Finding Text In Images !

Victor Wu, R. Manmatha, Edward M. Riseman
Center for Intelligent Information Retrieval
Computer Science Department
University of Massachusetts
Ambherst, MA 01003-4610
{vwu, manmatha}@cs.umass.edu
January, 1997

Abstract

There are many applications in which the automatic detection and recognition of text embedded in
1mages is useful. These applications include multimedia systems, digital libraries, and Geographical
Information Systems. When machine generated text is printed against clean backgrounds, it can be
converted to a computer readable form (ASCII) using current Optical Character Recognition (OCR)
technology. However, text is often printed against shaded or textured backgrounds or is embedded
in 1mages. FExamples include maps, advertisements, photographs, videos, and stock certificates.
Current OCR and other document recognition technology cannot handle these situations well.

In this paper, a system that automatically detects and extracts text in images is proposed. This
system consists of four phases. First, by treating text as a distinctive texture, a texture segmentation
scheme 1is used to focus attention on regions where it may occur. Second, strokes are extracted from
the segmented text regions. Using reasonable heuristics on text strings, such as height similarity,
spacing and alignment, the extracted strokes are then processed to form tight rectangular bounding
bozes around the corresponding text strings. To detect text over a wide range of font sizes, the above
steps are first applied to a pyramid of images generated from the input image, and then the bozes
formed at each resolution of the pyramid are fused at the original resolution. Third, an algorithm
which cleans up the background and binarizes the detected text is applied to extract the text from
the regions enclosed by the bounding bozes in the input image . Finally, text bounding boxes are
refined (re-generated) by using the extracted items as strokes. These new bozes usually bound text
strings better. The clean-up and binarization process is then carried out on the regions in the input
image bounded by the bozes to extract cleaner text. The extracted text can then be passed through
a commercial OCR engine for recognition if the text is of an OCR-recognizable font. Erperimental
results show that the algorithms work well on images from a wide variety of sources, including
newspapers, magazines, printed advertisements, photographs, digitized video frames, and checks.
The system is also stable and robust—the same system parameters work for all the experiments.

Keywords — text reading system, character recognition, multimedia indexing, digital libraries,
text detection, text extraction, texture segmentation, filters, focus of attention, hierarchical pro-
cessing, binarization, histogram-based thresholding, background removal, morphological processing,
connected-components analysis.

!This material is based on work supported in part by the National Science Foundation, Library of Congress
and Department of Commerce under cooperative agreement number EEC-9209623, in part by the United
States Patent and Trademark Office and Defense Advanced Research Projects Agency/ITO under ARPA
order number D468, issued by ESC/AXS contract number F19628-95-C-0235, and in part by NSF Multimedia
CDA-9502639. Any opinions, findings, and conclusions or recommendations expressed in this material are
the author(s) and do not necessarily reflect those of the sponsors.

1 Introduction

Most of the information available today is either on paper or in the form of still photographs and
videos. To build digital libraries, this large volume of information needs to be digitized into images
and the text converted to ASCII for storage, retrieval, and easy manipulation. Current OCR
technology [2, 15] is largely restricted to finding text printed against clean, uniform backgrounds,
and cannot handle text printed against shaded or textured backgrounds, and/or embedded in
images. There is thus a need for systems which extract and recognize text from general backgrounds.

More sophisticated text reading systems ([23]) usually employ document analysis (page seg-
mentation) schemes to identify text regions before applying OCR so that the OCR engine does not
spend time trying to interpret non-text items. However, most such schemes require clean binary
input [4, 12, 13, 24, 25, 26]; some assume specific document layouts such as newspapers [11] and
technical journals [16]; others utilize domain-specific knowledge such as mail address blocks [7, 19]
or configurations of chess games [1].

In this paper, a new end-to-end system is proposed which automatically extracts and recognizes
text in images. The system takes both greyscale and binary images as input?. It detects text strings
in the image and puts rectangular bounding boxes around them. These bounded regions in the
input images are then cleaned up and binarized so that the text stands out. The extracted text

can then be recognized by a commercial OCR system, if the text is of OCR-readable fonts.

1.1 Motivation

There are many situations where it would be useful to detect and read text embedded in images.

A few examples are listed below:

1. Text found in images or videos can be used to annotate and index those materials. For
example, video sequences of events such as a basketball game can be annotated and indexed
by extracting a player’s number, name and the name of the team that appears on the player’s
uniform (Figure 1(b, c)). In contrast, image indexing based on image content, such as the

shape of an object, is difficult and computationally expensive to do.

2. Systems which automatically register stock certificates and other financial documents by
reading specific text information in the documents are in demand. This is because manual
registration of the large volume of documents generated by daily trading requires tremendous

manpower.

2 A binary image can be processed by first scaling it so that its intensity ranges from 0 to 255.

I
' Texture

‘ || Chip 1
o >, . T . A
o , Segmentation ! i Generation "
Lo o ___
\\
L, Texture Chip |
—_— =
Ly Segmentation Generation \
Chip Scale [—=| Text |
I Fusion = Clean-up
! Texture Chip
3 on [o
Segmentation Generation
Input Image I
Texture Chip
—_— =
Segmentation Generation
L Chip Text Character
Refinement Clean-up Recognition
(a)

Figure 1: The system, an input, and extracted text. (a) The top level components of the text detection and

extraction system. The pyramid of the input image is shown as I, I1, Iz (b) An example input image.
(c) Output of the system result before the Character Recognition module.

3. Maps need to be stored electronically in building a Geographical Information System (GIS).
One approach is to scan the maps first and then extract the lines, text, and symbols. The
lines are then stored in a vector representation ([6]) and the text and symbols in symbolic

forms. The electronic representation of a map makes updating, scaling, and retrieval much
easier.

1.2 Prior Work

OCR technology has been used to convert text in scanned paper documents into ASCII symbols.
A typical OCR system does this by first binarizing the document using a global threshold to
separate text from the background. The binarized text is then segmented into individual characters,
and lastly these segmented characters are recognized and converted. A comprehensive historical
overview of OCR research and development is given by Mori, Suen and Yamamoto [15] . The
techniques used in a commercial OCR system are discussed in detail in Bokser’s paper [2].

However, text is often printed against shaded or hatched backgrounds in documents such as
photographs, maps, financial documents, engineering drawings, and commercial advertisements.
Furthermore, documents are often scanned in greyscale or color to preserve details of the graphics
and pictures which often exist along with the text. In these cases the document images need to be
segmented to identify the text regions (segmentation), and then cleaned up until the text stands
out. As noted by many researchers ([18], [21]), global thresholding is usually not possible for these
complicated images. Thus, more sophisticated page segmentation and binarization schemes are
needed before OCR technology can be reliably applied .

Many document segmentation methods have been proposed in the literature. Some are top-down
approaches, some are bottom-up schemes, and others are based on texture segmentation schemes in
computer vision. In top-down approaches, a page is segmented by splitting large components into
smaller components. For example, a page may be divided into column(s) of text blocks, then each
block may be split into paragraphs, each paragraph may be split into text lines, and so on. Classic
top-down techniques are based on the run length smoothing (RLS) algorithm ([24],[26]), which
examines white (background/OFF) space between two black (foreground/ON) pixels in the same
line (either horizontal or vertical) and sets it to black if the length is less than a preset threshold.
Depending on the threshold, this operation can merge a character, a word, a text line and even
multiple text lines into an unrecognizable blob. Then, horizontal and vertical projection profiles [25]
are commonly used to cut the page into smaller blocks. A projection profile is a histogram of the
number of ON pixels accumulated along parallel sample lines in an image. These sample lines can be
of any orientation. For a document which consists of paragraphs of horizontal text lines printed in
multiple columns, the horizontal projection profile will have alternating plateaus and valleys. The
width of a plateau equals the height of the corresponding text line while the width of a valley equals
the corresponding interline spacing. The vertical projection profile, however, will have wide valleys
corresponding to the spacing between columns. Pavlidis and Zhou [20] use run-length-smoothing
and projection profiles to examine both foreground and background for segmentation. Recursive

projection profile cuts are used by Nagy et al [16], Wang and Srihari [25] to segment a page into

blocks corresponding to headlines and paragraphs.

Bottom-up methods work by grouping small components (starting with pixels as connected
components) into successively larger components until all blocks are found on the page. For ex-
ample, O’Gorman’s docstrum method [17] uses bottom-up k-nearest-neighbors clustering to group
characters into text lines, and text lines into structural blocks. It starts out by finding k nearest
neighbors for each connected component, where £ = 4, or 5 are normally used. Then, two his-
tograms, one for the angles and the other for the distances of all the connections, are compiled.
Since most of the connections will be made between characters on the same text line, the peak
angle will indicate the skew of the page and the peak distance will indicate inter-character spacing.
Using these estimates, characters of the same orientation are grouped into words, and words into
text lines. Fletcher and Kasturi [4] use a Hough transform, and the heuristic that characters in a
text string of any orientation are collinear, to group characters into words and phrases.

