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Abstract

We report on our experience with parallelizing a computer vision algorithm. The algorithm employs
low-level image processing techniques which are relatively easy to parallelize and intermediate-level
computer vision techniques which lack the regularity and locality of image processing algorithms. The
application is an excellent candidate for use as a benchmark. We implement two parallel versions of
this algorithm; the second one based on our experience with the first version. We program the parallel
implementation in the Single Program, Multiple Data (SPMD) model using the MPI message passing
interface.

We evaluate our implementation on a four node IBM SP. Our results show excellent speedup numbers
for the image processing portion and good speedups for most of the application. However, part of the
application is inherently sequential. Our second parallel implementation is not only more efficient than
the first, but it also has better speedup numbers. In addition, we suggest changes to our final parallel
implementation that should improve its performance.

1 Introduction

General benchmarks such as SPEC95 and PERFECT Club provide rough comparisons of the performance of
different machines. These performance measurements, however, may not represent the true relative perfor-
mance for a particular application because general benchmarks are not likely to have the same performance
characteristics as programs from the application domain. Moreover, the results of popular benchmarks may
be misleading because vendors sometimes tune their compilers and machines to perform well. Instead,
when machines are considered for a specific application domain, an application based benchmark, such as
Linpack and IU Benchmark, which consists of representative tasks from the application domain should be
used to compare the relative performance of machines.

A succession of benchmarks have been developed for the computer vision domain [Pre86, UPLD86,
Ros87, WRHR91]. The earlier benchmarks tended to include very simple tasks and provide only vague
guidelines about how each task was to be accomplished. Hence, the benchmarks did not stress the machines
or accurately represent their performance on a full vision application, and the results were hard to compare
because vendors could drastically rewrite the code to make their machine look better. The image under-
standing benchmark was developed to represent a broader range of vision processing, discourage excessive
tuning, and provide more challenging tasks [WRHR91]. Our experience with these previous benchmarks
along with the continued advance of hardware capabilities suggest that a new benchmark is needed. The
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new benchmark should include more intermediate-level vision tasks to better represent such code and be
more computationally demanding to better exercise the capabilities of hardware.

This paper describes our parallelization of David Wren’s image correspondence matching algorithm,
called correspondence finder. For two images with overlapping content, an image correspondence algorithm
locates common points of interest in the images. Correspondence matching is a broadly useful vision task
and incorporates both low- and intermediate-level vision tasks.

We implement two serial versions of correspondence finder and port both serial implementations to the
MPI message passing interface (Section 3). We present several experiments comparing the performance of
each implementation on a four node IBM SP and evaluate the overall success of our parallelization effort
(Section 4). We also include analysis of shortcomings and suggestions for possible improvements to our
implementations (Section 5). Finally, in Section 6 we summarize our experience and lessons from our
implementation effort.

2 The Correspondence Finder Application

Computer systems that use computer vision and interact with the physical environment may require three
dimensional knowledge of the environment. For example, a mobile robot needs to know the proximity
and height of obstacles, and an assembly line inspection system may need to know the precise location of
defective products so that it can coordinate their removal. Stereo techniques can provide accurate depth
knowledge by using multiple observations of the same scene from slightly different angles and the epipolar
constraint to extract depth information [ZDFL94]. This approach reflects the capabilities of the human
visual system which uses the slight disparity between what each eye sees to extract depth information about
nearby objects.

Computer vision systems may obtain stereo information in one of two ways. The first approach, which
is most often associated with the term stereo, is to simultaneously use multiple cameras to take images of
the same scene. This configuration closely reflects the configuration of the human visual system. The other
approach is to use multiple images from the same camera, while moving the camera between images. This
configuration is appropriate for environments that do not change much or for use in moving vehicles.

Using epipolar geometry requires precise knowledge of the differences between the cameras which
acquire the images. In some cases, such as a roving vehicle, precise measurements are not available. In
these cases, vision systems must discover the difference between the cameras. Once approach to discovering
these differences is to find objects that appear in both the left and right images. For example, the same car
appears in both images in Figure 1.

However, identifying high-level objects such as cars and buildings is difficult. Therefore typical vision
systems use lower level image features such as corners, lines, and regions. After image features have been
extracted from each image, we must decide which feature in the left image corresponds to which feature in
the right image. This task is the responsibility of correspondence finder algorithms which often use heuristic
constraints, such as proximity, to determine correspondence. Finally when correspondences are established,
this knowledge may be used to extract stereo information about the scene.

The correspondence finder application performs the first two stages of the stereo extraction process:
identifying low-level image features and discovering correspondences between these features from a pair of
images.

2.1 Algorithm Description

We use a low- and intermediate- level vision application called correspondence finder. Our application is
adopted from David Wren’s algorithm [Wre96] which in turn is based on an algorithm from INRIA [ZDFL94].
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Office Left Image

A. Office Left Image
Office Right Image

B. Office Right Image

Figure 1: The office stereo image pair.

The correspondence finder algorithm uses three levels of abstractions of image data: pixels, corners (also
called points 1), and matches. Each abstraction has an associated data structure. An image is a two dimen-
sional array of pixels. A corner (or point) contains information about a single point of high curvature such
as its position, intensity, and neighbors. A match2 is a set of two points, one from each image and represents
the possible correspondence of these points. A match data structure also contains other information such as
strength, unambiguity, and supporting matches for the given match.

Correspondence finder has three phases, one for each abstraction. The image phase operates on pixels
and extracts points of high curvature. The point phase operates on these corners and produces a list of
potential matches. The match phase evaluates the strength of each match and uses a relaxation algorithm to
choose the best matches.

