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Abstract

The Distributed DSS is a testbed for exploring issues involved
scheduling in an environment of cooperative distributed agents, none
of which has a complete view of the resources available, or of the tasks
to be scheduled. In a previous work, we introduced a tightly coupled
parallel repair process into the distributed scheduling process. In this
repair process, agents with locally unresolvable schedule conflicts were
allowed to initiate a global search process for a set of resource assign-
ments that would allow constraint relaxation to be avoided. Because
all agents took part in this global search and performed no other con-
current scheduling tasks, we termed this process synchronous repair.

The success of the synchronous repair method led us to speculate
that we could reduce the overhead of exchanging meta-level informa-
tion by omitting to coordinate and by allowing the agents to resolve
conflicts by cooperatively repairing schedules. In this paper, we eval-
uate the performance of a distributed scheduling heuristic incorpo-
rating different levels of global knowledge in a distributed scheduling
system, with and without the synchronous repair mechanism enabled.
We conclude that the repair process is synergistic with an informed
scheduling heuristic, that global knowledge leads to better schedules,



and can be incorporated into scheduling heuristics at a relatively low
cost.



1 Introduction

The Distributed DSS is a testbed whose purpose is to explore issues involved
in job-shop scheduling in an environment of cooperative distributed agents,
none of which has a complete view of the resources available, or of the tasks to
be scheduled. In a previous work [9], we introduced a tightly coupled parallel
repair process into the distributed scheduling process. In this repair process,
agents with unresolvable schedule conflicts were allowed to initiate a global
search process for a set of resource assignments that would allow constraint
relaxation to be avoided. Because all agents took part in this global search
and performed no other concurrent scheduling tasks, we termed this process
synchronous repair.

We now explore the implications of the distributed repair process on the
need for communication between agents. If we can produce high quality
schedules by repairing the results of a loosely coordinated system, can we
also produce high quality schedules if agents coordinate seldomly or not at
all? Specifically, can we reduce the overhead of exchanging meta-level in-
formation by allowing agents to base scheduling decisions solely on local
views of constraint tightness, and by allowing the agents to resolve conflicts
by cooperatively repairing schedules? In this paper, we examine the perfor-
mance of distributed scheduling heuristics incorporating either local or global
knowledge, with and without the synchronous repair mechanism enabled. We
conclude that the repair process is synergistic with an informed scheduling
heuristic and that increased global knowledge leads to better schedules.

We present our experimental results in the domain of an airport ground
service scheduler. Because of our attempts to capture many of the features of
a complex real-world scheduling problem, we feel that these results generalize
to distributed resource allocation or planning architectures in which:

e Agents receive tasks in batch, and schedule or plan simultaneously.

e The coordination relationship between agents is cooperative, based on
task or resource sharing.



e No single agent has knowledge or responsibility for all instances of a
particular resource type.

e Individual instances of resources are not interchangeable due to factors
such as location, travel time, or capacity.

e Some version of a “best-first” heuristic has been demonstrated to work
for single agent versions of the system.

In the following sections, we first describe our experimental testbed. We
then describe a scheduling heuristic in which global knowledge can be incor-
porated at fairly low cost. Following this, we briefly review the distributed
repair algorithm described in [9]. We then present our experimental results

and conclusions.

2 Overview: The Distributed DSS

In order to test our approach to solving distributed resource-constrained
scheduling problems, we have designed a distributed version of an existing
knowledge-based scheduling system called DSS (the Dynamic Scheduling
System) [4]. DSS provides a foundation for representing a wide variety of
real-world scheduling problems. The DSS is a micro-opportunistic (c.f. Mi-
croboss [12]) scheduler based on a blackboard architecture. Orders are rep-
resented as tasks and subtasks — each resource-requiring subtask is assigned
a service goal. These goals are assigned ratings according to the current
scheduling heuristic and are rerated whenever constraints on the goal’s or-
der or on a resource that could potentially satisfy the goal are modified.
The Distributed DSS was constructed by partitioning the resource and or-
der data structures and assigning separate resource and order partitions to
each agent. A communication facility was added to allow agents to transmit
resource requests and meta-level control information. The primary form of
cooperation in the distributed system is the lending of resources to satisfy a



remote agent’s order. Agents will also transmit information regarding their
current resource states to other agents.