The third category of document segmentation methods treat text as a type of texture and
hence use texture segmentation algorithms to detect text. Jain and Bhattacharjee [8], for example,
segment text using the standard multi-channel filtering technique for texture segmentation. In
this case, the input image is filtered by a bank of Gabor filters. Then features of local energy
estimates at each pixel are computed over each filtered image. These features are organized into
feature vectors and then classified using an unsupervised clustering algorithm into a fixed number
of clusters. One of the clusters corresponds to text.

Many of these algorithms have limitations on their use. The top-down and bottom-up ap-
proaches require the input image to be binary. The projection profile based schemes work if the
page has a Manhattan layout: that is, there is only one skew angle and the page can be segmented
by horizontal and vertical cuts. Although Jain and Bhattacharjee’s texture segmentation scheme
can in principle be applied to greyscale images, it was only used on binary document images,
and it is not shown whether text printed against shaded/textured backgrounds can be segmented.
Furthermore, they did not address the binarization problem at all.

Many methods have been proposed to binarize greyscale images so that the pixels belonging
to the objects of interest (e.g., text and/or graphics) are set to one intensity while the rest are
set to another different intensity. Sometimes, global thresholds are used. Many methods has
been proposed to find these global thresholds [5, 22]. O’Gorman [18] proposed a method which
handles greyscale images with few variations in intensity. However, it is often the case that global
thresholds do not exist, due to the nonuniformities within foreground and background regions.
Different thresholds have to be used for different local regions (adaptive thresholding). Techniques
for adaptive thresholding can be found in Kamel and Zhao’s paper [11]. Trier and Taxt [21] report

an evaluation of eleven local adaptive thresholding schemes.

The point we want to make here is that although a considerable amount of work has been
done in different aspects of document analysis and understanding, few working systems have been
reported that can read text from document pages with both structured and non-structured layouts,
or text printed over shaded/textured backgrounds. These kinds of documents are often found in
commercial advertisements, stock certificates, photographs and maps. The system presented in
this paper is our contribution to filling the gap in this area of research and development, and to

constructing a completely automatic text reading system.

1.3 Owur Approach

The goal here is to build an end-to-end automatic text extraction system which accepts a wide
range of images as input, detects text in the input images, and then binarizes and cleans up the
detected text so that it can be fed into a commercial OCR for character recognition.

The system takes advantage of the distinctive characteristics of text which make it stand out
from other image material. For example, by looking at the comic page of a newspaper a few
feet away, one can probably tell quickly where the text is without actually recognizing individual

characters. Intuitively, text has the following distinguishing characteristics:
1.) Text possesses a certain frequency and orientation information.

2.) Text shows spatial cohesion — characters of the same text string are of similar heights,

orientation and spacing.

The first characteristic suggests that text may be treated as a distinctive texture, and thus be
segmented out using texture segmentation techniques. The first phase of the system, therefore,
uses a Texture Segmentation procedure to segment the text (Section 2). This algorithm is
based on the standard multi-channel filtering techniques in texture segmentation [8, 14]. It should
be pointed out that the standard texture segmentation schemes are not sufficient for text detection
and extraction if images more complicated than clean newspaper scans have to be dealt with.
Nevertheless, the segmentation result can be used as a focus of attention for further processing
called Chip Generation (Section 3) of the system.

The basic idea for chip generation is to use the segmented regions as the focus of attention, and
then apply a set of appropriate heuristics to find text strings within the segmented regions. The
heuristics are designed to reflect the second characteristic of text as listed above. The algorithm
uses a bottom-up approach: significant edges form strokes; strokes are connected to form chips
(regions) corresponding to text strings. The rectangular bounding boxes of the chips are used to

indicate where the hypothesized (detected) text strings are.

The above text detection procedures work well for text over a certain range of font sizes. To
detect text whose font sizes vary significantly, the notion of scale is used: a pyramid of images is
created in which the original image is at the bottom level. An image at a higher level is obtained
by reducing the image at the level below it by half in each dimension. Each image in the pyramid
is then fed into the text detection subsystem separately. The output chip boxes are mapped back
onto the original image and redundant boxes are eliminated (Chip Scale Fusion in Section 4). As
an example, to find text of fonts up to 160 pixels in height, a hierarchy of three levels is required
(Figure 1(a)).

It will be shown that for each chip, a single threshold suffices to binarize the corresponding region
in the input image so that the text stands out. A simple, effective histogram-based algorithm is
also proposed which finds the threshold value automatically for each text region. It also cleans up
the text. This algorithm is used for the Text Clean-up module in the system (Section 5).

Non-text items might survive the previous processing and occur in the binarized output. Thus,
a Chip Refinement (Section 6) phase is used in the system to filter them out. This is done by
treating the extracted items (text and non-text) as strokes to re-generate chips using the same
algorithms (with stronger constraints) in the Chip Generation phase. The chips produced this time
usually enclose the text strings better. The Text Clean-up process is then applied to the new chips
to obtain better binarization results since less irrelevant area (noise) is involved.

Figure 1(a) depicts the system described above. Experimental results have shown that the sys-
tem works well with both machine generated fonts and some script fonts. In principle, the font sizes
do not matter. The system is also stable and robust—all the system parameters remain the same
for all of the test images from a wide variety of sources including newspapers, magazines, printed
advertisement, photographs, and checks. Notice that some of these documents have structured
layout, some do not, and the system works well in either case. Overall, the algorithms have been

tested on images which have the following characteristics:
1. binary and greyscale images.
2. structured and non-structured page layout.
3. wide range of character sizes (font heights vary from 10 to 160 pixels, or even higher).
4. large range of font styles including certain script and handwritten fonts.

5. text overlapping background textures, e.g., hatched or shaded background, drawings, and

other non-text content.

A detailed description of the experiments is presented in section 8.

It is also worth noting that the segmentation algorithm can segment text at any orientation,

although currently the rest of the algorithms handle only horizontal text strings.

2 The Texture Segmentation Module

As stated in section 1.3, in principle text can be treated as a specific texture. Thus, one nat-
ural way to detect text is by using texture segmentation techniques. A standard approach to
texture segmentation is to first filter the image using a bank of linear filters followed by some
non-linear transformation such as half-wave rectification, full-wave rectification, or a hyperbolic
function tanh(ot). Then features are computed to form a feature vector for each pixel from the
filtered images. These feature vectors are then classified to segment the textures into different
classes ([9],[14]).

Gaussian derivatives have often been used for texture segmentation ([14]). A symmetric 2D
Gaussian function is given by

2ﬂ_o_zemp{— 202 } (1)

G(z,y,0)=
The second-order derivatives of G(z,y, o) are:

~ 0’G(z,y,0)

2 2
G.. — , _ 0°G(=,y,0) G 0°G(z,y,0)
Ozl

Gay = 0zdy '’ v Oydy (2)

These Gaussian derivatives are bandpass filters. Furthermore, G, provides information about
the horizontal orientation, G, about the two diagonal directions, and G,, about the vertical
orientation. In other words, G, Gy, and G, can be used to approximate Gabor filters with low
center frequency at orientations § = 0, 7/4,m/2,3w/4. It has been reported that text does fall into
the low frequency channels ([8]). Another attractive property of these Gaussian derivatives is that
they are separable filters which reduces the cost of computation significantly.

It should be pointed out that the frequency- and orientation-selective Gabor filters have often

been used for texture segmentation. Details can be found in [3] and [9].

2.1 Segmenting Text

By treating text as a distinctive texture, we propose a text segmentation algorithm which uses
second-order Gaussian derivatives Gg,, G5y and Gy, as filters. This is similar to the approach
proposed by Jain and Bhattacharjee ([8]) except that Gabor filters were used in their algorithm.

Another distinction of this algorithm is that a simple calculation can be used to identify the “text”

class, so that no training is needed. Lastly, a morphological closure operation is applied to the text
class to fill the holes in the text regions.

Again, it should be pointed out that texture segmentation alone is not sufficient to solve the text
detection and extraction problem, especially if the input images have complicated texture patterns.
However, the segmentation may be used as a means of focusing attention for further processing.
The details are discussed in section 3.

The following is an abstract description of the algorithm used in the texture segmentation

module of the system, followed by a detailed discussion of each step.

1. Filter the input image by bands of second-order Gaussian derivative filters of varying o to

obtain n filtered images. Each band consists of three filters G,,, G5y and G,.
2. Apply the non-linear transformation, tanh(at), to the filtered images.

3. For each image generated by step 2, compute the corresponding feature tmage which consists

of a local energy estimate over a w by w window centered at each pixel.

4. Cluster the feature vectors corresponding to each pixel using the K-means clustering algorithm

[10] where K is the number of clusters expected in the data.