A high-level description of correspondence finder steps is shown in Figure 2 where module names are
in parenthesis following the individual steps. The functional diagrams are depicted in Figures 3–5. The
boxes in the functional diagram represent both individual stages in the computation and separate source
files. Figure 3 is the top level flow graph for the correspondence finder algorithm. The Input box represents
the acquisition of image data, and the Output box represents passing the final matches to the external
environment. Figures 4 and 5 expand the Corner and Match boxes (in Figure 3), respectively.

2.1.1 The Image Phase

The image phase extracts points of high curvature from the image through a series of convolutions (Figure 4
and Corner in Figure 3). Our implementation uses the Kitchen-Rosenfeld corner detector [Wre96] which
applies five different convolutions to a smoothed image (a convolution). The image phase thresh-
olds the results of the convolutions and combines them into a corner measure. The algorithm selects points
with both minimum and maximum “cornerness” in a neighborhood as corners. Module AppendTks3
merely combines the points of minimum and maximum corners into a single list.

1Throughout this paper corners are often referred to simply as points.
2We use ’match’ to refer to either the match phase or match data structure. Which one is being referred to will be clear from the

context.
3AppendTks is not present in all our implementations.

3



Image phase

1. Find corners in images (Corner)

Point phase

2. Find neighboring points for each point (PtNbrs)
3. Find candidate matches for each point (CandMatch)

Match phase

4. Calculate correlation between points in each match (PtMatch)
5. Remove matches with poor correlation
6. Identify supporting match pairs (SupMatch)
7. Calculate support score for each supporting match pair (SupScore)
8. Calculate strength of each match (CalcStrength)
9. Select best matches and discard inconsistent matches (Update)

Figure 2: High level overview of correspondence finder

Input OutputMatch

Image Phase
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Corner

PtNbrs
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Image 2

Point Phase

Match Phase

Figure 3: Functional diagram for correspondence finder algorithm.
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Figure 4: Functional diagram for image phase of correspondence finder algorithm.

2.1.2 The Point Phase

The point phase establishes two types of relationships between points (middle portion of Figure 3). In step 2
(module PtNbrs), the algorithm finds each point’s neighbors by collecting all points within some distance
of the current point. The distance we use is a quarter of the length of the image’s x dimension. For a square
image, this implies that points from up to a quarter of the image will be counted as a point’s neighbors.
Step 3 (module CandMatch) builds a list of possible corresponding points from the other image by collect-
ing all points within some distance of the current point’s coordinates (no conversion of the coordinates is
performed). The distance we use is a half of each of the image’s dimensions which implies that points will
be used from up to half of the other image.

2.1.3 The Match Phase

The match phase determines which of the possible matches are valid (Figure 5). Module PtMatches per-
forms steps 4 and 5 by building match records using the list of candidate points from step 3, and filtering
potential matches by comparing the underlying pixel data for each point. The filtering step assures that
corresponding points actually appear similar in the images. For each match, step 6 (module GetSupMatch)
identifies supporting matches. A supporting match is a match that if valid would suggest that the current
match is also valid. If point A is right above point B in the left image and point A has been matched with
point C in the second image, then one would expect to find point B’s corresponding point below point C.
Step 7 (module GetSupScore) calculates the amount of support each supporting match offers to the cur-
rent match. Finally, step 9 iterates over modules CalcStrength and Update using a relaxation algorithm to
select the final matches. Module CalcStrength tallies the strength of a match while avoiding using a single
point in multiple matches. Update uses a winner-takes-all or some-winners-take-all algorithm to iterate
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Figure 5: Functional diagram for match phase of correspondence finder algorithm.

over the matches and selects the best matches in each pass and deletes the matches conflicting with the
selected ones. Update uses two distinct criteria to select matches, match strength and match unambiguity.
If both the end points of a match are involved in no other higher strength match then the match is termed un-
ambiguous. Using two criteria, Update avoids choosing ambiguous matches with a slightly higher strength
over unambiguous but lower strength matches. The relaxation algorithm takes 4-6 passes for typical images.
Finally, module FilterTks outputs the selected matches.

3 Design and Implementation of the Correspondence FinderAlgorithm

In this section, we discuss the design of the correspondence finder algorithm and a message passing parallel
implementation using MPI on a four-node IBM SP. Section 3.1 discusses the design of our parallel algorithm
using Foster’s methodical design [Fos95]. We implement four versions of of the correspondence finder
algorithm: two serial and two parallel. The serial version using index lists is our first attempt and we
describe the implementation in Section 3.2. We discuss the corresponding parallel version using index lists
in Section 3.3. Both initial versions suffer from various inefficiencies and we redesign the implementation
in order to improve performance. In the process we learn valuable lessons which we describe in Section 5.
We discuss the second serial and the second parallel versions in Section 3.4 and Section 3.5, respectively.

We start with a version of correspondence finder developed at Amerinex Applied Imaging, Inc. (AAI)
that uses the KBVision system [Wre96]. KBVision is a proprietary development environment for image
applications [Ame]. KBVision has a set of library routines for manipulating pixels, corners and images. We
eliminate all the code which relies on KBVision and implement our own data structures.4

3.1 Design of Parallel Correspondence Finder

We discuss the design of our parallel correspondence finder algorithm using Foster’s four-stage methodical
design process [Fos95]. The four stages (called PCAM) are:

Partitioning Decompose the problem into small tasks.
4The process of converting the AAI algorithm to C code which still uses the KBVision library routines was performed by Dawn

Werner [Wer96].
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Communication Determine communication requirements between the tasks

Agglomeration Combine tasks to improve performance

Mapping Assign tasks to processors

In the following sections, we discuss each of stages in more detail.

3.1.1 Partitioning

We partition using a data decomposition (also known as domain decomposition). The algorithm uses three
different data structures: images, points, and matches. For the three data structures, the finest granularity
of data decomposition is on a pixel, point, and match basis. That is, we can treat each individual element
independently and create a task for each element.

