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Abstract

A form of temporal difference learning is presented that learns the relative utility of states,
instead of the absolute utility. This formulation backs up decisions instead of values, making
it possible to learn a simpler function for defining a decision-making policy. A nonlinear
relative value function can be learned without increasing the dimensionality of the inputs.
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1 Introduction

One often needs to construct a decision-making component of a larger program. For
example, in scheduling one needs to decide which requests for resources to satisfy. In di-
agnosis, one needs to decide which test or treatment to perform. In financial markets, one
needs to decide which trades to make. One constructs a decision-making component by
encoding a policy that maps every state of interest to a recommended action that presum-
ably maximizes a utility measure. The policy may be hard-coded by a programmer, or it
may be acquired automatically through experience, given a suitable representation and value
inference mechanism.

A common approach to learning a good policy is to associate a value with each state in the
decision-making domain. These values can be adjusted through a variety of reinforcement
learning methods. As experience is gained, the values come to approximate the utility of
being in a given state. One can define a policy in terms of this approximate value function
V by stating that the decision maker is to select the action that produces the successor state
with the highest utility according to V. In nontrivial domains, the function V' may be highly
irregular over the state representation, which will tend to make it more difficult to learn.

Does one need to learn such a V' when the objective is to learn a good decision-making
policy? For decision-making purposes, one needs to select an action. A value function V'
offers a means to an end, but is not itself an end. One does not need a value that approximates
utility when the task at hand is to select an action. One needs only a policy that indicates a
good action to select. It may well be that a simpler function, say R, will suffice if it causes
at least equally good decisions to be made. The values in R approximate relative utility,
while the values in V' approximate absolute utility.

2 Approximating Absolute Utility

A variety of reinforcement learning methods exist for improving an approximate V' over
time. With temporal difference learning (Sutton, 1988), one can learn an optimal V' using
TD(0), subject to certain assumptions. The fundamental goal of temporal difference learning
is to learn to predict the value of each state in the decision-making domain, which in this
case forms the basis of a decision-making policy. For a goal state, one wants to predict the
payoff for being in that state. For a non-goal state, one wants to predict the payoff that will
ultimately be attained by obeying the policy. By approximating these payoffs well, one can
judge which state should be selected.

Figure 1. Value Backup

The TD(0) algorithm performs a 1-ply lookahead, evaluates each successor state accord-
ing to V', and then chooses the best successor with high probability. One needs to make
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apparently suboptimal choices from time to time in order to explore alternatives that may
eventually come to be recognized as optimal. Knowing the V' value of the best successor, the
algorithm then adjusts the approximation of V' so that evaluation of the parent state will
return a value more like that of its best successor. For example, in Figure 1 if state ¢ is best,
then TD(0) would correct the value associated with state a to be closer to that of state c.

The TD(0) method is easy to program, requires no memory beyond that of the function
approximator, and finds an optimal V', assuming that the state space is explored sufficiently
often and that the function approximator can represent V with adequate precision. One
needs to choose a suitable approximator. For a small state space, a lookup table is often
practical. For a larger space, a linear combination of the state variables and a weight vector
may work. For a nonlinear function, one may want to choose a multi-layer perceptron. The
function approximator is an independent variable that is adjusted by the programmer. One
must choose an approximator that will work well for the V' that needs to be learned.

3 Approximating Relative Utility

When the objective is to learn a decision-making policy that is based on a value function,
it may be possible to represent the same policy defined by a given V' by using a simpler
function R. If the simpler function can do the same job, it should be found more quickly,
and it should require less memory.

Figure 2. Preference Backup

Consider a formulation of temporal difference learning that backs up decisions instead
of values. Instead of adjusting the approximation of V' so that the value of the parent is
more like the value of the best child, adjust R as needed so that its preference for successors
among its children corresponds to its preferences among its grandchildren. This corresponds
to a 1-ply lookahead in plies that correspond to decisions, instead of plies that correspond
to values. For example, in Figure 2, a preference for state ¢ among the grandchildren nodes
implies a preference for state ¢ among the children nodes.

How shall R be represented and updated? It can be represented as a numeric function,
and approximated with any approximator that one might choose for a V. As before, one
needs an approximator that is appropriate to the complexity of the function to be approx-
imated. However, the error correction for R differs. Recall that for the V-learner, one
associates the temporal difference error V'(a) — V'(c) with state a. The state names a and ¢
have been borrowed from Figure 1, but these each correspond to the vector of state variables
that describes the state. This gives a positive error when V' (a) is too high.
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However, for the R-learner, if the decision that would be made is currently wrong, then
one associates an error with each of two states whose values have the incorrect relationship.
One should have been higher than the other, and was not. One adjusts each one toward
the other. Specifically, if a state ¢ should be preferred to a state b, but is not, then one
associates the error ZU=EO 4 ¢ with state b, and the negative of that error with state c.
These state names have been borrowed from Figure 2. This gives a positive error for state
b when R(b) is too high. Furthermore, even when the policy is correct according to the
one-step lookahead, if the difference between the two relative values is closer than a margin
[, then the two relative values are adjusted to move them farther apart. When one of the
R-learner’s immediate children is a goal state, no lookahead is needed. This is analogous to
the V-learner not requiring lookahead when the environment supplies the payoff for a goal
state.

