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Abstract

Texture has long been regarded as spatial distributions of image gray-level variation, and texture
analysis has generally been confined to the 2-D image domain. Introducing the concept of “3-
D world texture”, this paper considers texture as a function of 3-D structures and proposes
a set of “3-D textural features”. The proposed 3-D features appear to have a great potential
in terrain classification. Ezperiments have been carried out to compare the 3-D features with
a popular traditional 2-D feature set. The results show that the 3-D features significantly

outperform the 2-D features in terms of classification accuracy and training data reliability.
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1 Introduction

Texture analysis is an important area in computer vision and has been extensively studied
(e.g. [1, 2, 3, 4]), although it is impossible to review the extensive literature here. While it
is widely accepted that terture has no formal and precise definition [2, 4, 5], it is generally
presumed to be a spatial distributions of gray-level variations, or regular structural “patterns”,
in the image. This presumption has dominated texture analysis for decades. Tamura et
al. [1] distinguished six attributes of texture: coarseness, contrast, directionality, line-likeness,
regularity, and roughness. These attributes describe how gray values change in the 2-D image
space, and many texture analysis algorithms have been proposed [2, 3, 4] based on these
and similar attributes. Tuceryan and Jain [4] identified four basic approaches to texture
analysis: statistical, geometrical, model-based, and signal processing methods. Although the
methodologies vary substantially from one algorithm to another, they generally assume that
texture is a part of the 2-D image and analysis is performed in image space. Typically, the
gray-level patterns are characterized as textural features that are extracted in a localized
image region. Recent studies, such as local frequency [5], Gabor elementary functions [6],
fractal dimension [7], and combinations of multichannel filtering and neural networks [8], are
all based on this approach.

The limitation of this traditional approach is that the 3-D properties of real world textures
are not used directly. Consider the concepts 3-D world texture and 2-D image texture that we
will use in this paper. World textures are reoccurring patterns caused by physical coarseness,
roughness, and other characteristics on surfaces of objects in the real world, and generally have
3-D structures. For example, forests and grass covers possess different roughness because trees
and grass have different 3-D structures. On the other hand, image textures are 2-D optical
patterns in the image, reflecting perspective projection of object surfaces and world textures

under particular sensor and illumination configurations. Attempting to characterize image



textures by image features does not focus upon the underlying physical properties of the
surfaces or objects creating the texture.

The traditional meaning of texture is equivalent to image texture defined here. All the
feature extraction techniques in literature [2, 3, 4] are based on the concept of image texture,
attempting to describe and discriminate 2-D gray-level patterns in the image. We call them
2-D features in this paper. In contrast, a feature is called a 3-D feature if it is a measurement
of some 3-D structural characteristics of a world texture. An accurate and thorough recovery
of object surface structure is usually a goal of 3-D reconstruction, although usually quite
difficult. However, for classification such accuracy is unnecessary. A significant amount of
3-D structural information relating to world texture can be obtained from multiple views of
an object [9].

As an example, consider the pair of oblique views of rural terrain of Ft. Hood, Texas,
shown in Fig. 1(a). They are 2kx2k images taken with an aerial survey camera from an
altitude of 2600m at tilts of 53° and 36°, respectively, off of vertical (nadir), with a camera
separation of 3998m. Fig. 1 (b) and (c) show the details of two small areas in the terrain after
an epipolar resampling from the source images. Some significant differences occur between
the image patches in Fig. 1(b) from the two views. Because the trees are off the ground plane,
different parts of the trees are seen from different viewpoints. In addition, the crowns of the
trees stretch out and occlude parts of the ground when seen from an oblique angle. However,
the ground and road in Fig. 1(c) look quite similar in the two views, because they are almost
flat, producing little perspective distortion. Generally speaking, a complicated (i.e. highly
varying) 3-D structure such as vegetation tends to cause more variations in the different views
than simple objects such as roads with simpler 3-D structures (i.e. less variation in depth).
Hence, a measure of similarity in the image patches of the same location from different views

reveals some information of the texture types at the location, and potentially can be used as
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Figure 1: Sample source images from Ft. Hood Image Set
(a) two original source images

(b)(c) epipolar resamplings of two small areas from the two original images

a feature for texture classification. In summary, this information is directly a function of the

3-D variation in the scene.

