Classification Using ®-Machines And
Constructive Function Approximation

Doina Precup
Paul E. Utgoff

Technical Report 97-05
January 21, 1997

Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

Telephone: (413) 545-4843
Net: utgoff@cs.umass.edu

Abstract

The new classification algorithm CLEF combines a version of a linear ma-
chine known as a ®-machine with a non-linear function approximator that
constructs its own features. The algorithm finds non-linear decision bound-
aries by constructing features that are needed to learn the necessary discrim-
inant functions. The CLEF algorithm is proven to separate all consistently
labelled training instances, even when they are not linearly separable in the
input variables. The algorithm is illustrated on a variety of tasks.

Contents

1 Introduction 1
2 Linear Machines 1
3 Constructing a $-machine for classification 2
4 Input representation 6
5 Illustration 6
6 Analysis 7

7 Summary 11

Classification Using ®-Machines 1

1 Introduction

The task of classification is to find an approximate definition for an un-
known function f: X — {c1,..cr}, R > 2 based on a set of training examples
of the form (x;, f(x;)). The components of an instance vector x; can take
values from discrete or continuous domains. It is also possible that the val-
ues of one or more components are missing or imprecisely recorded for certain
training instances.

A popular approach to classification is to construct a decision tree (Quin-
lan, 1985). Typical decision tree induction algorithms operate by recursively
partitioning the training data and picking the best split according to some
metric, until some stopping criterion is satisfied. This repeated partitioning is
problematic because the number of instances present in each block is reduced
after each partition. Moreover, the way in which the tests are picked also leads
to a problem related to the statistical issue of multiple comparisons (Cohen &
Jensen, 1997).

Feed forward neural networks have also been used for classification. How-
ever, networks are usually difficult to tune, since their behavior depends on
several parameters (Mooney, Shavlik, Towell & Gove, 1989). Backpropagation,
(Rumelhart, Hinton & Williams, 1986) which is the best known algorithm for
training feed forward multilayered neural networks, is not guaranteed to con-
verge to a global minimum of the error surface.

This paper presents a new approach to classification, that aims to elim-
inate the disadvantages of the methods mentioned above. CLEF constructs
a machine that is linear in the parameters, but non-linear in the input vari-
ables. Unlike decision trees, the method proposed keeps the whole training
set together during the classifier’s construction. The algorithm does not need
multiple runs to achieve good results, and is proven to find a perfect separa-
tion of the training instances into classes, if one exists. The features it extracts
from the data are inspectable, and thus interpretable.

2 Linear Machines

One approach that allows classification without splitting the training data
is to use linear machines (Nilsson, 1965; Duda & Hart, 1973). A linear machine
is a set of R linear discriminant functions g; used collectively to assign an
instance to one of R classes (Nilsson, 1965). Let x = (1, z1,..x,,) be an instance
description. Each discriminant function g;(x) has the form wx, where w is

an (n+ 1)-dimensional vector of coefficients (weights). An instance is assigned

Classification Using ®-Machines 2

class ¢ if and only if g;(x) > g;(x) Vj # i. If a tie occurs, the instance is
attributed randomly to one of the classes.

The training algorithm of a linear machine adjusts its weights based on a
set of training instances. The machine starts with arbitrary initial weights, and
sweeps through the set of training instances repeatedly. If an instance having
class ¢ is erroneously placed into class j, the weight vectors corresponding to
the two classes are adjusted as follows: w; < w; +cx and w; <— w; —cx. The
amount of correction ¢ can be computed using the fractional error correction
rule (Nilsson, 1965):

(wi —w;)Tx
c— o 9xTx + €
If the training instances are linearly separable, this update rule guarantees that
the linear machine will converge to a boundary that classifies them correctly
(Nilsson, 1965).