4 Questions

One would like to know under what circumstances temporal difference learning of deci-
sions works at all. Assuming it does work, one wonders whether optimality proofs that have
been produced for learning a V' with TD(0) can be extended to this case of learning an R
(this question is not addressed here). A second set of questions concerns how the V-learner
and R-learner compare. What advantages or disadvantages does the R-learner possess?

The next three sections describe two experiments that shed some light on these ques-
tions. The first experiment compares the two approaches for a simple grid-world task, in
which the function approximator is a lookup table. The objective is to verify that backing
up decisions during on-line decision-making works. For the second experiment, a different
function approximator is employed, which is described below. The second experiment uses
a task for which the true value function is highly nonlinear in the input variables. Several
measurements are taken for each of the learners during the sequence of trials.

5 Grid World

The first experiment uses a simple task to illustrate that temporal difference learning
using backed up preferences does indeed work. The task environment consists of an 8x8 grid
world, as shown in Figure 3, with two goal states, and five cells containing obstructions that
make them unvisitable. At the beginning of a trial, the learner is started at a randomly
chosen empty cell, and can move north, south, east or west, one cell at a time. Any attempt
to move outside the grid borders or into an obstructed cell has no effect. The trial is complete
when the decision maker moves to one of the goal states, at which point the environment
provides a payoff of 1. The task is to learn an optimal policy for this environment, i.e. a
policy that leads the decision maker to a goal state in a minimal number of steps.

Two learners were set loose on this task. Each learner uses temporal difference learning,
but as described above the V-learner backs up values, and the R-learner backs up preferences.
The V-learner uses a discounting factor v = 0.9 to give a greater payoff for a shorter path to
a goal. The V-learner attained an optimal policy after thirty-eight trials, and the R-learner
achieved an optimal policy after nine trials. Each learner used the same random-number
seed, so the progression of potential trials is identical for each.
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Figure 3. Grid World Task

One could make larger grids and do multiple runs, but the objective of this simple task
was to indicate that backing up preferences in an on-line manner works. Whether this
method will converge to an optimal policy in general is presently unknown.

6 The ELF Function Approximator

The next experiment uses a more sophisticated function approximator, described here.
As mentioned above, the choice of function approximator is orthogonal to our focus here.
Any function approximator with sufficient precision will do. The ELF function approximator
(Utgoff, 1996) is chosen here principally because it can adjust the complexity of its model
dynamically, eliminating the need for multiple runs. The features that it constructs are easy
to interpret, and the number of them that are created provides a measure of the complexity
of the function that is being approximated.

ELF is a nonlinear function approximator that constructs features as necessary while it
updates its representation of the function that it is learning. The function is represented by
two layers of mapping. The first layer maps a boolean vector representing the state to a set
of boolean feature values. The second layer maps the features to a single scalar value by
combining them linearly with a vector of real-valued coefficients called weights. Though the
second layer is linear in the boolean features, the boolean features are nonlinear in the state
(input) variables.

Table 1. Matching of Pattern and State

Pattern State | Match
# 1 true
# 0 true
0 1 false
0 0 true

Each feature is a set cover over the state space. The cover is defined by a pattern vector
with as many components as there are state variables. Each component of a pattern has
either the value ‘#’ or the value ‘0’. A ‘#’ matches any (either) of the possible values of
the corresponding state variable, while a ‘0’ in the pattern matches only a ‘0’ value. A table
depicting whether a component matches is shown in Table 1. The pattern of all ‘#’ covers
every state in the decision-making domain because the pattern matches any instance at every
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component. The pattern of all ‘0’ covers the one state in which all the state variables have
value ‘0’. One pattern is strictly more general than another if and only if it covers all the
states covered by the other.

For every feature in the first layer, there is a corresponding weight in the weight vector
of the second layer. It is convenient to think of each feature’s corresponding weight as
being a facet of the feature. This is because the set of features changes dynamically as ELF
updates its approximation. When a feature is constructed or deleted, so too is the weight
that corresponds to it.

Initially, the function approximation consists of the one most general feature, with a
weight of 0. To evaluate a state, one computes the linear combination of the feature values
and feature weights. A feature has value 1 if it covers the state, and value 0 otherwise.
Thus, the initial approximation returns 0 for every state. To update the approximation, one
provides ELF with a stream of pointwise errors, where a point is a state. ELF uses the LMS
rule (Widrow & Hoff, 1960) to adjust the weights of those features that matched the state.
Those that did not match have value 0, and those weights do not change.