2.1 The Distributed Airport Resource Management
System

The Distributed Airport Resource Management System testbed was con-
structed using D1s-DSS to study the roles of coordination and negotiation

in a distributed scheduler. Dis-ARM solves distributed Airline Ground Ser-
vice Scheduling (AGSS) problems where the function of each scheduling agent

is to ensure that each flight for which it is responsible receives the ground
servicing (gate assignment, baggage handling, fueling, etc.) that it requires
in time to meet its arrival and departure deadlines. The supplying of a re-
source is a multi-step task consisting of setup, travel, and servicing actions.
Each resource task is a subtask of the airplane servicing supertask. There
is considerable parallelism in the task structure: many tasks can be done
simultaneously, for example, planes can be serviced while baggage is being
unloaded and loaded. The choice of certain resource assignments will often
constrain the start and end times of other tasks. Only the agent that owns
the resource can identify all the current constraints on that resource and
decide whether or not it can be allocated to meet a specific demand.

2.2 Exploiting Meta-level Information

In previous work, we discussed the use of high level abstractions of other
agent’s resource requirements and capacities in the control decisions of indi-
vidual scheduling agents in a cooperative distributed scheduling system [8].
We showed how analysis of the abstracted resource requirements of remote
agents could guide an agent’s choice of local scheduling activities. We were
also able to exploit this meta-level information by allowing the scheduling
agents to make reasoned decisions about when to attempt to solve impasses
locally through backtracking and constraint relaxation and when to request



resources from remote agents. We now briefly describe these abstractions
and show how to incorporate them into a low-cost multi-perspective variable-
ordering heuristic.

2.2.1 Communication of Abstract Resource Profiles

A challenge in exchanging meta-level information is to develop abstractions
that are inexpensive to calculate and transmit, yet convey sufficiently accu-
rate profiles of agents’ resources and scheduling goals to allow other agents
to make accurate inferences about other agents’ activities. In this section,
we describe the protocol we have developed for the exchange and updat-
ing of resource profiles containing summarizations of the agents’ committed
resources, available resources, and estimated future demand.

Upon startup, each agent in D1s-DSS receives a set of orders to be pro-
cessed. The agents examine these orders and generate an abstract description
of their resource requirements for the scheduling period. For each resource
type owned by the agent, this list consists of a list of intervals, with each
interval annotated by a triple: resources in use, resources requested, and

resources available.
The request field of this triplet represents an abstraction of the agent’s

true resource requirements. Certain aspects of a reservation such as mobile
resource travel times to the objects to be serviced cannot easily be estimated
in advance. Each resource request has associated with it an earliest possible
start time (EST) and latest finish time (LFT). Because of interactions within
an order, these times are not fixed and may change as related tasks are as-
signed. The true duration of the task is often much less than LFT (task) —
EST(task) and can be estimated by the scheduling agent using its domain
knowledge regarding the typical time required to perform a task. The actual
assignment of the resource may take place at any point within the interval
(EST (task), LFT (task) — duration(task)). To capture this uncertainty, we
define a measure for each task called the average resource demand defined as
the tuple ARD(task) = [(EST (task), LFT (task)), duration(task)/(LFT (task)—



EST(task)] where the first element of the tuple indicates the interval of the
demand and the second indicates the average demand generated by the task
over the entire interval. Although less informed than the probabalistic tex-
ture measures used in [14], this measure manages to abstract both the de-

mand and the flexibility associated with a particular task. The demand for

a given resource type R at a given agent is therefore ZF‘ ARD(T;) where T
is the set of all tasks requiring a resource of type R and 7; is the ith member

of that set.
Once resource abstractions have been developed for each resource type

required (or possessed) by the agent, it transmits its abstractions to all other
agents. Likewise, it receives abstractions from all agents. These abstracted
resource profiles are used by each agent to predict when remote agents may
request resources and when the local agent may need to borrow resources.
This information guides the agent’s decision-making process in determin-
ing both when to process local goals and when and from whom to request
resources. Coordination using resource abstractions requires frequent updat-
ing of agents’ resource abstractions in order to maintain accuracy, leading
to a high overhead in terms of message passing. An update is transmitted
whenever an agent allocates, releases, or reschedules a resource such that the
number of resources requested or available during an interval changes. In a
typical run of the Distributed DSS, we have found that updating of resource
abstractions takes approximately 80% of the communication between agents.
(Approximately 15% of the communication is dialog related to the requesting
of resources and subsequent responses. The remaining messages are devoted
to initialization and to the cancellation or refinement of lent resources). For
a moderately sized scheduling run, this amounts to on the order of 800-900
communication episodes devoted to updating abstractions. Reducing the fre-
quency of these updates decreases the effectiveness of the coordination (c.f.

8, 14]).