For many tasks, linear combinations of the input values are not enough
to discriminate the groups of instances belonging to each class. When a non-
linear discriminant is needed, a possible solution is to use a ®-machine (Nilsson,
1965), which is much like a linear machine. A ®-machine uses discriminant
functions of the form ¢;(x) = wi Fj(x), where F; = (fi, ..., fur) is a vector of
linearly independent, real, single-valued functions f; : X — R, independent of
the weights. This means that f; are not varying with the weight adjustments.
Multilayered neural networks, for instance, do not satisfy this requirement.

®-machines preserve the theoretical advantages of linear machines, while
allowing for non-linear combinations of the inputs. Thus, they offer higher
representational power. The training procedures used for linear machines can
be applied to adjust the weights of ®-machines. All the convergence theorems
for linear machines apply to ®-machines as well.

Due to the great variety of clasification tasks, one cannot know a pri-
ori what mappings f; would be useful as components of discriminants. One
would like to construct such functions f; automatically, based on the training
instances.

3 Constructing a -machine for classification

An automatic method for constructing a ®-machine adequate for the task
at hand is needed. To this end, we employ the ELF function approximation
algorithm (Utgoff & Precup, 1997), which produces an approximation in the
form of a ®-machine. Furthermore, ELF constructs new features as needed,

Classification Using ®-Machines 3

by identifying subsets of instances that share intrinsic properties. Our clas-
sification algorithm uses ELF to produce a sequence of ®-machines, each of
which is progressively better suited to the task we are trying to solve.

ELF assumes that the instances are represented using Boolean input vari-
ables. Its goal is to find set covers over the instance space, grouping the
instances in subsets that can be associated a common value. To this end, ELF
constructs features, defined by a pattern vector with as many components as
the dimensionality of an instance vector x. Each component of a pattern has
either the value ‘#’ or the value ‘0’. A ‘#’ matches any (either) of the possible
values of the corresponding input vector, while a ‘0’ in the pattern matches
only a ‘0’ value. A table depicting whether a component matches is shown
in Table 1. The pattern of all ‘#’s covers every instance because the pattern
matches any instance at every component. The pattern of all ‘0’s covers the
one instance in which all the components have value ‘0’. One pattern is strictly
more general than another if and only if it covers all the instances covered by
the other.

Table 1. Matching of Pattern and Instance

Pattern Instance | Match
1 true
0 true
0 1 false
0 0 true

Let X be the space of all input instances. A feature can be expressed as
a membership function for a subset of instances X; C X. Each feature can,
thus, be expressed as a function

.]_ lf X € Xj
Jix) = { 0 otherwise

Note that every feature except the one covering the whole instance space is
nonlinear in the input variables because it has value 0 for the states it does not
cover, and the value of 1 for the states that it does cover. When multiplied by
its corresponding weight, one term w;f; has value w; for the instances that it
covers, and 0 elsewhere, thus associating a particular value with a particular
set, of instances.

Classification Using ®-Machines 4

Initially, each discriminant function consists of the one most general fea-
ture, which covers the whole instance space, with a weight of 0. To evaluate
an instance using a discriminant function, one computes the linear combina-
tion of the feature values and feature weights. Thus, the initial approximation
returns 0 for every instance. To update the approximation, the training proce-
dure revisits the training instances and adjusts the weights of the discriminant
functions using the fractional error correction rule (Nilsson, 1965). Only fea-
tures that matched the instance have their weights adjusted, because features
that did not match have value 0.

Of course, the approximation with the one most general feature is rarely
adequate. One can repeatedly adjust its single weight, attempting in effect
to fit a constant function to the points. The algorithm keeps track of which
feature is having the greatest difficulty in fitting, because it is getting different
errors. Furthermore, ELF associates this difficulty with each of the input
components. When an adjustment of the weights has ceased to be productive,
the algorithm adds a new feature that is a specialized copy of the feature that
has been having the greatest difficulty in fitting. The copy is specialized by
changing a ‘#’ in its pattern to a ‘0’, thereby customizing the set of states
covered by the feature.