It is possible to use a functional decomposition for parts of correspondence finder. For example, Fig-
ures 3 and 4 illustrate that we can use a functional decomposition for modules Corner, Convolve, PtNbrs,
and CandMatch. However, we did not implement any functional decomposition since it is difficult to
achieve using MPI.

3.1.2 Communication

The communication patterns depend upon the data element type.

Pixels
For the image data, each task needs to communicate with its neighboring tasks. The amount of commu-
nication depends upon the size of our convolution masks. Our largest mask is which means that
each task must communicate with two adjacent neighbors to the north, east, south, and west. We perform 6
convolutions (we implement Gaussian Smoothing as a convolution).

Points
During correspondence finder, each point needs to obtain copies of neighboring points in the same image
and in the other image. We perform this communication during the point phase and at the beginning of that
match phase. The amount of communication depends upon the number of neighboring points, . For
the same image, we look in a window with a radius of (where is the width of the image) around
a given point. For the other image, we look in a window with a radius of . In the point phase, we
obtain the neighboring points in 4 places, twice in PtNbrs and twice in CandMatch, resulting in
communication operations. We also need to perform a global communication operation in order to group all
the points for later phases. In the match phase, we look at the number of neighboring points in PtNbrs and
GetSupMatch. The amount of communication is .

Matches
For each match we calculate a score for its supporting matches. The number of supporting matches depends
upon the number of matches that are close by in the image (we explain the algorithm in Section 2). We only
compute the score once which results in communication steps for each point, where is the number
of neighboring matches for each match. We need a global communication step to sort all matches by their
supporting scores. The communication pattern in the final step of correspondence finder is very complex.
Each match consists of two points. For each match, we obtain the matches that each point is involved in.
For example, if a match has point 10 and point 30, but point 10 is also involved in 5 other matches. Our
algorithm iterates over each match several times and requires communication each time.
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Figure 6: Points Data Structure
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Figure 7: Match Data Structure

3.1.3 Agglomeration

We need to agglomerate pixels, points, and matches to reduce communication. For pixels, the most natural
grouping is to agglomerate by rows in the image. On a four processor machine, we divide the image into
4 parts. Using this agglomeration, the only communication involves the pixels on the borders. For points
and matches, the easiest agglomeration is to group the points and matches that are created on the same
processor. For example, we agglomerate all the points created on processor 2. Our results show that this is
not the most efficient agglomeration since the points and matches end up unevenly distributed among the
processors. Each point and match is involved in communication with many other points and matches so this
agglomeration does not have any effect on communication.

3.1.4 Mapping

Mapping is simple. We allocate each image agglomeration to a different processor.

3.2 The Index List Version– Serial (Serial1)

Our initial version of correspondence finder eliminates all references to the KBV library routines. We
designed a set of data structures to manage points and matches. Dawn Werner started this process by
defining a data structure for images [Wer96]. Our design of the data structures for the serial version takes
into account our goal of producing a corresponding parallel version.

3.2.1 Point and Match Data Structure

Figures 6 and 7 illustrate the point and match data structures for the serial version. The two data structures
are very similar. We represent an individual POINT or MATCH as a structure, or record. We have different
data structures to represent sets of points and matches. In Figures 6 and 7, the sets are POINTSET and
MATCHSET. In the following discussion, we describe the point structure in more detail. The match data
structure is similar (in most cases just replace POINT with MATCH). The difference between the two data
structures is the actual fields which make up a POINT and MATCH.

The significant part of the actual point token set is the array of POINTINDEX. The POINTINDEX array
represents the points in a token set. A POINTINDEX is a pointer into the collection of points. It is not
essential to use index values to represent a token set in the serial version, but we use index values instead
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of actual pointers to facilitate parallelization. We represent the complete collection of points for a single
image using a POINTARRAY. A POINTARRAY is an array of POINT structures. There is a single copy
of each POINT in the POINTARRAY, but multiple token sets may reference a single POINT. We use the
POINTARRAY table to maintain separate collections of points. We create a separate collection for the points
found in image 1 and the points found in image 2. The tableindex field of MATCHINDEX indicates the
appropriate collection.

It is important to note the interaction between the point and match data structures. Figure 6 shows that
a point contains a list of matches (i.e., a match token set). In Figure 7, we see that a match consists of two
points. The interaction is not significant for the serial version, but it has significant impact on parallelization
strategy.

3.2.2 Evaluation of Serial Version

Our serial version does not fully work on several images. For some images, the program fails due to a
memory allocation.

Parts of our serial version run more quickly than the original KBV version. We believe the performance
improvements are due to our point and match token set library routines. We only implement the required
token set functionality for our application. The KBV libraries are more general and more complex. However,
our code does not always run more quickly. In particular, the phase which identifies supporting matches
runs very slowly for images containing a large number of matches. The inefficiency is from the union and
intersection operations we perform on the match token set. Using our data structure, union takes time
and intersection takes time.

3.3 The Index List Version– Parallel (Parallel1)

We base our parallel version of correspondence finder on the serial version from the preceding section. We
use MPI to handle communication. Our parallel algorithm follows the SPMD programming model. In the
SPMD model, each processor runs the same program, but on different data. As we previously mentioned, the
algorithm operates on three types of data structures: images, points, and matches. We discuss our parallel
implementation in terms of these data structures.

3.3.1 Image Phase

The image phase is responsible for reading two images from disk and finding significant points, or corners,
on each image using a series of convolutions5.

We divide the image equally among the processors. The image size that each processor reads in and
operates on is the total image size (where is the number of processors). We partition the image by
row (e.g., on a system with 4 processors, processor 1 contains the top 25 rows of an image with 100 rows).
The image phase requires little communication. Each processor sends rows to the neighboring processors,
where depends upon the convolution mask size. Our algorithm uses 3 3 and 5 5 convolution masks.
Note that processor 1 and processor P only have 1 neighboring processor. For the 3 3 mask, each processor
sends 1 row and for the 5 5 mask, each processor send 2 rows. The communication occurs three times
during the image phase since we update the image pixel values and then continue to perform calculations.