Of course the approximation with the one most general feature is rarely adequate. One
can repeatedly adjust its single weight, attempting in effect to fit a constant function to
the points. ELF keeps track of which feature is having the greatest difficulty in fitting, and
furthermore associates this difficulty with each of the state variables. When ELF determines
that adjustment of the weights has ceased to be productive, it adds a new feature that is a
specialized copy of the feature that has been having the greatest difficulty in fitting. The
copy is specialized by changing a ‘#’ in its pattern to a ‘0’, thereby customizing the set
of states covered by the feature. Note that every feature except the most general one is
nonlinear in the input variables because it has value 0 for the states it does not cover, and
the value of its weight for the states that it does cover.

ELF constructs features as needed and where needed, driven by the points and errors
that it observes. Each feature has a logical interpretation as defined by its pattern and the
input variables. ELF deletes features (but never the most general feature) whose weights
have become relatively stable close to 0. ELF is quite direct in constructing useful features.
Hence, the number of features that it constructs and retains provides a good indication of
function complexity.

7 Eight Puzzle

The eight-puzzle is a sliding tile puzzle that contains eight square tiles in a flat space
that could accomodate nine tiles in a 3x3 arrangement. By having just eight tiles, there
is an empty location, into which one can slide one of the adjacent tiles. There are 181,440
states, including a single goal state consisting of all tiles in row order (the tiles are numbered
1-8), with the empty location in the lower right corner. The longest path to this goal state
requires 31 steps, providing 32 different utility values. The exact value function contains
25,077 local maxima (states from which every decision is equally good) and one minimum.
A regression tree based on minimizing variance of its blocks contains 114,114 leaves. This
function is difficult to compress.

A V-learner and an R-learner were each turned loose on learning a good policy by way of
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Figure 4. Function Complexity

making repeated trials in the task domain. To expedite the learning, each learner was told
an optimal move for each state, meaning that the inferred error at each step was better than
would be available otherwise. This use of error-free trials should not be necessary, e.g. the
Grid-World task above, but was done to speed the process in order to estimate the longer
term effects earlier. It is very unlikely that a learner will stumble onto the goal state early
in its training, so some form of assistance would be needed anyway, such as a deeper search.

Table 2. Twenty Features of V

‘Weight Feature
-11.489
-5.258 | ~at(1,9), ~at(4,1), ~at(4,4)

5.109 | ~at(4,4), ~at(7,4)

-4.937 | ~at(4,4)

4.237 | ~at(7,8), ~at(8,7)

3.962 ~at(1,9), ~at(3,9), ~at(7,9), ~at(8,9)

-3.712 ~at(1,9), ~at(3,9), ~at(5,9), ~at(7,9), ~at(8,9)

3.607 ~at(1,4), ~at(1,9), ~at(4,1), ~at(4,4)

3.533 | ~at(8,7)

3.326 | ~at(b,8)

3.027 | ~at(3,3), ~at(6,3)

-2.981 | ~at(b,2), ~at(h,6)

-2.908 | ~at(b,1), ~at(h,8)

-2.839 | ~at(3,7), ~at(8,7)

2.836 | ~at(3,3), ~at(3,6)

2.758 | ~at(1,1)

2.718 | ~at(1,1), ~at(2,4)

2.683 | ~at(7,7), ~at(8,4)
2.680 | ~at(6,6)
2.677 | ~at(6,8), ~at(b,6)

Figure 4 shows the number of features in each of the approximated functions, with the
curve labelled ‘absolute’ corresponding to the V-learner, and the curve labelled ‘relative’
corresponding to the R-learner. The two functions have similar complexity by this measure.
One might expect the R-learner to have a smaller number of features, but in this case the
learning is still in progress. It is likely that the R-learner is simply further along in acquiring
a good policy.

Table 2 shows the twenty features of V' that have the largest magnitude weights, as does
Table 3 for R. The feature interpretation is determined by printing the negation of each
binary state variable for which there is a ‘0’ in the feature’s pattern. This is shown in the
table as a list of ~at(tile,location) conjuncts for each feature, with the blank indicated by
a ‘b’. The weights for the V' features indicate absolute utility, while the weights for the R
features indicate relative utility, making their units different. One can see that these features
of the two different learners are different, as are the entire sets (not shown here). This is one
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indication that the learners are learning different functions.