The features that are created by this procedure are linearly independent.
The proof of this statement can be done by induction on the number n of bits
that are present in an input instance. Consider the base case, in which n = 1.
The instance space contains two instances: ‘0’ and ‘1’. There are two features
that can be defined over this instance space: the most specialized feature,
which is associated with the pattern ‘0’ and only covers the first instance, and
the most general feature, which corresponds to the pattern ‘#’ and covers both
instances. The values of the features for each instance can be tabulated in the
following determinant:

0 #
01 1
101

which can be reduced to a unit determinant, by subtracting the last line from
the first one.

Now comes the induction step. Consider the space of the instances that
can be generated by n input bits. These instances can be viewed as being
generated from the (n — 1)-bit instances, by adding a ‘0’ or a ‘1’ upfront.
Similarly, the features that can be defined over these instances are generated

Classification Using ®-Machines 5

from (n —1)-bit features by adding a ‘0’ or a ‘#’ up front. Let d,_; define the
determinant of the (n — 1)-bit space input features. The determinant d,, on
the n-bit space can be written as:

OFn—l #Fn—l
Oanl dnfl dnfl
an—l 0 dn—l

The induction hypothesis is that d,, _; can be reduced to a unit determinant.
This can be done by adding and subtracting lines from each other, as we did in
the base case. If there is a sequence of transformations that achieves this goal,
we can apply it in the upper and lower part of d,,. The resulting determinant
will have the form:

10 010 0
01 001 0
0 0 1100 1
0 0 0] 1 0
0 0 001 0
00 ...01J10O0...1

By subtracting the bottom half of the determinant from the upper half, d,, can
also be reduced to a unit determinant. Thus, the set of all possible features is
linearly independent. This means that any subset of features will be linearly
independent as well. m

The previous proof ensures that at any point between two feature additions,
the classifier that is built is a ®-machine. One can view the process of training
CLEF’s classifier as constructing a sequence of ®-machines. A machine will
converge to a set of weights that separates the training instances, if a separation
is possible given the current set of features. If no linear separation can be found
given the current feature set, by gradually reducing the size of the corrections,
the weights will still settle in a particular range (Frean, 1990).

In this case, a new feature will be added, and training will resume with
a new machine. In the worst case, the process will continue until all the 2"
features that are possible have been generated. If the instances are separable

Classification Using ®-Machines 6

when mapped through a subset of the features, they will also be separable
when the whole subset is used. Thus, if a linear separation of the training
instances is possible, the algorithm is guaranteed to find one. In practice,
CLEF also proved to be quite efficient with respect to the number of features
it generates for a particular instance space.

4 Input representation

The non-linear machine described so far requires boolean input values.
Such an encoding can be generated automatically for classification tasks. Sym-
bolic variables are mapped into a 1-of-m encoding, where m is the number of
possible values for each variable. Bit j corresponding to a variable v with
possible values vy, ...v,, will have the value 1 in an instance representation if
and only if the test v(x) = v, is true.

For numeric variables, some form of discretization is needed. The current
solution adopted is to determine cutpoints in the same manner as C4.5 (Quin-
lan, 1993). Each cutpoint is associated with a bit in the input representation.
The corresponding bit has the value 1 if the test v(x) < cutpoint is true, and
false otherwise. This solution yields a dimensionality problem. The number
of cutpoints can be quite big for each continuous variable. This increases the
number of bits used in the input encoding. The number of training points that
are needed to get a reliable separation also increases accordingly. Most of the
classification tasks that are available do not provide enough data to train in
this case.

Feed forward neural networks can be used to construct features based on
continuous input values. However, using this kind of representation would
give away any guarantee of convergence. The issue of finding a more efficient
representation of continuous variables for CLEF will be addressed in the near
future.

If the value of a variable is missing in the input representation, then all
the bits corresponding to that variable will be set to 0. This prevents the
missing value from having any role in the classification process, since it will
not interfere with the matching process.