5. Compute a segmented image. A pixel is set to ON if and only if its feature vector belongs to

the cluster identified as “text”.

6. Apply the morphological closing operation (discussed later) to the “text” region.

Experiments have shown that using o € {1,1/2,2} (i.e., 3 bands, 9 filters) works well for
segmenting text whose font heights are less than 40 pixels. Note that the o’s are spread half an
octave apart. The justification for using frequency bands which are half octaves apart comes from
studies of biological visual systems . The o’s were also chosen so that the corresponding bands
mostly overlap the bandwidth used by Jain and Bhattacharjee [8] for text segmentation.

The filtering operation is performed by first convolving the image with the Gaussian mask, and

then convolving the result with one of the masks below respectively:

-1
[_1727_1]7 - ’ 2
-1 1 1

Figure 2(a) shows a portion of an original input image. This will be a running example for the
rest of the paper. Only a part of the original input image is shown so that the details are more

noticeable. This is a Stouffer’s advertisement scanned at 300dpi. There is text on a clean dark

Look at all the ways you can Lookeatallitheswaysyotuean
enjoy Stouffer’s’ close-to-home aiijoyStotlforsEclosetolione
taste...for around $2° (usteoraronnd S 28

(Olonfls) 1
\RR\

AR]
L RO e

(a) (b) (c)
Figure 2: Texture feature computation. (a) Portion of an input image. (b) Filtered output of (a)

using Gz, 0 = 1. (c¢) Normalized average energy of each pixel in (b)

Look at all the ways you can
enjoy Stouffer’s' ¢
taste...for around $2;

S {‘ Turkey Tetrazzini

S Chil With &

Figure 3: Results of Texture Segmentation. (a) Portion of an input image. (b) Clustered output

of (a). Dark is labeled as “text”. (c) Text cluster after the morphological closure operation.

background, text printed on Stouffer boxes, Stouffer’s trademarks (in script), and a picture of the
food. Figure 2(b) is a filtered output of the input image using G, where ¢ = 1. The dark/light
intensities indicate strong responses while grey indicates weak response.

The energy averaged over a w X w window W, centered at each pixel (z,y) is used as a feature

for that pixel (see Jain and Bhattacharjee [8]). More specifically, the k* feature image ex(z,¥),

corresponding to the k* filtered image, denoted as gi(z,y), is computed using

ex(z,y) = % Z (tanh(agr(a, b))’ k=1,2,..,n
(a,b)€Way
where n is the number of filters (n = 9 in this case). The size of the window W, is chosen to be the
same size as the corresponding Gaussian filter mask. « is set to 0.25 through out our experiments.

The values in the 9 feature (energy) images corresponding to a given pixel form a feature vector
for that pixel. To prevent a feature with higher numerical value from dominating other features,
each feature is normalized to have zero mean and unit standard deviation. The normalized feature
of Figure 2(b) is shown in Figure 2(c) (the darker the pixel, the higher its normalized feature value).
Notice that the text is prominent in this figure.

The next step is to use the K-means clustering algorithm to cluster the feature vectors. It should
be noted that selecting the number of clusters (value of K) is a non-trivial problem. Empirically, it
was found that three clusters (K = 3) worked well with all the test images. The clustering algorithm
is known to be computationally expensive, hence, in order to reduce the cost of computation for
large images, a small amount of pixels were picked randomly and their feature vectors were clustered.
Then, a minimum distance classification was carried out over the entire feature vector set using
the cluster centers of the sampled feature vectors. It was observed that 8000 sample pixels were
sufficient for the larger images in the test set —- no noticeable degradation of the clustering output
occurred.

Since text generally has a stronger response to the filters, while background areas with little
intensity variation have nearly no response (i.e. have close to zero energy), the following cluster

labeling scheme is used:

e the cluster whose center is closest to the origin of the feature vector space, (0,0,...,0), is

labeled as background.

e the cluster whose center is furthest away from the background cluster center is labeled as

text.

Figure 3(b) shows the pixel labels after the clustering of the feature vectors of the test image
shown in Figure 3(a). The dark areas correspond to pixels labeled as text, and white areas corre-
spond to pixels labeled as background. The other cluster is marked grey. Grey pixels have some
energy, but probably not enough to be text pixels.

As shown in Figure 3(b), the text regions may be broken or have holes. Thus, as the last step
of the segmentation phase of the system, the following morphological closure operation on the text

regions is proposed: dilate the binary image corresponding to the text cluster with a 3 X 3 mask four

10

times, then erode its output with the same mask four times. The output of this operation is called
segmented text regions. Figure 3(c) shows the result of this operation carried out on the text

regions shown in Figure 3(b).

3 The Chip Generation Phase

In practice, text may occur in images with complex backgrounds and texture patterns, such as
foliage, windows, grass etc. In other words, some non-text patterns must be expected to pass the
filters and be misclassified as text, as shown in Figure 3. Furthermore, segmentation accuracy at
texture boundaries is a well-known and difficult problem in texture segmentation. Consequently,
it is often the case that text regions are connected to other regions which do not correspond to
text, or one text string might be connected to another text string of a different size or intensity.
This might cause problems for later processing. For example, if two text strings with significantly
different intensity levels are joined as one region, one intensity threshold might not separate both
strings from the background.

Therefore, heuristics need to be employed to refine the segmentation results. Generally speak-
ing, the segmentation process usually finds text regions while excluding most of the non-text ones
(experimental finding). These regions can be used to direct further processing (focus of atten-
tion). Furthermore, since text is intended to be readable, there is usually a significant contrast
between it and the background; thus contrast can be utilized to find text. Also, it is usually the case
that characters in the same word/phrase/sentence are of the same font and have similar heights
and inter-character spaces (unless it is in some kind of decorative font style). Finally, it is obvious
that characters in a horizontal text string are horizontally aligned?.

The basic idea for the Chip Generation phase is to use the segmented regions as the focus of
attention, and then apply a set of appropriate constraints to find text strings within the segmented
regions. The algorithm uses a bottom-up approach: significant edges form strokes; strokes are
connected to form chips corresponding to text strings. The rectangular bounding boxes of the
chips are used to indicate where the hypothesized (detected) text strings are. Conceptually, Chip

Generation consists of the following main steps which are applied in the order given:
1. Stroke Generation: strokes are generated from significant edges.

2. Stroke Filtering: strokes which are unlikely to belong to any horizontal text string are

eliminated.

3In this paper, the focus will be on finding horizontal, linear text strings only. The issue of finding text strings of

any orientation will be addressed in future work.

11

3. Stroke Aggregation: strokes which are likely to belong to the same text string are connected

to form chips.

4. Chip Filtering: chips which are unlikely to correspond to horizontal text strings are elimi-

nated.

5. Chip Extension: filtered chip are treated as strokes and aggregated again to form chips

which covers text strings more completely.

A detailed discussion of these steps is presented in the following corresponding subsections.

3.1 Stroke Generation

The purpose of this step is to produce strokes, which are connected edges with significant contrast.
As stated before, text must have significant contrast in order to be readable. In other words,
the edges of characters can be expected to have significant contrast. Based on this assumption,
the following simple edge-detection procedure is used to produce edges, followed by connected-

components computation to group edges into strokes:
1. Convolve the original input image with a second-order Gaussian derivative G;.
2. Threshold the image generated by the last step.

3. Generate connected components with each connected component of ON pixels forming a

distinct stroke.

It is desirable to use a large o for the Gaussian filter to smooth out the undesired details and
noise in the image which usually have little to do with text. However, if ¢ is too large, the image
will be blurred too much so that edges of some of the text may be suppressed. Empirically, o =1
was found to be a reasonable choice.

The thresholding is carried as the following: for each pixel, set it to ON if the absolute value
of the pixel is greater than 7 where 7 is a positive threshold. Otherwise, set it to OFF. It is
clear that the threshold 7 should be small so that most edges of all the characters are to be found.
The consequence of this strategy is that edges of non-text items are found as well (see Figure
4(b)). However, most of those false positive strokes will be eliminated by the processes that follow.
Experiments have shown that 7 = 10 worked well for all text images. Figure 4(b) shows the strokes

of Figure 4(a).

