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ABSTRACT

ON INTEGRATING .
APPRENTICE LEARNING AND REINFORCEMENT LEARNING

SEPTEMBER 1996
JEFFERY A. CLOUSE
B.S., VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST
Directed by: Professor Paul E. Utgoff

Apprentice learning and reinforcement learning are methods that have each been
developed in order to endow computerized agents with the capacity to learn to per-
form multiple-step tasks, such as problem-solving tasks and control tasks. To achieve
this end, each method takes differing approaches, with disparate assumptions, objec-
tives, and algorithms. In apprentice learnfng, the autonomous agent tries to mimic a
training agent’s problem-solving behavior, learning based on examples of the trainer’s
action choices. In an attempt to learn to perform its task optimally, the learner in
reinforcement learning changes its behavior based on scalar feedback about the con-
sequences of its own actions.

We demonstrate that a careful integration of the two learning methods can pro-
duce a more powerful method than either one alone. An argument based on the
characteristics of the individuals maintains that a hybrid will be an improvement be-

cause of the complimentary strengths of its constituents. Although existing hybrids
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of apprentice learning and reinforcement learning perform better than their individ-
ual components, those hybrids have left many questions unanswered. We consider
the following questions in this dissertation. How do the learner and trainer interact
during training? How does the learner assimilate the trainer’s expertise? How does
the proficiency of the trainer affect the learner’s ability to perform the task? AndA,
when during training should the learner acquire information from the trainer? In our
quest for answers, we develop the ASk FOR HELP integrated approach, and use it in
our empirical study.

With the new integrated approach, the learning agent is significantly faster at
learning to perform optimally than learners employing either apprentice learning alone
or reinforcement learning alone. The study indicates further that the learner can learn
to perform optimally even when its trainer cannot; thus, the learner can outperform its
trainer. Two strategies for determining when to acquire the trainer’s aid show that
simple approaches work well. The rgsults of the study demonstrate that the ASk
FOR HELP approach is effective for integrating apprentice learning and reinforcement
learning, and support the conclusion that an integrated approach can be better than

its individual components.
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CHAPTER 1
INTRODUCTION

This dissertation is about integrating two learning methods, each of which was
developed to allow intelligent, computerized agents to learn to solve problems. In the
first method, apprentice learning, the autonomous agent learns based on examples
of another agent’s problem-solving performance. In the other method, reinforcement
learning, the agent changes its performance based on scalar feedback about the con-
sequences of its own actions. The two methods each have different objectives, employ
different algorithms, and make different assumptions in order to endow the agent with
the capacity to learn.

In this dissertation we explore issues in integrating these two methods. The re-
search is motivated mainly by two observations. First, we are inspired by human
learners, who seem to employ a combination of the two approaches, refining their
problem-solving skills autonomously and also adapting based on their observation of
others. Second, previous research has identified this area as promising for building au-
tomated agents that can learn to solve problems. Hybrids of apprentice learning and
reinforcement learning have been shown to perform better than their constituents,
although such research has left many questions unanswered. Our main goal in this
dissertation is to answer fundamental questions about integrated approaches, so that
the approaches are understood better and can achieve wider applicability.

In the remainder of this chapter, we introduce the notion of a multiple-step task
as a type of problem to solve, and discuss what is required in learning such a task.

We give a quick introduction to the two individual learning methods, provide further

3 _3
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motivation for integrating them, and outline our particular approach. Finally. we

give an overview of the results of the dissertation.

1.1 Multiple-Step Tasks

This dissertation focuses on computerized agents that learn to make sequences,
of decisions in order to solve problems. Examples of problems that require multiple
decisions, also called multiple-step tasks (Dietterich, London, Clarkson & Dromey,
1982), include robot navigation, game-playing, and theorem proving. In robot nav-
igation, the robot makes a sequence of decisions to arrive at its destination. The
game-playing agent must select a series of moves that will ensure a win. And, a
sequence of mathematical manipulations are required to prove a theorem.

Multiple-step tasks are specified in terms of states and actions. The states are
the situations that arise in performing the task, such as the configurations of pieces
on the chess board, and the actions, such as the legal piece moves, transform the task
from state to state. Thus, the states and operators are abstract representations of
the actual task, which is situated in a real environment. Figure 1.1 shows part of a
solution to a multiple-step task. The circles in the figure represent the states, the
arrows depict the actions, and the highlighted arrows represent the actions chosen by
the agent. From the initial state, the agent first chose “a2,” which produced “State
A.” The problem was then transformed to “Sfate B” by the agent’s choice of “a4.”
Through the continued selection of actions, the agent solves the problem.

As the agent performs the task, it may incur costs or receive pay-backs when ap-
plying actions. These costs, which are real-valued scalars that are also called weights
and rewards, represent such concepts as distance between a state and its successor or
the actual cost of performing an action. The objective of an agent solving the problem
is to find a sequence of actions that optimizes a cumulative measure of the rewards.

For example, the agent may attempt to find the shortest or least-cost path in solving
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Figure 1.1 A multiple-step task N
mq‘
the problem. Problems that simply require the agent to reach a specially designated =
|
goal state may also be expressed in terms of rewards by giving the transitions into
the goal state positive weight and all other transitions zero weight. ﬁ|
1.2 Developing a Policy : '—',
At each discrete time step the agent faces the situation depicted in Figure 1.2. ™

Namely, the agent observes the current state of the problem and must choose one
of a set of actions to apply. To make this decision, the agent relies on its policy, : 1
a mapping from states to actions, which indicates which of the applicable actions -
should be chosen in order to complete the task successfully. The agent can develop "
its policy via exhaustive computation or limited-depth search, both of which have =
)
deficiencies. Fortunately, the shortcomings of these approaches can be overcome by '
having the agent learn its policy. ._-\

The policy that allows the agent to solve the problem can be determined by ex-
tensive computation. The agent can develop its policy by performing an exhaustive

search in the space of solution paths, simulating the application of every action to ev- .
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Figure 1.2 Which action should be chosen?

ery state for every solution path. The agent might also develop its policy via dynamic
programming (Bellman, 1957), an iterative technique for determining the agent’s cor-
rect action at every state. Unfortunately, these two approaches are often impractical.
First, they each usually require a complete specification of the problem in the form of
correct reward and state-transition functions. Such functions can only be developed
for very sifnple problems because any uncertainty about the problem precludes hav-
ing a correct specification. Second, the computations required are often prohibitive.
Finding a policy for even moderate—sized‘ problems is typically intractable.

In order to reduce the computational complexity identified above, several systems
implement the policy as various forms of limited-depth search (Nilsson, 1969; Slagle
& Dixon, 1969; Rosenbloom, 1982; Berliner, 1984; Pearl, 1984; Korf, 1988). In these
systems, a human designer attempts to capture each state’s worthiness with respect
to the problem-solving effort by codifying the designer’s limited domain knowledge
in a function that maps states to real-valued numbers, known as an evaluation func-
tion. Then, instead of performing an exhaustive search of the state-space to make
an action choice, the agent chooses the action that produces the successor state with

the highest value, as determined by limited search and application of the evaluation



function to the states at the frontier of the search. Regardless of the details of the
particular search algorithm, these approaches are unattractive because their success
depends heavily on the accuracy of the evaluation function. Developing a good eval-
uation function involves an expensive iterative process in which the human refines
the function based on detailed analyses of the agent’s inability to solve the problem.
Moreover, these search techniques require a complete specification of the problem in
order to perform any search at all.

Having the agent learn its policy can overcome the shortcomings of the approaches
mentioned above. The learning agent does not need a complete description of the
problem and, further, can develop a policy without performing computationally ex-
pensive operations. Moreover, learning supersedes the human’s knowledge-intensive
tweaking of an evaluation function because the agent has the ability to improve its

policy over time, as it gains more knowledge about the problem.

1.3 Apprentice Learning and Reinforcement Learning

Early in the history of Artificial Intelligence, researchers began studying auto-
mated agents that learn to solve multiple-step tasks (Samuel, 1963; Samuel, 1967;
Waterman, 1970; Fikes, Hart & Nilsson, 1972). The objective of the agents is to
use the resources they have available in order to become more proficient at perform-
ing their tasks. Two methods in particular have come out of that effort: apprentice
learning and reinforcement learning. Although both of these methods endow the agent
with the capacity to learn to solve problems, they each take distinct approaches, with
different assumptions, algorithms, and objectives.

In apprentice learning, the automated agent observes a training agent solving a
problem. For each state and associated action in the trainer’s solution, which are
either provided to the learner or observed by the learner, the learner infers that the

action was appropriate to perform in that state. The learner might further assume

3

3 3

13

!

3

3



—3 3 T3 T3 T3

f“"g r"—%

3

that all other action choices were not applicable because the trainer did not pick
them'. Accordingly, apprentice learning is a supervised learning technique where the
training examples are derived from the trainer’s solution. The learner’s objective
is to develop a good policy that can be applied to performing the problem. The
learner attempts to meet this goal by acquiring the trainer’s observed strategy. Thus,
apprentice learning depends heavily on the trainer’s expertise. This method has been
employed successfully to learn such complex tasks as game-playing (Samuel, 1963),
and vehicle control (Pomerleau, 1991; Sammut, Hurst, Kedzier & Michie, 1992).

In reinforcement learning, the automated agent adapts based on its own problem-
solving experience, updating its policy via a sequence of trial-and-error experiments.
That is, the agent learns entirely from its own decisions. At each discrete step in
the problem, the agent determines its current action, performs that action, and ob-
serves the real-valued reward it receives. The rewards indicate how well the agent
is performing the task, and the objective is to learn to select actions that optimize
a measure of those rewards. Stated differently, the objective. is to learn an optimal
policy. The agent is faced with the difficult problem of credit assignment (Minsky,
1963): It must determine which of its many actions should be credited, or blamed, for
the current reward, especially consideriﬁg that the rewards may be sparse. Further-
more, the agent must trade off performing well on the task versus experimenting with
its options in order to learn more about the task. Similarly to apprentice learning,
many complex tasks have been tackled successfully with reinforcement learning, in-
cluding game-playing (Samuel, 1967; Tesauro, 1995), robotics tasks (Gullapalli, 1991;
Mahadevan & Connell, 1992; Singh, 1994), and elevator dispatching (Crites & Barto,
1996).

!Care must be taken when assuming that only the chosen action is correct because there may be
situations in which many of the choices are equally correct.



1.4 Integrating the Two Learning Methods

In this dissertation, we investigate particular issues that arise in integrating ap-
prentice learning and reinforcement learning. Although these two methods approach
the difficulty of improving the agent’s ability to solve problems from different perspec-
tivés, they each have desirable characteristics that make them viable. We aréu—e that
the integration of the two methods can produce a new learning method that com-
bines the beneficial qualities of the two individuals and ameliorates their weaknesses,
leading to improvements over each.

This viewpoint has been substantiated partially by previous research in building
integrated systems. Utgoff and Clouse (1991) develop an integrated system in which
the agent requires only one training trial to learn to perform its task, versus need-
ing two trials when learning from only a training agent and requiring close to five
hundred trials when learning via reinforcement learning. Other work (Clouse & Ut-
goff, 1992; Lin, 1992; Lin, 1993) shows that allowing a learning agent to incorporate
a trainer’s knowledge improves the speed with which the agent learns to perform
the task greatly. Each of these systems shows the benefits of integrating apprentice
learning and reinforcement learning and serves as inspiration for our work.

Although each of these systems achieves success via a combination of the two in-
dividual learning methods, they leave many qhestions unanswered. Our objective in
this dissertation is to examine fundamental questions about the integration of appren-
tice learning and reinforcement learning. We investigate how the learner and trainer
interacy, how the learner incorporates the trainer’s actions into its developing policy,
how the trainer’s expertise influences the learner’s ability to acquire an appropriate
policy, and when the trainer should provide information to the learner. The results
of our investigation will provide more information about integrated systems, with the

aim of making them easier to develop and apply.

1
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Based on the desire to answer these questions, we have designed, developed. and
implemented an integrated system, calling it the Ask FOR HELP (AFH) approach.
In AFH, the learner interacts with an automated trainer. To develop its policy.
the learning agent relies on Q-learning (Watkins, 1989), a particular reinforcement
learning algorithm. With reinforcement learning as its main learning component,
AFH maintains many of the advantages of reinforcement learning, such as leérning
from the scalar rewards and developing optimal policies. In addition to depending
upon the rewards for training information, the agent also acquires on-line, trainer-
suggested actions as the learner performs the task. One of the key components of
AFH is the strategy with which the learner acquires information from the trainer:
the learner asks the trainer for help. Via two particular asking strategies, one of
which is a simple stochastic approach, we can determine how much the trainer’s
actions help the learning agent acquire an appropriate policy. To assimilate the
automated trainer’s guidance, the learner simply executes the actions as though it
had chosen them itself, thus incorporating them and their consequences seamlessly
into its experience via -learning. We hypothesize that ASK FOR HELP is an effective
approach to integrating apprentice learning and reinforcement learning. But, more
importantly, AFH is a tool with which we can answer certain questions about hybrids

of the two learning methods.

1.5 Overview of the Results

In this dissertation we examine the advantages of integrating apprentice learning
and reinforcement learning. We utilize the Ask FOR HELP approach to answer certain
fundamental questions about integrated systems, and demonstrate that AFH is an
effective means for integrating apprentice learning and reinforcement learning. Our

empirical study establishes that the learning agent can develop its policy more quickly



with AFH than with either reinforcement learning alone or apprentice learning alone,
even with suboptimal trainers.

Generally, the more often the trainer provides an action to the learner, the more
quickly the learner learns to perform the task. The learner requires the most time to
develop a policy when it is not asking the trainer for aid, which is the same as learning
with standard reinforcement learning. As the amount of aid increases, the speed with
which the learner learns the task also increases; thus, the integrated approach is
better than reinforcement learning alone. As the trainer begins providing a higher
proportion of the training information to the learner—which approaches learning
via apprentice learning—the learner sometimes learns more quickly when it can still
perform its own actions occasionally, indicating that the new approach is better than
apprentice learning. These results demonstrate that the integrated approach is better
than either of its constituents alone, especially when the trainer provides suboptimal
training information. Based on these results, one can make the tradeoff between the
expense of employing a trainer and the expense incurred in terms of the time it takes
to learn a policy.

The expertise of the training agent has a direct relationship on how quickly the
learning égent finds an optimal policy. Trainers that provide optimal actions to the
learner are the most helpful, and as the trainer’s expertise degrades, the speed with
which the learner finds an optimal policy also degrades. Although this result is not
too surprising, we find that there is not much difference between learning from a
trainer that provides optimal actions and one that gives an incorrect action a quartér
of the time. This suggests that one does not need to have an optimal trainer in order
to benefit by using an integrated approach. Thus, a human trainer, who may not be
optimal, can be beneficial to the learning agent. Furthermore, this shows that the

learning agent can learn to perform the task better than its trainer.
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The speed with which the learner learns is not only influenced by the trainer's
expertise, the timing of the trainer’s actions is also important. The results of experi-
ments in which the learner asks the trainer for aid randomly demonstrate that not all
trainer’s actions are as helpful to the learning agent as others. The same amount of
interaction with the trainer—that is, the same number of trainer-suggested actions—
can cause the learner to take widely varying amounts of time to find an optimal
policy. This suggests that care must be taken in asking the trainer for help. Even
so, it appears that a certain rate of interaction with the trainer leads most quickly to
acquiring an optimal policy across a variety of problem sizes and trainer proficiencies.
When the learner employs a more sophisticated strategy of asking for help, it can find
an optimal policy more quickly with fewer trainer’s actions. Thus, if the trainer were
human, one would employ the more sophisticated asking strategy because it requires
the least interaction with a human trainer.

From the empirical results, we conclude that one can indeed integrate apprentice
learning and reinforcement learning to advantage. We demonstrate that our hybrid
approach, in which the learner asks for aid randomly and simply executes the trainer’s
actions, allows the learning agent to produce correct policies more quickly than with
either reinfdrcement learning alone or apprentice learning alone. We have also imple-
mented a more sophisticated asking strategy that performs better than asking for aid
randomly. Finally, the results show that the expertise of the trainer plays a major

role in the success of the learner.

1.6 Guide to the Dissertation

The next chapter presents the two individual learning methods, apprentice learn-
ing and reinforcement learning, in greater detail. We review the work on these two
methods and motivate our approach of integrating the two by exploring their dis-

parate objectives, algorithms, and assumptions; comparing and contrasting their var-

10



ious characteristics. In Chapter 3 we discuss the issues that must be considered in
integrating the two methods, and present a model of integration that not only pro-
vides a context in which to discuss related work and serves as a framework in which
to explore the issues, but also describes how automated learners and trainers might
interact. We begin Chapter 4 by posing questions that motivate our empirical study.
Then, we present our instantiation of the hybrid method, the Ask FOR HELP ap-
proach (AFH). In Chapter 5 we begin by describing the particular domains on which
we test AFH. We then present empirical results from a variety of experiments in
which we attempt to find answers to fundamental questions about integrated learn-
ing. Finally, Chapter 6 summarizes the dissertation and presents issues for future

research. We conclude with a discussion of our contributions.
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CHAPTER 2

APPRENTICE LEARNING AND REINFORCEMENT
LEARNING

This dissertation focuses on intelligent, computerized agents that learn to perform
multiple-step tasks. The objective of the agents is to improve their policies so that
they become more proficient problem-solvers. Two learning methods that attempt
to endow the automated agent with the capacity to learn are apprentice learning
and reinforcement learning. Each of these methods takes distinct approaches, with
different assumptions, algorithms, and objectives.

In apprentice learning, the autonomous agent learns from examples of another
agent’s problem-solving behavior; and, in reinforcement leaxniﬁg, the agent’s policy is
derived based on scalar rewards received while performing the task. In his pioneering
research in machine learning, Arthur Samuel employed approaches from each method
to develop checkers-playing agents (Samuel, 1963; Samuel, 1967). Regardless of the
particular learning method, each of his agents learned to play checkers moderately
well, but could not beat master-level players. Since Samuel’s time, much research has
gone into developing apprentice learning and reinforcement learning further.

Before beginning a presentation of the two learning methods, we present the mod-
els of multiple-step tasks they each assume. Then, we present the learning methods
in turn. Finally, we compare the methods along particular dimensions, such as the
informativeness of the training information and the optimality of the learned policy.
We show that each method has beneficial qualities, but that neither is clearly better

than the other. We continue this line of reasoning in Chapter 3 by arguing that one
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may want a hybrid learning method that has each of the desired qualities, and that

strengths from each method may mitigate weaknesses in the other.

2.1 Models of Multiple-Step Tasks

Apprentice learning models multiple-step tasks as state-space problems. Rein-
forcement learning assumes the Markovian decision tesk model, from the fields of
operations research and optimal control. These models abstract the details of the
environment in which the task exists into a mathematical representation.

The main objective of this section is to point out that the two models are quite
similar, differing only on a few details. Because the models are alike, considering a
hybrid of the two learning methods is feasible. However, the disparities in the models
give rise to some of the differences between apprentice learning and reinforcement

learning, which we discuss below in Section 2.4.

2.1.1 State-Space Model

The state-space model, which is used frequently for studying problem-solving is- -

sues in Artificial Intelliéence (Rich & Knight, 1991; Ginsberg, 1993; Luger & Stub-
blefield, 1993; Russell & Norvig, 1995), represents problems in terms of states and
operators. The states are the situations that arise in solving the problem, such as
the configuration of pieces on the chess board, and the operatdrs, such as the legal
piece moves, transform the problem from state to state, where the resulting state is
called the successor state. Note that an operator is a function that maps states to
states: applying an operator to a particular state produces another state. A state-
space problem can be specified completely by an initial state, a set of operators, and a
predicate that recognizes goal states. The objective in solving the problem is to find a

sequence of operators—a solution path—that successively transforms the initial state

into a goal state.
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Figure 2.1 depicts part of a state-space problem, including a partial solution. The
circles in the figure represent states, and the arrows depict operators, which transform
the state at the arrow’s tail into the state at the arrow’s head. For example, the
application of operator “a4” transforms “State A” into “State B.” The dashed circles

and arrows show the states not visited and the operators not taken in the solution.

Figure 2.1 State-space representation

In more complex state-space problems, real-valued weights are associated with
the operators. Consequently, the model can take into account such concepts as the
physical distance between ;1 state and its successor (given that the states represent
physical locations) or the actual cost of selecting the operator. In problems specified
in this manner, the agent must optimize a measure of the weights; for example, finding

the shortest, or least-cost, solution path. Accordingly, it is not sufficient to find any

path to a goal.
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2.1.2 Markovian Decision Task Model

The Markovian decision task (MDT) model was developed for studying stochastic
control processes in operations research and control theory (Bellman, 1957; Puterman,
1994). Similarly to the state-space model, this model defines problems in terms of
states, operators (called actions), and weights (called rewards)!. MDT’s differ slightly
from state-space problems on three particular points.

First, there is no goal recognition predicate. The sole objective in a MDT is to find
a path through the space of states that optimizes a measure of the rewards received
in performing the task. Incidentally, this does not restrict MDT’s from modeling
problems that require the agent to reach a goal state, because all transitions into the
goal state can be given high reward.

Second, state transitions, the mapping of state to state by the actions, are stochas-
tic. That is, the application of an action to a state may result in any one of a set of
states, probabilistically. The state-space model, on the other hand, says little about
the stochastic nature of state transitions, and most problem-solving systems assume
the operators are deterministic.

Finally, MDT’s are explicit about requiring that all future state transitions be
conditionally independent of any previous states or action choices given the current
state. This restriction, called the Marl'cov pr'bperty, makes MDT'’s amenable to rig-
orous mathematical study, but does limit the applicability of the model somewhat.
Nevertheless, many interesting problems, such as robot control, can be modeled as
MDT’s. Indeed, the state-space model assumes the Markov property implicitly, and

thus many problems studied in Artificial Intelligence have this property.

In the sequel, we will use the terms ‘action’ and ‘operator’ interchangeably. This is also true of
‘weights’ and ‘rewards’. We will consider ‘solving a problem’ and ‘performing a task’ to be synonyms
for the activity of making a sequence of decisions to achieve an end.
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2.2 Apprentice Learning

The learning agent in apprentice learning observes a training agent that is per-
forming a multiple-step task. Figure 2.2 presents a diagram of the apprentice learning
scenario, with a fask, a learner, and a trainer. The trainer, which may be a human
or an automated agent, selects the actions that are applied to the task and .observed

by the learner. Both the learner and trainer observe the state of the task.

State
Y V
Learner Trainer
’1\ 'T\ Action

Figure 2.2 Apprentice Learning Method

The objective of the learner is to develop a good policy 7 that can be applied
to the task. The agent attempts to meet this goal by learning to mimic the trainer.
Because the trainer can perform the task, the assumption is that attempting to copy
the trainer’s strategy will allow the learner to do so also. At each discrete time
step in the task, the trainer selects an action a; based on the current state s, and
whatever knowledge the trainer may have about the task. The trainer then applies the
action, transforming the task to the state s;4;. Meanwhile, the learner has acquired
knowledge about how to perform the task by noting the action that the trainer chose,
acquiring a state-action pair (s, a;) that serves as an example of a correct decision.