5This part of the algorithm was already parallelized by Dawn Werner.
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Figure 8: Diagram of a distributed point set.
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Figure 9: Diagram of a local point set.

3.3.2 Point Phase

The point phase finds neighboring points within an image and in the other image. We maintain points in
point sets which come in two flavors: distributed and local. Both types of point sets have their constituent
points spread across the processors. The difference occurs in where they store the knowledge of which
points are members of the point set. As shown in Figure 8, a distributed point set has only partial knowledge
about which points are its members on any one processor. A local point set (Figure 9) has this information
on a single processor.

We use the owner computes rule for changing fields of a point record. Any processor may request
a copy of a point record, but only the processor which owns the point is allowed to update the record.
The owner computes rule works well up until the points’ matches field must be updated. When a match
is created, the matches field must be updated for both component points, but these points may reside on
different processors. This problem limited our parallelization effort on this implementation.

Points reside on (and are owned by) the processor on which they were created (during the image phase).
Hence, the distribution of points depends on the distribution of the image and where points are found in
the image. Operations over points are performed by traversing a point set. For distributed point sets, each
processor works on their local points6 independently. For local point sets, the processor must collect the
points in the point set which reside on other processors. Therefore, communication is in the form of requests
for remote point records and the subsequent fulfillment of these requests.

For each point set, we send each processor a single request for all the remote points that it owns. The
retrieved points are maintained as part of the point set. Hence, any computation which uses a point set first
collects all the remote points (Figure 10), computes on its local copy of the points (but may only update
those points which the processor actually owns), and finally deletes its local copies of remote points. The
local copies of remote points are deleted in lieu of a more sophisticated coherency protocol.

Evaluation
This design emphasizes scalability by ensuring that memory requirements per processor decreases as the
number of processors increases. Hence, copies of remote information are not maintained longer than neces-
sary, and point sets are only as large as necessary. However, our strategy has several problems. The first and
most significant is that the owner computes rule is insufficient because the creation of a single match may
trigger the update of points on two separate processors. Second, the SPMD model communication must
be entirely regular, otherwise one is forced to use loops and barriers to ensure that all communication is

6Note that a local point is different from a local point set. A local point is one that is owned by the processor which is accessing
it. The opposite of a local point is a remote point.
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Figure 10: Diagram of a local point set with copies of remote points.

complete. The algorithm structures computation in the match phase as a traversal over a distributed point set
(i.e., all the points in an image) with traversals over local point sets nested inside. Hence, communication
is predictable if all the processors have exactly the same number of local points in the distributed point set
(which is typically not the case). Augmenting correspondence finder with the appropriate loops and barriers
overly complicates the code. Finally, because communication is performed on a per point set basis and
a single point is a member of many point sets, the same point is likely to be communicated to the same
processor many times which leads to substantially wasted communication.

3.3.3 Match Phase

The match phases consists of several steps (see Figure 5 or steps 4–9 in Section 2). In our parallel version,
we only implement the step which creates the matches from the set of points (called PtMatch).

PtMatch iterates over each point from one of the images. Each processor operates on the points created
by the processor in the point phase. For example, if processor 1 creates 40 points in the point phase, then
PtMatch iterates over 40 points on processor 1. For each point, PtMatch also iterates over the neighboring
points from the other image7. However, the processor may not have local copies of the neighboring points
so communication must occur to obtain the points. At the beginning of each iteration of PtMatch, we need
to communicate with the other processors to obtain local copies of the neighboring points ( Figures 8, 9, and
10 illustrate the parallel point data structure).

PtMatch also operates on a small portion of each image which is centered around each point (a radius
of 7 pixels). Recall that each processor only maintains part of the image. For local points, we need to
communicate with neighboring processors to obtain rows on the border. However, for non-local points we
need to communicate with the other processors to obtain the whole window.

Our implementation sends parts of image 1 and image 2 to the other processors. For image 1, each
processor sends the top 6 rows to the previous processor and bottom 6 rows to the next processor. The

7The set of neighboring points are computed during the point phase.
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communication for image 2 is more complex. Each processor sends all of its portion of image 2 to the other
processors. The number of processors is , where is the number of
pixels in which a neighbor point may be found. In our implementation, we end up copying the image to all
the other processors since the radius is so large8.

Evaluation

As we mentioned, we have only parallelized the PtMatch module. Unfortunately, this module does not
work correctly. We did not continue with parallelizing the rest of the match phase since we found that this
parallelization strategy does not work. We address the problems in Serial1 and Parallel1 by redesigning
correspondence finder.

One problem we address in our second parallel version is that PtMatch needs to read part of the images
in order to compute matches. This implementation relies upon a lot of unnecessary communication to pass
portions of the image to all the processors. One solution is to have each processor read the entire image (but
each processor only operates on part of the image during the image phase).

3.4 The Bit Vector Version– Serial (Serial2)

As noted in Section 3.2, our first implementation has several problems. In our first version, operations such
as union and intersection are very inefficient. Also, our first parallelization strategy is not very efficient.
We design and implement a second version to address these problems. We use bit vectors to improve the
performance of the union and intersection operations and to save space. We also implement decentralized
point and match data structures which facilitate parallel operations. We discuss our new decentralized data
structures in Section 3.5.1.

3.5 The Bit Vector Version– Parallel Decentralized(Parallel2)

In this section, we discuss the implementation of our second parallel version. We base the parallel version
on the serial version, Serial2. This parallel implementation addresses some of the inefficiencies in the first
version. The main change is that we implement decentralized data structures for the points and matches. We
discuss the decentralized data structures in more detail below.