It is worth noting that these new kinds of features have inherently different physical
meanings from the traditional 2-D features. 2-D features typically characterize the relation-
ship between a local area with its neighborhood in the image. The new features, however,
characterize the relationship between multiple views of a local area, and hence reveal some

3-D characteristics of the world texture.



We develop a set of 3-D textural features in Section 2. A set of experiments has been
designed to compare the performance of the proposed 3-D features and a set of well-known 2-D
features. Section 3 describes the set-up of the experiments, such as classifiers, the comparison
2-D features, and training data. Experimental results are shown and analyzed in Section 4

and 5. In Section 6 we discuss future work.

2 Three Dimensional Features

In this section we propose a set, of 3-D textural features that will be used in terrain classifica-
tion. Four types of features are generated, namely, match score (MS), correlation curvature
(CSF), neighborhood variation of match score (NVMS), and neighborhood density of well-

defined curvature (NDC).

2.1 Similarity function

The proposed 3-D features are derived from a similarity function using a multi-view stereo
terrain reconstruction algorithm by Schultz [10]. Input to this algorithm are two aerial or
satellite images, denoted as I¥ and I, of the same region on the surface. The algorithm
utilizes a hierarchical correlation matching scheme to find pixel-wise correspondences and
elevation estimates from the input images. It is mainly designed for image pairs where the
cameras have a relatively large baseline to height ratio, i.e. the cameras are far apart. Fig. 2
conceptually shows a similarity function of a 2-D point in the left image in (a). This 2-D point
is correlated along its epipolar line on the right image, and the similarity function, shown in
(b), indicates how the point is correlated with the points on the epipolar line. The point
with the best match — the highest correlation — on the epipolar line tends to be the true
correspondence of the point in the left image.

Using known intrinsic camera parameters and relative exterior orientation between the
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Figure 2: Concepts of epipolar geometry and similarity function
(a) epipolar geometry of an image pair

(b) similarity function of a 2-D point in the left image

two cameras, the images I and I¢ are first resampled into epipolar coordinates I and I%,

which satisfy the relationship

Ip(i,j) = I5(i + DG, ), 5), (1)
where D is the disparity matriz. Under the assumption of a nearly Lambertian surface, a patch
on the surface has the same apparent brightness pattern when seen from different views. The
similarity function p(4, j; d) is computed between a window centered at (4, j) in IZ and a series
of windows centered at (i+d,7) in I§, where d € (dmin, dmax) is incremented in sub-pixel steps.

Suppose the size of the windows is (2m + 1) x (2n + 1). Using the weighted central moments
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the similarity function is defined as

pli,j;d) =
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N Zomn=n o (4, §)og (i + d, j) ’
where N = (2m + 1)(2n + 1) is the number of pixels in the window, and A is the weight
matrix. For the experiments presented, a center-weighted Gaussian function was used for A,
so that the 3-D features can be determined more reliably under perspective distortion:

exp (_52 *;72) , (5)
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in which C' is adjusted such that the average weight in the window is 1.

At a particular pixel (i, 7) in Image IE, the similarity function p(i, j; d) defined in (4) is a
1-D function as depicted in Fig. 2(b), and the search range is a 1-D domain (dyn, dmax) on the
epipolar line. However, when camera parameters are not accurate, the epipolar line cannot be
precisely determined. In that case, the similarity function must be extended to a 2-D function
p(i,7; dy, dy), and the search region in Image I§ can be extended to a 2-D rectangular area
with upper-left and bottom-right corners at (dy min, dymin) and (dymax, dymax), respectively. In
the rest of this paper, we always assume that accurate camera parameters are given and the

similarity function is one-dimensional.

A smooth function g is fit to the discrete similarity function p(i,j;d). At position d,

where

ﬁ(la];d) :max{ﬁ(la],d)}’ (6)
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the window centered at % (4, j) finds its best match in IS. Thus, d is taken as the estimate for

the disparity between IZ (i, j) and the corresponding pixel in IG. All disparity estimates d are
stored in the disparity matrix D. The algorithm utilizes an iterative low-to-high resolution
method to improve stability. The matrix D is used as an estimate at the beginning of each
iteration. It is refined by warping IS according to the estimate in D and computing p again.
D is initialized with an estimate of the elevation map, if available, or a precomputed mean

value. Using the final disparity matrix D, an orthographic version of the intensity image, as

shown in Fig. 3(a), can be generated.