This pairing of state with action is powerful training information: the learner
has evidence that a particular action is applicable to a particular state. As the task

progresses, the agent acquires a set of (s;, a;) training examples that are representative
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of each of the trainer’s decisions along the entire solution path. Given the set of (s, a;)
pairs, the learner can build its policy with any of the supervised learning techniques,
such as decision trees (Quinlan, 1993; Utgoff, 1994) or neural networks (Nilsson, 1965;
Rumelhart & McClelland, 1986). This type of learning has also been called “copying
an existing controller” (Barto, 1990) and was used as early as 1964 for this purpose

(Widrow & Smith, 1964).
2.2.1 Apprentice Learning Systems

Several systems have been déveloped that employ apprentice learning to develop a
policy. In this section we describe three of them. The first is one of Samuel’s checkers
players (Samuel, 1967). More recently the method has been applied to training an
automated agent to drive a van (Pomerleau, 1991) and to fly a simulated aircraft
(Sammut, Hurst, Kedzier & Michie, 1992).

One of the earliest uses of apprentice learning was in training an agent to play
the game of checkers (Samuel, 1967). The trainers are master checkers players, whose
move choices from many games are recorded as book moves. The training games
consist mostly of tied games, in which the entire sequence of moves made by each
player is available to the learner. For games that are won by one of the players, only
that player’s moves are placed in the book: Note that humans also study book move
information to improve their skills.

In learning to play, the automated agént simulates the re-playing of the recorded
games, examining each game state in turn and adjusting its policy according to the
move chosen by the master player. Samuel explores two types of policy, both of
which pick the current move choice according to an evaluation function coupled with
limited-depth search. For a given state, the agent changes the evaluation function
so that it will increase the likelihood that the trainer’s move will be chosen in the

future by giving more worth to the trainer’s recorded move and decreasing the value
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of making the move choices that were not chosen. The automated agent learns to
play checkers moderately well, but can not beat master checkers players.

In the Autonomous Land Vehicle in a Neural Network (ALVINN) project (Pomer-
leau, 1991), an automated agent learns to steer a modified van by observing a human’s
driving behavior. While the human drives, ALVINN creates a training example from
the current state, represented by a video image of the scene ahead of the van, and
the human’s steering direction. ALVINN’s policy is implemented as a multi-layer,
feed-forward network (Rumelhart & McClelland, 1986) that takes the video image as
input and determines the steering direction according to the values of its output units.
Presented with a training example, the network adjusts its weights in an attempt to
produce the requisite steering direction.

Observing the human does not provide enough training examples for ALVINN
to learn to steer the van. Pomerleau notes that the learning agent is not supplied
with enough variety of experience by_simply watching the human. It cannot recover
from its own mistakes nor variations due to the uncertainties inherent in steering a
van. To remedy this situation, in addition to learning from each training example
derived directly from the action of the human driver, ALVINN also learns from several
simulated training examples that are bésed on perturbations of the video image and
the corresponding change in the human’s steering direction. With these additional
examples, the agent learns to drive the slowly moving van successfully .

In the final apprentice learning system that we describe, an automated agent
learns to fly a simulated aircraft by observing the actions of a human pilot (Sammut,
et al. 1992). As the human flies the aircraft on a predetermined flight plan, the state
information and the human’s actions are observed by the learner and the training
examples are recorded into a file. After the pilot completes the flight plan by landing
the plane safely, the training information captured in the file is separated into seven

training files, one for each stage of the flight (e.g. taking off, straight-and-level flight,
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landing). The files are then processed individually by the inductive decision-tree
learning algorithm C4.5 (Quinlan, 1993) to produce a policy, in the form of a set of
rules, for every flight stage. Using this technique, autopilots are developed based on
examples derived from three separate human pilots. Each of the three automated
pilots is able to fly the pre-spepiﬁed flight plan in approximately. the same manner as

the human from whom it had learned.
2.2.2 Apprentice-like Learning Methods

A different type of apprentice learning is represented by systems like LEAP
(Mitchell, Mahadevan & Steinberg, 1985) and PROTOS (Bareiss & Porter, 1987).
LEAP is a classification system for circuit designs. Whenever LEAP produces an in-
correct circuit design for a specified requirement (i.e. misclassifies the requirement),
the human trainer provides LEAP with the correct circuit design. PROTOS, is a
classification system for objects, such as dogs and tables. PROTOS asks the human
for help when it misclassifies an object. The human and PROTOS then engage in
a dialogue that results in changes to PROTOS’s knowledge about the classification
task. Although both of these systems learn from a human training agent, and can
therefore be classified as apprentice-like methods, neither attempts to learn a policy

for problem-solving.

2.3 Reinforcement Learning

The learning agent in reinforcement learning updates its policy based on its own
problem-solving experience. Figure 2.3 shows the major components of the reinforce-
ment learning scenario: a task and a learner. These two components interact via

states, which are the task situations; actions, by which the agent manipulates the
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task; and rewards, the training information received by the agent after performing

each action?.

State

;
Learner

Reward

’T‘ Action

Figure 2.3 Reinforcement Learning Method

At each time step in learning to perform the task, the learner selects an action a;
to perform based on the current state s; and iigs developing policy 7. After the agent
applies the action, which changes the state of the task, it receives a reward r, (which
may be zero) that indicates how well it is performing. This evaluative feedback is only
weakly informative, simply revealing the short-term performance level of the agent
and not giving specific information about the applicability of any of the previous
actions. Nevertheless, the scalar rewards are sufficient for the agent to develop a
policy that optimizes an additive measure of those rewards. In particular, the agent
can learn to maximize the expected return, which is a weighted. sum of the rewards
received over the course of performing the task starting at a particular state. Stated

mathematically, the agent attempts to maximize:

E (g wt) 2.1)

2The actual source of the rewards is generally considered to be the environmental critic, a compo-
nent of the environment in which the task is embedded. The critic is abstracted away when the task
is represented as a Markovian decision task: the rewards become simply labels on state transitions.
Thus, we can treat the task itself as the source of the rewards. However, this distinction is not

important here. What is important is that the learner receives reward signals, regardless of their
actual source.
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where r; is the reward received at time ¢, 0 < v < 1 is the discount factor, and E sig-
nifies expected value (which is necessary because state transitions may be stochastic).
Because of the discount factor v, immediate rewards are weighted more heavily than
rewards received in the future. The weighting depends on the value of v. With values
near 1, current and future reward are weighted almost equally, and lower settingg
place the emphasis on rewards received in the near future. Other cumulative mea-
sures of reward, such as the average reward (Schwartz, 1993), have also been studied,
but the discounted case lends itself more easily to rigorous mathematical study, and
is currently the most popular form of return considered in other research.

Because the learning agent is solely responsible for its own training experience
it is faced with two inherent challenges. The first is the problem of temporal credit
assignment (Minsky, 1963): Which of the many actions taken by the learning agent in
the past should be credited, or blamed, for the most recently received reward? This
issue is particularly difficult when the receipt of non-zero rewards is sparse. The other
difficulty, called the explore/exploit tradeoff, arises because the agent must make the
trade between performing well on the task now versus experimenting with its options
in order to learn more about the task. By exploring, the learner may be able to
develop é better policy than its current one. So, the learning agent has to decide
when to take the action that its policy suggests versus when to choose another action
that may give it more information about the task. Much progress has been made
in solving the temporal credit assignment problem, and although formaliy justified
exploration techniques have been developed, many current systems still employ ad
hoc solutions to the explore/exploit tradeoff.

The remainder of this section provides more detail on three prevalent reinforce-

ment learning approaches. See Kaelbling, Littman and Moore (1996) for an in-depth

survey of reinforcement learning.
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2.3.1 Temporal Difference Learning

The roots of temporal difference learning lie in one of the earliest reinforcement
learning systems, the first of Samuel’s checkers players (Samuel, 1963). The learner
receives sparse rewards, given at the end of the game, that indicate only whether
the game was a win, loss, or draw for the learner. In addition to these signals.
the learner updates its policy—an evaluation function coupled with limited-depth
search—according to its own assessment of how well it is performing. The agent
adjusts its evaluation function so that the estimated value of the current state will
move closer to the value of the best choice as determined by the limited-depth search.
That is, the current state’s evaluation changes to reflect the backed-up value of the
highest-valued successor state. With this simple technique of backing-up state values,
the agent learns to play checkers well enough to be considered a moderate checkers
player. Note that there is no formal exploration policy: exploration results only from
the changing evaluation function.

This idea of regressing values led to the development of temporal difference learning
(TD) (Sutton, 1988), which is the main technique for dealing with temporal credit
assignment in reinforcement learning. Via TD, the learning agent learns to predict
the expected return V'(s) of each state,

’ o L
V(o) = B (¥ il =) 2.2)
t=k
which is the expected sum of discounted rewards to be received if the agent is in state
s at time k and uses the optimal policy thereafter. Temporal difference learning re-
ceives its name because the change to the predicted return is based on the difference
between the previous prediction of the state’s return V/(s,_;)—the value of the pre-
vious state—and the current prediction r,_; + yV (s;)-—the sum of the actual reward
received and the value of the current state. The current prediction is a more accurate

measure of the actual value because it considers the reward received. After the agent
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has executed action a;_; in state s;_;, receiving reward ry_, and arriving at state s;.

the update for V'(s;—1) is:
AV (8i-1) = a(rs—1 + YV (s) = V(5t-1)) (2.3)

where V(s;—1) and V(s;) are the predicted returns of s;—; and s;, and r;_; is the
actual reward received. 7y is the factor that discounts rewards received in the future
(see Equation 2.1), and 0 < a < 1 is the step size parameter that controls how much
V(s¢-1) actually changes.

There is an entire family of TD algorithms, called TD()\), where 0 < A < lisa
parameter that controls how much of the current difference (r;—; +vV (s:) — V(s-1))
is applied to all previous states s;,j <t — 1. Equation 2.3 is the TD(0) update rule,
in which only the most recent state’s value is affected. For any particular state s;, the
amount of change to that state’s value V'(s;) is determined by the current difference
and by the state’s eligibility e(s;), which is a function of A that indicates how far in
the past and how frequently the state has been visited. Equation 2.4 gives the TD(\)

rule, which is appfied at time ¢ to all states, s;,j <t — 1.
AV(SJ') = Q(Tt_l +’)’V(8t) - V(st_l))e(sj) (24)

The eligibility of a state is straightforward to calculate. At each time step, each

eligibility is updated as follows:

' Ae(s;) +1 when s; = s,
els;) { Ae(s;) otherwise (2:5)

Thus, the eligibility of a state is an exponentially decaying trace of when and how
frequently the state was visited. The eligibility mechanjsm implements a form of
credit assignment, because the values of previous states are affected by the current
difference, to an amount.determined by how far in the past the state was visited. The

most recent states are affected most, and states in the distant past are affected very
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little. Sutton (1988) and others (Dayan, 1992; Dayan & Sejnowski, 1994) note that
TD(A) converges more quickly for A # 0.

It has been proved that TD(A), under certain conditions, will converge to the op-
timal value function (Sutton, 1988; Dayan, 1992; Dayan & Sejnowski, 1994; Jaakola,
Jordan & Singh, 1994). Via temporal difference learning, TD-Gammon (Tesauro,
1995), a backgammon-playing program, not only became the world’s best computer
backgammon player, but is also considered to be as good as the world’s best human

backgammon players.

2.3.2 Actor-Critic Architecture

The actor-critic architecture (Barto, Sutton & Anderson, 1983) consists of two
components: the policy—also called the Associative Search Element (ASE)—and the
evaluation function—known as the Adaptive Critic Element (ACE). This algorithm is
closely related to the method of policy iteration in dynamic programming (Bellman,
1957; Barto, Bradtke & Singh, 1995), which is a classical, exhaustive method for
finding optimal policies.

The ASE and ACE are each faced with different learning problems. In its role as
evaluation function, the ACE maps states to real values, and attempts to predict the
value V/(s) for each state (Equation 2.2). The ACE’s update rule is the TD(0) rule
given in Equation 2.3, which changes the prévious assessment of predicted reward
based on the current evaluation and the actual reward received.

As the policy, the ASE maps states to actions. Each time the learner performs
an action, it updates the ASE according to the immediate (predicted) reward from
the ACE. Because the ASE receives immediate feedback, it does not have to deal
with the credit assignment problem. However, since the ACE is being developed
simultaneously with the ASE, there is much uncertainty in the training signal used
by the ASE early in tré.ining. Indeed, there is no proof that the ASE will converge to

an optimal policy.
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The ASE/ACE pair was first applied to learning to control the cart-pole task
(Barto, Sutton & Anderson, 1983). Controlling the cart-pole involves keeping a pole
balanced on a movable cart and keeping the cart within the boundaries of a fixed-
length track by applying a bang-bang control policy. In the system built by Barto, et
al. (1983), the ASE/ACE were each implemented as a linear threshold unit (Nilsson,
1965). In later work, Anderson (1989) built each with a multi-layer feed-férward
network. Both of these implementations were able to learn to control the cart-pole

task after extensive experience.
2.3.3 (@-learning

Instead of maintaining both a policy and an evaluation function, Q-learning
(Watkins, 1989) combines them into a single mechanism. This reinforcement learn-
ing method is closely related to the classical dynamic programming method of value
iteration (Bellman, 1957; Barto, et al. 1995), in which an evaluation function of the

states is developed and the derived policy is greedy with respect to that function.

For each state-action pair (s,a), Q-learning estimates the return of the state s, .

given that the action a is performed and the optimal policy is followed thereafter.
The quantity Q(s,a) is called the Q-value of the state-action pair. Given a state s
and the set of actions A that can be execute_d at that state, the implied policy selects

the action that has the highest Q-value. That is:
m(st) = arg max Q(ss, a) (2.6)

The Q-function is trained similarly to the ACE discussed above, with temporal
difference learning. In particular, the previous assessment of return, Q(st-1,04-1) is
changed to reflect the currently predicted evaluation, r,_, + Ymax,ea Q(s:,a). Re-

member that the optimal action to perform in state s, is the action that produces the
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highest @Q-value (see Equation 2.6), and so max,c4 Q(s¢,a) represents the predicted

value of taking that action. The update rule is given by:

AQ(st-1,a:-1) = a(ri—1 + ’Y%}gg‘@(sta a) — Q(5t-1,a:-1)) (2.7)

This update can also be expressed in a form similar to TD()A) where the current
difference also applies to updates on previous states. |

It has been proved that Q-learning under certain restrictive conditions, will con-
verge in the limit to the optimal evaluation function (Watkins, 1989; Watkins &
Dayan, 1992; Jaakola, Jordan & Singh, 1994; Tsitsiklis, 1994). These proofs, al-
though they do not say much about how Q-learning will perform in practice, lend
credence to the widespread use of Q-learning. Indeed, several researchers have em-
ployed @-learning with success: in robotics and maze tasks (Mahadevan & Connell,

1992; Lin, 1992; Singh, 1992) and in elevator dispatching (Crites & Barto, 1996).
2.3.4 Model-Based Reinforcement Learning

Each of the reinforcement learning methods discussed so far are examples of model-
free algorithms. Although the learners in model-free algorithms are exposed to the
transition probabilities and the reinforcements received for each state-action pair
experienced, they do not try to learn a moglel of either of those aspects of the task.
The model-based reinforcement learning algorithms, such as Dyna (Sutton, 1990;
Suttoh, 1991), Prioritized Sweeping (Moore & Atkeson, 1993) and the closely related
Queue-Dyna (Peng & Williams, 1993), do learn such models. Because they have
a model of the task, they can rely on it in order to simulate the outcome of the
application of actions to arbitrary states; thus, gathering more experience in the task
than they can on-line. These approaches can be costly in terms of computation.
In addition, the learned policy is based on the imperfect model. Nevertheless, the

model-based algorithms typically perform better than the model-free algorithms.
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2.4 Comparison

Apprentice learning and reinforcement learning both endow the automated agent
with the capacity to learn to solve problems, allowing the learner to develop as good
a policy as it can. In achieving this end, they each take d'iffering approaches, with
diéparate assumptions, objectives, and algorithms. One can characterize the methods
along dimensions such as: the availability of training information, the informativeness
of the training information, the amount of ezposure the learner has to the state-space,
and the optimality of the learned policy. One can also discuss how each method deals
with stochastic and temporal aspects of the task, and with the credit assignment and
explore/ezploit problems. kFinally, another quality on which the methods differ is the
speed with which each achieves its objective. One can compare and contrast the two
methods along these dimensions and notice that neither one is clearly preferred over
the other.

When setting up a problem to be learned, one must be concerned with the avail-
ability of training information. Without this information, the task cannot be learned.
In apprentice learning, the source of the training information is a human (or other
agent) that can perform the task completely, but not necessarily optimally. For any
given task, finding a sufficiently skilled trainer may not be possible, thus limiting the
applicability of the method. Reinforcement léarning requires only that the agent re-
ceive evaluative rewards in the course of problem-solving. The advantage of relying on
rewards for training is that many problems can be cast easily as reinforcement learn-
ing problems, in the extreme associating appropriate rewards with only successful or
failed end states.

Because apprentice learning and reinforcement learning each have disparate sources
of training information, one may ask how informative is each type of information. A
strength of apprentice learning is that the learner receives prescriptive training. Be-

cause a human that knows how to perform the task is the source of the state-action
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training pairs, it can be assumed that the information is useful for developing a good
policy. For example, as Samuel points out, book moves are “representative of the very
best play” (Samuel, 1967, p. 612). Although the trainer’s choices may not always be
optimal, they do give a strong indication of how to solve the problem. Moreover, the
agent learns from entire sequences of state-action pairs that are known to lead from
the start state to the completion of the task. In reinforcement learning, the train-
ing information is not so informative. It does not reveal which action should have
been chosen nor which of the many previous actions led to the receipt of the reward.
Furthermore, non-zero reward signals may be infrequent, providing the agent with
only sparse training information. A learning agent should have access to the most
informative training information possible.

The two methods also differ in the amount of exposure to the task that the agent
acquires. In apprentice learning, because the learner observes the solution path of the
trainer, it only receives training within a vei‘y narrow portion of the state-space. Ac-
cordingly, the agent’s performance may suffer if it were to stray from that narrow area.
This situation is remedied in ALVINN by providing the agent with derived training
information, representative of the state-space in a neighborhood of the solution path.
In reinforcement learning, the agent mﬁst explore large portions of the state-space
to gather information about which actions are the best to choose. Sammut et al., in
their work in apprentice learning, observe that exposure to more of the state-space
can lead to better policies. They note that the worst human pilots, because they
made mistakes and then had to recover from them, exposed the automated agents to
more of the state-space than just the narrow solution path, and were the source of
the best autopilots. Thus, one desires that the learning agent gain action-selection
experience over a wide range of states.

The optimality of the learned policy is also a characteristic of concern. There is

no evidence that an agent employing apprentice learning will learn an optimal policy.
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The objective of the learner is simply to learn a policy that is based on the trainer’s
actions. Empirical results do not say much about the “goodness” of the learned policy.
The master checkers players, who were by definition proficient at checkers, did not
help Samuel’s checkers players learn to perform optimally. However, Sammut et al.
found that two of the learning agents could perform the task better than their trainers,
due to generalization. For apprentice learning, we barely have empirical evidence that
the learner will develop a useful policy at all, let alone an optimal one. On the other
hand, there is much theoretical support for the claim that a reinforcement learning
agent will eventually learn an optimal policy. Many convergence proofs for TD())
and Q-learning exist (Watkins, 1989; Watkins & Dayan, 1992; Dayan, 1992; Dayan
& Sejnowski, 1994; Jaakola, Jordan & Singh, 1994; Tsitsiklis, 1994), mostly due
to the links reinforcement learning has with dynamic programming and stochastic
approximation. Clearly, having theoretical support for the convergence properties of
the learning algorithm is a preferred quality.

Each of the methods approaches learning about the stochasticity and temporality
of the task differently. Here, stochasticity refers to the fact that applying an action
to a state may result in any one of a set of states, probabilistically. Temporality
refers to tﬁe fact that an agent’s curreﬁt actions will impact the rewards it receives
in the future, and will influence whether the agent is capable of completing the task.
Neither of these issues are dealt with explicitly in apprentice learning. The agent
simply learns to mimic the trainer’s actions, under the assumption that the trainer
knows the correct actions to perform. Reinforcement learning, though, handles both
explicitly. The agent builds its policy to optimize the return, which is not only defined
in terms of future rewards but is also an expectation over those rewards. Because of
the expectation, the agent considers the stochastic nature of the task. Furthermore,

the agent takes into account the rewards that may be received in the future, because
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the measure of optimality and, hence, the returns that are to be estimated are defined
in terms of the current and all future rewards.

Reinforcement learning must face the credit assignment problem and the ex-
plore/exploit tradeoff. Learners in apprentice learning need not concern themselves
with these two issues. First, there is no credit to assign. When the learner receives a
state-action pair, it can learn directly that the action should be evoked in that state.
There is no reason for the apprentice learning agent to explore either: the agent just
learns from the trainer’s actions. Reinforcement learning, by its very nature, must
be able to handle credit assignment and exploration. Having to deal with temporal
credit assignment and exploration of the task makes learning more difficult.

Finally, the two methods reach their objectives at different rates. In apprentice
learning, the agent attempts to build as good a policy as it can based on observation
of the trainer. In all three apprentice learning systems described above, the agent is
able to do this quickly: Running an induction algorithm on a set of (s;,a;) training
instances does not require a prohibitive amount of time. We must point out, though,
that the agents do not learn to perform the tasks in the same manner as their trainers.
Samuel’s checkers player does not learn to play like a checkers master, and two of the
autopilots learn to fly better than their trainers. Reinforcement learning methods
generally require huge amounts of time to develop policies for even simple tasks.
Remember, though, that reinforcement learning is attempting to build an optimal
policy, not just a satisfycing one. Furthermore, reinforcement learning can be faster
than the only other method that produces optimal policies, dynamic programming,
and, unlike dynamic programming, does not require the complete specification of the
task. To some extent, one cannot compare the two methods on this criterion of speed
because the objectives are so different.

We have compared and contrasted the two learning methods on particular dimen-

sions. The comparison is summarized in Table 2.1. Apprentice learning provides
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the learner with higher quality training information, and does not have to be con-
cerned about credit assignment nor the explore/exploit tradeoff. On the other hand,
reinforcement learning exposes the trainer to a larger portion of the state space,
guarantees optimal policies under certain conditions, and manages the stochastic and
temporal aspects of the task gxplicitly. In our comparison of the two learning meth-

ods, we point out that on any given dimension one of the methods is preferred, but

that neither method is preferred on all dimensions.

Table 2.1 Comparison of Apprentice Learning to Reinforcement Learning on a select

set of characteristics. The preferred quality is in bold-face type.

Apprentice Reinforcement
Characteristic Learning Learning
Training information available | rarely often
Quality of training information | prescriptive | evaluative
Exposure to problem space narrow broad
Optimality of policy rarely approaches optimal
Stochasticity implicit explicit
Temporality implicit explicit
Credit assignment problem no yes
Explore/exploit problem no yes
Speed objective satisfied fast slow
31
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CHAPTER 3

INTEGRATING APPRENTICE LEARNING AND
REINFORCEMENT LEARNING

Apprentice learning and reinforcement learning each give an automated agent the
capacity to learn to perform multiple-step tasks. They both allow the learner to
improve its policy and become more accomplished at the task. In our analysis of the
two methods in the previous chapter, we describe particular dimensions of comparison
and note that the two methods are clearly different. A learning method that possesses
a higher proportion of the desirable characteristics will be considered an improvement
over either of these methods. One can develop such a preferred method through a
prudent integration of the two individuals. The new hybrid method will not only
have many of the beneficial qualities of its constituents, but it will also reduce their
weaknesses via the synergistic combination of its complimentary components.