5 Illustration

The Boolean encoding of the features allows an interpretation of the units
that form a non-linear classification machine. Feature interpretation can be
generated automatically, by printing the negation of each test for which there

Classification Using ®-Machines 7

is a ‘0" in the feature’s pattern.

Table 2 illustrates the features that have been constructed for one of the
units (discriminant functions) in the hepatitis task. This is a two-class prob-
lem, thus the corresponding linear machine will have two discriminant func-
tions, one for each class. However, due to the training procedure, these dis-
criminant functions are always trained with equal amounts of error having
opposite signs. Thus, in this two class case, the functions end up having the
same features, with opposite sign weights.

Table 2. Unit corresponding to the “die” class in the hepatitis task
Hepatitis

Weight | Feature
-0.019 | age £ 37.50
0.013 | ascites # no
-0.012 | age £ 37.50, liver-firm # yes, spiders # no, varices # no
0.008
0.008 | age £ 37.50, protime £ 44.50
0.008 | age £ 37.50, varices # no
0.007 | age £ 37.50, spiders # no, varices # no
-0.006 | sgot £ 80.50, protime £ 87.50
-0.005 | steroid # yes
-0.004 | bilirubin £ 1.35
-0.004 | protime £ 87.50
-0.004 | sex # female
0.003 | sex # female, anorexia # yes
-0.002 | sex # female, liver-firm # no
0.001 | spiders # no, histology # yes
-0.000 | spiders # no

One can interpret this table as a “health test”, which tells how to compute
a score for an instance. For each line in the table, one would check if the
instance satisfies the test in the right column. If so, the corresponding weight
would be added to the total score. If the total score is positive, the instance
would be considered as belonging to the “die” class.

6 Analysis

One would predict that CLEF should perform at least as well as a top-down
decision tree inducer. The encoding of the instances is in terms of the same

Classification Using ®-Machines 8

Boolean tests that a decision tree algorithm might use. Decision trees can be
represented in the form of ®-machines. Instead of building subtrees recursively
on subsets of the training data, CLEF constructs non-linear features over all
the data, from which discriminants linear in the features are formed. The
salient difference is that tree inducers partition the data into smaller subprob-
lems, while CLEF does not. It should be advantageous to CLEF that it solves
one classification problem using all the data, instead of many subproblems,
each using only some of the data.

CLEF does a considerable amount of computation. Will it find a separating
®-machine in a reasonable amount of time? Will it construct a large number
of features, perhaps producing an incomprehensible classifier? In order to
answer some of these questions empirically, CLEF and C4.5 were run on twenty
classification tasks, mostly from the UCI data repository (Murphy & Aha,
1994). This allows for a comparison in terms of classification accuracy. In
addition, several measurements of interrest were taken on CLEF during these
runs. All values are computed from a ten-fold stratified cross-validation, with
CLEF and C4.5 using identical folds for each task.

CLEF was trained by repeatedly sampling at random N times from the
training set, where N = 100|X|. Training stops either when the instances
in the training set are perfectly separated, or after a maximum number of
iterations. For C4.5, the default settings were used (Quinlan, 1993), and
pruning was turned on.

Table 3 shows the accuracy results of the two algorithms, in terms of the
mean and standard deviation for each task. The results are mixed, which is
supported by lack of significant difference in the algorithm means, as measured
by a one-way analysis of variance. This is a surprise, given the prediction, but
further scrutiny suggests a cause that has a remedy. CLEF has decisive wins
on tictactoe, mplex-6, balance-scale and promoter. What distinguishes these
tasks from the others?