Table 3. Twenty Features of R

Weight Feature
-56.224
10.557 ~at(3,3)
7.001 | ~at(8,7)
6.400 | ~at(1,1)
5.950 ~at(2,2)
4.314 | ~at(7,7)
4.288 | ~at(1,1), ~at(1,4)
-4.179 | ~at(5,5)
4.089 | ~at(4,4)
4.047 | ~at(2,6), ~at(3,3)
3.872 ~at(6,8), ~at(8,6), ~at(b,6), ~at(b,8)
-3.435 | ~at(3,7), ~at(8,7)
3.146 ~at(3,6), ~at(6,3), ~at(6,6), ~at(b,3)
-2.856 | ~at(3,3), ~at(7,3)
2.667 | ~at(8,8)
2.594 | ~at(1,2)
2.523 | ~at(7,8), ~at(b,8)
-2.432 ~at(2,2), ~at(2,6), ~at(3,3)
-2.407 ~at(5,2), ~at(5,9)
-2.403 | ~at(2,9), ~at(b,8)

The V-learner infers an error in V' at each state, delivering an error correction to the
function approximator each time. The R-learner detects whether the current relative value
is wrong with respect to a one-step look ahead. If the policy is correct and the relative
values differ by at least 3 ( = 1 here), then no error correction is delivered to the function
approximator. Otherwise, a pair of error corrections is inferred. One could view this pair of
corrections as a single composite correction, but for simplicity it is counted here as a pair
of corrections. Which learner performs more total corrections? Figure 5 shows that the
R-learner requires more corrections for a brief period, but then requires far fewer corrections
thereafter. This is useful because one can spend less time updating the approximation by
virtue of providing it with fewer error corrections.

1.44 4
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Figure 5. Error Corrections

Finally, with which policy is the probability of incorrect decision lower? For the 8-puzzle,
there is a single goal-state, and a start-state is chosen at random from the entire state space.
Thus states near the goal tend to be visited more often than those far away. A probability
distribution over the state space was accumulated during training by counting the number
of times each state was visited, and dividing each count by the total number of these counts
for all states. To compute the probability of making an incorrect decision when following the
policy, every state was checked. If any successor state with a best value (allowing for ties)
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was not optimal, then the policy was scored with an error for that parent state. The overall
probability of making a suboptimal decision (scored this way) is the sum of the probabilities
for those states in which the policy could recommend a suboptimal move. Figure 6 shows
this probability for the two learners. One can see that the policy of the R-learner is more
accurate than that of the V-learner, and the accuracy advantage is obtained early and
retained. The figure also includes the same measure (probability of error) when using the
sum of the individual tile manhattan distances from tile goal as the value function.
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Figure 6. Policy Error

8 Discussion

Learning a relative value function can be applied easily to learning from passive obser-
vation, or to accepting an expert’s advice. When an expert makes decisions, it is possible
to infer that the choice made by the expert is to be prefered to those alternatives that the
expert did not select. This can be useful when there is no particular goal state or payoff. One
can infer the preference and update R at each step. For example, Broos and Branting (1994)
employed a form of preference learning to capture telescope scheduling preferences among a
set of regular telescope users. Tesauro (1989) implemented a backgammon program (prior
to TD-Gammon) that learned from expert preferences in move selection. That program did
not backup decisions, but instead learned in a supervised setting. It used a network in which
two states were presented simultaneously, doubling the input dimensionality.

It is not necessary to learn either absolute or relative utility alone. One can learn from
payoffs and preferences alike (Utgoff & Clouse, 1991), depending on which information is
available at the moment. In effect, payoffs allow one to ground the units of measure of the
approximated function in absolute utility, while preferences allow one to adjust the relation-
ship among states that are available at a decision point. While Utgoff and Clouse considered
only a linear function approximator, it has been shown here how to extend preference learn-
ing to the general case of temporal difference learning, and learning of a nonlinear relative
utility function.

There is considerable on-going research on function approximation. A popular approach
is to use a multi-layer perceptron (Rumelhart & McClelland, 1986), with sigmoid features
and backpropagation of error. This approach adjusts its feature definitions by tuning their
adjustable parameters. A constructive approach is available that dynamically adds new
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features (hidden units) during learning (Ash, 1989). Other approaches for dynamically
adding features include cascade correlation (Fahlman & Lebiere, 1990), meiosis networks
(Hanson, 1990), node splitting (Wynne-Jones, 1992), and growing-cell-structures (Fritzke,
1993). ELF was chosen for the 8-puzzle experiment because it lends itself to inspecting the
features, but a different approximator could have been chosen instead.

9 Conclusions

In principle, one does not need to approximate absolute utility in order to acquire a good
policy. An alternative is to approximate relative utility. One can backup preferences (relative
utility) via one-step lookahead in a manner analogous to backup of values (absolute utility).
The approach of learning relative utility may be better suited to certain decision-making
applications. A function that represents relative utility may be simpler than a function that
represents absolute utility. For each of the experiments described above, a more accurate
policy was learned more quickly when learning relative utility. More comparisons are needed,
as are experiments that combine learning of both absolute and relative utility.
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