Hybrids of apprentice learning and reinforcement already exist (Utgoff & Clouse,
1991; Clouse & Utgoff, 1992; Lin, 1992; Lin., 1993), and have been shown to perform
better than their constituents. For example, Utgoff and Clouse (1991) developed an
integrated learning agent that only needs to traverse the task once from the start
state to goal state in order to learn to perform it correctly. Learning without the
integration requires more training: two traversals of the task when learning via ap-
prentice learning and almost five hundred traversals when learning via reinforcement
learning. The learning agent in Clouse and Utgoff (1992) achieves learning speedups
of up to two orders of magnitude versus reinforcement learning alone. Finally, Lin
(1992, 1993) shows that giving a learning agent the ability to incorporate a trainer’s

knowledge improves the speed with which the agent learns. Each of these systems
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hints at the positive benefits of integrating apprentice learning and reinforcement

learning and serves as inspiration for our work.

3.1 An Integrated Learning Method

 We define an integration of apprentice learning and reinforcement learning to be
a learning method in which the learner can improve its policy based on rewards
and on actions provided by a trainer. The trainer may or may not be human, and
does not need to be expert at the problem. Figure 3.1 depicts such an integrated
learning method. The relationship between the learner and the task is the same as
that in reinforcement learning: at every time step, the learner observes the state,
chooses an action to perform, and receives a reward. The relationship between the
learner and trainer is similar to that in apprentice learning because the learner can
observe actions that the trainer supplies. Unlike apprentice learning, the trainer does
not need to provide an action to the learner at every step of the task. Either the
learner or trainer determines when it is appropriate for the trainer to give an action.
Accordingly, the interactions between the learner and trainer are more sophisticated,

for example allowing the learner to ask the trainer to provide it with an action.

- State
v V.
Reward ] earner<2<8% Trainer
A Action 'ﬁ Interaction A

Figure 3.1 Integrated Learning Method
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According to our definition, the learner receives task knowledge from the trainer
in the form of actions to perform. This approach has appeal for two main reasons.
First, because apprentice learning relies solely on the actions provided by the trainer.
it seems reasonable to do the same in a method that has apprentice learning as one
of. its components. More importa.ntly, having the trainer give actions is a natural
and easy way for the trainer to provide information to the learner. The trainer does
not need to codify knowledge into rules, but simply reacts to the current situation,
providing the action that is deemed best. Actions, though, are not the only form of
information that the trainer may be able to provide (see Section 3.4). However, in
our work we limit the trainer in the integrated method to providing simple actions

to the learner.
3.1.1 Desirable Characteristics

An integration of apprentice learning and reinforcement learning should have the
following characteristics:
1. It should use whatever training information is available, whether from the en-

vironment or from the trainer, and be able to incorporate that information into
its policy.

2. Tt should expose the learner to enough of the state-space for the learner to
develop an effective policy, but should not require the learner to gain experience
across the entire state-space.

3. It should allow the learning agent to develop a policy that optimizes the long-
term receipt of reward signals, thus handling the stochastic and temporal nature
of the task explicitly.

From the reinforcement learning component, the learner has access to scalar re-
ward signals; and through apprentice learning, the learner receives actions from the
trainer. An integrated method must be able to assimilate each type of information

into the policy. The difficulty here is in designing a learning algorithm that updates
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the policy according to two disparate forms of knowledge. The algorithm must adjust
the policy according to the scalar signals, and it must change the policy based on the
trainer’s actions.

The learner must also be exposed to broad areas of the state space. As Sammut et
al. (1992) and Pomerleau (1991) describe, experience with a wide selection of state-
action choices is important for learning a good policy. On the other hand, because it
takes time to visit many states, the exposure should be focused on only those areas
of state-space that are necessary to learn a policy that is optimal for the problem.

The ultimate goal of the learning agent is to develop an optimal policy. Finding
such a policy is guaranteed (under certain restrictive conditions) by reinforcement
learning. In an integrated method, using the trainer’s information should not preclude
the learner from developing an optimal policy, but should help it achieve such a policy
more quickly. Being able to develop an optimal policy implies that the learning agent

is taking the temporal and stochastic aspects of the task into consideration explicitly.
3.1.2 Issues in Integrating the Two Methods

Integrating apprentice learning and reinforcement learning raises a set of questions
that we address in our research:

1. How should the learner and trainer interact?

2. How should the learner incorporate the trainer’s proffered information into its
developing policy?

3. When is it effective for the learner to receive training actions?

4. To what extent does the expertise of the trainer affect the learning?

Because the learner has access to reward signals and can update its policy accord-
ing to those signals, it does not have to receive an entire sequence of state-action pairs

from the trainer. In fact, the learner does not have to receive any information from

the trainer at all, but should be able to use whatever information the trainer provides.
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Because the learner has access to reward signals, the trainer is free to provide actions
at unspecified times in the training. That is, the relationship between the learner and
trainer is much richer than simply having the trainer give an action at every time
step. To describe this more sophisticated relationship, we have developed a model
of the interactions that take place between the learner and trainer. The model is
inspired by the complex relationships between human learners and trainers. Even so,
the model does not attempt to describe all possible interactions that may occur. It
is described in Section 3.2.

One must also be concerned with the algorithmic detail of how to incorporate
both reward signals and state-action pairs into the developing policy. It may seem
surprising that one can produce a policy from both types of information, but several
approaches have been proposed that work well (see Section 3.3.2). Unfortunately, it
is unknown which is best and which gives the integrated method the desired qualities
described above.

We also do not know when the trainer should interact with the learner to pro-
vide training information. Apprentice learning and reinforcement learning represent
extremes of interaction; the trainer either provides information always or never, re-
spectively. We explore the spectrum of .interaction between these ends. The amount
of trainer interactipn becomes an important issue when one considers the cost of hav-
ing the trainer in the scenario. One may like to have as little interaction with the
trainer as possible, both to reduce the cost and to decrease the dependence of the
learner on the trainer.

Finally, because the learner bases part of its policy on the trainer’s actions, it
seems natural to ask how good the trainer must be in order for the learner to benefit
from those actions. In previous work (see Section 3.3.2) it is not clear how good the
trainer is at performing the task nor how the trainer’s expertise affects the learner’s

ability to develop an appropriate policy. Although we know that the trainer does
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not have to be able to solve the problem perfectly from every state in order to be

effective, we do not know how often the trainer can make mistakes.
3.1.3 Two Viewpoints

One can think of the integration of apprentice learning and reinforcement learning
from at least two distinct viewpoints. First, one can imagiﬁe the hybrid as augmenting
reinforcement learning with apprentice learning characteristics; for example, allow-
ing the automated agent to learn also from a trainer’s knowledge. One can also see
the integration as adding reinforcement learning characteristics to apprentice learn-
ing. For example, in the hybrid method the learner can now deal explicitly with the
temporal aspects of the task, when before it could not. Regardless of the particular
viewpoint, each constituent brings positive characteristics to the hybrid. Further-
more, the characteristics of the individual methods interact, reducing each other’s
weaknesses.

In the integrated method, certain characteristics of apprentice learning will im-
prove upon reinforcement learning’s drawbacks. By having a trainer in the scenario,
the learner has access to informative training information, which can augment the
evaluative reward signals the learner already receives. As a different type of task
knowledge, the trainer’s actions will also ‘;a,i_d the model-based reinforcement learn-
ing approa'ches. The trainer’s actions may also help focus the efforts of the learner
on parts of the space that are appropriate for learning an effective policy quickly,
combating a major weakness of reinforcement learning described by Kaelbling et al.:

One thing that keeps agents that know nothing from learning anything

is that they have a hard time even finding the interesting parts of the

space; they wander around at random, never getting near the goal. (1996,
p. 275)
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The trainer may help the learner find the “interesting parts” of space, showing the
learner where it is profitable to explore and thus alleviating the explore/exploit diffi-
culty.

In an integrated method, characteristics of reinforcement learning can reduce
weaknesses of apprentice learning. One drawback of apprentice learning is that the
trainer must be able to perform the entire task correctly. Because the learner in the
hybrid method can now adapt based on reward signals, it does not need to rely as
heavily on the trainer. In the hybrid method the trainer does not need to perform
the task completely, from a start state to a goal state; instead, it may give partial
solutions, some only one step long. The learner can also deal with the trainer’s mis-
takes, refining incorrect training information in its continued exploration of the task.
The addition of reinforcement learning characteristics to apprentice learning will also
allow the learner to receive more exposure to the task than the narrow solution path
of the trainer because exploration of the state-space is a key component of reinforce-
ment learning. Moreover, reinforcement learning also brings its other strengths to the
integration, dealing explicitly with the stochasticity and temporality of the task, and

having a sound theoretical base.

3.2 A Model of Learner/Trainer Interaction

The relationship between the learner an(i trainer is more sophisticated in the
integrated method than in either apprentice learning or reinforcement learning. The
model of learner/trainer interaction introduced here specifies the interactions that
may take place. The goal of the learner is to develop an optimal policy. The trainer
shares this goal, providing the learner with actions so that the learner can improve.
However, the model takes into account that the trainer may have its own work to
perform and so must balance helping the learner versus completing its own task. The

tasks of the learner and trainer are in the same domain, but may deal with different
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aspects of that domain. For example, the learner may be learning how to navigate a
robot in a fixed environment, whereas the trainer’s task involves navigating around
moving obstacles. A research issue that we explore is how much the trainer’s expertise
at the task influences how well the learner learns.

. In the learner/trainer model, the learner and trainer employ two classes of aqtions.
The first class of actions are those that transform task states, such as moving a robot
forward, or turning the robot. The second class of actions, which we call meta-actions,
define the interactions that occur between the learner and trainer. To distinguish
between the mechanisms for deciding which action to choose and which meta-action
to choose, we will continue referring to the first as simply a policy and will refer to
the other as an interaction policy. A set of interaction policies are employed by the
trainer and learner to determine which meta-action to choose. Although our work
focuses on learning the policy, having the agents learn the interaction policies is a
possibility for future research (see Section 6.2.3).

The following sections present more details on the learner/trainer model, describ-

ing the learner, the trainer, and the interactions between them.

3.2.1 The Learner

The learner is a computerized agent that is attempting to learn to perform a task
by developing an optimal policy. Figure 3.2. depicts the model of the learner. The
figure represents a simple conditional branch (diamond), the meta-actions (circles),
and the interaction policies (stars). The conditional branch at the top of the diagram
represents the fact that at each time step the learner determines first whether the
trainer has provided it with any training information.

The learner makes use of three interaction policies, each of which pertains to
different aspects of the interaction with the trainer. If the learner has not received a
task action from the trainer, it can decide whether to ask the trainer for help. When

the learner decides to ask for help, it performs the meta-action “Ask for Help” and
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Figure 3.2 Learner Model

sends a signal to the trainer notifying it of the request. The learner can decide to ask
for help for many reasons; for example, when the it does not know what to do at that
point. The learner may decide not to ask for help because it has determined that
the trainer’s help is not necessary. It is a research issue, which we explore herein, to
determine when it is appropriate for the learner to ask for help.

When the learner receives training information from the trainer, it must decide the
disposition of that information. The interaction policy “Perform Trainer's Action?”
determines whether to learn from the trainer-supplied information. The learner may
decide to use the trainer’s information because the learner has just started learning.

Or, the learner can decide to ignore the trainer’s help, which it may do if it determines
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. that it has a better policy for the problem than the trainer or that the trainer is
providing incorrect actions.

The final interaction policy, “Observe Trainer?,” comes into play only when the
learner has decided not to ask for help and not to learn from the trainer’s proffered
information. This policy determines whether the learner should simply observe the
trainer in order to gain information about how to perform its task. In observing the
trainer, the learner does not perform an action in its own task, but examines the
trainer’s task state and chosen action. The learner can then learn from that state-
action pair. The learner may decide to do this, for example, when the learner’s and
trainer’s tasks are similar to each other.

The final meta-action is executed when the learner has decided not to perform
any of the other meta-actions. Then, the learner picks a task action to perform. As
in reinforcement learning, the learner is faced with the problem of choosing an action
that will exploit the information it has already gleaned about the task or performing

an action to explore the task and gather more information.

3.2.2 The Trainer

‘The trainer may be an automated agent or a human and may be performing a task
within the same domain as the learner. Eigure 3.3 shows the model of the trainer.
Like the figure of the learner model, this figure depicts a simple conditional branch,
meta-actions, and interaction policies.

The conditional branch determines whether the learner has asked for help. If
so, the trainer employs its interaction policy labeled “Give Solicited Action?” to
determine whether to supply the learner with the requested action. The trainer may
give the learner help because the learner has just started learning, or the trainer
recognizes the learner’s current task state as being difficult. The trainer may refuse
to give help because it can not determine what action is appropriate to give because

it does not have knowledge about that part of the space.
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Figure 3.3 Trainer Model

When the trainer decides to ignoré the learner’s plea for help, the trainer performs
its own work (if it has any), deciding which action to apply to its own task. If, on the
other hand, the learner’s request is to be granted, the trainer provides the learner with
the action that it determines to be appropriate for that state. The proffered action
might not give the learner the optimal choice to make in that situation, because the
trainer might not know the optimal action. The trainer is attempting to help the
learner, though, and will not mislead the learner intentionally.

When the learner does not ask for help, the trainer decides whether to volunteer
information, which it may do for the same reasons as offering solicited help. The
meta-actions that can be applied by the “Give Unsolicited Action?” interaction
decision-policy are the same as those under the interaction decision that pertains to
the learner asking for help. Although the two interaction policies could be collapsed
into only one, there rﬁay be a need for the trainer to maintain the distinction of

whether the learner asked for help or not. Furthermore, trainers in currently existing
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systems are either of one type, offering unsolicited help, or the other, offering solicited

help. Thus, the model has two, separate interaction policies.

3.3 Fitting Previous Work to the Model

*Several learning systems have been developed that allow an automated agent to
learn to perform multiple-step tasks. Each has made assumptions about the interac-
tions between the learner and trainer, employing particular mechanisms for allowing
the learner to acquire task knowledge. In apprentice learning, which is at one end
of the spectrum of interactions, the learner always acquires information from the
trainer and always updates according to that information. At the other extreme is
reinforcement learning, in which there is no trainer. Several researchers have also sug-
gested systems that lie between these two extremes. The following sections describe
these learning systems in more detail, discuss the assumptions about the interactions
between the learner and trainer, and show how the methods fit the learner/trainer

model.
3.3.1 Apprentice Learning and Reinforcement Learning Revisited

Both apprentice learning and reinforcement learning are specializations of the
learner/trainer model, in which different aspects of the model have been left out.
Figure 3.4 depicté a particular interpretation of apprentice leérning. The shaded
areas of the figure cover the parts of the model that are not applicable to apprentice
learning. The learner, depicted on the left of the figure, can execute only one meta-
action: perform the action provided by the trainer. The only applicable interaction
policy “Perform Trainer’s Action?” produces a fixed value of “True”. At every time

step, the learner receives an action from the trainer, and has no choice but to train

with that action.
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Trainer

Figure 3.4 Fitting Apprentice Learning to the Learner/Trainer Model, first inter-
pretation

The trainer, depicted on the right of Figure 3.4, is never asked fq;' help, but always
provides it to the learner. At every time step, the trainer assesses the situation in
the task and gives the learner the appropriate action. Like the learner, the trainer
has only one meta-action to execute, “Give Action,” and the interaction policy “Give
Unsolicited Action” produces a fixed “True” value.

In a second interpretation of apprentice learning, the trainer performs its own work
while the learner observes unobtrusively. This viewpoint also fits the proposed model,
but different parts of it apply, as shown in Figure 3.5. The lea.rnve‘r still executes only
one meta-action, observing the trainer. Similarly, the trainer performs only one meta-
action as it does its own work. The interactions between the learner and traiher are
just as inflexible in this interpretation as in the other. The main difference between
the two viewpoints is that in the first the learner is performing its own task with the
help of the trainer, and in the latter the trainer is performing its own task with the
learner observing. Both interpretations are appropriate and both exhibit the rigidity

of the interactions in apprentice learning.
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Learner Trainer

Figure 3.5 Fitting Apprentice Learning to the Learner/Trainer Model, second inter-
pretation

Figure 3.6 shows how reinforcement learning maps to the learner/trainer model.
Via reinforcement learning, the learner relies solely on its own experiences to improve
its performance. A trainer is not present to guide the learner, hence the model of the
trainer, on the right of the figure, is completely shaded out. As shown in the left of
the figure, both applicable interaction policies produce constant outputs. The learner
can only perform its own actions, either doing the current best action or choosing an
action for exploration purposes. And; the learner never receives help from a trainer
because a trainér is not present. For the same reason, the learner cannot ask the
trainer for help nor observe the trainer. The learner/trainer interactions do not exist

in reinforcement learning.
3.3.2 Integrated Learning Methods

The integrated approaches can be divided into two main categories, based on the

interactions they have with the trainer:
1. The trainer provides actions whenever the trainer feels it is necessary.

2. The trainer provides actions only when asked by the learner.
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Leamer Trainer

Figure 3.6 Fitting Reinforcement Learning to the Learner/Trainer Model

In each of these categories, the learner always trains on the information provided by
the trainer. The following two sections describe these systems and show how they fit
the learner/trainer model.

Each of these systems hints at the power of integration. Experimentation with
all of these systems shows marked decreases in the amount of training necessary for
the learner to learn to perform the task. These performapce improvements serve as
an .inspiration for our work of studying the integration of apprentice learning and

reinforcement learning.
3.3.2.1 Receiving Unsolicited Actions

The two systems presented here show that allowing a trainer to provide occasional,
unsolicited information to the learner will improve the learner’s ability to learn its
task.

Learning from Lessons: Lin’s work (1991, 1992, 1993) focuses on how Q-learning
can scale up to more complicated tasks than those typically attempted, introducing

several approaches for improving the learning rate of reinforcement learning. One
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of the approaches combines apprentice learning and reinforcement learning into a
method that relies on the trainer’s ability to do the task in its entirety. In this ap-
proach, a human trainer performs the task occasionally, leading the agent through
all the steps necessary to progress from a start state to a goal state. The sequence of
(state, action, resulting state, reinforcement) quadruples that result from the human'’s
actions is captured in a lesson. After a lesson has been recorded, the learning agent
incorporates it into its experience by simulating the trainer’s performance repeatedly.
The agent does not need to perform the sequence of actions itself because all of the
information necessary to do the Q-learning updates is present in the quadruples of
the lesson.

The results of Lin’s experiments indicate that the learners are able to learn more
quickly with the trainer’s aid than without it. In one case, the learner learns a
task via the integrated approach that it does not learn with reinforcement learning
alone. Unfortunately, like the trainer in apprentice learning, Lin’s approach requires
the human trainer to develop complete sequences of actions that are appropriate for
teaching the learner; This approach does not address the issues of when the trainer’s
information is needed nor of how good the trainer needs to be in order to be effective.

Learning via Interactive Teacliiﬁg: Clouse and Utgoff (1992) add a simple
interface to a reinforcement learning approach to allow a human to interact with the
automated learner on-line and in real-time. While the agent learns the multiple-step
task via reinforcement learning, the human monitors the learner’s performance and
provides an action to the learner whenever she desires, providing the learner with
a correct choice to make at that point in the task. At each time step, the learner
senses whether the human trainer has supplied such an action. If so, the learner
performs the trainer’s action and gives itself an artificial positive reward for doing

what the trainer suggested. Otherwise, the learner makes its own action choice based
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on its developing policy. Because the learner receives an artificial reward, it learns to
optimize a different set of rewards than if it did not interact with the trainer.

In an experiment with a complex control task, the learner performed the task
after two orders of magnitude less training effort than that required with plain rein-
forcement learning, while receiving only an average of seven actions from the human
trainer, each of which is a single key-stroke. This approach to integrating apprentice
and reinforcement learning shows that the development of the policy can be greatly
improved when a trainer attempts to teach the learner actively. However, the trainer
decides when such training information is appropriate for the learner. Similarly to
Lin’s system, there is no sense of the best time for a trainer to provide information
nor of the effects of the trainer’s expertise on the results.

Figure 3.7 depicts the learner and trainer for these two systems, in which the
trainer determines when to give the learner information. The learner can employ two
meta-actions: perform its own action and perform the trainer’s action. The learner’s
interaction policies, as in all systems discussed previously, are fixed. When the learner
receives input from the trainer it must use it, and when the trainer does not provide
the learner with help, the learner is on its own.

The trainers in these two systems décide whether to give the learner help or not.
Unfortunately, both systems rely on a human trainer whose expertise at the task is

unknown, and it is uncertain when the trainer should give information to the learner.

3.3.2.2 Receiving Solicited Actions

Utgoff and Clouse (1991) show that the learner can take more control of the
interactions between the trainer and learner, soliciting the trainer to supply actions.
In the reinforcement learning component of their system, the learner updates its policy
via a form of temporal difference learning: the value of the current state is changed

to reflect the value of the successor state resulting from the application of the current

action. The trainer’s information is assimilated into the policy by inferring that the
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Learner Trainer

Figure 3.7 Fitting Integrated Learning to the Learner/Trainer Model, where the
trainer provides unsolicited actions

state resulting from the action chosen by the trainer should have a higher value than
all of the other currently applicable states. As the learner trains with reinforcement
learning, whenever the difference between the value of the current state and the value
of the successor state exceeds a specific threshold, the automated trainer is queried
and the trainer informs t.he learner of the correct action choice.

The learner is able to learn to perform a small version of the task after traversing
it only once from start state to goal state, whereas an apprentice learning method
requires two traversals and the reinforcement learning approach- requires almost five
hundred. For larger problems, the integrated method is still much faster than the
other two individually. Furthermore, the frequency of requests for trainer’s actions
drops sharply as the learner improves its performance on the task.

Figure 3.8 depicts the learner and trainer for this system. Unlike all previous
systems we have discussed, the interaction policy for deciding whether to ask the
trainer for help is an automated policy with two possible outcomes. This interaction

policy is based on the internal workings of the reinforcement learning algorithm and
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indicates whether to ask the trainer for help or to perform a task action. All other

interaction policies produce fixed values.

Trainer

Figure 3.8 Fitting Integrated Learning to the Learner/Trainer Model, where the
trainer provides solicited actions

The learner in this method is more sophisticated than any previously mentioned
because it can decide whether or not to ask the trainer for help. However, the trainer
always provides the learner with perfect training information, telling the learner the
optimal action to perform, and so' this approach does not deal w}th the trainer’s

possible lack of expertise.

3.4 Other Related Work

Other systems have been built in which learners attempt to develop policies for
multiple-step tasks. Like the integrated systems described above, these systems incor-
porate a human’s knowledge in addition to evaluative feedback in learning to perform
the task. The systems can be divided into two main groups. In one, the human pro-
vides high-level advice in the form of if-then rules. In the other, the human subdivides

the task into smaller, more easily solved pieces.
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3.4.1 If-Then Rules

In the integrated method described above, the trainer provides the learner with
simple actions that should be applied to the current state. Another form of knowledge
that the trainer can give the learner is general advice in the form of if-then rules.
Unlike task actions, which only give information about the states with which they
are paired, one piece of advice may be applicable to many situations that arise in the
task.