One benefit of the bit vector representation is that we have been able to eliminate the append tokens part
of the image phase (i.e., the last box, AppendTks, in Figure 4). Although we eliminate append tokens in the
serial version, the parallel version benefits the most from this change. Eliminating AppendTks improves
overall performance because the code is sequential and has a negative impact on speedup. Another benefit
is that we save heap space and reduce the amount of data involved in communication operations.

3.5.1 Decentralized Data Structures

Based upon our experience from our first parallel version, we rarely need to pass an entire point or match to
another processor. The decentralized data structures enable the processors to pass only essential information
to other processors. In our first parallel version, if a processor needed to send only one field from the point
data structure to another processor, it had to send the whole point. We have broken up the point and match
data structures so that we only send the essential parts.

Figure 11 illustrates the decentralized data structure for points. We only show a few of the fields that we
associate with points. We maintain a similar structure for the matches. As we have mentioned, we represent
token sets as bit vectors. Our program creates many different instances of the token sets so the space saving
is substantial because we only need to create a bit vector for each token set. The “fields” representing a

8The radius is half the image.
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Figure 11: Decentralized Data Structure

point are the other structures in Figure 11 (i.e., X, Y, Intensity, and Neighbors). We represent each field as
an array, where the size of each array is the number of points or matches. We use the position in the bit
vector to index into the field arrays. For example, if bit number 10 is 1, then the X and Y values for the point
are X[10] and Y[10].

The fields of the data structures are independent which means that we can manipulate the X field without
worrying about the other fields. The independence property is useful when we need to pass information
among the processors. For example, we can send the neighbors field to other processors without having
to send any other field associated with a point. This reduces the amount of communication the algorithm
performs during runtime.

3.5.2 Image Phase

A significant change in the image processing phase is that each processor reads the complete image. How-
ever, as with our first version, each processor only operates on of the image. Having each processor
maintain the whole image reduces the complexity in the match phase.

Reading the whole image only slightly reduces the amount of communication during the image phase.
We save the initial communication step which sends the rows on the border to the other processors. However,
Gaussian Smoothing updates the pixels in the image and each processor must send the new values to the
neighboring processors. Both versions of the parallel algorithm perform this update.

We have an interesting implementation detail to note in this phase. We initially used MPI Send() to
send data to other processor. For large images, our program halts in the MPI Send() call while passing
messages in the corner detection code. The reason the program halts is because the buffers in MPI Send()
become full. We solve this problem using MPI Bsend() which uses a programmer allocated buffer. An-
other possible solution is to use MPI Isend(), the non-blocking send routine.

3.5.3 Point Phase

The point phase consists of two routines and the program calls each routine twice, once for each image.
For each processor, both routines iterate over its set of local points (i.e., the points that were computed on
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that processor). If the points are evenly distributed among the processors, then each processor operates
on points and performs the work compared to the serial version, where is the number of
points (corners) and is the number of processors. In practice, the points are not evenly distributed and the
amount of work each processor performs is uneven. At the end of the points phase, each processor copies
its neighbor and the support neighbor information to the other processors using two MPI Allgatherv()
calls.

3.5.4 Match Phase

We parallelize most of the match phase (steps 4–7 in Figure 2, but we did not parallelize the final two steps
in the algorithm which are responsible for calculating the strength of each match, selecting the best matches,
and discarding inconsistent matches (steps 8 and 9 in Figure 2 and the for loop in Figure 5). We believe
this part of the algorithm will not benefit from parallelization since it is inherently sequential. In the rest of
this section, we discuss the details of the parts we parallelized.

The initial step of the match phase iterates over the set of local points and creates matches. For each
local point, the algorithm iterates over the set of neighboring points in the other images. The point phase
computes the set of neighboring points. In order for our algorithm to work, we must have a local copy of
every point from image 2. After the point phase computes the set of local points, it also copies the points to
the other processors using MPI Allgatherv().

Similar to the serial algorithm, each processor preallocates space for the match token set. We com-
bine the bit vectors created by each processor after this initial step using the MPI Allgatherv() com-
mand. A match consists of a point from image 1, a point from image 2, and a correlation value. We
issue three MPI Allgatherv() commands; one for each point and one for the correlation value. After
the MPI Allgatherv() commands complete, each processor contains a copy of the entire match data
structure. We make a copy on each processor for the later phases in the algorithm.

One change in the parallel version is that we create a match and associate the match with two corre-
sponding points during two separate passes. The serial version is able to do this in a single pass; create
the match, assign the match to point 1, and assign the match to point 2. Unfortunately, on the parallel
version, another processor may own point 2. Recall that our parallel program follows the owner computes
rule which means that a processor cannot alter a point or match that it does not own (i.e., a processor only
changes points and matches that it created). We overcome this limitation by updating the match field for
each point after we copy the match data structure to each processor. After we update each point’s match
field, we copy the match field information to each of the processors using MPI Allgatherv().

Identifying supporting match pairs and computing a cost for each pair (steps 6 and 7) requires that we
iterate over the set of local matches (i.e., the set of matches created by a processor). Similar to the point
phase, if the matches are evenly distributed among the processors, then each processor operates on
matches, where is the number of matches and is the number of processors. Our experiments show that,
in general, the matches are not evenly distributed which means each processor performs a different amount
of work.