12

Look at all the ways you can

! YS) Tl . W st Tl e M e v smm

enjoy S_tc:ufier's' close-to-home Wﬁmﬂﬁm’%’ ,@whmm. ontBien ks &w.,mm.
taste...for around $2 e oot cmesmpunil S5 e et nismaneil 572

Stuffed b ik i

PCPPer Haa T Il o P g m

with Beef in Tomato Sauce i e o :I‘.:. , 4
’ [\‘E)‘;ﬁ | M.
P el oo Fentslimg g
e | . ;

L I : '
il ol R v B
R R te
| : Vf W - ’
" i L
,:-i : A L

\ ‘ o
m Turkey Tetrazzini M@ ’Flr5|||1.x‘r1;u\'1f-\§;f R I e T M;@ " Pinpellygese s gt
Vo

Chili with .. T

P
oy ¢ Bl il Corge S0 wlln
bl

with Beef in Tomato Sauce

el [=)
(d) (e) (f)

Figure 4: Results of Chip Generation. (a) Portion of an input image. (b) Strokes produced by
performing the Stroke Generation procedure on (a). (c) Strokes after applying the Stroke Filtering
step on (b). (d) Chips produced by applying Stroke Aggregation on strokes in (c). (e) Chips after
the Chip Filtering and Extension processes. (f) Chips in (e) mapped to the input image.

3.2 Stroke Filtering

As one can clearly see in figure 4(b), there are strokes appearing at regular intervals in the regions
where text is present. However, non-text strokes will also be extracted where there are significant
horizontal intensity changes in a scene.

The purpose of Stroke Filtering is to eliminate the false positive strokes by using heuristics which

13

% stroke .
Height (A) =5

A
13
12 l Height (B) =4
11
0 ¥ Common Y projection : 6,7
8
Z Common height of A and B =2
5
; ‘ 1 path between A and B (y=6)
i u
stroke A

> X
B : astroke pixel

X : apixel whose location is in the segmented region

[] :abackground pixel

Figure 5: Example of the stroke definitions. White pixels form background while dark pixels are

part of the strokes. The pixels belong to the segmented region are marked using crosses.

take into account the fact that neighboring characters in the same text string usually have similar
heights and are horizontally aligned. It is reasonable to assume that the similarity of character
heights causes the heights of the corresponding stokes to be similar. Furthermore, since the focus is
on finding text strings, a text stroke should have similar strokes nearby which belong to the same

text string. These heuristics can be described using the following definitions:

Definition 1 Two strokes are of similar height if the height of the shorter stroke is no less than
h, percent of the height of the taller stroke , where h, is a threshold.

It is easy to see that the smaller b, is, the more height variation is allowed. Thus, this parameter
controls the degree of height variation of characters in a text string that is acceptable. However, if
h, is too small, long line segments near true text strokes, and/or strokes belonging to a significantly
different text string or font might be grouped as part of the text string. This is not desirable.

Since it is usually the case that the heights of adjacent characters in the same text string do
not vary more than twice the shorter height, h, = 40% has been found to be effective for all test
images. As an example, Figure 5 shows two strokes which are of similar height since the height of
stroke B (4) is more than 40% of the height of stroke A (5).

An intuitive way to describe the horizontal alignment of characters is to project them onto the
Y-axis and check how much the projections overlap. If the characters are aligned, their projections

mostly overlap. Thus, the following definition is used to measure the alignment:

Definition 2 Two strokes are horizontally aligned if the common portion of the projection of

the strokes on the y-axis is no less than o, percent of the height of the shorter stroke, where o, is

14

a threshold.

The threshold o, dictates how much the text string can be off the horizontal orientation, or bend,
or both. The smaller the value, the more the string can be non-horizontal or bend, but also prone
to including strokes which are not related to the same text string. Experimental results have shown
that o, = 50% works well for all the test images. Thus, the strokes in Figure 5 are horizontally
aligned since the common Y-projection of the strokes is 2 which is 50% of the height of stroke B
(4).

As stated before, the focus is on finding text strings, not just characters standing alone. Thus, a
text stroke should have similar strokes nearby which belong to the same text string. The question is
to decide whether any two given strokes are likely to be from the same text string using reasonable
heuristics. As explained in the definitions above, strokes belonging to the same text string can be
expected to be of similar height and horizontally aligned. Also, since text is expected to occur in
the segmented regions, the strokes belonging to the same text string can be expected to overlap
with the same segmented region. These concepts can be expressed using connectability which is

defined as:

Definition 3 Let A and B be strokes. A and B are connectable if they are of similar height and
horizontally aligned, and there is a path between A and B (a horizontal sequence of consecutive

pizels in the segmented region which connects A and B).

By definition 3, the two strokes in Figure 5 are also connectable since they are of similar height,
horizontally aligned, and there is a path (at y = 6) between them.
Given the above definitions, the criterion used for stroke filtering can be simply stated as the

following:
e a stroke is eliminated if one of the following conditions are true:

1. it does not sufficiently overlap with the segmented text regions.

2. it has no connectable stroke.

Condition 1 says that the strokes are expected to overlap the segmented regions. In the ideal
case, text strokes should be completely contained within the segmented text region. But the
segmentation is often not perfect (e.g., the segmented regions may have inner holes and text strokes
going through those holes will have pixels which do not belong to the segmented regions). Hence
one cannot expect total overlap, or too many correct text strokes would be eliminated. A minimum

of 30% overlap rate worked well for all the test images.

15

Condition 2 says that if there is no path that leads to some connectable stroke(s), it is probably
an isolated stroke or line which does not belong to any text.
Figure 4(c) shows the result of applying this procedure on the stroke in figure 4(b). Notice that

most of the text is still present while some of the background has been eliminated.

3.3 Stroke Aggregation

An important function of the Chip Generation phase is to generate chips that correspond to text
strings. This is done by aggregating strokes belonging to the same text string.

Since characters of the same text string are expected to be of similar height, horizontally aligned,
and they are expected to occur in the segmented regions, the concept of connectability can be used
to aggregate the strokes. In addition, it is clear that strokes corresponding to the same text string
should be close to each other. Since the width of a character and the spacing between adjacent
characters in a text string are related to the heights of the characters, it is reasonable to measure
the spacing between adjacent strokes as a function of the heights of the strokes. By empirical
observation, the spacing between the characters and words of a text string is usually less than 3
times the height of the tallest character, and so is the width of a character in most fonts. Therefore,

for all of the experiments, the following criterion is used to generate chips:

e two strokes, A and B, are connected if they are connectable and there is a path between A

and B whose length is less than 3 times the height of the shorter stroke.

Figure 4(d) shows the result of applying the Chip Generation procedure on the strokes in figure
4(c). Notice that most isolated strokes are connected into chips which partially or completely cover

text strings. The chips are shown with their bounding boxes to make it easier to see.

3.4 Chip Filtering

Some non-text strokes may also pass the Stroke Filtering process, and therefore form false positive
chips requiring further filtering. This might happen, for example, when there are periodically
occurring lines in the image.

Text strings are expected to have a certain height in order to be reliably recognized by an OCR
system. Thus, one choice is to filter the chips by their heights. Furthermore, since we are interested
in text strings, not just a single character, the width of a chip is also used to filter out non-text
chips. Lastly, for horizontally aligned text strings, their aspect ratios (width/height) are usually

large. These constraints are incorporated in the following algorithm for filtering:

e compute the minimum bounding box for each chip

16

e compute the width, height and aspect ratio of each box
e a chip is eliminated if one of the following is true

— the width of its box is less than cw,
— the height of its box is less than ch.;

— the aspect ratio of its box is larger than ratio,

It is usually difficult even for a human to read the text when its height is less than 7 pixels, thus
7 has been used for ch, for the experiments. A horizontal text string is usually longer horizontally,
hence setting cw, to at least twice the minimum height seems reasonable. Thus, in all of our
experiments, cw, = 15 and ch, = 7 were used. Normally, the width of a text string should be
larger than its height. But in some fonts, the height of a character is larger than its width. Thus,

ch, = 1.1 is used, attempting to cover that case to some extent.

3.5 Chip Extension

It is expected that some strokes only cover fragments of the corresponding characters. There-
fore, these strokes might violate the constraints used for stroke filtering, and hence be eliminated.
Consequently, some of the chips generated so far may only cover part of the corresponding text
strings.

Fortunately, this fragmentation problem can usually be corrected. Notice that the chips cor-
responding to the same text stroke are still horizontally aligned and of similar height. Thus, by
treating the chips as strokes, the Stroke Aggregation procedure can be applied again to aggregate
the chips into larger chips. This is exactly what the Chip Extension step does. As a result, more
words are completely covered by the extended chips.

Figure 4(e) shows the result of applying the Chip Filtering and Extension steps on the chips
in Figure 4(d). The rectangular chip bounding boxes are mapped back onto the input image to

indicate detected text as shown in Figure 4(f).

4 A Solution to the Scale Problem

The three frequency channels used in the segmentation process work well to cover text over a certain
range of font sizes. Text from larger font sizes is either missed or fragmented. This is called the
(scale problem). Figure 6 gives an example of the scale problem. Intuitively, the larger the font
size of the text, the lower the frequency it possesses. Thus, when the text font size gets too large,

its frequency falls outside the three channels selected in section 2.