In Maclin and Shavlik’s (1996) Reinforcement and Advice-Taking Learning Envi-
ronment (RATLE) system, while the agent learns its task via reinforcement learning,
a human monitors the learner’s performance. Whenever the human feels it is neces-
sary, she provides the learner with advice in the form of an if-then rule that specifies
a set of actions to take for all states that satisfy the rule’s preconditions. Using tech-
niques derived from knowledge-based neural networks (Towell, Shavlik & Noordewier,
1990), the learner incorporates the rule via changes to the multi-layer network that
represents its policy. According to the structure of the rule, the learner adds nodes
and connections to the network, and gives the connections initial weights. After the
advice-induced changes to the network have been made, the learner continues learn-
ing, updating its policy based on reinforcement learning and possibly changing the
values of the new weights. | |

When it is given advice, the learner achieves significantly higher levels of reward in
performing the multiple-step task than when it receives no advice. The experiments
also indicated that the time of arrival of the advice does not matter: whether given
at the beginning or in the middle of learning, the learner is able to achieve the same
high level of performance. One drawback of RATLE is that it requires the trainer to
perform the following steps in giving advice: observe the learner’s behavior, analyze
that behavior, develop a rule to fix an observed difficulty, codify that rule in a manner

understandable by the learner, and, finally, present the advice to the learner. This
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is much more demanding on the trainer than having the trainer react naturally to
the current situation by offering an action to perform, but, the advice may be more
broadly applicable.

Gordon and Subramanian (1994) built a similar system in that the learner accepts
rules from a trainer and then refines those rules autonomously. In their system, the
learner relies on genetic algorithms (Holland, 1986), instead of reinforcement learning,
to-learn from task rewards. The trainer develops a set of if-then rules before the agent
begins learning, codifying whatever knowledge seems appropriate. After the if-then
rules are converted automatically into operational rules with the help of a database
of domain knowledge, they become part of a population of rules that are continually
refined by the genetic operators as the learner performs the task. The learner. when
seeded with the trainer’s advice, learns to perform the task better than learners
without the advice. There is no real interaction between the learner and trainer,

though, because the trainer can only give advice at the beginning of training.
3.4.2 Task Decomposition and Shaping

In the approaches discussed here, the underlying learning method is reinforcement
learning. The apprentice learning aspect comes implicitly from the fact that a human
either changes the definition of the problem as the learner progresses, training it on
increasingly complex approximations of thev required problem, or has spent a great
deal of effort in defining the problem. The first approach is shaping and the next
is task decomposition. In these two approaches, there is no direct interaction with
a training agent. Thus, these approaches fit the learner/trainer model in the same
manner as reinforcement learning, where the learner does not have the benefit of an
on-line trainer. However, when one considers the extra effort of the human, these
approaches fit the model similarly to many of the systems discussed above.

Shaping, which is a rﬁethod from animal learning for training animals to perform

complex motor tasks (Skinner, 1938), has been adopted recently for training auto-
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mated learners (Gullapalli, 1992; Singh, 1992). The learner is trained on increasingly
complex approximations of the required task, and would not be expected to learn
to perform the task without this aid. In this case, the human expert specifies the
approximations that allow the learner to develop its policy.

In task decomposition a human expert provides the agent with a set of subtasks to
learn, thereby simplifying the overall learning problem (Mahadevan & Connell, 1992;
Singh, 1992). The human expertise comes in the form of the a priori decomposition
of the task into these subtasks, the priorities of the subtasks, and the identification
of the subtasks to the learner. Without this task breakdown, the learner would not
be able to develop an appropriate policy at all.

Task decomposition and shaping each take advantage of human expertise to lessen
the difficulties of learning in multiple-step tasks. Unlike the previously discussed
integrated methods, in these two, the trainer gives the learner domain knowledge

that is much more complex than a simple task action.

3.5 Summary

The careful integration of apprentice learning and reinforcement learning will pro-
duce a hybrid that has many of the desirable characteristics of its constituents and
thus will be better then either of them. Previous research has affirmed this statement
partially, but has not addressed sufficiently other issues pertinent to integrating the
two methods.

Combining the two methods raises a set of questions that must be addressed in
designing, implementing, and applying a hybrid method. One must determine how
the learner and trainer will interact, when the trainer will provide training actions
to the learner, and how the learner will incorporate those actions into its developing
policy. Furthermore, one must be concerned with how the trainer’s expertise will

affect the ability of the learner to develop a policy. In the next chapter, we present a
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new hybrid system, ASk FOR HELP, that was designed to find answers to these and

other questions.
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CHAPTER 4
A NEW INTEGRATED SYSTEM

Each of the earlier systems that combine apprentice learning and reinforcement
learning allows the learner to develop an effective policy more quickly than without
the integration. Regardless of the accomplishments of these previous systems, there
are still many fundamental questions to answer. Before integrated methods are widely
adopted, we need to know, for example, when it is beneficial for the trainer to provide
the learner with training actions. We must also ask how the trainer’s expertise influ-
ences the learner’s ability to acquire an appropriate policy, so that we can consider
how to learn from trainers that provide occasional suboptimal actions.

In order to answers these and other questions, we have designed, developed, and
implemented a new integrated approach, the Ask FOR HELP (AFH) approach. The
other objective to satisfy in designing the AFH approach is to give it the desirable
characteristics presented in Section 3.1.1 (page 34). These characteristics include the
ability to learn from both the trainer ;md ifs own actions, and .to learn an optimal
policy. The extent to which these characteristics are actually present in the approach
is a matter for empirical verification. Ask FOR HELP is also influenced by each of
the earlier integrated systems.

This chapter continues by reiterating the research questions from Chapter 3 and
discussing the requirements on a new integrated approach that allows us to find

answers to those questions. We then discuss the new approach in detail.
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4.1 Design Considerations

In Chapter 3 we pointed out several questions of interest to us that arise in in-

tegrating apprentice learning and reinforcement learning. To reiterate, the questions

are:

1. How should the learner and trainer interact?

2. How should the learner incorporate the trainer’s proffered information into its
developing policy?

3. When is it effective for the learner to receive training actions?

4. To what extent does the expertise of the trainer affect the learning?

The design for our new integrated approach is motivated by our desire to answer
these questions. Below, we show how the design of the new approach is influenced by
each question. The specifics of the approach are given later, in Section 4.2.

The learner/trainer model described in Section 3.2 describes many of the inter-
action policies that a learner and trainer might employ in an integrated method.
Because we are specifically concerned with determining when it is effective for the
learner to receive training actions, we focus on the “Ask for Help?” interaction policy,
which the learner uses to tell the trainer tha_t. it needs information. We have complete
control over when the learner receives aid if the trainer’s interaction policies require
it to provide an action when asked and never allow it to give unsolicited responses.
Thus, this is the setup of the new integrated approach. Part of our empirical study
is aimed at determining whether our choices are effective.

We could also have developed a new approach in which the trainer determines
when to give actions and the learner always performs the trainer’s actions. This
approach would also give us complete control over the receipt of trainer’s actions, but

we do not take it because one of the strategies for interaction that we wish to explore
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is based on the learner’s uncertainty about its current move choices. Thus, we place
the learner in charge of acquiring the trainer’s actions.

Care must be taken in designing the technique by which the learner assimilates
the trainer’s actions. The technique must allow the learner to update its policy based
on the trainer’s actions, but the technique must also allow the learner to develop an
optimal policy. The technique we adopt is quite closely related to those in previous
integrated systems.

There has been little work in determining when the learner should receive training
actions. Most previous integrated systems allow the human trainer to provide the
learner with actions whenever the human feels it is necessary, which does not provide
much information about how to build and apply future integrated systems. Only
one of the integrated systems discussed in the previous chapter addresses this issue
directly (Utgoff & Clouse, 1991, Section 3.3.2.2 herein), having the learner decide
when it should get actions from the trainer. Indeed, our new approach is quite
similar to this previous one.

To aid us in answering this question, we implement two strategies for the “Ask
for Help?” policy. One strategy is stochastic and the other depends on the learner’s
uncertaiﬁty in its current action choice. Each strategy allows us to look at how
different amounts of trainer-supplied actions influence the learner’s ability to develop
an effective policy. The strategies also give us the opportunity to explore how the
timing of the receipt of the actions affects the learning. Even though we are only
dealing with the “Ask for Help?” interaction policy, the issue of when the learner
should receive help is pertinent to any integrated system. Thus, whatever we discover
will also be applicable to other approaches with differing interaction policies.

What we find out about the influence of the trainer’s expertise will also apply
to other integrated systems. Each of the previous integrated systems does not deal

with this issue: they either assume that the trainer is perfect (Utgoff & Clouse, 1991)
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or ignore the issue entirely (Clouse & Utgoff, 1992; Lin, 1992; Lin, 1993; Gordon &
Subramanian, 1994; Maclin & Shavlik, 1996), relying on a human with unknown abil-
ities. We wish to build a system in which we can vary the trainer’s expertise directly
and easily. The design decisions we make in setting up the interactions between the
learner and trainer allow us to alter the trainer’s expertise without changing the way
in which the two agents interact. This question has great influence one the choice of
problem domain for the empirical study. We need a domain in which we can build
trainers whose expertise we can vary. As we describe in the next chapter, one of our
domains meets this requirement nicely.

Considering each of the four questions presented at the beginning of this section
has lead us to develop a new integrated approach. The main reason for introducing
the new approach is to find answers to these questions. Of course, we also wish to
determine how effective the approach is, and to determine the extent to which it

outperforms apprentice learning and reinforcement learning.

4.2 The Ask FOR HELP Approach

Taking the issues of the previous section into consideration, we have developed
the ASK FOR HELP approach. An overview of the ASk FOR HELP approach is
presented in Figure 4.1, which depicts‘ the components of AFH and their high-level
interactions. Because AFH is an integrated approach, it consists of a task, a learner,
and a trainer. The interactions between the learner and the task are identical to
those in reinforcement learning: the learner observes task states, chooses actions to
perform in the task, and receives rewards from the task. The interaction between
the learner and the trainer is managed by the learner: the learner determines when
the trainer should provide training actions. As depicted in the figure, the learner
controls a switch that determines when it receives an action from the trainer. With

the switch closed, the learner acquires an action, which it then performs. When the

58



switch is open, the learner is not requesting aid and will perform an action it itself has
chosen. One can think of the trainer as producing an action for every state at every
time step, where the actions are not used when the switch is open. This viewpoint is
expensive in terms of the trainer’s time. We prefer to think that by closing the switch
the learner is asking for help (utilizing the “Ask for Help?” interaction policy) and

that the trainer only provides an action when asked.

State

V v
Reward_|T earnertee”” <<% Trainer

A Action

Figure 4.1 Overview of the ASK FOR HELP Approach

4.2.1 The Learner

The learner in Ask FOR HELP, like the more general learner described in Sec-
tion 3.2.1, attempts to develop a policy'that informs the agent of which action to
perform in any given state. Also like the more general learning agent, this agent has
access to two sources of knowledge: rewards and the actions offered by the training
agent. The learner is specified completely by its learning algorithm, the manner in

which it incorporates the trainer’s actions into its developing policy, and its interac-

tion policies.
4.2.1.1 The Learning Algorithm
The choice of policy update algorithm is based on each of the desirable character-

istics presented in Section 3.1.1. The learner should be able to adapt based on scalar

59

3



E

~3 —3 —3 —3 ™3 ~3 "3 —3 —3 3

rewards, to explore its environment, and to develop a policy that optimizes a mea-
sure of the rewards received. As discussed in Section 2.3.3, Q-learning was designed
with each of these characteristics in mind. Thus, the AFH learner’s main learning
mechanism is Q-learning. The specifics of the parameter settings and the exploration
policy will be discussed with other experiment details, in the next chapter. Although
other reinforcement learning algorithms could have been chosen, we use Q-learning
because of its widespread use and ease of implementation. Because the trainer’s in-
put is a form of knowledge not exploited in any of the current reinforcement learning

algorithms, all such algorithms will benefit from the input of a training agent.

4.2.1.2 Incorporating the Trainer’s Actions

In addition to the characteristics mentioned above, the learning agent must also
be able to adapt based on actions chosen by the trainer. The problem that must
be addressed is how to incorporate an action into @-learning, which was designed to
learn from scalar rewards. Furthermore, in learning from the trainer’s actions, the
learner must not be precluded from learning a policy that opfimizes a measure of
the rewards received. Stated differently, the learner must not attempt to mimic the
trainer at the expense of learning an optimal policy.

In AFH we implement a straightforward technique to solve this problem. The
learner assimilates each trainer’s action by ﬁrth performing the action, just as though
the learner itself had chosen it. Then, after receiving whatever reward is appropriate
for performing that action, the learner updates its policy via Q-learning; again, just
as though the learner itself had produced the action. Thus, the learner incorporates
the action and its consequences into its experience without the need for any changes
to @-learning. The trainer’s action is treated similarly to an action that the learner
might choose for exploration purposes. It is not based on the learner’s policy, but the

learner performs it anyway and learns from its consequences.
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This incorporation technique is similar to those in previous integrated systems,
lending credence to its efficacy. It is like the technique that Lin employs (Sec-
tion 3.3.2.1), although a major difference between that approach and AFH is that
Lin requires the trainer to perform the entire task, whereas AFH adapts according to
individual actions from the trainer. Clouse and Utgoff (1992) also have the learner
perform the trainer’s actions. They provide an additional artificial positive reward
upon which the learner bases its Q-learning update, “rewarding” the learner for per-
forming the trainer’s action. Unfortunately, this approach raises the possible problem

of learning to act like the trainer at the expense of optimizing the rewards received.
4.2.1.3 Interaction Policies

The learner’s interaction policies determine how it acquires information from the
trainer and what it does with that information. Like previous integrated systems,
these interaction policies are more limited than in the general learner/trainer model.

In particular:
e The learner will always perform the trainer’s action when there is one, and

e The learner will never choose to observe the trainer.

Thus, two of the three learner’s interaction policies are constant, as shown in
Figure 4.2. “Perform Trainer’s Action?” ié true, and “Observe Trainer?” is false.
Because our research examines when the learner should receive training actions, the
interaction policy “Ask for Help?” does not produce a constant value. The learner
determines the output of this interaction policy, deciding whether to ask the trainer
for an action or to choose its own action.

In our empirical study, we compare two strategies for determining when to ask
the trainer for aid. The first strategy, which we call the uniform asking strategy,

is stochastic: the learner asks for help randomly throughout training. The second
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Figure 4.2 The Ask FOR HELP Learner

strategy, the uncertainty asking strategy, takes a more sophisticated approach, basing
the decisi'on on the learner’s uncertainty about its current move choices.

Uniform Asking Strategy: The objective in developing the uniform asking
strategy is three-fold. First, we wish to determine whether the AFH approach shows
improvements over its constituent methods. We also desire to observe the extent to
which trainer’s actions influence the learning rate. The final objective is to establish a
performance level for a learning agent in an integrated system. This performance level
can then be compared against the performance achieved with other asking strategies.
If a learner with a new asking strategy performs more poorly than with this simple

one, then, clearly, the new strategy is not worthwhile.
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In the uniform asking strategy, the “Ask for Help?” interaction policy is stochastic.
The learner’s queries are spread uniformly throughout training, based on a parameter
that establishes the percentage of time steps on which the learner asks for help. This
asking rate parameter specifies the probability that the learner will ask for an action
on any given time step. There is an entire family of “Ask for Help?” interagtion
policies specified by this strategy, one for each possible asking rate.

Uncertainty Asking Strategy: To study further when the learner should ask
for help, we also develop a more sophisticated asking strategy. This strategy is based
on the learner’s uncertainty about its current action choices. The goal is to develop a
strategy that reflects our intuitions about when human learners require instruction on
a problem and to determine the extent to which the timing of the receipt of trainer’s
actions affects the learning rate.

Certainly, humans benefit from help when in novel situations. Indeed, humans seek
help when they are confused or otherwise unable to decide upon a course of action,
even if they have experienced the situation in the past. It is difficult to specify exactly
when humans are unsure because we cannot examine directly a person’s thinking
processes. This is not the case for an automated learner, though. We can base our
determination of the learner’s uncertainty on its current decision policy, relying on the
Q-values of its current action choices. We have developed a test that decides whether
the learner is unsure of its choices, and whether the learner should ask for help. The
test indicates the need for help when all of the action choices have similar Q-values. If
the minimum and maximum values are close enough to each other (which is specified
by a parameter we call the asking factor), then the intervening values must also be
similar. Thus, when the learner must choose one of its options, it can not make a
clear distinction between them.

Examining the interval between the extreme values identifies only situations in

which the learner is clearly uncertain. Another form of uncertainty may arise when
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only the top two or more choices have similar values. Our approach will not have the
learner ask for help in this situation because it may be the case that the two choices
are truly similar. Furthermore, by only asking when the extremes differ by a preset
amount, the learner will ask the trainer for aid less frequently than if it bases that
decision on only the highes_t values. The uncertainty asking strategy only requires
the learner to ask for help when it is clearly uncertain of its choices, as determined
by -the asking factor.

The asking factor controls how conservative the learner is. With a small factor,
the learner is infrequently uncertain, but with a larger factor, the learner asks for aid
quite often. In the experiments described in the next chapter, we alter the asking

factor in order to analyze the possibly different learning behaviors.

4.2.2 The Trainer

The trainer in AFH is automated. The main reason for doing so is to have
complete control over the trainer’s béhavior—something that- we cannot guarantee
with human trainers. We also rely on automated trainers instead of humans so that
we can perform many experiments easily.

The training agent attempts to help the learner develop its policy, and is depicted
in Figure 4.3. Whenever the learner requests an action, the trainer evaluates the
current state and makes a decision about the action it would perform, which it then
passes on to the learner. The two interaction policies are constant, causing the trainer
to give the learner an action if one is requested and to ignore the learner otherwise.

One of the issues we wish to study is how the expertise of the trainer influences the
ability of the learner to develop a policy. In the experiments described in the next
chapter, we take direct control of the trainer’s expertise, building a set of trainers
whose proficiency varies. Some of the trainers can produce the optimal action to take
and others choose actioné randomly a pre-specified percentage of the time. With these

trainers we can determine the importance of the trainer’s problem-solving abilities.
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Figure 4.3 The Ask FOR HELP Trainer
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CHAPTER 5
EMPIRICAL STUDY

In Chapter 4 we hypothesize that Ask FOR HELP is an effective approach to
integrating apprentice learning and reinforcement learning. More importantly, AFH
allows us to ask, and then answer, fundamental questions about integrating the two
learning methods. The questions we wish to answer and upon which we base our

design of AFH are:
1. How should the learner and trainer interact?

2. How should the learner incorporate the trainer’s proffered information into its
developing policy?

3. When is it effective for the learner to receive training actions?

4. To what extent does the expertise of the trainer affect the learning?

In order to answer these general questions about integrated methods, we run four
experiments, each of which is designed to address a particular question about the
Ask FOR HELP approach. Because we choose to implement AFH with particular
interaction policies and incorporation technique, the experiments will provide insight
into the answers for the first two questions above. The experiments address the next
two questions more directly.

In the next section, we describe the experiment domains in detail. Then, beginning
in Section 5.2, we present the four experiments, describing the experimental design
and the results for each, and discussing their implications. Finally, we end the chapter

with a summary of the results and answers to the general questions listed above.
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5.1 Experiment Domains

In the experiments described below, we employ two domain tasks, each with dif-
ferent characteristics. The first domain is maze navigation, which is a Markovian
decision task. The maze problems in our study, which can also be considered grid-
world problems with stationary obstacles, can be solved via dyﬁamic progrﬁmming.
Thus, we can find optimal policies upon which to base training agents. We have direct
control over the size and complexity of the mazes, so we can alter these factors in
order to examine how they affect the performance of AFH. Maze tasks are a member
of a class of discrete-state problems, such as game-tree search and other tasks that
can be cast as graph traversal problems. Although the mazes are not representative of
all discrete-state problems, due to their limited branching factor and moderate-sized
state-spaces, they are sufficiently complex to be difficult problems to solve. There-
fore, the conclusions we draw based on the empirical study will be applicable to many
other domains.

The second domain, a race track domain in which a simulated car drives on a track,
serves as a test for the generality of the conclusions we draw about the maze results.
With this domain, we determine how well our approach scales to a larger problem
with different characteristics. The race track domain differs from the maze domain
along at least four dimensions. First, it is in lcontinuous space. " Second, because we
do not discretize the space, it requires a generalization structure, such as a neural
network (Rumelhart & McClelland, 1986), to store its policy. Third, the state of the
task is represented in terms of sensors mounted on the car, so many task states will
map to the same sensor representation. Thus, it is not a Markovian decision task.
Finally, one cannot find an optimal policy via dynamic programming because of the

size of the state-space, and so the trainer must be built by other means and may not

be optimal.
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5.1.1 Maze Tasks

The maze domain is graph-traversal in the form of two-dimensional mazes, which
are a type of Markovian decision task. Maze problems are representative of a class
of multiple-step tasks that have discrete state-spaces and few transitions out of each
state. Other problems with these characteristics include some game-tree search and
constraint satisfaction problems. Mazes are a simplification of larger, more complex
multiple-step tasks, which may have continuous state-spaces and many transitions
out of each state. Even so, maze tasks are difficult to solve, and results obtained with
these tasks will generalize to many other multiple-step tasks.

For the particular mazes employed in our study, in each maze cell, the learner
can choose one of four actions: up, down, left, or right. When performing an action
that is blocked by a wall, the agent does not move. The objective of the learner is to
traverse the maze optimally from the start cell to the goal cell. The learner receives
its only non-negative reward, 1.0, when it enters the goal cell.

The experiments are performed with both deterministic and stochastic mazes. For
the deterministic mazes, each action is performed as specified: for example, an up
action will lead to the cell that is above the current cell. For stochastic mazes, each
action has a 25% chance of being changed to an action at a right-angle to itself, half
the time resulting in a right turn and the other half, in a left turn. For example,
performing an up action will most often move the learner into the cell above its
current location, but it will sometimes move the agent into the cell to the left or
right. This is representative of other stochastic problems where an action can lead to
one of a set of states, probabilistically.

In our study, we employ a series of mazes whose sizes range from a 20x20 maze with
only 230 cells, up to a 200x200 maze with 29, 329 cells. Even though the size of these
state-spaces is small compared to other problems (such as Chess), our experiments

indicate that they are still challenging problems to solve based on the amount of
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training required by the learner to develop an appropriate policy. The 20x20 maze
is depicted in Figure 5.1. The maze walls are shown as cells with a hashed pattern.
The start cell is in the top-left corner and is marked with an ‘X’, and the goal cell is

in the bottom-right corner, marked with a star.

Figure 5.1 The 20x20 maze, with 230 cells. The start cell is at the top left of the
maze, marked with an “x,” and the goal cell is at the bottom left corner.