The algorithm to compute supporting match pairs iterates over the supporting neighbors for each local
match. We compute the supporting neighbors in the point phase (step 2), and we copy the information
to the other processors. We copy the support match pair data to the other processors so we can compute
the supporting match scores. The algorithm to compute the support match score iterates over the set of
supporting matches for each local match. The parallel code for computing supporting match scores is
straightforward and does not require any new communication. By this stage, each processor maintains local
copies of each point.
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Image Size Points (left) Points (right) Matches
Baballe 768x576 34 33 41
SmRub 768x576 180 142 147
Sport 768x576 117 105 116
Hpair 230x260 306 298 203
Inria 512x512 356 563 680

(l) 512x257Office
(r) 512x256

307 306 962

(l) 386x644Pair
(r) 403x630

1015 657 359

Table 1: Test Images

4 Experiments

In this section, we evaluate the performance of correspondence finder. We have a test suite of seven image
pairs (see Appendix A). Our test suite contains images with varying size and content. Our image sizes
range from 59800 to 442368 pixels per image (see Table 1). The image pairs Hpair and Office have a small
displacement between the cameras that took the image. On the other hand, SmRub, Sport, and inria have
a relatively large displacements between cameras. The image pair Baballe has an object in one image that
is not in the other as well as a large displacement. The Pair image pair has a small displacement, but the
images are of different sizes and brightness.

Table 1 lists the 7 images we use to evaluate correspondence finder. The name of each image is in
Column 1. Column 2 lists the width and height of each image. Note that the left and right images for Office
and Pair are different sizes. Columns 3 and 4 show the number of points (corners) we generate for the left
and right images, respectively. Finally, we list the number of matches in Column 5.

We run our experiments on a four-node IBM SP. We run our experiments over relatively idle processors,
however, we expect small perturbations in execution times compared to single user mode.

4.1 Execution Times

Tables 2–4 list the wall-clock execution times for three of our implementations: the serial bit vector imple-
mentation (serial2), the parallel index list implementation (parallel1), and the parallel bit vector implemen-
tation (parallel2).

Table 2 lists the wall-clock execution times for our serial bit vector implementation (Serial2). The
total execution time is not a simple function of any one parameter. Corner dominates the time for larger
image pairs, but only if they have few points and matches. Images with the most points and matches have
the longest execution times. Our smallest images, Hpair, have the lowest execution times despite having
a relatively large number of points. The Hpair images have the same number of points as Office but save
time in PtMatch and the final matching phase because Hpair has far fewer matches. Hence, execution time
depends on the number of matches. Yet, the Office images have nearly three times the matches as the pair
images, but Office’s execution time is only 27% that of Pair’s. The difference between these image pairs
occurs in PtMatch and is attributable to the difference in the number of points. Hence, the number of points
is also an important factor in the overall execution time. The Inria images have a high number of points and
matches and achieve the second highest execution time.

Our first parallel implementation only correctly executes until the CandMatch module. Hence, Table 3
lists the wall-clock execution time up to and including CandMatch. The times in this table are dominated
by the time to read images (ReadImg) and identify corners (Corner).
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Image ReadImg Corner PtNbr CandMatch PtMatch SupMatch+Match Total
Baballe 0.63 14.78 0.01 0.01 0.21 0.07 15.71
SmRub 0.63 14.88 0.19 0.2 2.86 0.67 19.43
Sport 0.63 14.9 0.08 0.1 1.9 0.18 17.79
Hpair 0.09 2.06 0.43 0.69 8.04 0.44 11.75
Inria 0.36 8.58 1.54 1.64 33.73 6.32 52.17
Office 0.18 4.45 0.62 0.76 12.29 9.73 28.03
Pair 0.36 8.5 3.52 5.25 81.05 2.35 101.03

Table 2: Execution times for various modules in Serial2

The execution times for our parallel bit vector implementation (Table 4) has much lower overall exe-
cution times than our previous parallel implementation despite doing more work (i.e., the entire correspon-
dence finder algorithm). In fact, every module runs more quickly in our second parallel implementation.
ReadImg runs faster because we modified the way images are read into each processor. Corner runs much
faster because we have eliminated the AppendTks module and many “malloc” calls. PtNbr and Cand-
Match benefit from the use of bit vectors to represent point sets.

In comparing the serial and parallel bit vector implementations, the execution time for each module is
comparable except for Corner. For a single processor, the parallel version of Corner is roughly twice as
slow as the serial version.

4.2 Speedup Graphs

Tables 12–16 shows the speedup graphs for the parallel index list version (parallel1), and Tables 17–23
shows the graphs for the parallel bit vector version (parallel2).

The overall speedup of our initial parallel implementation is fairly good, with the exception of the Pair
image. An examination of Pair reveals that the distribution of points when we use three or more processors
is very poor. The distribution of points on each processor for the left image is 166, 708, and 141 points
using three processors and 75, 400, 430, and 100 points using four processors. The distribution is similar
for Pair’s right image.

Figure 13 shows the times for ReadImg are erratic. There are several reasons for the variations. First,
the image files are located on two different disks, one installed in the SP’s control workstation and one
internal to one of the SP nodes. These disks are mounted on all of the SP nodes via NFS. The time to
read the images is such a small number (varying between a half and three seconds) that it is quite likely
that network traffic and contention for the disk between processors and other users causes the unpredictable
behavior.

Figure 14 shows encouraging speedups in Corner for all images which is a result of locality and regular
communication patterns. However, performance does degrade as we add processors. The speedup values in
PtNbr are erratic (Figure 15), but are very good for several images (HPair, Inria, and office). The distribution
of the points affects the effectiveness PtNbr. Poor speedups occur when the points are not evenly distributed
among the processors. Lastly, CandMatch has relatively low speedup and performance degrades on several
images. Again, we attribute these problems to poor point distribution.

The overall speedup of our parallel bit-vector version looks very similar to the speedup in our initial
parallel implementation but the problem with Pair’s distribution of points remains. We do achieve a slightly
higher degree of speedup on each image in comparison to the parallel index list version.