17

CUT TO FTIRUGY
mmammmam

Figure 6: The scale problem and its solution. The text detections are carried out using the standard
three frequency channels in all three cases with the same input image at different resolutions. (a)
Input image at its full resolution. (b) The input image is that of (a) reduced by half in both
dimensions. (¢) The input image is that of (b) reduced by half in both dimensions.

One approach to the scale problem is to process the original image at multiple bands of frequency
channels. For example: band 1 covers the standard channels of second order Gaussian derivatives
with o = 1,+/2,2; band 2 for ¢ = 2,24/2, 4, and so on. However, as the ¢ values increase, so do the
corresponding kernel sizes, and thus the cost of the computation increases dramatically.

Instead, a pyramid approach is proposed in this paper: form a pyramid of input images and
process each image in the pyramid using the standard channels (¢ = 1, V2, 2) as described in the
previous sections (see Figure 1). At the bottom of the pyramid is the original image; the image at
each level (other than the bottom) is obtained by reducing the image at the level below by half in
both dimensions.

Text of smaller font sizes can be detected using the images lower in the pyramid as shown in
Figure 6(a) while text of large font sizes is found using images higher in the pyramid as shown in
Figure 6(c). The bounding boxes of detected text regions at each level are mapped back to the

original input image (bottom level) as shown in Figure 7(b).

4.1 Chip Scale Fusion

Some text or part of it responds to more than one band of the frequency channels, and hence forms
overlapping chips at different levels (see Figure 6). For example, text with large fonts may partially
respond to higher frequency channels, hence forming fragmented boxes which covers parts of the
string at a lower level. It also strongly respond to some lower frequency channels which are more
compatible, hence forming a more complete box to cover the entire string at higher level(s). After

the chips produced at different levels are mapped back onto the original image (bottom level), the

18

reg. 34,99

COLOR CODES™ 5X6’

CUT TO FIT RUGS
Made of Dupont® Antron nylon. 8 colors
coordinate with Color Codes towels, i HCalo o5 0L
*30% off Color Codes scatter rugs
. 4.99-18 o Sale 3.49-13.99 : [4TI, L sale 3.49-13.99]
9 v S 9.88 pTank setdq et [S2le O BA]

Figure 7: Fusion of text detection at different level. (a) Original input image. (b) Chips generated

at all three levels. (c) Scale-redundant chips are removed.

fragmented chips, which are called the scale-redundant chips, will be covered in full or in part
by larger boxes, as shown in figure 7(b). Thus, it is desirable to eliminate the scale-redundant
chips and keep the chips which overlap more with the text strings. We call this process chip scale
fusion.

When most of a chip B overlaps with another chip A4, it is likely that the text covered by B is
also covered by the other chip A. Experiments have shown that this is particularly the case when
more than 85% of chip B overlaps with chip A. Another situation is that only an insignificant
portion of B overlaps with A. In this case, if A is significantly larger than B, B is also likely a
scale-redundant chip, especially when at least 50% of chip B overlaps with chip A and chip A is at
least 10 times bigger than B (empirical finding). For example, the smaller boxes may cover small
fragments of a text string of a large font size and some other local details which are not part of the
text string. Thus, the following straightforward procedure is used for the scale fusion for all of the

experiments:

e for any pair of chips A and B assuming Area(A) > Area(B), chip B is eliminated if one of
the following holds:

1. 85% of B is covered by A

2. 50% of B is covered by A and the area of B is less than 10% of the area of A

As an example, Figure 7(c) is the result of the above scale fusion procedure applied to the chips

in figure 7(b).

19

5 Text on Complex Backgrounds

The previous sections have described a system which detects text in images and puts boxes around
detected text strings in the input image. If the input image is binary and the text is printed on
a clean background, the corresponding region enclosed by the box can be directly fed to an OCR
system for actual character recognition. However, documents are often scanned in greyscale rather
than in binary to preserve information other than text, such as picture inserts and graphics. For
example, all the images used so far have more than two levels of tonal variation. In addition, it
is not uncommon for text to be printed against a shaded or hatched background. For example,
shaded, very high frequency backgrounds are used in currencies and stock certificates to prevent
copying. This is often done by using fine lines or many small dots (high frequency) for the shading.

Unfortunately, current OCR systems cannot handle such images as explained in section 1.2.
Furthermore, in general the OCR recognition accuracy depends heavily on how well text is seg-
mented into individual characters. Thus, the chips generated by the text detection phase of the
system, have to be binarized and the shaded background removed.

Our goal here is to find a simple, robust binarization algorithm which is applicable to the text
chips detected as described in the previous sections. By taking advantage of the localization of text
strings achieved by the segmentation and chip generation procedures, it is reasonable to assume
that a threshold exists for that local area. This is based on the observation that normally all the
characters in a single string are likely to have similar intensities which are distinguishable from the
non-text content of that area. This is a local adaptive approach, and experiments show that this
binarization approach robustly extracts text from a wide variety of images.

More specifically, the following algorithm for background removal and binarization is proposed:

1. smooth the text chip generated by the system.

N

. compute the intensity histogram of the smoothed chip.

3. smooth the histogram using a low-pass filter.

N

. pick a threshold at the first valley counted from the left side of the histogram.

Histograms have been used in global thresholding algorithms proposed in the literature. The
important distinction of this algorithm is that it is applied locally instead of over the whole image.
The smoothing operation of step 1 affects the background more than the text because the text
normally is of lower frequency than the shading. Thus it cleans up the background. Another way
of looking at it is to notice that the smoothing blends the background into grey while leaving the

text black (see the second row in Figure 8).

20

a0 40 60 om0 o0 120 140

00y

200
100

() (d)

_l|lD Histo LowPF_2.im, {7.67041,)

700

600

500

Bad Little Pussy Cat | o

300

200

100

20 40 60 80 1z0

() (f)
Figure 8: The Text Clean-up process. (a) Original text chip. (b) Histogram of (a). (c¢) Smoothed

version of (a). (d) Histogram of (c). (e) The binarization result by thresholding (c) using a value
in the valley of (f). (f) Smoothed version of (d).

The histogram generated by step 2 is often jagged, hence it needs to be smoothed to allow the
valley to be detected (see Figure 8(d)). Text is normally the darkest item in the detected chips.
Therefore, a threshold is picked at the first valley closest to the dark side of the histogram. To
extract text against darker background, one simply reverses the intensity value of the chip before
applying this algorithm. Since the current system does not know whether dark text or light text is
in a text chip, one output is produced for each case for all the text chips.

The thresholded image is shown at bottom left in Figure 8. This has been successfully recognized

21

[Seniar |ibrarian Artihur Williams b been with¥he collection for closeto 31 yearsn. |

WEVE GOTTEN ALDNG WITH A ‘
VERY BAPINDEX RLL THESE
YEARS. WHAT WE WORK FROM
[STHE L mmmms HERDS

PIBN'T LIKE THE W

W) o) \WHAT WE OUN,

WE GIVE You Tiwo oR
THREE HERPINGS, LET'S SRY
Vou WRANT SUNSHINE Cot~
THE THROUGH B W IND D e

You MIGHTLOGK IN
W WINDOWS...AND SUN-

LIGHT... Al You

MIGHT LODKC N CAT!

"WHEN YOU START WoRK=
NG HERE You 60 THROWGH
YOU ZLASSIFY THE WORLD

[weve iaw HBRARINS it

THERE'S & CERTAIN Lﬁﬂ(aF
PRECISTONHERE. Jig

I’ we pory krow i

WE ADD ABOUT 2000 Pl

TURES A VONTH.EVEN el

BARRING THEFT AND L0558,
FICTURES $imPLY WEAR OUT,

TFHT WHAT [T

BECAVSE CATS
LIKE Ta 37 oN
WIHDOINSILLS
1N THE SUNSHINE

50 THIS ATTITUDE TOWRRD
PICTURES - & SUBJECT
A‘mTubE-'rnTam’ SULTS ME.

(i

MW WORLY WART |

Senar ibestin Arthwr Willisws bad been uiith e illectisi Farsirats 3?;3?3?‘

| WEVE GOTTEN ALONG WITH A
VERY BAD INDEX ALL TUESE ™

| l$THE L\Bmmmﬁ RERDS, == “

£y |

WE SWENOU TG DR, W
THREE HEATINGS, LETS 5RY
= i WRNT SURSNE Comin
1HiC THEBUGH B WIADDW 11

You pigiT Lok 18
W WINPOWS, AT SUN-

LIGHT, . hrib Y20]
MLGHT LOOM [LT,

| utuem you sran wore”
ING HERE Yo &0 THROVGH A FERIGE LIHEN

YOU CLASSIFY THE WORID A% YAU ALK THAOUGH 1T«

| WEVE Hip LIBRARIANS ko)
DIDK'T LIKE THE WHRlk,
YEARS, WHAT WE WoRK FROM E THERE'S b LERTANN LRCK 0¥

WE A7B ABILT 2000 PLC.
TURES A ranTH. EvEH
BARAING THEET AND LDFS,
PICTURES § LY WEAR DUT

R ﬂ WORLD WA T
1T WHAT U7 4
Tk UEvTBE.

| BECAUSE ATS |
| LIKE M#Tort 4
I WANDOWSILLS

| 11 THE SOHSHINE.