There are at least four advantages to employing maze tasks for the empirical
study. First, we can generate maze problems of varying sizes, enabling us to explore
how our results scale to larger problems. Second, we can find the optimal policy for
our moderately-sized mazes via dynamic programming. Both the construction of the
trainer and the definition of the stopping criterion for the experiments exploit this
fact. We can also store the developing policies in simple tables, rather than relying
on not well-understood generalization mechanisms, because the particular mazes we
use are discrete and moderately small. Finally, discreteness and moderate size allow
us to record certain information that we cannot for other tasks, such as which states
are visited and how frequently. Through analysis of this type of data, we will be able

to gain knowledge about how a trainer’s influence affects the learner’s performance.
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Although the issue of generalization is interesting, we avoid it in the study of the
maze tasks because it introduces several confounding factors, clouding some of the
issues we wish to explore. In recognition of the importance of the issue, we do deal
with it in the experiment described in Section 5.4, in which the problem task relies
on.neural networks (Rumelhart & McClelland, 1986) to store the policy. This gives
us an opportunity to determine how well AFH scales and how much it depends on

the tabular representation.
5.1.1.1 Maze Creation

Producing the actual mazes for the experiments is a straightforward task of de-
ciding on the dimensions of the maze, filling in the border walls of the maze, and
then filling in 25% of the cells randomly with walls. After this process completes, the
mazes must be inspected by hand to ensure that all cells are reachable from the start
cell in the top-left corner. When cells are isolated, we either remove or relocate walls.
The resulting number of states is just the number of cells that do not have walls in

them. Depictions of the physical layouts of the mazes are in Figure 5.2.
5.1.1.2 Learning Algorithm

In all of the experiments in the maze tasks, the learner develops its policy via
Q-learning, described in Section 2.3.3. ‘Th'e Q-functions for each of the four actions
are stored in separate tables. The Q-value for a particular state and action, Q(s, a),
is just the value in the sth location of the table for action a.

The policy defined by the Q-functions is based on the @Q-values and on a random
factor to facilitate exploration. A large portion of the time (95%), the learner performs
the action whose Q-function has the highest value for the current state. During the
other 5% of the time, the learner chooses an action uniformly from among the four.
Although the exploration setting may affect how quickly the learner converges on an

optimal policy, not enough is known about exploration to suggest a setting that is
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Figure 5.2 The six other mazes

obviously best. We choose the 5% rate in order to make the learner choose at least
one random action when following the optimal path in the smallest maze. Of course,
for the larger mazes, this means the learner might choose many random actions in
traversing the maze. To offset this, the stopping criterion for the experiments takes
into account the exploration factor, as described in Section 5.2.1 below.

For every experiment with the maze tasks, the algorithm’s parameters are: o =
0.15 (step size), and 7 = 0.99 (discount factor) (See Equation 2.7, page 26). No

attempt was made to optimize these parameters for any of the experiments. We
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believe this setting for the step size parameter helps the learner propagate information
quickly without causing the @-values to grow too quickly. The setting of the discount
factor causes the learner to consider how its current choices will affect it in the distant
future. We choose this setting mainly because the learner only receives a reward at

completion of the task.
5.1.1.3 Trainers

As we pointed out earlier, an advantage of discrete mazes is that we can deter-
mine the optimal policy for navigating through each maze-at least for moderate-sized
mazes. To build a trainer, we need only determine the optimal policy, which we do
easily via dynamic programming. In the experiments, the trainers respond to the
learner’s queries by giving an action that is based on the optimal policy for that
particular maze. Some trainers always suggest an optimal action, but others give

random actions occasionally.
5.1.2 Race Track Task

This domain is based on the Race Track game (Gardner, 1973), and, in its discrete-
state form, has been a test-bed for other research in reinforcement learning (Barto,
Bradtke & Singh, 1995). The task simulates a car navigating on a track, which can
be of any length and shape, and has a start line at one end and a finish line at the
other. This task is representative of simple robotics navigation tasks, where the robot
must move from its current location to a goal location and where the robot relies on
on-board sensors to determine its location in the world. An example track, which is
one of the tracks employed in the experiments, is displayed in Figure 5.3.

The problem is for the learner to drive the car from the start line to the finish
line quickly and without running off of the track. At each time step, the agent
first observes its state, relying on a set of sensors for information about its current

situation. Then, the agent decides whether to accelerate, decelerate, or turn left
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Figure 5.3 Example race track

or right. After performing an action and changing the state of the task, the agent
receives one of three reinforcement signals. When the car drives off of the track the
reward is —1.0, and when the car crosses the finish line it receives a reward of 1.0.
If neither of these conditions holds, the learner is assessed a small negative reward
(—0.01) at each time step. Thus, the objective of the learner is to-avoid running off
the track and to reach the finish line with as few actions as possible. The learner

knows nothing about the dynamics of the car on the race track.

5.1.2.1 Sensors

The car is equipped with five sensors that measure its position and velocity on the
track. Each sensor reports a continuous value, except for f, which is boolean. The

sensors give the agent the following information:

o

. Speed of the car, s,

[\

. Distance to the edge of the track that is directly ahead of the car, d,

w

. Relative position of the car between the left and right edges of the track, c,

1N

. Angle of the car with respect to the center-line of the track, €, and

ot

. Whetbher the finish line is directly ahead, f.
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The first sensor measures the speed of the car, which is determined simply by the
distance the car traveled in the last time step. Another sensor measures the distance
to the edge of the track that is directly ahead of the car. This measurement is depicted
in Figure 5.3 as the line labeled d. If the car were to continue on its present heading,
it would follow that line. This sensor has an outside range of fifty units; anything
over fifty is reported as fifty.

A third sensor measures the relative position of the car between the left and right
edges of the track. When the car is in the center of the track, it reports a zero value.
As the car approaches the left edge of the track, the value increases, reaching one
when the car drives off of the track. The sensor reports negative values when the
car is closer to the right edge than the left edge, reaching negative one when the
car drives off the right edge. The dashed line labeled c in the figure represents this
measurement. That line segment is the shortest line segment containing the car that
has endpoints on the left and right edges of the track. The sensor reports the relative
position of the car on that line segment.

The fourth sensor measures the angle of the car with respect to the left and right
edges of the track. If the car is driving directly down the center of the track, this
sensor reborts a zero value. As the car turns to the left, the sensor réports increasing
angles, reaching 90 degrees when the car is headed directly at the left edge and
continuing to 180 degrees as the car continues to turn until it is heading back up the
track. Turning to the right causes the sensor to register negative angles, from zero
degrees for straight ahead to —90 degrees when driving directly at the right edge, to
—179 degrees when driving in the wrong direction. That angle is labeled 8 in the

figure and is measured with respect to the perpendicular of shortest line between the

right and left edges going through the car.
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The last sensor informs the car whether the finish line is directly ahead or not.
If the finish line is ahead of the car, but outside of the fifty unit range, the sensor

cannot “see” the finish line, and reports a value of zero.
5.1.2.2 Representation

| The state of the car on the track is captured by twenty fe;atures. The first five
features are just the measurements of the five sensors: the speed of the car s, the
distance straight ahead to a wall d, the relative position of the car with respect to
the edges of the track c, the angle of the car 6, and whether the car can “see” the
finish line f. The next fifteen features are the quadratic terms of these five, i.e.
2, sd, sc, s, sf, d?,dc, db, df, c%, c, cf, 62, f0,and f2.

The features are scaled so that their values are in [—1.0,1.0] in order to aid with
the rate of training (Hampson & Volper, 1986). The range of the car’s speed is
0 £ s £ 10, so scaling is done by subtracting five and dividing by two. The angle’s
range is —m < 6 < 7; dividing by 7 gives the scaled range. As the senéors have a
limited range of fifty units, —1 < d/25 — 1 < 1. The other two features, c and f are
already in the required range, so no scaling is necessary. The quadratic terms will be

in the required range because they are products of the scaled first-order terms.
5.1.2.3 Learning Algorithm

The learner employs Q-learning to develop its policy, and stores its Q-function in
a set of weight vectors, one for each of the four actions. The Q-value for a given state
and action, Q(s,a), is given by the inner product of two vectors, the weight vector
for the action a and the feature vector representing s, which is composed of scaled
sensor values and their quadratic terms, as described above. In developing its policy,
the learner adjusts the weights in the weight vectors via a variant of Equation 2.7

(page 26) that includes the TD()) approach (see Equation 2.4, page 23).
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In the race track task, we employ a more sophisticated exploration strategy than
in the maze task. The policy defined by the Q-function is based on the Boltzmann
distribution of the Q-values: the next action, a, is randomly chosen based on the
probabilities given by

Q(s,0)/T

Va € actions, P(a) = > veactions €2CH/T

where s is the current state, T is the temperature parameter that is reduced over
time to diminish the randomness of the policy, and “actions” is the set of actions the
learner can perform in the current state. When the trainer does not give an action to
the learner, the learner chooses its action based on the probabilities defined by the
equation above. When the trainer provides an action, the learner does not check its
policy, but performs the trainer’s action.

The parameter settings in the experiments are: @ = 0.35 (step size), v = 0.75
(discount factor), A = 0.75 (TD(A) parameter). The temperature parameter decays
slowly from T = 5.0 down to its lowest value, T = 0.2, via a linear factor of 0.9995.
We did not attempt .to optimize any of the parameter settings for these experiments.
Unfortunately, there is no principled approach to use when picking these parameter
values. We choose the step size paramefer based on previous experience with linear
networks that suggests that the 0.35 rate facilitates quick learning, but not at the
risk of having the weights grow without bound. The ) setting is also chosen based
on previous experience. Because mapping many states to the same representation (as
discussed above) introduces uncertainty into the problem, we choose the setting for the
discount factor in order to have the learner focus on how its actions affect its near-term
future. The three temperature settings are chosen to facilitate exploration throughout
the training and are also based on practical concerns about numeric overflows when

calculating the action probabilities.
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5.1.2.4 Trainer

The trainer that instructs the learning agent is automated and capable of perform-
ing the task at a moderate level of expertise. The trainer does not produce optimal
actions because not enough is known about this task to produce such a trainer easily.
Although the trainer does not always perform an optimal action, it can drive the car
from each track’s start position to the finish line.

" The trainer was built by hand, via a cyclic design-code-test approach. First, a
moderate amount of knowledge engineering, of examining different race track situ-
ations and ascertaining the action that a good driver should take, determined the
initial trainer. Then the trainer was tested on the track. When the trainer crossed a
track boundary, the code was redesigned and re-tested. This process continued until
the trainer could drive on both the tracks used in the experiments, not only from
every start location, but also from other, randomly selected points on the track.

The objective of the trainer, as it drives, is to remain on the track and progress
towards the finish line quickly. Whenever the trainer is in a situation in which it can
accelerate, it will do so. Otherwise, the trainer either turns to avoid crossing a track
boundary and to stay close to the center of the track, or slows down. The trainer does
not .produce an action when the car is driving in the wrong direction on the track.

The trainer’s algorithm for choosing an action is given in Table 5.1.

5.1.2.5 Simulation

The simulation for the domain is based on the one described by Gardner (1973).
The track is stored as two series of line segments, one for the left edge and one for
the right edge as well as a line segment for each of the start and finish lines. The

state of the car is represented internally to the simulation as its previous and current

positions on the Cartesian plane.
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Table 5.1 Rules for the hand-coded trainer. The quantities in the if-tests are based

on the car’s current state, and are given after the algorithm.

IF the finish line is directly ahead OR the wall ahead is really far away
THEN accelerate
ELSIF the car is heading down the center of the track
THEN ’
IF the wall ahead is far enough away
THEN accelerate
ELSIF the wall ahead is moderately close
THEN decelerate
ELSIF the car is closer to the left wall than the right wall
THEN turn right
ELSE turn left
ENDIF
ELSIF the car is heading too much to the right
THEN
IF the wall ahead is moderately close
THEN decelerate
ELSE turn left
ENDIF
ELSIF the car is heading too much to the left
THEN
IF the wall ahead is moderately close
THEN decelerate
ELSE turn right
ENDIF :
ELSE do nothing, because the car is heading backwards
ENDIF

e The finish line is directly ahead: f =1

The wall ahead is really far away: d > ((s + 4)(s + 1))

Heading down the center of track: —40° < 0 < 40°

The wall ahead is far enough away: d > ((s + 4)(s + 1))/2

Heading too much to the right: —90° < 8 < —40°

Heading too much to the left: 40° < 6 < 90°

The wall ahead is moderately close: (4s(s +1)/10) < d < (11s(s + 1)/16)
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When the car accelerates or decelerates, the speed is incremented or decremented
by one, with a lower speed limit of one and an upper speed limit of ten. The car’s
current speed is just the distance it traveled in the last time interval. The new position
of the car is:

z(t+1) = z(t) + (s + As)(z(¢) — z(t - 1)) /s

y(E+1) =y(t) + (s + As)(y(t) —y(t — 1))/s
+1 if accelerating and s < 10
As= (¢ =1 if decelerating and s > 1
0 otherwise

where (z(t + 1),y(t + 1)), (z(t),y(t)), and (z(¢t — 1),y(t — 1)) are the new, current
and previous locations of the car, and s is the previous speed of the car (the distance
between (z(t),y(t)) and (z(t — 1), y(t — 1))).

The change in heading is based on the way in which one of Gardner’s cars would
turn. If the car’s current speed is s, the change in heading is based ona right triangle
whose legs are s units and one unit long. Thelchange in heading is the size of the

angle opposite the side of one unit length.

Aa(y(t) — y(t — 1)) + s(z(t) — z(t — 1))
Vs +1
_ s(y(t) —y(t— 1)) — Aa(z(t) — z(t - 1))
v+ 1) =u(0)+ )~ Anlas
+1 “for a left ¢
Aa = { "] fora r?ghtl:;l;ﬁn

z(t+1) =z(t) +

If the line segment joining the previous location of the car and the current location
of the car crosses any of the line segments making up the edges or crosses the start
line, the car has driven off of the track. If that same line segment crosses the line

segment designating the finish, the car has crossed the finish line.

3.2 Training with an Optimal Trainer

This first experiment is designed to determine the extent to which asking for

help randomly from an optimal trainer speeds the learning process. A secondary
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objective is to determine whether AFH with the uniform asking strategy is effective
at integrating apprentice learning and reinforcement learning.

We find that the learner does improve its learning rate via AFH. Generally, the
more often the optimal trainer provides actions, the more quickly the learner acquires
an optimal policy. Although this result is not surprising, we also find that; ‘more
interaction with the trainer does not necessarily improve the learner’s learning rate.
The experiment also reveals that little trainer interaction is necessary in order to

improve significantly over not having a trainer at all.
5.2.1 Experimental Design

For this first experiment, the learners attempt to navigate in each of the different
mazes (both deterministic and stochastic), and the trainers always suggest optimal
actions. Whenever several actions are optimal, the trainer chooses one randomly.
There are seven deterministic mazes and four stochastic mazes!. For each of the
eleven mazes, there are eight individual sub-experiments in which we vary the learner’s
asking rate, which determines how often the learner asks for an action from the trainer.
For example, when the parameter is set at 10%, the learner asks the trainer for an
action 10% of the time and chooses its own action 90% of the time. The asking rate
ranges from 0%, which is equivalent to standard Q-learning, up to 100%, where the
learner always asks for the trainer’s actions (a form of apprentice learning).

Each individual sub-experiment consists of ten runs, each of which begins with
the entries in the Q-function tables set to zeroes. A run ends when the learner meets
the stopping criterion of performing at least 95% optimal actions when traversing
the maze ten times from the start to the goal. Remember that the learner cannot
perform 100% optimal actions because it chooses a random action 5% of the time.

A run is also stopped, but considered a failure, when either the total number of

!Because preliminary experimentation revealed that the learners required prohibitive amounts of
time to learn to navigate in the larger stochastic mazes, those mazes are not used in this study
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actions exceeds fifty million, the total number of actions in a single trial exceeds one
million, or the total number of trials exceeds ten thousand. These three cases are
designed to limit the amount of time it takes to run the experiments, and are based
on results from preliminary experimentation. These bounds affect the runs for the
larger deterministic mazes and for all of the stochastic mazes. .

Each run consists of many trials, all of which begin with the learner in the start cell
of the maze (top-left corner) and end when the learner reaches the goal cell (bottom-
right corner). The stopping criterion for the run is tested at the end of each trial. If
the criterion is met, the run stops; otherwise, the run continues with the beginning
of a new trial, placing the learner back at the start cell.

For each run we record the total number of actions the learning agent performs in
the run (which also includes the actions suggested by the trainer), the total number
of times the trainer is asked for aid, and the total number of trials in the run. Because
the learner asks for aid uniformly, the number of times the trainer presents an action
is just the product of the asking rate and the total number of actions performed. We
also record the frequency with which each maze cell is visited is certain runs.

In this experiment we want to examine the amount of improvement the learner
achieves iﬁ learning rate when using AFH. In order to say that the learner acquires an
optimal policy more quickly via AFH than via Q-learning, we need to find statistically
significant reductions in the mean number of actions required to learn an optimal
policy when asking the trainer for aid compared to using @Q-learning alone. The
results for every level of asking rate are compared to the 0% rate, which is standard
Q-learning. We perform one-tailed student’s t-tests and seek significances at the 0.01
level. In the sequel, when we report a statistically significant difference in means, the
level of significance will always be at least 0.01. Any significant reductions we find
will indicate that the AFH approach is better than its Q-learning component. We

also want to determine whether AFH performs better than apprentice learning, so we
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compare results at all asking rates to the 100% rate (which is a form of apprentice

learning).

5.2.2 Results

Figure 5.4 shows a graph that depicts the results for the 40x40 maze. The results
fdr the remaining mazes are presented later. The data from which these gfaphs are
derived are presented in the Appendix. The learner’s asking rate is presented along
the independent axis, and the average number of actions necessary to achieve the
stopping criterion is presented on the dependent axis. To facilitate comparison with
a learning agent that does not have access to the trainer (at the 0% asking rate),
the dashed line labeled “Q-learning” is extended from the dependent axis, with two
parallel lines that represent the 95% confidence interval for that value. The curve
labeled “Learner” depicts the number of actions required by the learner to achieve
the stopping criterion for different levels of asking rate. Each point on that curve
represents the mean number of actions for a particular setting of the asking rate
parameter, and is shown with its 95% confidence bar. Most of the confidence bars are
too short to see. Although the figure shows the results as a continuous curve, note
that the data is only gathered at the discrete points shown.

The results for the 40x40 maze indicate that the trainer’s instruction reduces
the amount of training necessary to achievé the stopping criterion. With standard
Q-learning the learner requires an average of slightly over 1.8 million actions to learn
an adequate policy. With only a 1% asking rate, the mean number of learner’s actions
drops to just over 1.2 million, which is not statistically significantly different from the
number of actions required with Q-learning alone, due to the high variance. However,
even when asking for aid only 5% of the time, the number of actions necessary to
achieve the stopping criterion is significantly lower. The mean numbers of actions
for all asking rates higher than 5% are significantly better than those for not asking.

At each asking rate starting at 50% and continuing to 100%, approximately 30,000
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Figure 5.4 Results for the 40x40 deterministic maze with the optimal trainer. The
95% confidence bars are shown for each point, although some are too small to see.
Starting at the 5% asking rate, the means are statistically better than those achieved
with @-learning alone. The means at the 50% and 75% rates are statistically indis-
tinguishable from those at the 100% rate.

actions are required to solve the problem—a reduction by a factor of sixty from
(-learning alone. In fact, there is no statistically significant difference between the
result at the 50% asking rate and the 100% rate, and there is no significant difference
between the 75% rate and the 100% rate.

As shown in Figure 5.5, the results for the other deterministic mazes are similar.
The asking rate is depicted along the x-axis, the maze size along the y-é.xis, and the
z-axis represents the mean number of actions (in million’s). The surface shows the
mean number of actions required to learn an appropriate policy for each of the asking

rates and mazes. The previous graph (Figure 5.4) is a slice through this graph at the

maze size of 40.
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Figure 5.5 Results for all deterministic mazes with the optimal trainer. All means
at the 5% rate and higher are statistically better then those achieved with Q-learning
alone (the 0% asking rate), for all mazes. The means at the 75% asking rate are
either no different from or better than the means at the 100% rate, also for all mazes.

For every maze, the learner requires the most actions with Q-learning alone, de-
picted on the left-hand face of the graph at the asking rate of 0%. For the two largest
mazes—200x200 and 150x150, with 29, 329 and 16, 473 states, respectively—the runs
with @-learning alone were terminated as failures. This is also true at the 1% level
of asking for both of these mazes. For the 100x100 maze (6,661 cells), only one
of the ten runs with standard Q-learning succeeded; all other Q-learning runs were
terminated for this maze before an appropriate policy was learned.

For all of the mazes except the two largest and for all asking rates higher than 1%,
the mean number of actions required to meet the stopping criterion is statistically

significantly lower than that needed with Q-learning alone. Stated differently, AFH
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performs significantly better than Q-learning alone for all asking rates higher than
1%.

In addition to comparing the results for each asking rate to those achieved with
Q-learning alone, we also compare the results to those achieved when asking all of
the time, which is a form of apprentice learning. For all mazes, the mean number of
actions required to obtain an optimal policy at the 75% asking rate is never worse
than that required at the 100% rate. Surprisingly, sometimes the mean achieved
at the lower asking rate is significantly lower, which is also true at the 50% asking
rate for the two largest mazes. This implies that less interaction with the trainer
can be better than 100% interaction, which is unexpected because we believed that
learning entirely from an optimal trainer would be the fastest way in which to acquire
an optimal policy. This finding gives support to our earlier statement that gaining
action-selection experience over a range of states is preferred over training exclusively
on the solution path.

The results for the four stochastic mazes are quite similar to those for the deter-

ministic mazes. The main difference is that the runs for all settings of maze and asking -

rate take longer to complete in the stochastic mazes than in the deterministic mazes.
In fact, many runs with the stochastic mazes were terminated because they were
requiring too much time. For all the stochastic mazes, all standard Q-learning runs
were terminated as failures before the learners achieved optimal policies. Thus, we
cannot make a statistical comparison between Q-learning and AFH for these mazes.
The runs were also terminated for the asking rates of 1% and 5% for all mazes, and the
1%, 5% and 10% asking rates for the two larger mazes, the 60x60 and 80x80 mazes.
However, the learners that asked for aid at least 25% of the time are quite effective
at developing an appropriate policy. Thus, the learner is able to acquire an optimal
policy with AFH when it does not do so via reinforcement learning alone (given the

experiment constraints). For all four mazes, the learner performs significantly bet-
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ter at the 100% asking rate than at any other asking rate. Thus, for these mazes
apprentice learning is more effective than an integrated approach (with an optimal
trainer).

Figure 5.6 depicts the results for the stochastic mazes. When comparing this
figure to Figure 5.5 note that the scale on the z-axis is considerably different. The
general observation from the deterministic maze results still holds: as the asking rate

increases the mean number of actions decreases (moving left-to-right on the graph).
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Figure 5.6 Results for all stochastic mazes with the optimal trainer. All runs at
the 0%, 5% and 10% asking rates were terminated because they had exceeded the
preset maximums. Even so, these results resemble those from the deterministic mazes
closely.