The speedup graphs (Figures 18– 23) for the modules in Parallel2 are not regular. ReadImg suffers
from the same problems as the original parallel version. Corners exhibits excellent speedup because it
processes image data. PtNbrs and CandMatch are very sensitive to processor load and network traffic
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Image Num procs ReadImg Corner PtNbr CandM Total
Baballe 1 1.98 29.42 0.06 0.06 31.36

2 1.62 15.00 0.04 0.05 16.74
3 1.94 13.41 0.03 0.04 15.43
4 1.12 11.64 0.03 0.04 12.85

SmRub 1 2.06 29.56 5.11 5.28 41.97
2 1.78 15.33 3.69 3.22 24.83
3 1.85 11.84 2.43 2.02 18.72
4 1.25 10.77 2.20 2.04 16.96

Sport 1 2.23 29.62 1.77 1.79 35.27
2 1.56 15.93 1.19 1.32 20.26
3 1.74 13.29 0.85 0.90 17.05
4 1.39 11.57 0.82 0.97 15.23

Hpair 1 0.29 4.09 21.94 34.68 60.96
2 0.34 2.16 10.24 22.91 38.33
3 0.44 1.41 7.09 15.82 27.80
4 0.41 1.24 5.69 14.18 25.25

Inria 1 1.16 17.83 133.18 115.08 267.05
2 1.04 8.99 77.02 119.99 233.86
3 0.84 7.84 45.81 102.35 168.71
4 0.99 6.95 36.97 77.85 135.77

Office 1 0.80 8.89 31.61 36.26 76.16
2 0.57 4.60 20.09 28.57 60.18
3 0.60 4.32 13.26 20.17 41.49
4 0.57 3.69 11.05 16.30 35.83

Pair 1 1.28 17.07 524.98 713.34 1234.98
2 1.09 8.83 260.27 388.16 664.74
3 1.09 5.98 309.13 345.92 802.88
4 1.31 4.39 224.22 285.31 569.31

Table 3: Execution times for various modules in Parallel1

because of their extremely short running times. PtMatch does not achieve a very high speedup because of
poor point distribution. Our test images do not exhibit many matches, so by the time matches are distributed
among the processors the supporting match has relatively few matches to work with. A point load balancing
scheme might correct the behavior of images like Pair.
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Image Num procs ReadImg Corner PtNbr CandM PtMatch SupM Total
Baballe 1 0.655 29.383 0.011 0.01 0.211 0.044 30.317

2 0.649 15.996 0.008 0.008 0.18 0.036 16.88
3 0.651 11.93 0.004 0.004 0.14 0.018 12.785
4 0.647 9.598 0.004 0.004 0.137 0.012 10.445

SmRub 1 0.654 29.636 0.181 0.196 2.846 0.425 33.941
2 0.648 16.343 0.138 0.143 2.436 0.404 20.116
3 0.654 12.329 0.091 0.095 1.489 0.327 14.596
4 4.633 9.622 0.053 0.055 1.614 0.197 12.681

Sport 1 2.027 29.653 0.091 0.101 1.925 0.118 33.825
2 0.659 16.099 0.072 0.078 1.596 0.097 18.753
3 0.655 11.965 0.027 0.031 1.275 0.093 14.162
4 3.565 10.703 0.059 0.072 1.4 0.095 12.316

Hpair 1 0.099 4.103 0.417 0.686 8.277 0.262 13.849
2 0.101 2.236 0.144 0.222 5.781 0.141 9.027
3 0.172 1.413 0.201 0.35 3.88 0.109 6.083
4 0.438 1.223 0.179 0.32 3.467 0.096 5.26

Inria 1 1.137 17.859 0.577 1.595 33.765 3.846 58.789
2 0.44 9.2 1.411 1.433 30.19 3.104 45.798
3 0.412 6.285 1.034 0.992 19.041 2.304 30.131
4 0.41 4.669 0.796 0.741 16.434 2.442 26.212

Office 1 0.214 8.861 0.592 0.724 12.235 6.027 28.657
2 0.252 4.507 0.492 0.611 10.781 3.879 20.684
3 0.208 3.033 0.329 0.405 6.831 2.489 13.459
4 0.219 2.722 0.218 0.268 6.13 1.778 11.834

Pair 1 1.203 17.107 3.382 5.039 80.785 1.019 108.56
2 1.167 8.741 1.537 2.269 42.924 0.467 58.054
3 0.464 5.854 2.47 3.298 57.005 0.772 69.933
4 0.565 4.434 1.651 1.691 37.261 0.543 47.103

Table 4: Execution times for various modules in Parallel2
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Figure 12: Overall speedup (Parallel)
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Speedups for individual stages in Parallel
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Figure 13: Speedup for Read Image
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Figure 14: Speedup for corners
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Figure 15: Speedup for point neighbors
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Figure 16: Speedup for candidate matches
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Figure 17: Overall speedup (Parallel2)
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Speedups for individual stages in Parallel2
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Figure 18: Speedup for Read Image
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Figure 19: Speedup for point neighbors
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Figure 20: Speedup for Point matches
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Figure 21: Speedup for corners
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Figure 22: Speedup for candidate matches
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Figure 23: Speedup for Supporting matches
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5 Evaluation of our Implementations

This section contains an evaluation of our parallelization effort and suggestions for additional work to be
done.

5.1 Evaluation

Even though we obtain good speedups across a small number of processors, correspondence finder is not
the best candidate for parallelization because

Correspondence finder has little locality (or regularity) of reference for the point and match records,

Correspondence finder has a high ratio of communication to computation, and

the final relaxation step is inherently sequential.

We mitigate the severity of these problems by aggregating communication and maintaining local copies of
remote data. However, we sacrifice generality (in the sense that our point sets may not work well for another
application) and scalability.