Legend:
bare ground
(road, riverbed)

foliage
(trees, shrubs)

grass covered
ground

shadow

Figure 3: Orthographic intensity image and its classification
(a) the 2kx 2k ortho-image from Ft. Hood Image Set
(b) classification using a combination of co-occurrence, 3-D, and intensity features (classifier

trained by the four small image chips in Fig. 6)



2.2 Generating 3-D features

The 3-D features are generated from the smoothed similarity function. Intuitively, the shape
of the similarity function at the best match provides us with information of the terrain texture.

Fig. 4 shows some shapes of similarity functions indicating different terrain types.
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Figure 4: Qualitative types of similarity functions

The maximum value of similarity function at the best match is set to be the match score

(MS), the first proposed 3-D feature. That is,

MS(i, j) = pli, j; d). (7)
MS tends to be high when the image patches being correlated are very similar. Taking into
account perspective distortion, the highest degree of similarity can be achieved when the
image patches are smooth and there is no occlusion due to change of viewpoint between the

two images. In case of occlusion, the general shape of the object affected will be recovered



at a lower resolution, especially when the texture in the occluded area is similar to texture
elsewhere on the object. However, at a higher resolution no good match will be possible and
MS will be low in the occluded area. In the case of flat ground, sufficient texture usually
exists and changes in viewpoint are unlikely to cause occlusion as the 3-D surface structures
are very small. Hence, MS naturally tends to be high (Fig. 4(a)(b)). In the case of foliage
areas, changes in viewpoint will often cause occlusion. In these areas MS tends to be low
(Fig. 4(c)).

Once the MS feature is obtained for each pixel in Image I%, the second feature, called
the neighborhood variance of match score (NVMS), can be computed. It is a feature that
measures the local variance of match scores, and is computed as the second central moment

of MS in a local window with size (2m' + 1) x (2n’ 4+ 1) in the MS map:

! ’

m n

NVNS(,5) = | 30 IS+ ) = B(US() ®)
in which N' = (2m' 4+ 1)(2n' + 1) is the number of pixels in the window and E(MS(i, 7)) is
the average value of MS in the window. Clearly, NVMS is affected by the 3-D structure of
the area under the window. When occlusion occurs, the value of MS is decreased; however,
the decrease of MS is not homogeneous in a region when occlusion occurs in a random style,
such as that in foliage. NVMS measures how MS varies in the area. For flat surfaces NVMS
tends to be low; complicated 3-D structures usually have a relatively high NVMS.

The third 3-D feature, curvature of similarity function (CSF), describes the distinctive-
ness of the match between the window patches from the two views. It is computed by fitting a
parabola of the form ad? + bd + ¢ to the smoothed similarity function p(i, j; d) over the range
[D(i,j) — o0, D(i,j) + o], where o is a parameter that determines a range of statistical signifi-

cance. In the experiments o was set to a value of 1.5 pixels. The curvature of the parabola,
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defined to be
CSF(i,j) = 2a, (9)

provides an estimate of the curvature at the peak of the similarity function. Typically CSF
is a negative value. The absolute value of CSF tends to be high when distinctive features
or structures exist in the texture, i.e. there is a unique match (Fig. 4(b)). Texture with
complicated 3-D structures such as forest, or texture with little distinctive features such as
plain ground, usually have lower values of |CSF| (Fig. 4(a)(c)).

Recall that p(x,y;d) is defined over a search range (dmin, dmax). Ideally p(z,y; d) has a
well-defined local maximum in the search range. If that is not the case then MS and CSF are
not well-defined. To arrive at a value for MS, it is set to the value of its global maximum over
the range. The undefined CSF’s are fixed by applying a median filter to the CSF map. A

missing local maximum generally indicates a bad match between IZ (i, j) and its counterpart

in I&. We define the neighborhood density of well-defined curvature (NDC) as the fourth 3-D
feature. It is computed as the ratio between the number of well-defined CSF in a local window
of size (2m” + 1) x (2n” + 1) in the CSF map and the total number of pixels in the window,

that is,

" "

m n

Y. Y OCSF(i+¢&j+mn), (10)

E=—m/" n=—n""

where N” = (2m" 4+ 1)(2n" + 1) and

1, if CSF is well-defined at (i, j)
SICSF(i,5)] = (1)

0, otherwise.