5.2.3 Discussion

Based on these results, we conclude that the Ask FOR HELP approach is ef-

fective for integrating apprentice learning and reinforcement learning, at least when
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the trainer provides optimal actions and that AFH can perform better than its con-
stituents. We also conclude that more help is generally better than less help. However,
it is not necessary to receive aid all of -the time from the trainér: We find that the
results for the 75% asking rate are never significantly worse than those at the 100%
asking rate for all the deterministic mazes. In fact, the results at the lower asking rate
are sometimes better. That is, receiving aid three quarters of the time is the same
(or better than) receiving it all of the time. Moreover, for the two largest mazes, the
learner learns more quickly when receiving aid half of the time versus receiving it all
of the time. This finding is quite promising, especially when one considers the cost
of having the trainer. One can lessen the interaction with the trainer, at a reduction
in expense, but still learn as quickly (or more quickly) than asking the trainer more
often.

For certain runs we also recorded how often the learner visits each maze cell in
attempting to acquire an optimal policy. At the 0% asking rate (standard Q-learning),
the learner visits every cell in each of the mazes. As the asking rate increases, the
number of cells visited decreases. Thus, the trainer plays a definite role in determining
how much exposure to the state-space the learner acquires. For example, the left of
Figure 5.7.sh0ws the frequency of cell visits for the 40x40 maze on a particular run with
®-learning. The height of each bar in the-graph depicts how often the corresponding
maze cell was visited, relative to the maximum for the maze. The start cell is at the
left corner of the graph, and the goal cell is in the right corner. For this run, every
maze cell was visited at least once by the learner. The right of Figure 5.7 depicts
the frequency of cell visits for the 40x40 maze on a particular run at the 50% asking
rate. Most of the learner’s experience was acquired in a particular area of the graph
(depicted with the highest bars), but the learner had also spent a small portion of its

time exploring other parts of the maze. For this particular run, the learner visited
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only 450 of the 1,018 maze cells, a reduction of over half. This attests that the learner

can visit fewer states than @)-learning requires, yet still learn an optimal policy.

Figure 5.7 Frequency of cell visitation for the 40x40 deterministic maze on particular
runs. The maze on the left represents the cells visited when @-learning alone was
used. The right maze represents a run in which the learner asked the trainer for aid
half of the time. All cells of the maze were visited when @Q-learning was used, but
only 450 of the 1,018 cells were visited when the trainer was used. The highest bar
in the left maze indicates 7,528 cell visitations, whereas the highest in the left maze
is only at 628.

An informal analysis of the frequency data for various runs and mazes suggests
that the amount of exposure the learner receives is roughly determined by the asking
rate. With a low asking rate, the learner visits almost all of the maze cells. As
the asking rate increases, the learner visits fewer and fewer cells. Thus, there seems
to be a relationship between the increase in learning rate and the decrease in state-
space exposure. Further experimentation needs to be performed in order to determine
whether the reduction in the number of cells visited is truly related to the reduction

in the total number of actions required to learn an optimal policy.
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5.3 Training with Suboptimal Trainers

This experiment is designed to determine the extent to which the expertise of the

trainer affects the learning process. We note that the better a trainer is at performing

the task, the more quickly the learner acquires an appropriate policy. The results
further validate the claim that AFH is effective for integrating apprentice learning
and reinforcement learning and indicate that even a trainer that is suboptimal will
help improve the learning rate. The results also demonstrate that the learner can
sometimes acquire an optimal policy more quickly when combining the two forms of

learning than when using either exclusively.
5.3.1 Experimental Design

As in the first experiment, for this one we employ each of the different mazes
(both deterministic and stochastic) and vary the asking rate from 0% up to 100%.
Unlike the previous experiment, we also vary the trainer’s expertise: the trainer
does not always suggest an optimal action. The trainer’s ability to choose optimal
actions is controlled by an error parameter that determines how often the trainer
returns a suboptimal action. For example, when the error parameter is set at 25%,
the trainer returns a suboptimal action 25% of the time. With six settings of the
error parameter, from 10% up to 75%, we are able to see how the trainer’s expertise
influences the rate at which the learner acquires its policy. We do not test the 100%
error rate because preliminary experiments indicated that the runs would have taken
prohibitive amounts of time, even for the smallest maze. A 100% error rate means
that the actions given by the trainer are always the wrong actions; that is, the trainer’s
actions lead the learner away from the goal continually.

Each individual sub-experiment, with a particular maze, asking rate, and error
rate, is performed in the same manner as in the previous experiment. There are ten

runs, each of which begins with zeroed @-values and ends when either the learner
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meets the stopping criterion or surpasses the preset action or trial limits. Each run
consists of several trials in which the learner attempts to navigate from the start cell
to the goal. Because we vary the maze, the learner’s asking rate, and the trainer’s
error rate, we ran 294 separate sub-experiments.

In this experiment we want to examine the amount of improvement the learner
achieves in learning rate when using AFH and relying on different trainers. We
perform statistical significance tests on the difference between the results achieved
for Q-learning alone versus those at each of the asking rates and error rates. Because
we also want to determine whether AFH performs better than apprentice learning,
we compare results at all asking rates to the 100% rate (which is a form of apprentice
learning). Like the previous experiment, we perform one-tailed t-tests and report

significance at the 0.01 level.
5.3.2 Results

Figure 5.8 depicts the results of this experiment for the 40x40 maze, leaving off
the curve for the 75% error rate, which is shown below in Figure 5.9. The numerical
data for this experiment are presented in the Appendix. The graph gives the learner’s
asking rate on the independent axis, and the mean number of actions to end a run
successfully on the dependent axis. Each curve on the graph represents the different
settings of the error parameter. The curves' for Q-learning and for learning from an
optimal trainer are present for comparative purposes.

The results depicted in the figure indicate that even suboptimal trainers are capa-
ble of speeding the learning process significantly. Starting with the 10% asking rate,
all results for all error rates are statistically better than standard Q-learning. The
results for the 5% asking rate are also significant for the 0%, 10%, and 25% error
rates. Note also that each of the curves is bounded above by a curve with a higher
error rate and below by a curve with a lower error rate, for almost all of the asking

rates. Thus, there is a gradual degradation of performance as the trainer’s error rate
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Figure 5.8 Results for the 40x40 deterministic maze with all trainers. The 95%
confidence bars are shown for each point. Starting at the 10% asking rate, all means
are statistically better than those achieved with @-learning alone. The means at the
75% rate are never worse than and are sometimes better than those at the 100% rate.

increases. Also notice fhat there is little difference between the results with the op-
timal trainer versus with the trainers that are incorrect 10% and 25% of the time.
Thus, AFH is better than Q-learning alone for various settings of the asking rate.
AFH is also better than apprentice learning alone for certain asking rates. For
all levels of trainer error, the results obtained at the 75% asking rate are never worse
than those at the 100% rate. In fact, for the error rates of 25%, 50%, and 60%, the
learner learns significantly faster at the 75% rate than when it relies totally on the
trainer. For the 60% error rate, there is an astonishing difference between the mean
number of actions required at the 75% asking rate and those required at the 100%
asking rate: the learner acquires an appropriate policy in close to half the number

of actions. The means observed at the 50% asking rate are also significantly lower
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at the 50% and 60% error rates. These findings further the claim that an integrated
approach can be better than apprentice learning.

In addition to the results for standard @-learning and the optimal trainer, Fig-
ure 5.9 shows the results for the trainer that chooses a suboptimal action 75% of the
time. At the 1% asking rate there is no significant difference between Q-learning and
this learner, but even at the 5% asking rate the learner takes significantly longer to
find a good policy. At the 10% asking rate the learner takes almost four times longer
to find a good policy. All other runs at the 75% error rate were terminated as failures
because they were taking too long. Although previous results show that a suboptimal
trainer can still help the learner improve its learning rate, these results demonstrate

that the trainer must have a minimal level of expertise on the problem.

~ 7.0'_

.V)

1] —

£ "

= 601 o . = — —  Q-leaming

E sl X < ¢ 0% error

é . .- B 75% error

.é 504+ :

g 451

c 401

8 3 5..—

= n
| | _l ] I
60 70 80 90 100

Asking Rate (Percentage)

Figure 5.9 Results for the 40x40 deterministic maze with a trainer that is incorrect
75% of the time. The means are never better than, and sometimes significantly worse
than, not having a trainer at all. Runs with asking rates higher than 10% were
terminated because the preset limits had been exceeded.
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The results for all the other mazes also support the finding that a suboptimal
trainer can be effective. The results for the 80x80 maze are shown in Figure 5.10,
and those for the 200x200 maze are in Figure 5.11. For the 80x80 maze, the results
are quite similar to the 40x40 maze, except that more mean actions are required at
every asking rate, which should be expected because the 80x80 maze is larger than
the 40x40 maze. For the 200x200 maze, many of the runs did not complete. For
example, none of the sub-experiments with the 60% error rate completed except for
the one at the 75% asking rate. All other runs in all other sub-experiments were

terminated because they had surpassed the preset limits.
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Figure 5.10 Results for the 80x80 deterministic maze with all trainers. Note the
similarity between this graph and Figure 5.8.

These two graphs also show that the 75% asking rate produces the best perfor-
mance, at least for the higher error rates. As we noted before, the 75% asking rate is

the only setting under which the learner finds an optimal policy for the largest maze
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Figure 5.11 Results for the 200x200 deterministic maze with all trainers. Note that
the only runs that completed successfully with the 60% error trainer are at the 75%
asking rate. Runs at other error rates were also terminated at the lower asking rates.

and a trainer that is incorrect 60% of the time. It is obvious from the graph that
the 75% rate also leads to finding an optimal policy quickest for the 50% error rate.
Closer analysis of the data for the 200x200 maze also shows this to be true for every
error rate, including the 0% rate. As the maze size decreases, this effect is dimin-
ished, but even for the smallest maze, the 75% rate can produce better results than
asking all of the time. This suggests that when applying AFH to other problems, one
may wish to choose the 75% asking rate. This observation is born out in the next

experiment.
5.3.3 Discussion

These results further validate the claim that AFH is an effective integration of

apprentice learning and reinforcement learning. The learner learns more quickly with
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the trainer’s aid, even when the trainer is suboptimal. In answer to the question
of how much the trainer’s expertise influences learning, we conclude that the better
a trainer is, the more the learner can benefit from the trainer’s actions. However,
the trainer does not need to be perfect in order for the learner to improve with the
trainer’s help. Furthermore, a trainer that misleads a learner frequently will cause
the learner to take longer to acquire an effective policy, possibly even precluding
the learner from doing so. Thus, the trainer’s expertise does influence the learner’s
performance directly, and, in applying AFH to other domains, one must be aware of
the trainer’s expertise.

The results of this experiment indicate that relying on a trainer that is frequently
incorrect is detrimental to the learner. In situations in which the learner acquires
information from a trainer whose expertise is unknown, one would like the learner to
be able to detect that its trainer is not proficient enough to be of help. A possible
technique is for the learner to observe its own performance level and then ignore
the trainer when it notices that its performance is no longer improving. Because
this problem may occur in situations where a human serves as trainer, it is worth
examining further.

One.can also view the results of this experiment in terms of the number of optimal
actions given by the trainer versus the number of suboptimal actions given. Although
the experiment was not designed to give us this information, it can be determined
from the data we did gather. Specifically, the asking rate parameter aﬁd error rate
parameter control the percentage of optimal actions that the trainer gives to the
learner. For example, at the 25% asking rate and the 10% error rate, 22.5% (=
25% x (100% — 10%)) of all of the actions performed by the learner are known to be
optimal, 2.5% are known to be suboptimal, and the remaining 75% are chosen by the

learner itself. We don’t know which of the actions are optimal, but we do know that

22.5% are.

95

3



Figure 5.12 represents the results for the 40x40 deterministic maze with all train-
ers. The x-axis represents the percentage of the trainer’s actions that are optimal,
the y-axis represents the percentage of the actions that are suboptimal, and the z-axis
represents the mean number of actions. We wish to determine if there is a relation-
ship between the number of optimal trainer’s actions and the number of suboptimal
trainer’s actions. It is difficult to see in this graph, but it appears that given a par-
ticular percentage of optimal actions, increasing the number of suboptimal actions

increases the total number of actions required to find an appropriate policy.
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Figure 5.12 Results for the 40x40 deterministic maze with all trainers, with respect
to the percentage of optimal and suboptimal trainer’s actions. The data is depicted
in terms of the percentage of optimal trainer’s actions versus the percentage of sub-
optimal actions.

This can be seen more easily in Figure 5.13, which views the three-dimensional
data almost directly from the front. One can notice that as the amount of subopti-

mality increases (looking directly into the page), the curve tends to rise. A similar
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view from the side indicates that for any given level of suboptimality, increasing the
percentage of optimal actions decreases the amount of training necessary. Neither of
these two findings is too surprising because one would expect that more good infor-
mation will lead to improvement and more bad information will lead to degradation.
A set of experiments aimed specifically at this question will provide better answers

than this informal analysis.
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Figure 5.13 Results for the 40x40 deterministic maze with all trainers, viewed from
the front. For a given percentage of optimality, the curve rises as the percentage of
suboptimality increases.

5.4 Scaling Up

For this experiment, we test how well the Ask FOR HELP approach with the
uniform asking strategy scales to a more complicated task. To ask this question,
we leave the comfortable maze world, with its simple lookup tables, and employ
the race track task, which requires a generalization structure to represent its policy.

Furthermore, because we cannot build an optimal policy for this task we do not have
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an optimal trainer. Although the trainer can perform the task, we do not know how
well it compares to optimal (see Section 5.1.2).

The results of the experiment are quite similar to the maze results: as the asking
rate increases, the learner develops an appropriate policy more quickly. However, the
results also show that asking rates lower than 100% are better than the 100% asking
rate. These results are similar to those found in the previous experiments, lending

credence to the conclusions we have drawn.
5.4.1 Experimental Design

In this experiment the task is the race track task. The task and the trainer are
both described in Section 5.1.2. In the sub-experiments, we vary the learner’s asking
rate parameter from 0%, which is standard Q-learning, up to 100%, which is a form
of apprentice learning. The learners attempt to drive on each of the two different race
tracks. One is shown in Figure 5.3 and the other is an extension of that track that
has additional turns and requires approximately twice as many actions to navigate
properly.

Each individual sub-experiment consists of twenty runs, each of which begins
with the Q-function weights set to zeroes. Because we cannot determine the optimal
policy, the stopping criterion is based on a different performance measure. A run ends
when the learner can navigate the car across the finish line from each of the eighteen
designated starting positions on the track.

Each run consists of several trials, which all begin with the car placed randomly at
one of the start positions. A trial ends with failure when the car drives off the track,
after which a new trial begins. A trial ends with success when the car crosses the finish
line, at which time the stopping criterion for a run is tested. If the stopping criterion
is satisfied, the entire run ends. Otherwise, the run continues with the beginning of

a new trial.
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As in the maze experiments, for each run we record the number of actions necessary
for the learner to achieve the stopping criterion and the number of trainer’s actions.
For the maze tasks we know that the policy developed is optimal. For this experiment
we only know that the car can drive successfully from the start line to the finish via
the learned policy.

Similarly to previous experiments, we perform statistical tests to determine whether
results with non-zero asking rates are different than the results with (J-learning. We
do not compare the results statistically to apprentice learning because the learners
that asked the trainer 100% of the time do not learn appropriate policies in the

allotted time.

5.4.2 Results

Figure 5.14 shows the results for the sub-experiments on the smaller track. The
numerical data for this experiment are presented in the Appendix. As with the graphs
for the maze task, this graph depicts the asking rate parameter on the independent
axis and the mean number of actions necessary to achieve the stopping criterion on
the dependent axis. The performance for standard -learning is shown with the
dashed line labeled “Q-learning”, with its 95% confidence interval marked by the
dotted lines. The curve represents the number of actions required by the learner to
meet the stopping criterion for different levels of asking rate.

Figure 5.14 indicates that AFH can also be effective for the race track task. At low
asking rates, there is no significant difference between asking for help and standard
Q-learning. Starting at the 20% asking rate and continuing up to 85%, asking for
help is statistically better than not asking. The curve labeled “Learner” is quite
similar to the curve in Figure 5.8 that represents a trainer that is incorrect 60% of
the time. However, there is a major difference at higher rates of asking between the
earlier results: the curve takes a steep rise starting at the 80% asking rate. The

results for the 95% asking rate, which are off the graph, are significantly worse than
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Figure 5.14 Mean actions for race track task on track 1. The 95% confidence bars
are shown. All means between the 20% and 85% asking rates are statistically better
then those achieved at the 0% rate. The mean at the 95% asking rate is off of the
graph.

not having a trainer at all. At the 100% asking rate the learner does not learn a
policy for navigating the track: the runs were all stopped after the total number of
trials exceeded 75,000. In comparison, @-learning takes an average of less than 5,000
trials to complete. |

The basic results for the longer track are the same as reported above for the
shorter track, although the values of all the measured statistics are higher because
the second track is longer. This data is shown in Figure 5.15. Note that the run
at the 95% asking rate did not complete within the prespecified limits, and that the

learner performed best at the 80% asking rate.
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Figure 5.15 Mean actions for race track task on track 2. The means between the
10% and 90% asking rates are statistically better than that achieved at the 0% rate.
The runs with asking rates higher than 90% did not complete within the preset limits.

5.4.3 Discussion

Because the learner is able to satisfy the stopping criterion mpch more quickly
with the trainer’s aid than it does without the trainer’s aid, we draw the same con-
clusion from this experiment that we do from the maze experiments: AFH is an
effective means of integrating apprentice learning and reinforcement learning, at least
at moderate levels of asking rate. However, these results are confounded by the use
of linear networks to store the (-values. Even so, the results are similar to those for
the maze experiments where a trainer with a 60% error rate provides actions to the
learner.

"The results for this experiment show the tradeoff between apprentice learning and
reinforcement learning nicely. At the far left of the graph in Figure 5.14 is standard

@-learning, and at the far right is apprentice learning with a suboptimal trainer.
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Both of these methods require more training to achieve the stopping criterion than
a combination of the two. As the asking factor increases from 0%, the amount of
reinforcement learning decreases and that of apprentice learning increases. Clearly,
a combination of the two is better than each individually, assuming the trainer is
suboptimal. |

The results of this experiment also indicate that the learner achieves the appro-
priate policy the quickest at either the 70% or 80% asking rate. This is quite similar
to the results of the previous experiment that indicated that the 75% rate gave the
best performance for a wide variety of error rates and maze sizes. This suggests that
when applying AFH with the uniform asking strategy, one may wish to use an asking
rate somewhere between 70% and 80%. Further experiments would need to be run
in order to determine the exact rate.

The similarity of these results to those for the 60% error rate on the maze tasks
suggests a possible technique for determining an agent’s level of expertise. First, one
would use the agent as a trainer, like we have in these experiments, and record the
learner’s policy acquisition rate for different asking rates. Then, to determine the
trainer’s expertise, one would find the error rate whose data matched the agent’s
data most closely. Although we do not know that this technique will be effective,
the observation that the curves for this experiment and the previous experiments are

similar suggests this as an avenue for future research.

5.5 Asking Based on Uncertainty

For this final experiment, we compare the two asking strategies, uniform asking
and uncertainty asking. We wish to determine whether a more sophisticated approach
to querying the trainer is better than the random approach, which will give us in-

sight into when it is appropriate to receive training information. We find that the
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uncertainty approach is better, allowing the learner to acquire an optimal policy with

fewer total actions while receiving the same amount of trainer support.
5.5.1 Experimental Design

Like the first two experiments, the domain for this experiment is the maze domain.
For the first two experiments (Section 5.2 and Section 5.3), the learner queries the
trainer based on an asking rate parameter, which determines the percentage of the
time that the learner asks for help. In this experiment, the learner bases the decision
of when to ask on the status of its current policy. When deciding on an action
to choose, the learner examines the highest and lowest -values. If the difference
between these values is larger than the setting for the asking factor, the learner will
ask the trainer for an action. In each of the sub-experiments, we vary that asking
factor, changing it from 0.0, which requires that all of the current move choices have
equal values in order for the learner to ask for help, up to 1.0, a setting that causes
the learner to ask for aid all of the time.

Each individual sub-experiment is performed in the same manner as in the first
two experiments. There are ten runs, each of which begins with zeroed Q-values
and ends when either the learner meets the stopping criterion or surpasses the preset
action or trial limits. Each run consists of several trials in which the learner attempts

to navigate from the start cell to the goal.
5.5.2 Results

We first show the results of this experiment in a graph similar to those in which
we presented previous maze results. In the next section, we display the results in
a different type of graph in order to facilitate comparison with results from the ex-
periments with the uniform asking strategy. The numerical data for this experiment
are presented in the Appendix. Figure 5.16 shows the results for the 40x40 maze.

Like previous graphs, the dependent axis shows the mean number of trials. The inde-
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pendent axis shows the asking factor. Each curve represents the results for different
levels of trainer error.

For the 40x40 deterministic maze, standard @-learning requires an average of
1.8 million actions to find an optimal policy. The results for every sub-experiment
are significantly better than the result for Q-learning. The highest mean number
of actions observed, which is for the 50% error rate and 0.0 asking factor, is only
150,000. Thus, AFH with the uncertainty strategy is better than Q-learning alone.
Furthermore, AFH performs better than apprentice learning alone. With an asking
factor of 1.0, the learner ends up asking the trainer for aid 100% of the time, and so
the sub-experiments at the 1.0 asking factor represent a form of apprentice learning.
One can observe that each of the curves tends to rise as the asking factor increases,
indicating that lower asking factors produce results better than those at the 1.0 factor.
In fact, the mean number of actions required to meet the stopping criterion is never
statistically worse than those required with apprentice learning.

For the smaller mazes, the results tend to be significant starting at the 0.0001
asking factor and continuing to the 0.75 factor, with few exceptions. For the large
mazes, all results tend to be statistically better than those for apprentice learning.
It is also the case for the stochastic m.azes that the results at all asking factors and
with all suboptimal trainers are better than, or at least indistinguishable from, the
apprentice learning results. For the optimal trainers, the results are significantly
worse at low asking factors, but indistinguishable at the higher factors. Thus, for
suboptimal trainers, AFH with the uncertainty strategy is better than apprentice

learning.
5.5.3 Discussion

We first conclude that the Ask FOR HELP approach with the uncertainty asking
strategy is effective for integrating apprentice learning and reinforcement learning,

even for suboptimal trainers. Further, with the uncertainty strategy, the learner can
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Figure 5.16 Results for the 40x40 deterministic maze with all trainers and the uncer-
tainty asking strategy. All of these means are statistically better than the Q-learning
mean, which is off of the graph. With Q-learning the agent requires close to 6 million
actions on average to find an optimal policy.

reduce its interaction with the trainer and still learn an optimal policy in as much
time as though it had asked for aid continually. In the remainder of this section we
compare the results of the experiment with the uniform asking strategy to those with
the uncertainty asking strategy.

To facilitate comparison with the results based on the uniform asking strategy,
we introduce a new type of graph. Before showing the results for this experiment in
this new form, we present the results from the first experiment. Like previous graphs,
Figure 5.17 shows the number of actions needed to meet the stopping criterion on
the vertical axis. The horizontal axis is the number of trainer’s actions that were
received, not the asking rate. The data presented on this graph represents the same

data as that in Figure 5.4 on Page 83.
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Figure 5.17 Scatter graph for the 40x40 deterministic maze with the optimal trainer
and the uniform asking strategy. These are the same results depicted in Figure 5.4 -
(page 83), but represented differently.