FRECISION HERE.

$0TWIS ATTITUDE TONKRD
FICTURES - & SYBJECT
B ATTITUDE- ToTALLY SUtTs ME

AT R s

—~~ RUTOMOBUES, 19505, R2

A 4 TREES, OMK,- - "‘.U, ',,Emm
ml r
P L]

ABSTRACT PanTinGS
TOHT INTEREST ME.
[- ESPECIALLY SINCE WE,
PAINTING 5, ABSTRACT A

fﬁ mm TIEREST ME,

ACELLED . ESPECIRLLY $INCE WE CRNCELLEp
A - L!nmfrnss BBSTRACT D wiviLE Bnc‘&

MILE BAG ! -

Figure 9: First binarization result. (a) Original image scanned from New Yorker magazine.

Result after the first Text Clean-up process

by an OCR system.

6 Chip Refinement

Experiments show that the text detection phase is able to locate text strings in regular fonts, and
some even from script fonts or trademarks. However, sometimes non-text items are identified as
text as well. In addition, the bounding boxes of the chips sometimes do not tightly surround the
text strings. The consequence of these problems is that non-text items may occur in the binarized
image. An example is shown in Figure 9(b). This is produced by mapping the extracted items onto
the original page. These non-text items are not desirable since they may hinder the performance
of an OCR system.

However, by treating the extracted items as strokes, the Stroke Filtering process (section 3.2)

can be applied here to eliminate the non-text items, since tighter constraints can be used at this

time. Tighter constraints can be used here because of two reasons. First, the clean-up procedure

22

is able to extract most characters without attaching to characters nearby or non-text items as
shown in Figure 9(b). Second, the strokes at this stage are composed of mostly complete or almost
complete characters as opposed to the vertical connected edges of the characters generated by
the Stroke Generation step (section 3.1). Thus, it can be expected that the correct text strokes
(characters) comply more with the heuristics used in the early Chip Generation phase.

Therefore, the Stroke Filtering procedure (Section 3.2) with tighter constraints is used here to
remove more non-text items. Then, the Stroke Aggregation process (Section 3.3) is used again
to generate a new set of probably better chips. This is followed by the Text Clean-up process to
extract the text from the input image regions corresponding to the chips. The binarization result
is usually better since the tighter the chip bounds the text, the less irrelevant image area (noise) is
included, and hence the better the clean-up process works.

A more restricted constraint for connectability of two similar strokes is used at this stage. This
constraint requires that the gap between two adjacent strokes must be no more than twice the
height of the shorter stroke as opposed to three times used in the earlier Chip Generation stage.
Also, an extra constraint which requires that the vertical distance between the bottoms or the tops
of the strokes be small is used to determine if two strokes are horizontally aligned. In all of the
experiments, no more than 10 pixels were allowed for this distance.

An example is given in Figure 10 which shows the binarization results before and after this
refinement phase, where Figure 10(a) is the same picture as that in Figure 9(b) . A magnified

portion of the image and its binarization results are shown in Figure 11.

7 Character Recognition

The cleanly extracted text strings produced after the Text Refinement phase are still in the image
format, thus a character recognition process is needed to convert the text strings into the ASCII
format. We do not intend to invent our own OCR system at this point. Instead, Caere’s WordScan
Plus 4.0 for Windows was used to do character recognition.

A good way of doing such experiment is to integrate the OCR system into the text extraction
system so that the binarized text strings can be processed automatically when they are generated,
one string at a time. Unfortunately, the OCR package that we have cannot be used in this way.
Thus, for the experiments, a binary image is formed using all the cleaned-up text chips for each
input image. Then these binary images are fed to the OCR system for recognition manually.

The OCR results are presented in the experiments section.

23

Senar ibestin Arthwr Willisws bad been uiith e illectisi Farsirats 3?;}'?3?‘ Serior figearion Arther Williams has been with the callection For elose:To 31 yenrs...

| WEVE GOTTEN ALORG WiTh i | | WEVE HAP LIBRARIANS WO Y | WEAID AB20T 200071, WEVE GOTYER ALorG WITK A WEVE A LIBRARIANS wio Y | e aop adauT Zoco eie
VERY BAD INDEX ALL THESE © MDI'T LIKE THE WoRl TURLS Am:-mi,‘.e‘fp}vi VERY BAD INDEX ALLTHESE & | | mowr LIKE THE woni TURES & rhONTHenEVER
VERRS, WHAT e WORKFROM E THERE'S b SERTAIN LACK 08 BAKAINE THEET AND L7, YEARS, WHAT W WoRK FROM THERES b LERTAN Lhod 0% BRRAING THEFT AND LDFS
| lsTHE LIBROBRIBNS HEDDS, 2= W PRECISION HERE. PICTURES § LY WEAR DUT, 13 THE LIBRBAIBNS HERDS PRECISION HERE PICTURES $IMELT WERR BT 4
i COWEPOHTWOW L % K woriowhad WEPORT i | TN o wA
oot 72 S Ao MRy VAT WE QN I |SNT WHAT T 5 WHIT LIE OWH - 1SN WHAT 1T gl
e N e o (TR v s . USEV To B -f
[K & i ! i a
v, - /
-
[I = PXCit lWl
WE SWE YA Tie DR - WE &WE Yo Twe 0B, BECRUSE FAT
THREE HERPINGS, | T3 58y DBty) THREE HEATNGS, LETS 53 Bt
- Y WRANT SURGNE Com- P wANDols LS B YOU WANT SURSHINE Cor WHDOWEILLS
1R THRBUGH B WRADDW o1 | 1N THE $OHSHIN Lhics THREUSH B W RO 1M THE SOSHINE, |
w _ = You MigGHT LogK I8 YU MIGHT Lo 14
Lt N WINPOWS, AND fu- ! WINPOWSE...3D SuK. |
L LIGHT. . AnD WU 4 o LIGHT. . anp You
n MIGHT Look [LTS T = vy b MiaHT Lo N ChT.,
i I ekl = M e
l{ll\[[ﬂ |l' - i
£ 0 g o [r
- _ It o %R

|"wu:wan,mmwmt- T BUT |{ME SRRRAKT NE I] WHEN You START WoRK BUY LWM/E AHBRRRTIVE MING
NG HERE YoU &0 THROWGH A FERICE LIHEN SOTHIS ATTITUDE TONRED = 13 HERE YU il THROUGH A PERIZR LIHEN FOTHIE ATTITUPE TOWRRD
You CLASSIFY THE WORID AS ¥aU LUALK THADUGH 1T« PICTURES - & SYBJECT ¥ CLASSIFY THE WORLD AS YOU LIALK THROUGH IT.. PICTURES -8 SUBJECT
I o B ATTITUDE- ToTALLY SUTs ME. il E. e < ETTITUBE-TOTALLY SUNTS ME ‘\
POREHES... iii 57"!% | PORCHES... I
™ RUTRMOBLES, 19505, N3 ATOMOBUES, 19505 RIS M‘ T
Pieie s

V«W 1 TREES, OAK,.. F-m- o ‘TREES, ORK e

o

i))

I e ik 4
mtr D

ks ETRAGT PRNTINGS [APITRAST prantings |
y ’FW(TOWT WREREST ME. E k@% {%F“@% DOW'T INTEREST ME

T L ESPECIRLLY STHCE WE CHNCILLED rr SPECIRLLY SIHCE WE CANCOLLED
« A PRINTINGS, RESTARET 5.k BacK. B R fAINTINGS, BBSTRACT £ wiiLE BACK,
3

o
L o (%] (e e B -
| i #
[B " '—h i [
Y v ceTeneR ‘m{g’@? & d 44 e HeR ®
i = n ITAFTERA
o YEAR ORTROD, . % - Lt YEAR SR8
kv 9 U F:, "; -

(a) Before (b) After

Figure 10: Comparison of binarization results before and after the Chip Refinement phase.

| WEVE GOTTEN ALONG WITH A WEVE GOTTEN ALONG WITH A
VERY BADINDEX ALL THESE ™ VERY BADINDEX ALL THESE
YEARS. WHAT We WORK FROM | YEARS. WHAT We WORK FROM

41) 1S THE LIBRARIANS HEADS. & {$THE LIBRARIANS HEADS

WEVE GOTTEN ALONG WITH A
VERY BADINDEX ALL THESE
YEARS. WHAT WeE WORK FROM
l$ THE LIBRARIANS HEADS.