In these tasks, the encoding of the original input variables shows a common
property. The number of possible values for each of the variables is identical.
For example, for tictactoe there are three possible values for each variable.
Now recall how the ELF approximator constructs a new feature. It chooses
a poorly fitting feature and specializes the bit with the greatest accumulated
error. In any instance in which the input variables are coded in the same
number of bits, the probability of any input bit having the value TRUE is
equal, assuming that all the input instances are equiprobable. However, in a

Classification Using ®-Machines

Table 3. Accuracy Results

Task | Accuracy C4.5 | Accuracy CLEF
audio-no-id 77.8 + 6.6 79.1 £ 9.1
balance-scale 77.5 £ 3.2 92.5 £ 4.0
breast-cancer 75.5 £ 3.9 63.8 £ 6.4
bupa 64.6 + 5.6 66.3 + 7.6
cleveland 46.8 £ 5.4 46.8 £ 6.2
hepatitis 77.5 £ 5.7 81.9 + 5.2
hungarian 78.3 £4.0 78.0 £ 5.8
led24 62.4 + 9.4 61.9 + 11.1

lenses 83.3 £ 22.4 76.7 £ 21.3
lymphography 78.0 £ 11.9 76.7 £+ 8.0
monks-2 65.9 +£ 0.0 92.3 + 4.8
mplex-6 57.1 + 19.2 91.4 + 14.6
primary-tumor 40.9 £ 6.4 36.2 £ 74
promoter 77.3 £ 14.2 87.3 £ 6.0
soybean 92.2 + 24 91.0 £ 3.2
switzerland 33.1 £ 7.7 34.6 + 14.3
tictactoe 68.1 + 2.3 78.4 £+ 2.8

va 26.7 £ 7.7 32.4 £ 6.7

votes 96.6 + 3.3 94.3 + 3.4

700 91.8 £ 6.4 95.5 £ 6.1

68.6 72.8

different task, for variables coded with different numbers of bits, this is not
so. The probability of a bit corresponding to a low arity variable being on is
higher than the probability of a bit being on for a high arity variable. Hence,
ELF’s method for accumulating bitwise errors has a bias towards bits coming
from low arity variables. A simple adjustment will remove this bias: the error
attributed to each bit has to be normalized with respect to the probability of
that bit being on in an instance. This will be done in the near future.

CPU and memory costs are indicated in Table 4. The CLEF algorithm
is much more costly computationally than C4.5, whose times are typically on
the order of a few seconds. One can see that CLEF’s cpu times are typically
on the order of minutes, and sometimes hours. This does not present a partic-
ular concern. Spending extra time to achieve better accuracy is generally an
obvious trade-off. CLEF does not require so much time as to be impractical.

Classification Using ®-Machines

Table 4. CLEF Parameters

Task CPU Size | Match train | Match test
audio-no-id 218.2 £ 42.2 88.0 = 2.8 773 +08 | 77.3 £ 1.1
balance-scale 59.9 £+ 37.8 39.0 £ 2.3 66.6 £1.9 | 67.0 £ 2.5
breast-cancer 206.8 + 16.6 46.5 £+ 3.2 40.8 & 2.2 | 41.0 £ 2.5
bupa | 1051.2 + 126.7 44.3 + 1.7 45.1 £ 1.7 | 44.9 £ 4.1
cleveland | 1183.9 + 263.2 92.2 + 4.1 59.4 + 2.6 | 59.6 + 3.4
hepatitis 58.8 + 18.2 174 £ 1.0 50.4 4.9 | 51.7 £ 5.5
hungarian | 258.9 + 122.6 53.0 = 3.3 65.5 =24 | 66.7 + 3.4
led24 36.9 & 9.4 76.8 = 4.9 54.2 £ 1.3 | 53.6 + 2.1

lenses 0.1 £0.0 11.4 £ 1.7 61.8 =44 | 61.8 + 8.4
lymphography 22.9 + 14.0 27.6 &+ 2.2 53.6 = 2.2 | 53.9 + 4.1
monks-2 | 926.2 £+ 515.1 59.3 + 8.3 276 £ 2.2 | 27.8 £ 2.1
mplex-6 1.0 £ 0.8 11.5 £ 1.8 37.6 22| 374 +5.2
primary-tumor 188.0 = 3.0 | 246.1 = 5.1 31.8 0.9 | 31.9 + 1.3
promoter 26.9 £+ 6.2 7.8 +0.4 64.8 = 1.6 | 66.0 &+ 5.1
soybean | 1598.7 £+ 147.8 88.6 + 3.7 66.0 = 2.2 | 66.1 + 2.1
switzerland 128.3 + 26.1 57.7 &+ 3.2 67.9 = 2.8 | 68.5 £ 2.7
tictactoe | 5792.5 £ 236.0 | 241.6 + 14.0 29.6 = 1.1 | 29.6 = 1.0

