesis, University of Mas-
sachusetts, 1990.

[8] D. Wang and S. Srihari. Classification of newspaper image blocks using texture analysis.
Computer Vision, Graphics, and Image Processing, 47, 1989.

13