NDC contains information about the reliability of the match for an object. If NDC is low in
an area, then generally the area contained less distinguishable texture, or significant occlusion

is present.
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We illustrate the four types of newly defined 3-D features in Fig. 5, using a portion of
the ortho-image shown in Fig. 3(a) (its position shown in Fig. 6). It contains various types of
terrain textures. Features NVMS and NDC are computed in a local window of size 17x17. It

is visually apparent that the various types of texture are distinguished by the features.

]
F o

(d)

Figure 5: A portion of the 2k x2k ortho-image with a set of 3-D feature maps
(a) the intensity ortho-image
(b) ground truth hand classification
(c) match score (MS)
(d) neighborhood variation of match score (NVMS)
(e) correlation curvature (CSF)

(f) neighborhood density of well-defined curvature (NDC)
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3 Experimental Set-up

3.1 Classification algorithm

As an initial attempt to test the capability of newly introduced 3-D features, we employ a
linear discriminant method (the Foley-Sammon transform (FST) [12]) for classification in our
system. FST is considered a very effective algorithm in terms of linear discriminant ability
and has attracted significant attention in the field of pattern recognition. Tian [13] applied
FST to image classification problems. Liu et al. [14] extended the FST to a wider application
domain and showed experimental results on human face classification. In the field of texture
classification, Weszka [16] used this linear discriminant approach for comparison of texture

features.

FST provides an efficient way of reducing the dimensionality of feature vectors. As
mentioned in Section 1, in terrain classification tasks, a huge number of (2-D) textural features
has been studied. Thus, reducing the dimensionality of the feature space is an important
consideration in pattern recognition. Using FST, the original features are projected into
a lower dimensional algebraic feature space, which returns optimal discriminability for the
classes.

Suppose there are K classes of objects: C;,i = 1,2, ..., K. Let XJ(-i) denote the jth training
feature vector that belongs to C;, where i = 1,2,..., K and 7 = 1, 2, ..., M;, M; the number of
training feature vectors in C;. The centroid of C;, X@, and the centroid of the K classes, X,

are determined by

o) _ L S5 0
XW=—3"X", (12)
M; =7
— K — .
X =3 RX0, (13)
i=1



where P;(i = 1,2,..., K) is a priori probability of C;. We define the within-class scatter matriz,

Sw, and the between-class scatter matriz, Sy, by

K 1 Mi . . . .
Sw=3 P— 3 (X - XO)(x - XO)T, (14)
i=1 1 k=1
K — — — —
Sp=> P(X® - X)(X® - X)* (15)
=1

FST uses Fisher criterion to minimize

z''Syx
Jy(x) = xTSba:‘ (16)

FST is optimal in that it obtains the minimum within-class scatter and the maximum between-
class scatter in the dimensionality-reduced algebraic feature space. Foley-Sammon optimal set
of discriminant vectors is the set of orthonormal vectors that minimize (16). The algorithm

of solving for such a set can be found in [14]. Let
U = [ug,ug, ..., uy], (17)

in which uq, us, ..., u, are the optimal discriminant vectors. Then, for a vector X in the physical

feature space, its algebraic feature vector 7'(X) is defined by the following transformation:
T(X)=U"X. (18)

Using FST, the training vectors can be projected to the algebraic feature space. The dimension
of the algebraic feature space is r. After some preliminary tests, we used a fixed number r = 3
as the dimensionality of the algebraic feature space in all the experiments described in Section 4

and 5.
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We denote the classes in the projected space as T(C;),i = 1,2, ..., K. The classifier in the

current system uses a minimum distance criterion in the algebraic feature space. That is,

X € C;, it Dy(T(X)) = min {Dy(T(X))}, (19)

in which D;(Y)(i = 1,2, ..., K) is the distance of algebraic feature Y to the centroid of T'(C;).

We have further modified the FST to account for the fact that some classes have a

significantly greater variance in the feature space than others. Instead of using the Euclidean

distance as done by other researchers [14]’s, we used Mahalanobis distance in the classifier.

Di(Y) = (Y = YO)TR (Y - YV), (20)

where Y and R; are the centroid and scatter matrix of T(C;), respectively, and can be cal-
culated from the projected algebraic training vectors. The advantage of Mahalanobis distance

in classification is that it takes into account the within-class scatter to deal with classes that

have different variance.