[t

WE GIWVE You TWo 0R - WE G\WE You Two OR
THREE HERPINGS. LET'S SAY THREE HERDINGY, LET'S 5AY

= YOU WANT SUNSHINE Conm B YOU WANT SUNSHINE Com
1HG THROUGH B WINDOW o1 1NG THROUGH B WHNDOW «

WE G\VE You TwWo OR
THREE HEADINGS. LET'S 5AY
YOU WANT $UNSHINE Com~
ING THROUGH A WINDOW

(a) (b) ()
Figure 11: Magnified portions of Fig. 9 and Fig. 10.

24

File Total | Detected | Cleaned | Total | Detected | Cleaned | Split
Name | Char | Char Char Words | Words Words Words
ads01 | 167 154 154 38 33 33 5
ads02 | 221 204 204 48 43 43 2
ads03 | 206 205 183 45 44 37 1
ads04 | 722 702 659 151 145 132 4
ads05 | 273 250 238 68 64 61 1
ads06 | 377 227 227 62 29 29 18
ads07 | 131 131 111 27 27 23 0
ads08 | 132 83 83 23 14 14 4
ads09 | 29 29 26 4 4 3 0
ads10 | 259 251 247 61 53 53 3
ads1l | 402 369 358 71 63 61 2
ads12 | 295 294 292 64 63 63 0
ads13 | 417 417 385 150 150 142 0
ads14 | 2143 | 1852 1810 424 373 256 5
ads15 | 394 394 380 88 87 84 1
ads16 | 487 329 157 104 67 34 13
ads17 | 298 295 270 56 55 41 0
ads18 | 458 456 356 96 95 68 1
che05 | 273 273 273 47 47 47 0
che06 | 273 272 273 47 46 47 1
che07 | 273 273 273 47 47 47 0
cpn01 | 742 736 712 152 148 147 2
ctn01 | 2063 | 1945 1945 417 387 386 0
ctn02 | 543 540 540 101 96 96 2
ctn03 | 300 296 296 64 61 61 3
ctn04 | 813 813 812 186 186 185 0
ctn05 | 928 928 928 196 196 196 0
env0l | 160 156 156 28 27 27 1
inv01 1355 | 1293 1188 285 264 233 7
inv02 | 579 578 500 133 132 113 0
mag01 | 817 817 812 166 166 163 0
mag02 | 91 87 87 19 18 18 0
npr01 | 124 124 124 26 26 26 0
npr02 | 772 768 767 173 169 168 0
phoO1 | 11 5 4 2 0 0 1
pho02 | 7 6 5 2 1 1 0
pho03 | 2 0 0 1 0 0 0
pho04 | 9 9 9 2 2 2 0
pho05 | 39 8 0 8 0 0 5
pic08 28 28 13 6 6 3 0
pic02 21 21 19 7 7 2 0
pic04 31 26 17 6 5 3 1
pic05 12 5 0 5 3 0 0
pic06 31 31 6 5 5 1 0
pic07 33 30 20 9 7 2 1
pic01 1217 | 1215 1177 250 249 244 1
txt01 2009 | 2008 2008 234 233 233 0
txt02 968 960 960 199 192 192 2

Table 1: Results for the text extraction

25

8 Experiments

The system has been tested using 48 images. Some of the test images were downloaded from
the Internet (file names “pho02-04” in table 1), some from the Library of Congress (file names
“pic02-06” and “pic08” in table 1), and the rest of them were locally scanned documents. These
test images came from a wide variety of sources: digitized video frames, photographs, newspapers,
advertisements in magazines or sales flyers, and personal checks, etc. Some of the images have
regular page layouts, others do not. It should be pointed out that all the system parameters
remain the same throughout the whole set of test images, showing the robustness of the system.
For the images scanned by us, a resolution of 300dpi (dots per inch) was used. This is the
standard resolution required, for example, by the Caere OCR engine that was used. It should be
pointed out that 300dpi resolution is not required by our system. In fact, no assumptions are made
about the resolution of the input images, since such information is normally not available for the

images from outside sources, such as those downloaded from the Internet.

8.1 Text Detection and Clean-up

Table 1 demonstrates the performance of the system up to the Chip Refinement process. The Total
Char (Words) column shows the number of characters (words) in each image as perceived by one of
the authors — this is the ground truth. The Detected Char (Words) shows how many characters
(words) are completely enclosed by the text boxes produced after the Chip Scale Fusion step. The
Cleaned Char (Words) shows the number of characters (words) which are clearly readable by a
person after the Chip Refinement and Text Clean-up processes. Note that only the text strings
with skew angles less than roughly 30 degrees are counted, since the OCR engine cannot handle text
which is skewed seriously. Split Words shows how many words are split (i.e., no single bounding
box covers the word completely).

As shown in the table, there are a total of 21820 characters and 4406 words in the testing
images. Of these, 20788 (95%) characters and 4139 (93%) words are detected. If the percentages
are computed for each image and then averaged over the whole set of images, the normalized
percentages (by weighting all the images equally) are 89% for detected characters and 85% for
detected words. 91% of the detected characters and 86% of the detected words are successfully
cleaned. A word is successfully cleaned only if all its characters are clearly recognizable by a person.

These results are listed in Table 2.

26

Total | Detected Normalized | Clean-up

Percent Percent Percent
Char | 21820 | 20788 95% 89% 91%
Word | 4406 | 4139 93% 85% 86%

Table 2: Summary of the text extraction performance over 48 images.

Gettiﬂg your Gettlng your Getting your
money’s worth money'’s worth money’s Worth
never came with never came with never camevvith
so many choices. so many choices S0 many choices

Turkey Tetrazzini

Chili with ..

Macaroni & Beef

it Tonnatoes

Chicken Pie

Lowk at all the wavs you van
anny Stoufter's Cusewe home
tasze...for around 52

. suffed
@u:{éﬁeﬁ%

MPCPP'-’T

S
BC MG

iy mlacarond & Beef |

Turkey Tetrazzini

6::! ,T‘B Chicken Pic

Look at all the waus you can
enjoy Stouffer s- close-6-horne
taste-for around 32

stuffed

Iffe]

(Stoll

peEpper
&K

RouBg Turkey Tetrazzini

BRtuulle)Macaroni & Beef

I ——¥%. Chicken Pie
(,5t{ Ifflois
Tuna Noodle | Guvid) Tuna Noodle Tuna Moodle
Casscrole N Cas lc Casserole
Turkey Pie Chenlsd) Turkey Ple (Stn"fc) Turkey Pile
Creamed Chicken Creamed Chicken Lreamed Chicken
: : v i ESC ed Chicken Escalloped Chicken
&1 ngd(ifidm i odles & Moodles
(Btolao comes

Nothing comes
loser to home. !

(a)

et to home™

| ot deisr S home

BJ;, C7, 00 home"

LI Iu 1 IC £ II -11II

()

Figure 12: Example 1. (a) Original image (adsll). (b) Extracted text. (¢) The OCR result using
Caere’s WordScan Plus 4.0 on (b)

27

File OCRable | OCRed | Print OCRed | Light
Name | Char Char Words | Words Dark
ads01 | 81 77 20 17 L
ads02 | 162 152 41 35 L
ads03 | 184 61 42 6 L
ads04 | 652 392 129 46 D
ads05 | 210 148 58 29 D
ads06 | 162 147 25 20 D
ads07 | 111 98 23 18 D
ads08 | 68 61 9 6 D
ads09 | 24 21 3 2 D
ads10 | 134 75 27 18 L
adsl1 147 123 50 45 L
ads12 | 211 173 42 31 D
ads13 | 425 379 120 105 D
ads14 | 1471 1237 316 270 D
adsl5 | 212 183 40 34 D
ads16 | 108 66 27 15 L
adsl7 | 224 114 36 19 L
ads18 | 258 47 57 11 D
che05 | 207 166 45 31 D
cpn01 | 608 568 135 120 D
ctn01 1064 990 288 260 D
ctn02 104 102 19 18 L
ctn05 102 102 25 25 D
env0l | 156 152 27 24 D
inv01 1188 680 233 73 D
inv02 481 454 108 98 D
mag01 | 812 762 163 137 D
mag02 | 84 83 17 16 D
npr01 | 132 130 27 26 D
npr02 | 756 729 166 156 D
pho04 | 9 0 2 0 D
pic02 11 4 2 1 D
pic01 1177 1009 244 202 D
txt01 2008 2003 223 218 D
txt02 960 940 192 182 D

Table 3: OCR result using Caere’s WordScan Plus 4.0 for MicroSoft Windows95

8.2 OCR Testing

Figure 12(a) is the original image of file ads11. This is an image of an advertisement for Stouffer’s,
which has no structured layout. The final binarization result is shown in the middle. The corre-
sponding OCR output is shown on the right. This example is intended to provide a feeling of the
overall performance of the system by showing whole images. The drawback is that some fine details
are lost due to the scaling of the images to fit the page. For example, the words of the smaller fonts
and the word Stouffer’s in script appear to be fragmented, although actually they are not.