3 Heuristics for Distributed Scheduling

The Distributed DSS is a micro-opportunistic scheduler — each agent is con-
tinually rerating service goals and opportunistically selecting the most highly
rated task to be scheduled next. The results of the scheduling episode de-
pend critically on the choice of scheduling heuristic. For the experiments
described in this paper, we implemented local and texture-based versions of
the multiple-perspective heuristic (MPH) described by [4] and demonstrat-
edto be superior to several other scheduling heuristics (such as minimum
earliest starting time, minumum late finishing time, first-come-first-served,
and minimum job slack [2]) at reducing order tardiness in both the AGSS and
the turbine component plant [10] benchmarks. The local heuristic bases its
rating only on an agent’s local state. The texture-based version attempts to
form an approximation of the global value that would be achieved by a cen-
tralized agent by using the abstracted resource profiles transmitted to each
agent.! We present the distributed texture-based version of this heuristic in
some detail, first because it outperforms previous distributed heuristics that
we have tried, and secondly, because the methodology we used to derive this
heuristic may prove of interest. These rating functions are variations of the
‘most-tightly-constrained variable’ heuristic. They allow the agents to select
the next task to be scheduled based on some measure of its criticality based
either on a local or global perspective. Functions such as these have been
shown to be effective in single agent scheduling systems [11] and this is our
motivation for employing these rating functions in our distributed system.

We note that the choice of a heuristic function is dependent on the nature
of the cooperation between agents. In the DIS-ARM scenario, agents are
assumed to be completely cooperative. In such a situation, it is appropriate
for agents to consider the states of other agents. In a competitive situation,
a local heuristic might actually be a better choice.

LA texture (c.f Fox) is an abstraction that allows one to get an overview of some feature

of a domain, in this case, resource contention.



3.1 The Multiple-Perspective Heuristic

The multiple-perspective heuristic combines multiple features of the schedul-
ing environment to generate a rating for each scheduling task. Simplified, it
has the form

MPH((goal) = fr.sT(goal) * foonstraints(goal)
where the first term is a function of the latest starting time of the goal and
the second is a measure of the “tightness” of the constraints on the goal as
measured by contention with other goals, slack, and available resources. The
first term is of more consequence in a dynamic scheduling situation rather
than the batch scheduling environment of our AGSS scenario so we will not
discuss it in further detail except to say that it gives the heuristic a flavor of
dispatch scheduling when contention for resources is low.

The second term of the rating heuristic has the form

Constraints(goal) = Contention(goal) x Slack ™' (goal) * Resource_Availability*(goal)

The use of the inverse notation indicates that this term increases in direct
proportion to contention for the goal and in inverse proportion to the avail-

able slack for the goal and the availability of resources for satisfying the goal.
Resource contention is defined as

Let OG(goal) = the set of goals whose time windows overlap the time
window of the goal being rated and that can be satisfied by the same resource
type(s). Let the ith member of this set be denoted by OG;.

191 pvertap(goal, 0G;) * slack(OG;
Contention(goal) = Z’=1 over GP(QO|GO,G| i) * slack( i)

Slackis a measure of a goal’s temporal flexibility — a goal with considerable
slack can be assigned to many different time slots.

Slack™*(goal) = ExpectedDuration(goal)/(LFT (goal) — EST (goal))



Finally, resource availability is defined as follows:

Let R be the set of resources of the correct type to satisfy the goal, and
R; be the ith element of this set.

Bl Used_time(R;, EST (goal), LFT(goal))
tvatabiity-!(gout) — ZiH Usedtime(Rs, EST (goal). LF(g
Resource_Availability ™ (goal) (LFT (goal) — EST (goal)) * |

The contention component of the MPH, therefore, increases with the
number of overlapping goals, decreases when the goal has considerable slack,
and increases when there are few available resources available to satisfy the
goal within the desired time window.

A centralized and a local implementation of the MPH heuristic differ only
in their definitions of the sets OG and R. When constructing these sets, a
centralized heuristic would examine the goals and resources of all scheduling
agents. The local heuristic uses only those goals and resources known to the
agent responsible for scheduling the goal being rated.