3.2 2-D features in comparison

The experiments are designed for comparing the proposed 3-D features with traditional 2-D
features in their performance in terrain classification tasks. Based on previous studies by
many researchers [15, 16, 17, 18, 19], we chose co-occurrence features as the comparison 2-D

feature set.

Co-occurrence features were introduced by Haralick et al. [15]. Weszka et al. [16] exper-
imentally compared features on terrain images and showed that co-occurrence features were
better than Fourier power spectrum features. Conners and Harlow [17] reported in their the-
oretical study of 2-D textural features that co-occurrence features were the most effective in

comparison with the gray-level run-length, the gray-level difference, and the power spectrum
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features. du Buf et al. [18] compared seven types of features for image segmentation and
found that co-occurrence features were the most significant in applications to aerial and satel-
lite images. Ohanian and Dubes [19] studied four types of features, including Markov Random
Field parameters, multi-channel filtering features, fractal based features, and co-occurrence
features, and concluded that co-occurrence features perform best.

Co-occurrence features describe the texture within a local image window based on gray-
tone spatial dependencies. A co-occurrence matriz is defined to represent the gray-tone spatial
dependence frequencies in the window. The (7,7j) matrix entry P,y represents the relative
frequency for which two pixels with gray-tone ¢ and j are separated by distance d at angle
in the window. Using the co-occurrence matrix, a large number of features can be defined.
Haralick et al. [15] in their original work provided 14 types of features. Previous studies [16,
17, 19] suggest the use of ASM (the angular second-moment), CON (the contrast), and ENT

(the entropy), which are defined as follows.

G-1G-1

ASM
fe S - Z Z Pi?‘e’ (21)
i=0 j=0
CON _ &
0 => n* > P, (22)
e R
ENT G-1G-1
5T ==Y Pypln Py (23)
i=0 j=0

The ASM feature is a measure of homogeneity of the texture intensity. The CON feature
measures the local variation present in the texture. The ENT feature measures the complexity.
In the pre-processing stage the image is performed with histogram equalization to reduce the

number of gray levels to G. Hence, the co-occurrence matrix has size G x G. As suggested by
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other researchers [19], and by our preliminary experimental results, we applied the following
settings in our experiments: image window size 17 x 17, distance d = 3, four angles 0 =
0°,45°,90°,135°, and the number of gray levels G = 8. Under these settings, a total of twelve

features were employed (i.e. three types of features, each with four angles).

3.3 Training data

The experiments have been carried out on a set of aerial images of Ft. Hood Image Set.
Fig. 3(a) shows a 2kx2k image from an orthographic projection. We use a pixel classification
scheme to give each pixel that belongs to different object class a distinct label. For this
image set, four object classes are considered: foliage (trees, shrubs), grass covered ground,
bare ground (road, riverbed), and shadow. The 2kx2k ortho-image has been independently
hand-labeled into the four classes by an image analyst to act as ground truth data in the
experiments. A portion of the ground truth segmentation is shown in Fig. 5(b) (legend shown
in Fig. 3).

The selection of training data is an important issue for classification systems. Small train-
ing data sets are often preferred since they involve less man-machine interaction. However,
more training data are typically needed to improve reliability. Reliable classifiers are those
that are stable to various training data. Hence, all other issues aside, when a reliable classifier
is used, it only needs a small amount of training data. In the first part of our experiments
(Section 4), we attempt to use a very small training data set to design classifiers and observe
their performance. The training data set includes four small image chips, each containing a
texture of a particular class, randomly sampled from the ortho-image. The sizes of the four
image chips are: 99x99 (foliage), 75x75 (grass covered ground), 37x37 (bare ground), and
11x11 (shadow). They account for only about 1% of the pixels in the entire ortho-image.

Fig. 6 depicts the sizes and positions of image chips in the ortho-image. In the second part of
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the experiments (Section 5), we increase the number of image chips to test the reliability of

the classifiers under different training data sets.