va 360.1 + 51.6 80.2 + 3.1 65.9 = 2.5 | 66.1 + 2.8

votes 22.3 £ 1.3 143 £ 1.4 46.3 = 3.4 | 46.4 £ 3.9

%00 1.5 £ 0.3 17.3 £ 0.9 73.9 £ 1.1 | 73.6 = 2.0

10

Memory costs are not large. The table presents the memory requirements

of the resulting classifier in terms of the total number of features present in
the machine. CLEF typically constructs a small set of features, each of which
consists of a simple bit pattern and a single weight. Finding a nonlinear
separation of the instances does not require a large number of features.

In order to measure the degree of overlap of the features that form a clas-
sifier, the average percentage of features matching an instance was evaluated.
The “match train” and “match test” columns show this measure respectively
for the training and the test set. These values show that there is a lot of over-
lap in the features that are constructed. The matching factors have similar
values on the training and the test set, which is a desirable property.

CLEF currently does nothing to avoid overfitting. This is needed because
overfitting does occur. For some problems, when plotting test set accuracy
during training, one can observe a rise and then a drop in accuracy. This

Classification Using ®-Machines 11

will be improved soon, by checking for highly specialized features, and feature
groups that have small intersections.

7 Summary

CLEF is a classification algorithm that constructs a ®-machine to fit the
multiclass data. By using the ELF function approximator, non-linear features
are constructed as needed. The sequence of feature sets produced by ELF has
the effect that CLEF produces a sequence of ®-machine classifiers. This se-
quence will finally produce a ®-machine that separates the instances, whether
or not they are linearly separable in the input variables. By using CLEF, one
obtains a separating ®-machine that is based on all the training instances.

Acknowledgments
Carla Brodley provided helpful comments.

References

Cohen, P. R., & Jensen, D. (1997). Overfitting explained. Proceedings of the
Sixth International Workshop on Artificial Intelligence and Statistics.

Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis.
New York: Wiley & Sons.

Frean, M. (1990). Small nets and short paths: Optimising neural computation.
Doctoral dissertation, Center for Cognitive Science, University of Edin-
burgh.

Mooney, R., Shavlik, J., Towell, G., & Gove, A. (1989). An experimental
comparison of symbolic and connectionist learning algorithms. Proceedings
of the Eleventh International Joint Conference on Artificial Intelligence
(pp. 775-780). Detroit, Michigan: Morgan Kaufmann.

Murphy, P. M., & Aha, D. W. (1994). UCI repository of machine learning
databases, Irvine, CA: University of California, Department of Information
and Computer Science.

Nilsson, N. J. (1965). Learning machines. New York: McGraw-Hill.

Quinlan, J. R. (1985). Decision trees and multi-valued attributes. In Michie
(Ed.), Machine Intelligence.

Classification Using ®-Machines 12

Quinlan, J. R. (1993). C4.5: Programs for machine learning. Morgan Kauf-
mann.

Rumelhart, D. E., Hinton, G. E., & Williams, R.J. (1986). Learning internal
representations by error propagation. In Rumelhart & McClelland (Eds.),

Parallel distributed processing: Exrplorations in the microstructure of cog-
nition. Cambridge, MA: MIT Press.

Utgoff, P. E., & Precup, D. (1997). Constructive function approximation,
(Technical Report 97-04), Amherst, MA: University of Massachusetts, De-
partment of Computer Science.