The hypothesis underlying the development of the texture-based version
of the MPH heuristic is that employing a heuristic that incorporates the re-
sources and goals of all agents would yield superior results to those of the
local heuristic. To ease the development of the texture-based heuristic, we

first defined an oracle — a version of the MPH heuristic that was allowed
to “peek” at the actual goals and resources of all agents. Each compo-

nent of this heuristic was then compared to the corresponding component
of the texture-based heuristic during a number of scheduling runs to ensure
that they were of a comparable magnitude and the texture-based heuristic
reasonably approximated the values of the oracle. We also compared the
performance of the oracle heuristic vs. the local heuristic to ensure that our
original hypothesis regarding the value of global knowledge was correct.
Constructing a texture-based analog of the MPH heuristic using the re-
source profiles communicated by agents is made difficult because there is no
way to explicitly calculate the set OG, much less the slack of the goals in
the set. Instead, we use the average resource demand texture described in



section 2.2.1. This measure incorporates an approximation of the slack of
overlapping goals, as any goal with considerable slack will contribute less to
the demand for a resource at any given time. The contention component of
the texture heuristic is computed as:

|Agents| |R|
Sum_Demand(goal) = Z ZRequested(R;,EST(goal),LFT(goal))

i=1  j=1

|Agents| |RY|
Sum_Available(goal) = Z Z Available(R;, EST(goal), LFT (goal))
=1 j=1

Contentiontezture (goal) = Sum_Demand/Sum_Available

where R is the set of appropriate resource types owned by Agent i and
R’ is the jth member of this set.

The other two terms of the contention component are trivially calculated.
The goal is all that is necessary for the determination of slack. The resource
profiles contain sufficient information to compute global resource availabil-
ity. If received instantaneously, this value would mirror that of the oracle
heuristic, however, delays inherent in the transmission of this information
may cause it to be slightly out of date by the time it is incorporated into the
goal rating.

4 Schedule Repair in the Distributed DSS

I[terative schedule repair algorithms have been studied by many researchers,
including [7, 15, 3, 13]. In a centralized system, repairs are usually required
when jobs to be scheduled are modified, added, or removed, or when re-
sources become unavailable. Several systems, however, take the approach of
first developing an almost correct schedule and then incrementally repairing

constraint violations until a satisfactory schedule is produced [6, 5. In a

10



distributed system, repair may also be needed because of unanticipated in-
teractions with other agents’ schedules or simply to correct for a less than
optimal resource assignment. The schedule repair algorithm that we have
devised [9] may be used as a post-processing method but we have found
it most effective when used during scheduling as a way to avoid constraint

relaxations.
The schedule repair method is invoked whenever a scheduling goal can

only otherwise be satisfied by performing a constraint relaxation that would
adversely affect the order’s due date. All agents in the system suspend their
current problem-solving activities and collaboratively search for some reas-
signment of resources that would allow the current scheduling goal to be sat-
isfied without a constraint relaxation. The synchronous replanning method
is guaranteed not to violate any hard constraints of the existing partial solu-
tion — reservations may be swapped, but will not be positioned out of their

legal time windows.

4.1 The Cost of Distributed Schedule Repair

In this section, we informally discuss the cost of distributed schedule repair in
the AGSS domain. Because there is a wide spectrum of possible repair and
backtracking algorithms and trade-offs that could be made between speed
and completeness these figures are only intended to give the reader an idea
of the level of effort expended by our particular repair algorithm. Because of
the potentially high cost of distributed search, we made a conscious decision
when designing the repair algorithm to limit the scope of the search process.
The repair process for a specific delayed goal is carried out only within the
resource type satisfying that goal and consists of swapping resources in a
search for a better set of allocations. The basic algorithm is based on gap
expansion (and may fail in tightly compacted situations, even though suitable
reallocations exist).

The heuristic by which agents select potential resources to cascade in the
repair process is based on a global perspective of unused time and slack for

11



resources in a time window surrounding the resource to be allocated. Suc-
cessful repair plans tend to be quite short, with an average cascade length of
3 in the AGSS domain. The number of messages also tends to be small, with
generally less than 100 repair goals being generated and transmitted over the
course of 5 to 10 cycles (each cycle consists of one goal expansion by each
participating agent). Unsuccessful searches for repair plans tend to generate
more repair goals and messages. We have set a threshold in order to limit the
effort expended, based on our observation that a search generating more than
a couple of hundred states will likely never succeed. The number of replan-
ning episodes in a standard scheduling episode varies widely, but averages
around 10. Although the synchronous repair method performs considerably
more search than, for example, a single resource assignment method, our
initial results indicate that this may be made up for by decreased number of
knowledge source executions during scheduling.