The intermediate-level vision code in correspondence finder does not exhibit the locality of communi-
cation that the image processing portion exhibits. Interestingly, points appear to have locality because they
have a position in image space. However to process a point, correspondence finder must access “neighbor-
ing” points and the search window for these points is quite large. In contrast, the image processing portion
of match uses search windows that are three to five pixels wide. Figure 24 depicts the search windows for
various stages of match. To build Q’s list of neighbors in its own image, correspondence finder uses a search
window with a radius of 1/4 of the image dimensions. To build Q’s list of potentially matching points, cor-
respondence finder uses a search window with a radius of 1/2 of the image dimensions. To find supporting
matches for Q, correspondence finder uses a search window with a radius equal to the sum of the other two
radii. It is clear from Figure 24 that accessing the points required to process Q requires substantial commu-
nication with most, if not all, other processors. Therefore, with the current window sizes, correspondence
finder does not benefit from spatial locality. We do not include the time for the relaxation step in our timings
in Section 4.

The relaxation step, which selects the best couple of matches in each iteration, is inherently sequential.
The determination of which matches are best depends on the strength of the other matches in which the
endpoints participate. Once a match is selected as best, all other matches which contain this point are
invalidated, which in turn changes the best match for other points. These interdependencies effectively
serialize the relaxation algorithm. This problem could be remedied by perhaps implementing a completely
different, parallel relaxation algorithm, however, we did not explore that possibility.

5.2 Future work

This section discusses our experiences and ideas about how the parallelization of this algorithm can be
improved.

Our current parallel implementations leave points and matches on the processor on which they are
created. This approach avoids the overhead of redistributing these data structures at the cost of causing
load imbalance. In Figure 25 we observe that for the office image pair the distribution of points per
processor is very skewed. We see the impact of this imbalance on the speedup numbers for the pair
images.
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Figure 24: The search window for point Q’s neighbors in its own image has a ra-
dius that is 1/4 of the image’s dimensions, and the search window for Q’s potential
matches in the other image has a radius that is 1/2 of the image’s dimension. More-
over, supporting matches can be found in an area whose radius is the sum of the
other two radii.

A communication step should be inserted after the image phase and after PtMatch to redistribute
points and matches, respectively. We designed our indexing scheme in both our parallel implementa-
tions to support redistribution, so this should be straight forward. Care must be taken, if the algorithm
is to retain what little locality it has.

The functional flow diagrams in Figures 3–5 indicate that functional parallelism is available. How-
ever, our implementation currently does not take advantage of any functional parallelism. We do not
have enough processors to justify extracting more parallelism and adding functional parallelism might
aggravate communication issues because the results of work done by separate processors would have
to be combined.
Functional parallelism may prove useful even if the number of processors is not increased. Much of
our communication uses collective communication operations which causes an implicit barrier and
puts a lot of data in the network at once. Having additional processes per processor may allow the
processors to remain busy during communication operations. However, it is not clear how well, if at
all, MPI supports this approach.

Not all of the modules in the match phase take full advantage of the bit vectors in the bit vector
implementation. Our bit vector manipulation code only works on bit vectors of equal size, but module
PtMatches builds bit vectors of varying lengths because it does not know how many matches will
be generated. Therefore, later modules (especially GetSupMatch) are not able to use bit vector
operators. Correcting this problem will result in faster serial and parallel implementations.

Our implementations are currently limited to reading images from KBV’s proprietary format. This
limitation has made collecting test data difficult and reduced the number of available images. Several
additional experiments are possible:

– Use larger images. Larger images should result in better speed-up by amortizing the cost of
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Figure 25: This graph shows the load imbalance caused by allowing points to re-
main on the processor on which they are created. The data for graph is taken from
the office images (Figure 31).

accessing distributed data.
– Compare the speedup on images of the same size with a wider variation in the number of corners

and matches.
– Use an image sequence of a camera moving towards an object with many corners against a

featureless background. This test may demonstrate the effects of locality, though redistributing
points and matches may obviate this test.

– Run our bit vector parallel implementation on a machine with more nodes. It would be interest-
ing to determine where speedup tapers off and why9.

6 Conclusions

For the portion we parallelize, we are able to obtain good speedups on a computer vision application that
includes intermediate-level, as well as low-level, vision code. The intermediate-level vision code does not
exhibit the high regularity and local communication of most image codes, however, with careful design, we
are able to mitigate the communication costs. To find a good design, we leverage the lessons learned from
developing our initial version to the design of the second version.

Our experiments show that the performance of correspondence finder is sensitive to the number of points
and matches and that parallel versions of correspondence finder are in turn sensitive to the distribution of
points and matches. Hence, any future parallel implementations should be careful to evenly distribute these
data structures.

9Note that the current implementation may need some modifications in its handling of match bit vectors to handle processors
with zero matches.
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We also find that mapping an application with data dependent communication patterns onto the SPMD
model is quite difficult. The SPMD model requires that the sender and receiver anticipate each other’s
actions or that they continually poll for messages. MPI does not provide architecture independent polling
support so we do not use this approach in correspondence finder. We engineer around the problem in our
second parallel implementation by communicating data fields for all of the points’ (or matches’) at once.
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A Images

This section presents the image data we used as test cases for our experiments in Section 4.
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Left Image– Baballe0

            

Right Image– Baballe1

Figure 26: Baballe stereo image pair

            

Left Image– SmRub0

            

Right Image– SmRub1

Figure 27: SmRub stereo image pair

            

Left Image– Sport0

            

Right Image– Sport1

Figure 28: Sport stereo image pair

            

Left Image– hpairl

            

Right Image– hpairr

Figure 29: hpair stereo image pair

            

Left Image– inrial

            

Right Image– inriar

Figure 30: inria stereo image pair

            

Left Image– officel

            

Right Image– officer

Figure 31: office stereo image pair
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Left Image– pairl

            

Right Image– pairr

Figure 32: pair stereo image pair
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