Each diamond on the graph represents -the result of each individual run of each
sub-experiment for the 40x40 deterministic maze with an optima.l trainer. The dotted
lines represent the different asking rates. For example, the diamonds that lie on the
line labeled “1% Asking Rate” are the results from the sub-experiment in which the
learner asked the trainer for an action 1% of the time. Because the rate is a controlled
parameter, every run at the 1% asking rate will produce a result that will lie on this
line. In order to avoid cluttering the graph, only three of the seven lines associated
with the asking rate sub-experiments are labeled. The results for each of the seven

asking rate sub-experiments has an associated center, which is at the coordinates of
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the mean of the two statistics for that particular asking rate: the x coordinate is the
mean of the number of trainer’s actions, and the y coordinate is the mean of the total
number of actions. This center is depicted as a dark square. The light, dashed line
simply joins these center points.

The graph also depicts a light vertical line at 12, 000 trainer’s actions, which helps
show that not all trainer’s actions are equally useful in speeding up the learner’s ability
to acquire an optimal policy. For the same number of trainer’s actions, the learner
requires vastly different amounts of total training. This can be seen by traversing
the vertical line from the x-axis upwards. With 12,000 actions the learner is able
to learn the task in approximately 48,000 total actions (at the 25% asking rate),
120,000 actions (at the 10% asking rate), and 1,200,000 actions (at the 1% asking
rate). This phenomenon is not particular to 12,000 trainer’s actions, it can also be
observed at other levels of trainer interaction. Because the same number of trainer’s
action produces these widely varying results, one can say that certain trainer’s actions
are better than others. For example, the 12,000 trainer’s actions given at the 1%
asking rate were not as effective as those received at the 25% asking rate. One can
also view this finding from the viewpoint that the trainer’s that respond 25% of the
time aré more effective than those that respond only 1% of the time.

Figure 5.18 represents the same information as Figure 5.17, but shows the results
of a sub-experiment with the uncertainty asking strategy. The circles represent the
measured statistics for each individual run, with a dark diamond in the éenter of the
results for each asking factor. The dark diamond to the far left represents the data
for the sub-experiment with the 0.0 asking factor, the next diamond is at the 0.0001
asking factor, and the last is at the 1.0 asking factor. Unlike the results from the
first experiment, notice that these groupings do not generally lie on a line through
the origin. This is especially true on the left of the graph. However, the last group of

results on the far right of the graph are on the line corresponding to 100% interaction
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with the trainer. Also notice that the vertical axis has a scale different from the

previous figure.
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Figure 5.18 Scatter graph for the 40x40 deterministic maze with the optimal trainer
and the difference asking strategy. These results are the same as those for the optimal
trainer in Figure 5.16 (page 105).

In order to compare the two sets of results, Figure 5.19 depicts them on the same
graph. In general, the points plotted for the uncertainty strategy experiment are
below those of the uniform strategy experiment. This is most noticeable in the group
of points near 4,000 trainer’s actions. With approximately 4,000 trainer’s actions,
the learner develops an appropriate policy in only 30,000 actions. With the uniform
asking strategy, the learner needs close to 15,000 trainer’s actions in order to achieve

this level of performance. Thus, with the uncertainty strategy, the learner needs fewer
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trainer’s actions to reach the same level of performance as with the uniform strategy.
Also notice that in this particular case, the proportion of trainer’s actions in the total

number of training actions is close to 15%.

1501 : -
1404 o

1304 - ) 4 |
1201 o W~ - — W Uniform asking swategy

: & o 4 Uncertainty asking strategy
110+ . o

Total actions (in 1,000’s)

oy
e

; g

[~
=)
: g
1004 - &
A 5
&

704
50+

30 _

01 ;

0 5 T 10 15 20 25 30 35
Trainer actions (in 1,000’s)

Figure 5.19 Scatter graph for the 40x40 deterministic maze showing both asking
strategies with the optimal trainer. Note that the curve for the uncertainty asking
strategy never higher than the curve for the uniform asking strategy, indicating that
the uncertainty asking strategy produces better results.

One can also compare how well the learner performs for the same amount of trainer
interaction but with different asking strategies. For example, with the uncertainty
strategy and 12, 000 trainer’s actions, the learner finds an optimal policy in approxi-
mately 23, 000 total actions. With only 12,000 trainer’s actions, the learner using the

uniform asking strategy requires at least 48,000 total actions to meet the stopping
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criterion. Thus, the uncertainty strategy makes better use of the trainer, achieving
quicker convergence with the same number of trainer’s actions.

With the uniform strategy, as the name suggests, the trainer interacts with the
learner uniformly throughout training. With the uncertainty strategy, the amount
of interaction with the trainer diminishes over time during a training run. This is
depicted in Figure 5.20, which plots the number of trainer’s and learner’s actions for
each trial of a particular run with the 40x40 maze, the optimal trainer, and the 0.0
asking factor. The horizontal axis in the graph shows the number of actions that
the learner chooses on its own, and the vertical axis represents the number of actions
chosen by the trainer. Each point on the graph represents the number of learner’s
and trainer’s actions for a particular trial. For example, the point at (48, 36), which
is marked with the dotted lines, represents a trial in which the learner asked the
trainer for an action 48 times, and performed its own action 36 times, for a total of
84 actions.

For the first trial, the learner does not choose any of its own actions, and the
trainer performs the task optimally. The point for this is plotted at (0, 74), signifying
that the trainer provided every action in performing the task. As training progresses,
the number of trainer’s actions tends to .decrease while the number of learner’s actions
increases. Toward the end of the run, very few of the actions come from the trainer,
which is shown by points near the horizontal axis. At the end of the run, the learner
performs 74 actions, the optimal number. These results, which are similar for other
runs, other mazes, and other trainers, indicate that the learner relies heavily on the
trainer at the beginning of training, but asks for help less often as training progresses.
This is a positive result when one considers having a human as a trainer. Instead of
needing to provide actions a uniform percentage of the time throughout training, the
human will provide many actions at the beginning of training and be needed less and

less as training progresses.
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Figure 5.20 Results for the 40x40 maze showing the trainer’s action distribution.
The data for the early trials are along the dependent axis, and the data for the trials
near the end of the run are along the independent axis. The line segments connecting
the points show the progression from the first trial to the last.

Like the uniform asking strategy, with the uncertainty strategy the learner visits
only a small portion of the state space. For example, Figure 5.21 depicts the fre-
quency of cell visits for the 40x40 maze on a particular run at the 0.0 asking factor
with an optimal trainer. The height of each bar in the graph depicts how often the
corresponding maze cell was visited. The start cell is at the left corner of the graph,
and the goal cell is in the right corner. Almost all of the learner’s experience was
acquired in a particular area of the graph (depicted with the highest bars). For this

particular run, the learner visited only 255 of the 1,018 cells, a reduction by a factor

of four.
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Figure 5.21 Frequency of cell visitation for the 40x40 deterministic maze with the
uncertainty asking strategy on a run in which the learner asked the optimal trainer
with an asking factor of 0.0.

5.6 Summary

The main objective of the experiments is to answer the general questions presented
in Chapter 4: how should the learner and trainer interact, how should the learner
incorporate the trainer’s actions into its developing policy, how does the trainer’s
expertise influence the learner’s ability to acquire an appropriate policy, and when
should the trainer provide information to the learner? Secondarily, we also wish to
determine whether ASK FOR HELP is an effective approach to integrating apprentice

learning and reinforcement learning.
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The results of the first experiment indicate that the trainer’s aid does speed up
the learning process, allowing the learner to develop an appropriate policy signifi-
cantly faster than when it relies on standard @-learning. Furthermore, these results
show that AFH is an effective approach for integrating apprentice learning and rein-
forcement learning, at least with an optimal trainer. The learner is able to learn an
optimal policy while also taking advantage of the trainer’s proffered actions

In the second experiment, in which we vary the trainer’s expertise by controlling
how often the trainer responds with a suboptimal action, we gain further evidence
that AFH is an effective means of integrating the two disparate learning methods.
Moreover, we find that the trainer’s expertise does indeed affect how quickly the
learner produces an appropriate policy. Although this conclusion is not too surprising,
we also find that a trainer that is incorrect up to 25% of the time helps the learner
almost as much as a perfect trainer. AFH is useful even when the trainer is not perfect.
This finding is important when having humans serve as the trainers, allowing those
that do not perform the task optimally to be considered.

The results from the third experiment indicate the the AFH approach also works
for more complex tasks than maze navigation. The learners here rely on a hand-
coded tfainer, and learn more quickly with that trainer under certain conditions.
Even though the race track task is different from maze navigation, the results of the
experiments are quite similar to those for the maze tasks. The experiment shows the
tradeoff between apprentice learning and reinforcement learning, strenéthening the
hypothesis that an integrated method is better than its constituents.

In the fourth experiment we compare the uniform asking strategy to the uncer-
tainty asking strategy. We find that the more principled strategy allows the learner to
benefit from the trainer better, requiring fewer trainer’s actions to achieve the same
level of performance. Thus, the learner can employ a more intelligent strategy for

when to ask the trainer for aid, and reduce its reliance on another agent. This is par-
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ticularly important when there is a cost associated with each of the trainer’s actions.
Moreover, every trainer’s action does not provide the same amount of information to
the learner in aiding the learner to develop an optimal policy quickly.

Evidence from the maze tasks suggests that the ASk FOR HELP approach pos-
sesses the desirable characteristics described in Chapter 3 (Section 3.1.1). .It allows
the trainer to learn from reward signals as well as from the trainer’s actions. It exposes
the learner to much less of the space than when it relies on @-learning alone. And,
finally, the policies learned are optimal. An approach of simply asking for actions
uniformly throughout training, and simply performing the action when it is received,
is an effective method for learning to perform multiple-step tasks.

We demonstrate that Ask FOR HELP allows the learning agent to produce correct
policies more quickly than with either reinforcement learning alone or apprentice
learning alone. We also show that the uncertainty asking strategy performs better
than asking for aid randomly. The results show that the expertise of the trainer takes
a major role in the success of the learner. Finally, we conclude that one can indeed

integrate apprentice learning and reinforcement learning to advantage.
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CHAPTER 6
DISCUSSION

This dissertation is about integrating apprentice learning and reinforcement learn-
ing, and is focused on answering particular questions about the integration of these
two learning methods. In addition to finding the answers, the research has raised a
set of issues for consideration in the future. Moreover, in developing, implementing,
and studying a particular integrated approach, the dissertation has contributed to-
wards understanding better the integration of apprentice learning and reinforcement

learning.

6.1 Summary of the Dissertation

Previous research in integrating apprentice learning and reinforcement learning
has identified the integration of the two methods as promising for building automated
agents that can learn to perform multiplé-step tasks. This dissertation furthers the
understaﬂding of hybrid systems by examining particular aspects of the integration
not addressed by previous work.

A thorough comparison of the two individual methods reveals that each possesses
strengths as well as weaknesses and that neither is clearly better than the other. In
Chapter 3, we argue that the two methods have complimentary strengths and that
the hybrid of the two will be a more powerful method than either individual. In
considering an integrated method, we develop the novel learner/trainer model, which
makes explicit many of the possible interactions that can take place between the

learner and the trainer, and introduces the notion of an interaction policy—a policy
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that specifies how the learner and trainer will interact in the hybrid method. Our main
objective is to answer particular questions about integrated methods. We designed
our ASk FOR HELP approach with these questions in mind. We wish to determine:
how the learner and trainer should interact, how the learner should incorporate the
trainer’s actions into its developing policy, how the trainer’s expertise influences the
learner’s ability to acquire an appropriate policy, and when it is effective for the
trainer to provide information to the learner.

In the remainder of this section we first summarize the Ask FOR HELP approach.

We then present the empirical results that confirm the hypotheses.

6.1.1 The Ask FOR HELP Approach

In order to study certain aspects of integrating apprentice learning and reinforce-
ment learning, we developed a new integrated approach, AsK FOR HELP. Although
previous research has shown some benefit in integrating these two learning methods,
that research has left several questions unanswered. Our objective in developing AFH
is to tackle four of those questions.

In the AsKk FOR HELP approach, the learning agent employs Q-learning as its
learning algorithm. This gives the learner the ability to develop an optimal pol-
icy based on scalar reward signals. In addition to learning from reward signals, the
learner also has access to actions provided by a training agent. The learner incorpo-
rates a trainer’s action into its policy simply by acting as though it had chosen the
action itself: perform the action, receive whatever reward is provided, and update
the Q-functions accordingly. Thus, to incorporate an action requires no changes to
Q-learning,.

The learner is completely responsible for its interaction with the trainer, asking
the trainer to provide actions. The trainer will always give an action when asked.
The learner employs oﬁe of two strategies to ask for help. With the first strategy,

the learner asks the trainer to provide actions randomly throughout training. The
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motivation for employing such a simple strategy is to determine when it is effective to
receive the trainer’s advice in order to help the learner develop a policy more quickly
than not having access to a trainer. The second asking strategy relies on the Q-values
of the learner’s current action choices to determine whether to ask for aid. When the
difference between the highest and lowest Q-values is within a pre-specified limit, the
learner will ask for help. This strategy allows us to ask whether a principled approach

to asking for aid is an improvement over the first strategy.
6.1.2 Empirical Study

The empirical study demonstrates that ASK FOR HELP is an effective approach
to integrating apprentice learning and reinforcement learning. In each of the exper-
iments, the learning agent develops its policy 'more quickly than with reinforcement
learning alone. Furthermore, the results indicate that AFH sometimes allows the
learner to develop a policy more quickly than it can with only apprentice learning.
The experiments also indicate each of the following: actions received at random times
in the training are useful, the trainer’s expertise influences how quickly the learner
develops an optimal policy, the AFH approach can scale up to a larger domain than
maze tasks, and the more sophisticated asking strategy allows the learner to learn
even more quickly.

The results of the first two experiments indicate that the trainer’s aid does speed
up the learning process, allowing the learner to develop an appropriate policy signifi-
cantly faster than when it relies on standard Q—iearning alone. This occurs partially
because the trainer focuses the learner on parts of the state-space that are appropriate
for learning the optimal policy. Recordings of the actual maze cells that were visited
indicate that the learner is exposed to cells within a neighborhood of the optimal
path; the size of the neighborhood is determined loosely by the asking rate and by
the expertise of the trainer. Roughly speaking, the higher the asking rate and the

higher the expertise, the smaller the neighborhood and the faster the learning.
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Additionally, the second experiment demonstrates that the trainer’s expertise does
indeed influence the rate at which the learner develops an optimal policy. Because
the trainers are stochastic degradations of an optimal trainer, these results suggest
that other suboptimal trainers may also be useful. If these degraded trainers are not
able to help the learner, the efficacy of other trainers would be seriously in doubt.

Given that the Ask FOR HELP approach is effective for the maze tasks and that
the suboptimal trainers are helpful, the next experiment is designed to determine
whether AFH will scale to a larger task with a suboptimal trainer (one that is not
a simple degradation of an optimal trainer). With most settings of the asking rate,
the learner develops a policy significantly more quickly than without the trainer’s
aid. The results of this experiment also show that the integrated method produces
a policy that meets the stopping criterion when a form of apprentice learning with a
suboptimal trainer does not.

In the final experiment, the learner is able to learn an optimal policy more quickly
with the uncertainty asking strategy than with the uniform asking strategy, while
receiving the same number of trainer’s actions. This indicates that the more sophisti- -
cated strategy identifies places where the trainer’s actions are more informative than
trainer’s actions received randomly. This experiment further supports the claim that
an integrated method can be better than apprentice learning: as the ratio of trainer’s
to learner’s actions approached one (getting closer to apprentice learning), the to-
tal number of actions necessary to achieve the stopping criterion increases given a
suboptimal trainer.

The empirical study indicates that an integration of apprentice learning and rein-
forcement learning can be better than its constituents, and that the Ask FOrR HELP
approach is effective for integrating these two learning methods. Furthermore, the
results suggest that humans can serve effectively as trainers. Even when the human

is not optimal, the learner can benefit from the interactions that take place. Fur-
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thermore, the uncertainty asking strategy will make good use of the human’s time,
requiring less interaction than a random approach, and requiring less interaction as
training progresses. Thus, the AFH approach is applicable to situations in which a

human serves as a training agent.

6.2 Issues for Future Research

This dissertation exposes many avenues for future research. Chapter 3 raised sev-
eral issues that must be addressed when building an integrated system. In considering
these issues, we made certain decisions when designing AFH, for example insisting
that the trainer provide actions to the learner. In this section we discuss other options
for dealing with those issues, reexamining the form of advice provided by the trainer,
the mechanism for incorporating that advice into the policy, and the interactions that

take place between the learner and trainer.
6.2.1 Form of Advice

The Ask rOR HELP approach relies on advice from the trainer in the form of
actions to perform. There are at least two other types of advice that the trainer
might provide. The trainer could give advice as scalar signals (similar to the rewards
received) that criticize the learner’s most recent actions. As noted in Section 3.4.2,
this form of advice has been used previously with success, indicating that the trainer’s
evaluative feedback, in addition to the rewards, might be beneficial to the learner.
Like actions, this form of advice, is a natural and easy means to convey information
to a learning agent. The trainer does not even need to know which actions to perform,
but can simply note whether the learner’s actions are good or bad. Because there are

many questions to answer before this form of advice becomes used widely, this area

of research should be explored further.
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The approach taken in AFH is a special case of another possible form of advice.
Instead of giving only one action that is suitable to perform, the trainer might give
the learner an entire set of actions from which to choose one. Preliminary work in
the race track domain indicates that this form of advice also improves the learner’s
ability to solve the problem quickly (Clouse, 1995). Furthermore, the trainer in that
study cannot solve the problem itself; it can only identify actions that are clearly
bad and should not be placed in the set of actions, and those that are clearly good
and should be placed in the set. The learner benefits because the trainer has already
narrowed the learner’s options, allowing the learner to concentrate on fewer action
choices. This type of advice may also keep the learning agent from making costly
mistakes as it trains because the learning agent is constrained to choosing from a

subset of the possible actions.
6.2.2 Incorporating Advice

Regardless of the form of trainer’s advice, the advice must be incorporated into the
learner’s policy. In changing the learner’s policy based on the trainer’s advice, care
must be taken to ensure that the learner can still develop an optimal solution. For
this feason, the incorporation mechanism of AFH has the learner simply perform the
trainer’s action. Several other options exist. For example, instead of performing the
action, the learner might raise the Q-value 6f the current state and trainer’s action
slightly, and then choose whatever action has the highest @-value (it may be the
trainer’s action, but it may not). In addition to performing the trainer’s action, the
trainer might also increase its associated Q-value regardless of the reward received.
Clouse & Utgoff (1992) took a similar approach in their early integrated system.
Many possible options exist that have not been explored fully.

Incorporating scalar advice can be as simple as treating the advice as a reward
signal. This would not require any changes to the underlying reinforcement learning

algorithm because it was designed to update based on scalar reward signals. At least
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two difficulties arise when considering criticism as a form of advice. First, one must
decide how to handle the conflict between the reward signal and the trainer’s signal.
Options for dealing with this include ignoring the trainer, ignoring the reward signal,
or combining the two mathematically. This area has not been explored much. The
other difficulty is related to the trainer’s expertise at the problem. As with othgr
forms of advice, one must determine how proficient the trainer needs to be in order
to be helpful. One should be especially careful that the learner maintains its ability
to learn an optimization of the reward signals—its ultimate objective—even though
it is also incorporating scalar signals from the trainer.

As with the previous two forms of advice, there are at least two options for in-
corporating advice in the form of sets of actions. First, the learner simply chooses
the action it considers to be the best of the set and performs it. Once an action is
chosen, the options for incorporating it are the same as if the trainer had given only
one action, as discussed above. In the second option, the learner performs whatever
action it chooses, and updates its policy depending on whether the action it chose
was in the set or not. I_f the action was in the set, the learner increases the action’s
@-value regardless of the reward received, thus “rewarding” the learner for picking
one of the trainer’s actions. Conversely, if the learner picked an action that was not
in the trainer’s set, the learner gets “punished” for doing so, decreasing the chosen
action’s @-value. Of these two assimilation options, the first seems the least prone
to difficulties. As with other incorporation schemes, one must be careful that the

learner still has the ability to optimize the receipt of the rewards received.

6.2.3 Learner/Trainer Interactions

The AsK FOR HELP approach, like all previous integrated systems, employs par-
ticular policies that specify how the learner and trainer interact. As discussed in
Section 3.2, the choices made are not the only possibilities. The learner and trainer

may be involved in more sophisticated interactions than any system to date has con-
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sidered. For example the learner and trainer could engage in a dialog about the
current problem, similarly to PROTOS (Section 2.2.2).

For the empirical study, we employed the “Ask for Help?” interaction policy
and implemented it via two strategies. The first strategy is straightforward, but the
second is more sophisticated. The later strategy, which we call the uncertainty asking
strategy, relies on the difference between the agent’s Q-values. In the experiments
we examine how a change in the asking factor, which determines whether the learner
is uncertain, affects the learner’s acquisition of an appropriate policy. Unfortunately,
the setting of the asking factor depends greatly on the magnitude of the Q-values. For
our problem, the @-values remain less than 1.0, and so we use asking factors less than
1.0. However, for other problems, the Q-valuesmay get quite large, requiring larger
asking factors to ascertain whether the learner is uncertain of its current choice. It is
an issue fbr future research to determine how to set the asking factor. However, our
empirical study indicates that setting the factor at its lowest level, 0.0, is affective.
This level of the asking factor is applicable to any problem, because it indicates that
all the current actions choices have identical values.

The learner and trainer might also learn the interaction policies. After all, the
interaction policies are just policies: éiven a current state they produce an action.
For an interaction policy, the state may include information about the learner and
the trainer as well as the task state. It may be possible to develop these policies with
reinforcement learning, apprentice learning, or even an integrated method. If the
learner were learning the “Ask for Help?” interaction policy, it might learn to ask for
help frequently at the beginning of training and less often as training .progresses. Or,
the learner might learn to recognize a bad trainer and to quit asking for help. After
the learner or trainer has learned a particular interaction policy, it may apply that
policy to learn from or train another agent on a similar, or possibly quite different,

problem. This is a rich area for future research.
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6.3 Conclusion

As computer systems become more complex, and the tasks we humans expect
them to perform become more demanding, programming computers directly will be-
come increasingly impractical. Consequently, machine learning will take on a more
pervasive and essential role in building computer systems. As a step in this direc-
tion, this dissertation focuses on automated agents that learn to make a sequence of
decisions in order to solve a problem. Taking inspiration from human learners, who
not only learn from others but also refine their skills autonomously, this dissertation
has concentrated on issues that arise in integrating apprentice learning and reinforce-
ment learning. Although prior research has explored this area, that research has not
focused on the specific issues addressed herein.