®) o M (a) shadow

() [J (b) bare ground

(road, riverbed)
\ displayed

portion

(a) °

(c) grass covered
ground

@[]

ortho-image (d) foliage

(trees, shrubs)

Figure 6: Positions of the training image chips and the displayed portion in Fig. 5 and 7

3.4 Feature sets for comparison

The features being used in the experiments consist of the twelve 2-D co-occurrence features,
four 3-D features (MS, CSF, NVMS, NDC) generated in Section 2, and the original intensity
as an additional feature. For the purpose of comparison, four classifiers are designed, each
using a different set of features, denoted as Feature Set A, B, C, and D. Feature Set A contains
the twelve co-occurrence features only. Feature Set B adds the intensity feature into Set A.
Feature Set C consists of the four 3-D features plus the intensity feature. Feature Set D
includes all the features — the twelve co-occurrence features, the four 3-D features and the
intensity. All four classifiers employ the same classification algorithm based on Foley-Sammon
transform and minimum Mahalanobis distance criterion. The performance of the classifiers

using the four feature sets is discussed next.
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4 Fundamental Experiments

In the fundamental experiments, we test the performance of the classifiers in terms of clas-
sification accuracy. We compare the four classifiers using Feature Set A, B, C, and D. As
mentioned in Section 3.3, the same small training data set shown in Fig. 6 was used in all the

classifiers. The entire ortho-image was then classified based on the training of the four image

chips.

]
F o

Figure 7: Classification results using various feature sets (see Fig. 3 for legend)
(a) the intensity ortho-image
(b) ground truth hand classification
(c) Feature Set A: twelve co-occurrence features
(d) Feature Set B: twelve co-occurrence features and one intensity feature
(e) Feature Set C: four 3-D features and one intensity feature

(f) Feature Set D: twelve co-occurrence features, four 3-D features, and one intensity feature
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4.1 Qualitative analysis

Fig. 7 shows the classification results on the image portion of Fig. 5(a). The first observation
for these results is that the classifier using only the 2-D co-occurrence features (Fig. 7(c)) pro-
duces the worst classification result. In particular, the ground and foliage labels are misclas-
sified for each other in many places. An explanation of this phenomenon is that the ground
category is affected by the existence of grass and vehicle tracks intermingled with ground
patches so that it has a mottled 2-D textural appearance. Thus, the 2-D co-occurrence fea-
tures find the ground regions in some cases with rough texture producing a variation of the
2-D intensity to be similar to foliage.

In contrast, since the presence of grass and vehicle tracks does not cause the 3-D smooth-
ness of ground surface to change noticeably, they have little impact on the values of the
3-D features. For example, two image patches with the same vehicle tracks will still have a
high match score because the variations are distinctive (i.e. somewhat unique) as opposed to
patches of foliage texture which are far less distinct. Therefore, classifiers using 3-D features
have a greater ability to discriminate the smooth ground surface from the rough forest surface.
This is clearly shown in Fig. 7(e)(f).

Intensity, as a feature, provides some discriminability among the classes, especially the
road and shadow classes which have extreme intensities. Thus, there is some improvement
when the intensity feature is added to the co-occurrence features (Fig. 7(d)). However, because
ground cover may have variations in brightness due to some variations in surface slope and
soil/grass type, the intensity feature is not fully reliable. For example, in the left part of
Fig. 7(a), the ground regions below the road turn darker, and classification deteriorates in
these areas when the intensity feature is added into the co-occurrence feature set (Fig. 7(d)).
However, once again these regions receive satisfactory classification when 3-D features are

added (Fig. 7(f)), since the darker ground remains smooth (i.e. has little change in 3-D
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variation), allowing 3-D features to perform effectively.
The classification result on the entire 2k x2k ortho-image using Feature Set D is shown

in Fig. 3(b).

4.2 Quantitative analysis

A quantitative analysis of the classification accuracy is shown in Table 1. The statistics of all
the four experiments using different feature sets are given in the table. For each experiment,
the entry (i,j) of the table shows the number of pixels that belong to Class i while being
classified into Class j. The elements on the diagonals are the numbers of pixels that are
correctly classified. The overall accuracy of each classification experiment is also given in the
table (obtained by summing the diagonal elements and dividing by the total number of testing
pixels).

It can be seen from Table 1 that Feature Set A (twelve co-occurrence features only)
provides the lowest classification accuracy. The additional intensity feature in Feature Set B
produces a minor improvement. The use of the four 3-D features and intensity of Feature Set
C improves the classification dramatically over Set A — about 20 percentage points. Feature
Set D of all features only shows marginal improvement over Set C. In other words, if the
four 3-D features and the intensity are used, then the participation of the 2-D co-occurrence
features will hardly improve the classification accuracy.