5 Experimental Results

To answer some of the questions we have posed regarding the relative merits
of coordination vs. replanning, we have run a number of experiments using

the Distributed DSS in the AGSS domain. We chose three order sets devel-
oped for a three agent configuration of the DIS-ARM distributed scheduler

as reported in [8]. The order sets were intractable, displaying considerable
tardiness under distributed scheduling. Each order set has 40+ orders, each
of which has six or more subtasks. For each order set, we generated ten test
cases by randomly assigning resources and orders to each of the three agents.
The total number of resources provided for the 1200 and 0810 order sets
were designed to be minimally sufficient to allow all the jobs to be scheduled
— at least one resource type proves to be a bottleneck in each environment,
however a schedule with zero tardiness is theoretically possible. The 1050
order set is severely over-constrained. Each test case was scheduled using
each of the two variable-ordering heuristics, local and texture-based, both

12



with and without synchronous repair. In all episodes, meta-level informa-
tion was used to guide agent selection and resource allocation methods as
described in [8].

Figure 1 compares the results of the local, and texture-based heuristics
with and without the synchronous repair mechanism for the scenario con-
taining orders beginning at 1200 hours. In all cases, the repair mechanism
considerably improved scheduling results. The more informed texture-based
heuristics consistently out-performed the local heuristic. Figure 2 compares
the performance of the texture-based heuristic (with and without repair) with
the performance of the local heuristic with repair enabled. This latter graph
allows us to compare the relative importance of closely coupled cooperation
between agents (the synchronous repair) and loosely coupled coordination
(the texture-based heuristic). Recall that our speculation regarding the syn-
chronous repair mechanism was that it might reduce the need for meta-level
communication between agents [9]. In the 1200 order set, synchronous re-
pair greatly improved the quality of schedules produced using a heuristic
with a purely local perspective, however, the quality of the schedules im-
proved even more for the texture-based heuristic. Results for the 0810 order
set, show similar trends. In the highly over-constrained 1050 order set, the
texture measures do not perform significantly better than the local heuristics.
What’s more, resources are so tightly compacted that our repair algorithm,
which works by locating and expanding unused space in the schedule, often
cannot find opportunities to improve the schedule.

The conclusion we draw from the above is that the performance of a
coordinated repair mechanism depends in part on the quality of the solution
it begins with. Thus, the texture-based heuristic and the synchronous repair
mechanism are synergistic in nature and both mechanisms should ideally be
available in a distributed scheduler or planning system.

In Figure 3 and Table 1, we summarize the results for all scheduling
episodes.

We can see that scheduling from a local perspective was generally less
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Figure 1: The total tardiness in schedules produced for the 1200 order set
both with and without synchronous repair. Each run represents a random

assignment of resources and orders to agents.

successful than scheduling with globally-informed heuristics. The texture-
based heuristic performed well, indicating that a texture abstraction based
on average demand for resources is a good a measure of resource demand, at
least for not unreasonably constrained environments. This is an encouraging
result because the required information is inexpensive to calculate and easily

transmitted to remote agents.

6 Conclusions

We have found that tightly coupled cooperation between agents in the form of
a distributed search is a powerful method for improving the quality produced
by distributed schedulers. Additionally, we have found that we can devise a
high-quality texture-based variable-ordering heuristic using information that
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Table 1: The average tardiness of all schedules compared according to heuris-
tic and repair methods. Standard deviation is given in parentheses.

Scheduler Environment
0810 1050 1200
Local 28.3 (20.6) | 23.3 (6.3) | 13.6 (11.3)
Local (No Repair) | 53.0 (16.6) | 32.3 (8.6) | 38.3 (20.8)
Texture 991 (15.1) | 24.5 (11.3) | 3.4 (4.8)
Texture (No Repair) | 31.0 (15.0) | 32.3 (12.4) | 24.2 (12.6)

is relatively inexpensive to transmit and to incorporate into a rating scheme.
Incorporating these resource profile abstractions of other agent’s resource
availability and demands into the variable ordering heuristic also improves
the quality of schedules. Neither technique alone is a panacea — the best
schedules were obtained when loosely coupled coordination techniques were
combined with closely coupled cooperation between agents. Certain envi-
ronmental characteristics, such as a very high degree of over-constraint, may
reduce the effectiveness of both techniques.

We note that there is a high degree of variance in results depending on
the initial allocation of orders and resources to agents despite the fact that
the sets of orders and resources remain the same throughout. Such variance
is common in distributed systems in which issues of timing can critically
affect results. Identifying the features leading to this variance will lead us
towards even better algorithms for performing distributed scheduling. Some
of these features, related to interactions between asynchronous activities in

a distributed best-first scheduler, are presented in a companion paper [1].
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