The words under “Stuffed Pepper” were not found because there is little response to the texture

28

segmentation process in that region (see Figure 3). This is because the words are actually blurred,
hence the region has very low energy. For the same reason, the two words under “Macaroni &
Beef” and those on the bottom of the input image are not found. Notice that most of the texture
in the picture of the food is filtered out, showing the robustness of the system.

The OCR engine correctly recognized most of the text of machine-printed fonts as shown in
Figure 12 (c). It made mistakes on the Stouffer’s trademarks since they are in script. It failed to
recognize “Chili with” mainly because of the noise around there. It should be pointed out that the
clean-up output looks fine to a person in the places where the rest of the OCR errors occurred.

Table 3 shows the results of applying Caere’s WordScan Plus 4.0 on some of the cleaned text
from the test images. The OCRable Char column shows the number of characters (cleaned) that
appear to be of machine printed fonts in the corresponding image, while the Print Words column
shows the number of words from these characters. The OCRed Char column shows the number
of characters which are correctly recognized by the OCR engine, and the OCRed Words column
shows the number words which are correctly recognized. A “L” (“D”) in the Light Dark column
means the text is lighter (darker) than the background in the original image. Notice that only the
machine printed characters are counted so that the OCR engine can be applied.

As shown in the table, there were 35 images used in this experiment which contains 14703
printed characters and 2981 printed words. 12428 (84%) of the characters, 2314 (77%) of the words
are correctly recognized. The normalized percentages are 78% and 72% respectively. These results

are summarized in the following table:

Total Total Normalized
OCRable | OCRed | Percent Percent
Char 14703 12428 84% 78%
Word 2981 2314 7% 72%

Table 4: Summary of the OCR performance over 35 cleaned-up images.

9 Conclusion

Current OCR and other document segmentation and recognition technologies do not work well for
documents with text printed against shaded or textured backgrounds or those with non-structured
layouts. In contrast, we have proposed a text extraction system which works well for normal
documents as well as documents described in the above situations.

The system proposed is composed of the following steps. First, a texture segmentation module

which is used to direct attention to where the text is likely to occur. Second, strokes are extracted

29

from the segmented text regions. Using reasonable heuristics on text strings such as height similar-
ity, spacing and alignment, the extracted strokes are then processed to form rectangular bounding
boxes around the corresponding hypothesized (detected) text strings. To detect text over a wide
range of font sizes, the above steps are first applied to a pyramid of images generated from the
input image, and then the boxes formed at each resolution level of the pyramid are fused at the
original resolution of the input image. Third, an algorithm which cleans up the background and
binarizes the detected text strings is applied to extract the text from the regions enclosed by the
bounding boxes in the input image. Finally, the extracted items are treated as strokes, and more
restrictive heuristics are used to generated better boxes for the text strings while eliminating most
of the false positive boxes. The clean-up process is then applied again to extract text which can
then be processed by an OCR module for recognition.

48 images from a wide variety of sources such as video frames, newspapers, magazines, printed
advertisement, photographs, and checks have been tested on the system. They are greyscale images
with structured and non-structure layouts and a wide range of font styles (including certain script
and hand-written fonts) and sizes. Some text has overlapping background texture patterns in the
images.

There are 21820 characters and 4406 words in the test images (perceivable to one of the authors).
95% of the characters and 93% of the words have been successfully extracted by the system. Out
of some 14703 characters and 2981 words of extracted text which are of OCR-readable fonts, 84%
of the characters and 77% of the words are successfully recognized by a commercial OCR, system.

The system is stable and robust — all the system parameters remain the same through out all

the experiments.

10 Acknowledgements

We would like to thank Bruce Croft and CIIR for supporting this work. We would also like to
thank Allen Hanson, Jonathan Lim and Yong-Qing Cheng for their constructive comments and

suggestions. Jonathan Lim also provided system support.

30

References

[1]

8]

[9]

[10]

[11]

H. S. Baird and K. Thompson. Reading Chess. IFEFE Trans. Pattern Anal. Mach. Intell.,
12(6):552-559, 1990.

Mindy Bokser. Omnidocument Technoligies. Proceedings of The IEEE, 80(7):1066-1078, July
1992.

Dennis Dunn, William E. Higgins, and Joseph Wakeley. Texture Segmentation Using 2-D Ga-
bor Elementary Functions. IEEE Transactions on Pattern Analysis And Machine Intelligence,

16(2):130-149, Feb. 1994.

Lloyd Alan Fletcher and Rangachar Kasturi. A Robust Algorithm for Text String Separation
from Mixed Text/Graphics Images. IEEE Transactions on Pattern Analysis And Machine
Intelligence, 10(6):910-918, Nov. 1988.

C. A. Glasbey. An Analysis of Histogram-Based Thresholding Algorithms. CVGIP: Graphical
Models and Image Processing, 55(6):532-537, Nov. 1993.

Osamu Hori and Akio Okasaki. High Quality Vectorization Based on a Generic Object Model.
Structured Document Image Analysis, pages 325-339, 1992.

Anil K. Jain and Sushil K. Bhattachariee. Address Block Location On Envelopes Using Gabor
Filters. Pattern Recognition, 25(12), 1992.

Anil K. Jain and Sushil Bhattacharjee. Text Segmentation Using Gabor Filters for Automatic

Document Processing. Machine Vision and Applications, 5, 1992.

Anil K. Jain and Farshid Farrokhnia. Unsupervised Texture Segmentation Using Gabor Filters.
Pattern Recognition, 24(12), 1991.

Richard A. Johnson and Dean W. Wichern. Applied Multivariate Statistical Analysis. Prentice-
Hall, Inc, 1982.

Mohamed Kamel and Aiguo Zhao. Extraction of Binary Character/Graphics Images from
Grayscale Document Images. Computer Vision, Graphics and Image Processing, 55(3):203—
217, May. 1993.

Su Liang and M. Ahmadi. A Morphological Approach to Text String Extraction from Reg-
ular Periodic Overlapping Text/Background Images. Computer Vision, Graphics and Image
Processing, 56(5):402-413, Sept. 1994.

31

[13] Huizhu Luo and Its’hak Dinstein. Using Directional Mathematical Morphology for Separation
of Character Strings from Text/Graphics Image. IAPR International Workshop on Structural
and Syntactic Pattern Recognition, Naharia, Israel, Oct 1994.

[14] Jitendra Malik and Pietro Perona. Preattentive texture discrimination with early vision mech-

anisms. J. Opt. Soc. Am., 7(5):923-932, May 1990.

[15] S. Mori, C.Y. Suen, and K. Yamamoto. Historical Review of OCR Research and Development.
Proceedings of The IEEE, 80(7):1029-1058, July 1992.

[16] G. Nagy, S. Seth, and M. Viswanathan. A Prototype Document Image Analysis System for
Technical Journals. Computer, pages 10-22, July 1992.

[17] Lawrence O’Gorman. The Document Spectrum for Page Layout Analysis. IEEE Trans. Pattern
Analysis and Machine Intelligence, 15(11):1162-1173, Nov. 1993.

[18] Lawrence O’Gorman. Binarization and Multithresholding of Document Images Using Connec-

tivity. Computer Vision, Graphics and Image Processing, 56(6):494-506, Nov. 1994.

[19] Paul W. Palumbo, Sargur N. Srihari, Jung Soh, Ramalingam Sridhar, and Victor Demjanenko.
Postal Address Block Location in Real Time. Computer, pages 34-42, July 1992.

[20] Theo Pavlidis and Jiangying Zhou. Page Segmentation and Classification. CVGIP: Graphical
Models and Image Processing, 54(6):484-496, Nov. 1992.

[21] @ivind Due Trier and Torfinn Taxt. Evaluation of Binarization Methods for Document Images.

IEEFE Transactions on Pattern Analysis And Machine Intelligence, 17(3):312-315, March 1995.

[22] W. H. Tsai. Moment-Preserving Thresholding: A New Approach. Computer Vision, Graphics,
and Image Processing, 29(3):377-393, Mar. 1985.

[23] S. Tsujimoto and H. Asada. Major Components of a Complete Text Reading System. Pro-
ceedings of The IEFFE, 80(7):1133-1149, July 1992.

[24] F. M. Wahl, K. Y. Wong, and R. G. Casey. Block Segmentation and Text Extraction in Mixed
Text/Image Documents. Computer Graphics and Image Processing, 20:375-390, 1982.

[25] D. Wang and S. N. Srihari. Classification of Newspaper Image Blocks Using Texture Analysis.
Computer Vision, Graphics and Image Processing, 47:327-352, 1989.

[26] K. Y. Wong, R. G. Casey, and F. M. Wahl. Document Analysis System. IBM Journal Res.
Dev., 26(6):647-656, 1982.

32