A further observation from the experimental results using Feature Set C and D in Table 1
is that major false classifications fall into two cases: (1) ground truth shadow pixels being
classified into foliage, or (2) ground truth grass pixels being classified into foliage. Case (1) is
easy to understand. Shadow is usually an inherent component of foliage texture. Therefore,
shadow in small pieces tends to be labeled as foliage by the classifier. In Fig. 3 we can see

that large and continuously shadowed areas (e.g. in the upper right part) have been correctly
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classified. The mis-classification in case (2) is related to the 3-D structures of trees. In
Fig. 1(a) we have seen that the crown of a tree is stretched out if seen from an oblique view.
If a tree is observed from two different viewpoints, the projected crown will stretch out in
two different directions, and will occlude different sections of ground. Suppose that a piece of
ground shows up in one source image, but is occluded by the stretch-out of tree crowns in the
other. The 3-D features of this piece of ground is most likely to be close to that of foliage (e.g.
MS is low). The overall effect is that the tree seems to cover more ground area than it really
does, and ground pixels near a foliage area tend to be mis-classified. This problem became
even worse in Ft. Hood images used in the experiments, due to the existence of a lot of sparse
trees. In Fig. 7(e)(f) we can see the dilations of the sparse tree areas. There are several ways
to solve this problem. One of them is to use morphological algorithms to erode the classified
foliage areas, or areas of complicated 3-D structural textures. If some a priori knowledge, such
as height of trees, can be obtained (e.g. via context-sensitive analysis of nearby tree regions),
this problem could be solved in a knowledge-based manner. These are topics subject to future

studies.

5 Additional Experiments

With the motivation of testing the reliability of the 3-D features to various training data,
additional experiments were carried out. All the experimental settings were the same as in
the fundamental experiments, except that different training data sets were used. For each
texture class, we included two more image chips (for a total of three) as training data. They
were randomly sampled from the ortho-image (Fig. 3(a)), with sizes similar to those in Fig. 6.

Twelve combinations (subsets of training chips) were tested in the experiments, and the
results are shown in Table 2. Each Training Sets 1, 2, and 3 contained all the training chips

for the bare ground, grass covered ground, and shadow classes, but only one (different) chip
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for the class of foliage. Each Training Sets 4, 5, and 6 contained one chip for the bare ground
class and all the chips for other classes. Similarly, Training Sets 7, 8, and 9 each contained
one chip for grass covered ground and all the chips for the others, and Training Set 10, 11,

and 12 each had one for shadow and all for the others.

With each training data set, four experiments were performed to test the classification
accuracy for the four feature sets, A, B, C, and D. From Table 2 we can see that, under every
training data combination, the 3-D features plus the intensity consistently performed better
than Feature Set A and B, where no 3-D feature was involved. The best result was always
given by Feature Set D, which uses all the features. On average, with the intensity and 3-D
features only (Feature Set C), the classifier outperformed Feature Set B (2-D co-occurrence
features plus the intensity) by nearly 10 percentage points. Adding the four 3-D features into
Feature Set B (to form Feature Set D) improves the classification accuracy by 10-15 percentage
points.

From the standard deviation we can see that the set with co-occurrence features plus the
intensity was most sensitive to different training sets. Hence the quality of its classification
was most unreliable. The sets with 3-D features had more reliable results. This phenomenon
indicates that the 3-D features generated using the algorithms in this paper really reflect some

consistent physical characteristics of textures with 3-D structures.

6 Conclusions and Discussions

In this paper we have provided a new perspective for understanding the nature of texture.
Based on utilizing features for 2-D image texture and 3-D world texture, we extend our
analysis to 3-D structural patterns on object surfaces in the real world. Methodologically, we
have proposed a set of 3-D features that takes multiple views of 3-D objects into account for

terrain texture classification in aerial images. Experimental results have shown that the set of
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new 3-D textural features significantly outperform the set of co-occurrence features, which is

one of the best traditional 2-D feature sets. It is also shown that the 3-D features are reliable

to various training data, suggesting that they can be used in the circumstance that only a
small amount of training data is available.

This new approach moves texture analysis beyond purely low-level image processing.
Traditional 2-D texture analysis methodologies could benefit from incorporating 3-D features
as suggested here. However, we believe that some traditional tools have to be revisited. For
example, image mosaicking and texture synthesis [6, 5, 8, 17, 18] are not readily applicable

to the new domain.

The motivation of this paper is to reveal the performance of the proposed 3-D feature
set, in comparison with the traditional 2-D features. To focus, we only pay attention to the
raw results of pixel classification, and leave many issues that a real system must face as future
topics, such as efficient use of the features and improvement of classification accuracy. These
issues include designing sophisticated classifiers to deal with non-linear separability of feature
space. Draper et al. [11]’s, and Jain and Karu [8]’s recent work on learning schemes are good
candidates in this regard. Other image segmentation techniques will be applied to cope with
small classification fragments (such as using a filter as a post-processing module to “smooth”
out small fragments [5, 8]) and biased segmentation boundaries mentioned in Section 4.

We are also investigating expansion of the number of object classes and the effect of
this on classification accuracy. More terrain types (such as rocky ground and water surface)
will be classified by using the 3-D features or a combination of 3-D and 2-D features. As an
example, the correlation curvature feature (CSF) has shown sensitivity to small objects or
edges of regular large-scale structures, suggesting that a new class of this kind can be formed

to support other computer vision goals.
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Table 1: Contingency analysis of classification results in the fundamental experiments

(unit: 1000 pixels)

classification using Feature Set A

grs. cvd. bare

ground truth  (total) || shadow | ground | foliage | ground
shadow (41.8) 21.2 7.1 11.9 1.7

grass covered ground  (683.0) 17.7 259.9 | 405.2 0.3
foliage (1018.6) 10.8 121.2 | 886.6 0.0

bare ground  (193.4) 77.5 19.3 50.5 46.1

total (1936.8) 127.2 407.5 | 1354.1 48.1

correctly classified pixel total: 1213.8 (62.67%)
classification using Feature Set B

grs. cvd. bare

ground truth  (total) || shadow | ground | foliage | ground
shadow  (41.8) 23.7 70| 111 0.0

grass covered ground  (683.0) 40.8 332.6 | 308.1 1.6
foliage (1018.6) 11.7 55.0 | 950.7 1.2

bare ground  (193.4) 52.2 12.9 31.2 97.2

fotal (1936.8) | 1282 |  407.5 | 1301.1| 100.0

correctly classified pixel total: 1404.1 (72.50%)
classification using Feature Set C

grs. cvd. bare

ground truth  (total) || shadow | ground | foliage | ground
shadow  (4L.8) 3.0 0.0 388 0.0

grs. cvd. ground  (683.0) 0.0 439.5 | 2314 12.2
foliage (1018.6) 0.4 20.0 | 995.3 2.9

bare ground  (193.4) 0.0 17.3 25.1 | 150.9
total (1936.8) 33|  476.8 | 1200.6 | 166.0

correctly classified pixel total: 1588.7 (82.03%)
classification using Feature Set D

grs. cvd. bare

ground truth  (total) || shadow | ground | foliage | ground
shadow (41.8) 13.8 0.0 27.8 0.2

grs. cvd. ground  (683.0) 0.0 468.6 | 202.7 11.8
foliage (1018.6) 2.0 18.0 | 995.7 2.8

bare ground  (193.4) 0.0 33.9 214 | 138.1
total (1936.8) 15.8 520.6 | 1247.5 | 152.9

correctly classified pixel total: 1616.1 (83.44%)
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Table 2: Classification accuracy in percentage on the 2kx2k ortho-image using 12 different

training data sets

Feature Set A | Feature Set B | Feature Set C | Feature Set D
Training Set 1 63.3 65.6 77.6 83.0
Training Set 2 63.2 66.3 75.8 80.8
Training Set 3 63.6 64.7 78.8 79.5
Training Set 4 63.6 65.4 77.5 80.6
Training Set 5 63.8 65.3 74.3 79.0
Training Set 6 63.4 66.0 75.8 82.4
Training Set 7 63.6 65.5 70.9 79.8
Training Set 8 63.9 74.6 78.0 80.1
Training Set 9 63.1 66.6 73.9 78.6
Training Set 10 63.5 65.7 80.1 83.3
Training Set 11 64.7 76.5 81.1 83.0
Training Set 12 64.2 68.7 81.7 83.1
mean 63.67 67.59 77.12 81.09
standard deviation 0.19 13.81 9.25 2.82

Feature Set A: twelve co-occurrence features

Feature Set B: twelve co-occurrence features and one intensity feature
Feature Set C: four 3-D features and one intensity feature
Feature Set D: twelve co-occurrence features, four 3-D features, and one intensity feature

Training Set 1-12: see Section 5
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