This dissertation shows that a careful integration of the two seemingly disparate
learning methods can produce a more powerful method than either one alone. First,
an argument based on the characteristics of the two learning methods maintains that
a hybrid method will be an improvement because of the complimentary strengths
- of its constituents. Second, the empirical study shows that the ASk FOrR HELP
approach integrates the two methods effectively. The study demonstrates that even
the straightforward technique of asking the trainer for actions randomly throughout
training and then incorporating those a(;tions into the developing policy by simply
performing them is clearly better than reinforcement learning aloné, and sometimes
bétter than apprentice learning alone. Moreover, the results indicate that the trainer’s
expertise in performing the task must be considered thoroughly, because it has a direct
bearing on how well the learner will benefit from the trainer’s suggested actions, and
may even preclude the learner from acquiring an appropriate policy. Thus, one must
be careful when designing an integrated system to examine the trainer’s ability to

perform the task. Finally, the uncertainty asking strategy employed in this research

123

_ A



4 3 T3 T3 T3

3

3 " 3 3 73

T3

[

—3

—3 3 —3 & T3

is an improvement over asking for aid uniformly. This suggests that sophisticated
strategies for obtaining information from the trainer are worth studying further.
With continued research, we believe that expansion on the work presented in this
dissertation will lead to other techniques that can be applied to tasks that are not
currently amenable to a learning approach—tasks for which current techniques require
prohibitive amounts of time or space to learn, and tasks that are not well enough
understood to program directly. Eventually, computers will no longer need to be
programmed directly to perform complex problem-solving and control tasks; instead,
they will be taught to perform these tasks, through the integration of apprentice

learning and reinforcement learning.
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APPENDIX
DATA FOR ALL THE EXPERIMENTS

The data provided in this appendix are the results of the experiments described
in Chapter 5.

The following tables give the data for the maze experiment with the optimal
trainer, which is discussed in Section 5.2 starting on page 79. In all of the tables,
the column labeled “Actions” shows the mean and 95% confidence interval for the
number of actions needed to achieve the stopping criterion, in 1,000’s. “Trials” shows

the mean and confidence interval for the number of trials performed.

Data for the 20x20 deterministic maze
with the optimal trainer
Asking Rate Actions Trials
0% 135.81+38.34 | 608.78+730.64
1 128.78+64.68 | 1174.50+1538.13
5 41.57+4.54 146.00+10.78
10 '23.56+1.72 143.50+10.27
25 12.16+0.54 151.70+7.62
50 7.97+0.24 157.50+5.46
75 6.66+0.23 164.60+6.27
100 6.61+0.25 183.50£7.05
Data for the 40x40 deterministic maze
with the optimal trainer
Asking Rate Actions Trials
0% 1800.69+561.96 | 3667.56+-7206.77
1 1235.991+449.95 | 2754.714+5364.82
5 290.444-20.30 313.50+24.03
10 131.21+10.14 297.90+18.56
25 50.86+2.47 313.601+18.47
50 31.86+1.65 315.704+18.81
75 29.56+1.25 359.70+16.05
100 31.274+2.19 422.60429.55
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Data for the 60x60 deterministic maze

with the optimal trainer

Asking Rate | Actions Trials

0% 5963.284+1525.81 | 7104.30+£9407.78
1 6473.801+4842.51 | 26444.20+35343.46
5 1021.48+70.98 774.10£53.69

10 492.58+29.68 727.70+£36.62

25 180.51+6.01 681.00£20.88

20 120.82+1.49 768.50+9.92

75 125.6542.75 984.90+21.20

100 154.19+2.99 1352.501+26.22

Data for the 80x80 deterministic maze
with the optimal trainer

Asking Rate Actions Trials

0% [ 29745.13+9581.29 | 47278.86£46996.19
1 10222.91+601.03 1498.10+938.10
5 2303.581+86.25 1036.20+34.40

10 926.52132.66 948.50+17.59

25 301.59+4.78 888.10+11.75

50 201.57+2.67 963.60+14.94

75 191.73+1.91 1108.20£11.40

100 195.51+1.88 1253.30£12.04

Data for the 100x100 deterministic maze
with the optimal trainer

Asking Rate Actions Trials

0% 48149.62+0.007 12249.004-0.00
1 24723.381+£9384.27 | 29241.00+40555.01
5 3333.64+157.31 1224.60+48.25

10 1414.77+40.05 1153.40+23.54

25 587.50+14.72 1227.60+£23.58

50 380.49+5.22 1366.80+19.37

75 354.12+6.59 1602.70+4+29.52

100 361.38+3.37 1862.80+17.39

1 Based on only 1 run.
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Data for the 150x150 deterministic maze
with the optimal trainer

Asking Rate || Actions

Trials

0%
1
5

10

25

50

75

100

15427.76+£535.52
7329.741+238.27
2935.331+60.26
2080.27+37.05
2028.04+25.75
2543.01+30.98

did not complete
did not complete

4423.404900.51
3524.30+106.59
3564.60+87.61
4611.20+99.56
5930.40+78.65
8649.70+105.37

Data for the 200x200 deterministic maze
with the optimal trainer

Asking Rate Actions Trials

0% did not complete

1 did not complete

5 35495.56+1972.87 | 7679.00+3855.68
10 15858.48+383.80 | 5165.20+136.65
25 5640.451+78.36 4935.70+63.65
50 3225.794+17.25 5285.201+26.28
75 2867.481+32.66 6231.20+73.66
100 3372.56£22.79 8559.801+57.85

Data for the 20x20 stochastic maze
with the optimal trainer

Asking Rate

Actions Trials

0% did not complete

1 did not complete

) did not complete

10 12872.83+13031.29 | 218758.50+£221358.56
25 107.154+42.30 1766.30£755.83

50 12.47+0.65 180.50+9.71

75 8.95+0.36 156.30+6.14
100 7.72+0.33 149.60+6.75

127

—3

_—

_.3



4 —43a T3 T3 T3

E

—3 —3 —3

3

Data for the 40x40 stochastic maze
with the optimal trainer

Asking Rate Actions Trials

0% ~ did not complete

1 did not complete

5 did not complete

10 11820.67+7498.85 | 103624.204-66590.87
25 332.79+90.83 2508.30+763.49
50 72.13+2.95 526.401+24.85

75 63.01+1.18 543.30£10.75
100 56.35£1.79 535.90+16.40

Data for the 60x60 stochastic maze
with the optimal trainer

Asking Rate Actions | Trials

0% did not complete

1 did not complete

5 did not complete

10 did not complete

25 874.821+267.89 | 4278.67£1548.59
50 226.12+5.98 1081.80+34.10
75 185.431+2.40 1052.20+13.14
100 155.25+2.46 974.80+15.03

Data for the 80x80 stochastic maze
with the optimal trainer

Asking Rate | Actions Trials

0% " did not complete

1 did not complete

5 did not complete

10 did not complete

25 874.57+131.16 | 2579.904+552.58
50 367.46+3.22 1267.60+£10.84
75 310.72+2.87 1263.00+11.72
100 280.71£1.56 1254.9045.99
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The following tables give the data for the maze experiment with the suboptimal
trainers, which is discussed in Section 5.3 starting on page 89. In all of the tables,
the column labeled “Actions” shows the mean and 95% confidence interval for the
number of actions needed to achieve the stopping criterion, in 1,000’s. “Trials” shows

the mean and confidence interval for the number of trials performed.

Data for the 20x20 deterministic maze
with the 10% error rate
Asking Rate Actions Trials

0% 135.811+38.34 | 608.78+730.64
1 145.69+93.19 | 1551.20+2147.05
5 47.774+8.12 268.10+175.25
10 27.87+1.79 159.60+13.69
25 13.92+0.66 155.80+9.87
50 8.67+0.39 149.40+6.25
75 7.75+0.21 164.00+4.32

100 7.88+0.21 184.50+4.44

Data for the 20x20 deterministic maze
with the 25% error rate

Asking Rate |  Actions | Trials

0% 135.81+38.34 | 608.78+730.64
1 127.61+61.86 | 944.20+1574.46
5 56.49+4.58 | 146.10+18.59
10 33.44+2.07 | 151.60+9.57

25 18.16+1.14 | 156.009.00

50 11.1140.38 | 147.70+5.60

75 9.624+0.27 | 155.6014.61

100 10.03+0.44 | 170.00+6.94

Data for the 20x20 deterministic maze
with the 50% error rate

Asking Rate Actions Trials
0% 135.81+38.34 | 608.78+730.64
1 97.17+8.09 | 146.60+13.80
5 120.02+58.29 | 979.20+1308.87
10 55.59+£2.91 | 138.60+12.17
25 33.42+1.50 | 141.60+6.41
50 22.21+1.59 | 151.60+12.54
75 19.16+0.79 | 140.10+6.10
100 21.40£1.00 | 129.10+5.68
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Data for the 20x20 deterministic maze
with the 60% error rate
Asking Rate | Actions Trials
0% 135.81+38.34 | 608.78+730.64
1 110.67+£14.93 | 127.40+9.19
5 108.79+12.01 | 213.10+155.21
10 84.244+11.29 | 153.90+9.20
25 50.69+6.30 | 132.30+11.42
50 39.50+3.47 | 147.90+12.19
75 33.724+2.13 | 126.30+6.33
100 44.62+4.43 90.20%7.53

Data for the 20x20 deterministic maze
with the 75% error rate

Asking Rate Actions | Trials

0% 135.81+38.34 | 608.78+730.64
1 141.90+26.30 | 567.40+649.73
) 162.194+76.72 | 902.90+1568.02
10 155.87+20.22 | 143.10+10.64
25 310.85+48.27 | 133.30+12.99
50 1679.33+195.43 | 110.80+7.40

75 did not complete

100 did not complete

Data for the 40x40 deterministic maze
with the 10% error rate

Asking Rate Actions Trials

0% 1800.694561.96 | 3667.56+7206.77
1 1512.04+514.92 | 6461.33+5953.52
5 331.32+18.81 320.50+43.23
10 154.55+7.66 295.00+16.53
25 57.81+2.14 288.80+9.08

50 37.69+1.39 325.30+13.84
75 33.82+1.27 349.90+14.77

100 33.81+1.49 380.80+£17.13
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Data for the 40x40 deterministic maze

with the 25% error rate

Asking Rate Actions Trials

0% 1800.69+561.96 | 3667.56+7206.77
1 1172.30+97.11 442.304+265.05
5 434.61+26.74 327.90+21.83
10 217.26+13.40 302.30+18.75
25 84.58+3.22 303.10+17.57
50 47.39+1.80 307.60+11.95

75 42.274+1.12 323.204+10.87

100 46.38+2.14 364.60+16.06

Data for the 40x40 deterministic maze

with the 50% error rate

Asking Rate Actions | Trials

0% 1800.69+561.96 | 3667.56+7206.77
1 1511.85+234.97 | 1551.70+2756.50
5 1326.07+760.71 | 5614.37+8261.12
10 593.18+87.99 753.30+961.30
25 210.40+12.99 304.00+22.10
50 114.79+3.99 289.50+11.75
75 96.58+4.52 287.20£19.12

100 129.20+5.34 300.80+13.66

Data for the 40x40 deterministic maze
with the 60% error rate

Asking Rate Actions Trials

0% 1800.69+561.96 3667.56:7206.77
1 3011.30+£1414.62 | 16816.201+-16148.92
5 1291.79+223.67 2200.30+2336.19
10 859.14+80.26 324.90+26.27

25 673.791+£286.91 1961.30+2402.26
50 330.56+52.29 387.60+£210.15
75 244.19417.84 285.20£29.74

100 479.531+45.39 220.60+19.11

131

'ﬂ



—3 T 3 3 3 3 3 3 3 3 3

3

3 3 "3 3 " 3

3

Data for the 40x40 deterministic maze

with the 75% error rate

Asking Rate | Actions Trials

0% 1800.69£561.96 | 3667.56+7206.77
1 1972.524:508.87 3769.20+5724.91
5 3404.761+1012.96 | 12216.40+-11176.83
10 6362.921+5380.71 | 28335.67+55915.37
25 did not complete -

50 did not complete

75 did not complete

100 did not complete

Data for the 60x60 deterministic maze
with the 10% error rate

Asking Rate Actions Trials

0% 5963.28+1525.81 7104.301+9407.78
1 7928.061+10581.04 | 35716.40+77382.77
5 1160.444-160.88 1323.40+1151.37
10 590.42436.15 726.60+£25.13

25 222.37+5.95 717.90+£25.45

50 136.19+2.34 740.60+11.49

75 142.75+2.80 948.70+4+20.43

100 183.89+3.47 1333.50+25.06

Data for the 60x60 deterministic maze
with the 25% error rate

Asking Rate Actions Trials

0% 5963.28+1525.81 | 7104.30+£9407.78
1 6224.56+3307.07 | 20476.301+-24369.46
5 1502.06+100.84 732.20+45.33

10 807.09+51.02 729.80+39.15

25 209.22+12.78 697.70+17.87

50 180.87+5.33 730.30+21.09

75 181.41+2.49 880.30+11.97

100 255.25+4.25 1277.80+19.60
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Data for the 60x60 deterministic maze
with the 50% error rate

Asking Rate Actions Trials

0% 5963.28+1525.81 | 7104.30+£9407.78
1 6450.54+3789.75 | 15081.40+27286.38
5 2788.53+120.36 983.701+284.00
10 1922.85+187.61 1203.20+£721.34

25 848.09+45.54 792.301+196.63

50 438.48+12.30 676.00+£17.46

75 375.41+10.30 689.20+19.76

100 657.03£16.93 925.10+24.83

Data for the 60x60 deterministic maze
with the 60% error rate

Asking Rate || Actions Trials

0% 5963.28+1525.81 | 7104.30+9407.78
1 11225.421+9933.66 | 46025.00+£73592.89
5 7370.22+6628.56 | 22410.20+46698.63
10 5666.051+4227.22 | 16315.40+27827.41

25 3204.68+1726.07 | 6013.30+8927.49

90 1376.67£70.38 688.701+26.25

75 1111.22432.08 573.80£15.97

100 2260.73+86.02 503.40+16.09

Data for the 80x80 deterministic maze
with the 10% error rate

Asking Rate Actions Trials

0% 29745.13+9581.29 | 47278.861+-46996.19
1 13650.27+3970.44 | 14459.30+21180.61
5 2767.40+77.67 1036.104-18.99

10 1183.134-37.89 976.201+19.39

25 353.59+7.34 871.90+8.89

50 227.57+1.44 945.70+8.84

75 215.12+2.04 1063.70+10.84

100 226.24+2.70 1208.40+13.17
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Data for the 80x80 deterministic maze
with the 25% error rate

Asking Rate |  Actions Trials

0% 29745.13+9581.29 | 47278.86+46996.19
1 14507.444+4274.72 | 10189.00+20573.18

5 3761.80+112.68 1040.90+32.15

10 1730.43+101.99 1002.70+33.97

25 500.15£15.73 886.70+11.14

50 286.30+4.68 902.60+15.29

75 268.82+3.39 991.50+15.15

100 306.26+3.81 1148.80+£12.95

Data for the 80x80 deterministic maze
with the 50% error rate

Asking Rate | Actions Trials

0% 29745.131+9581.29 | 47278.86:46996.19
1 19082.41+3267.56 | 9234.12+17009.38
5 8767.85+826.19 1688.78+1042.17
10 4463.65+191.44 1040.00+28.27

25 1591.66+54.97 962.101+20.97

50 676.25+17.70 850.10+15.84

7 552.10+12.41 842.40+16.29

100 775.66+11.77 919.20£13.47

Data for the 80x80 deterministic maze
with the 60% error rate

Asking Rate Actions Trials

0% 29745.13+9581.29 | 47278.86+46996.19
1 20488.96+2210.28 | 1234.254547.16
5 14726.46+£1362.97 | 5139.62+6270.45
10 9513.71+502.22 1138.20+90.69

25 4313.831+258.70 1024.80+38.95

50 1940.31+78.75 895.50+23.54

75 1397.10+67.36 785.201+24.58

100 2327.35+59.63 648.80+£16.21
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Data for the 100x100 deterministic maze
with the 10% error rate

Asking Rate Actions Trials
0% || 48149.62+0.00 12249.0040.00
1 20189.94£3756.88 | 1800.33+1787.08
5 4087.40+291.14 1760.70+769.36
10 1707.41+55.41 1179.501+27.96
25 673.28+18.50 1205.40+26.94
50 435.33+6.03 1350.40+20.92
75 403.91+5.90 1560.004+22.40
100 418.03+4.82 1800.80+20.17

Data for the 100x100 deterministic maze
with the 25% error rate

Asking Rate Actions | Trials
0% 48149.62+0.00 12249.00+-0.00
1 26004.84:-1764.05 | 2099.75+737.11
5 6695.81+1222.88 | 4942.201+4865.28
10 2551.224+192.02 1617.10£923.52
25 886.27+22.05 1171.30424.01
50 947.49+10.37 1276.001+31.36
7 512.361+5.56 1469.30£16.32
100 561.52+8.19 1708.70+26.68

Data for the 100x100 deterministic maze
with the 50% error rate

Asking Rate Actions Trials
0% 48149.62+0.00 12249.004-0.00
1 39029.33+8414.32 | 6776.25+10177.94
5 16146.92+2007.90 | 6230.44+6357.57
10 9944.00+6165.42 | 12958.40+24811.71
25 2364.61+68.04 1190.90+23.82
50 1166.40+32.29 1151.204+25.48
75 1008.27+30.77 1205.30+40.87
100 1418.29425.43 1429.504-25.68
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Data for the 100x100 deterministic maze
with the 60% error rate

T3 3 ~—3a 3

3

Asking Rate || Actions . Trials
[ 0% || 48149.62+0.00 12249.00+0.00
1 44157.03+£52217.52 | 1401.50+£2484.02
5 30194.11+5663.58 | 11709.43+20711.99
10 18354.77+4616.79 7226.20+14678.62
25 7890.901-2067.81 5939.33+6402.69
50 3241.33+133.06 1319.20+213.68
75 2388.50+39.10 1184.80+25.90
100 4235.08+122.08 1170.00+33.40
Data for the 150x150 deterministic maze
with the 10% error rate
Asking Rate Actions | Trials
0% did not complete
1 did not complete
5 19033.84+1556.04 | 5109.90+£3464.25
10 8939.48+312.09 | 3562.70+133.60
25 3458.851+84.33 3521.20+84.70
50 2330.96+59.83 4360.80+118.30
75 2296.07+44.01 5655.10+117.14
100 2999.114+48.83 8450.50+£138.59

Data for the 150x150 deterministic maze
with the 25% error rate

—3 E 3

Asking Rate Actions Trials

0% did not complete

1 did not complete

5 25797.91+1099.58 | 4052.30+869.29
10 12949.05+£430.01 | 3741.40+180.41
25 4710.78+135.42 | 3492.40+132.44
50 2991.54+27.99 4097.80+55.79
75 2912.98+44.86 5170.90£87.12
100 4202.90+43.35 8195.10+83.87

136



Data for the 150x150 deterministic maze
with the 50% error rate

Asking Rate ||

Actions

Trials

0%
1
5

10

-25

90

75

100

did not complete
did not complete
did not complete

35674.99-+1467.21

14506.60+503.64
7409.63+143.39
6301.79+130.05

12487.38+120.60

5501.30+£2972.19
3781.70+286.99
3574.50+92.58
3912.40+93.94
6836.60+64.29

Data for the 150x150 deterministic maze
with the 60% error rate

Asking Rate Actions Trials

0% did not complete

1 did not complete

5 did not complete

10 did not complete

25 48260.11+1468.44 | 3717.71+801.09
50 31065.47+2485.20 | 5193.80+£3465.62
75 22945.591+487.62 | 3383.30+154.34
100 39774.92+764.25 | 2844.50+57.41

Data for the 200x200 deterministic maze
with the 10% error rate

Asking Rate Actions Trials

0% did not complete

1 did not complete

5 40573.33+1596.30 | 5518.00+452.31
10 19329.77+673.02 | 5227.70+202.69
25 6829.20+119.30 | 4994.30+80.70
50 3706.94+51.49 5141.70+78.03
75 3334.474+56.42 6091.40+£107.89
100 4126.08+31.89 8685.80+66.24

137



V_’_g E % g — §

—3

— 3

Data for the 200x200 deterministic maze

with the 25% error rate

Asking Rate Actions Trials

0% did not complete

1 did not complete

5 did not complete

10 28172.104+1030.40 | 5584.90349.11
25 9648.491:265.87 | 4994.00-:168.82
50 4983.84+60.94 5012.00£74.50
75 4451.67+36.15 5870.30+56.61
100 6188.33+61.42 9044.20+87.95

Data for the 200x200 deterministic maze

with the 50% error rate

Asking Rate Actions Trials

0% did not complete

1 did not complete

5 did not complete

10 did not complete

25 30668.63+1000.80 | 5367.561+256.65
50 13979.77+£532.59 | 4848.904202.31
75 10473.81+£215.33 | 4907.10£105.08
100 19938.72+251.05 | 8426.80+106.50

Data for the 200x200 deterministic maze

with the 60% error rate

Asking Rate Actions Trials
0% did not complete
1 did not complete
5 did not complete
10 did not complete
25 did not complete
50 did not complete
75 36921.41+1965.57 | 4090.10+£208.18
100 did not complete
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Data for the 20x20 stochastic maze
with the 10% error rate
Asking Rate Actions ] Trials
0% did not complete
1 did not complete
5 did not complete
10 8492.60+9317.23 | 142470.00+155592.98
25 142.61+£79.89 2265.70+£1366.98
.50 20.85+14.30 297.40+242.39
75 10.86+0.45 164.50+6.79
100 8.9510.34 150.40+5.65
Data for the 20x20 stochastic maze
with the 25% error rate
Asking Rate Actions Trials
0% did not complete
-1 did not complete
5 did not complete
10 849.64+0.00 14026.004:0.00
25 344.88+233.25 | 5263.501+3688.45
50 89.91+49.80 1269.90+745.93
75 14.184+0.98 172.30+11.58
100 12.40+0.54 157.40+6.43

Data for the 40x40 stochastic maze

with the 10% error rate

Asking Rate

Actions Trials

0% did not complete

1 did not complete

5 did not complete

10 31074.17+£41695.51 | 270149.67+364706.94
25 3440.30+2081.90 28964.601+17822.12
50 82.54+2.16 535.90+17.36

75 72.70+1.71 548.50+13.01
100 66.09+2.65 536.30+£21.77
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Data for the 40x40 stochastic maze
with the 25% error rate

Asking Rate Actions Trials
0% did not complete
1 did not complete
) did not complete
10 16911.45+10161.31 | 141762.001+-87252.10
25 21228.991+16430.12 | 170301.62+132418.49
50 100.98+£5.46 534.40+£37.64
75 91.9412.89 547.70+18.53
100 95.89+2.98 579.40+18.14
Data for the 60x60 stochastic maze
with the 10% error rate
Asking Rate Actions Trials
0% did not complete
1 did not complete
5 did not complete
10 did not complete
25 did not complete
50 261.78+12.67 | 1129.40+-66.24
75 219.67+3.51 | 1097.10+17.76
100 188.30+2.51 | 1015.00+12.84

Data for the 60x60 stochastic maze
with the 25% error rate

Asking Rate Actions | Trials
0% " did not complete
1 did not complete
5 did not complete
10 did not complete
25 did not complete
50 354.81+35.75 | 1302.67£153.59
75 308.33+17.04 | 1223.60£74.99
100 269.45+2.97 | 1091.10+12.02
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Data for the 80x80 stochastic maze
with the 10% error rate

Asking Rate Actions Trials
0% did not complete
1 did not complete
5 did not complete
10 did not complete
25 925.394509.51 | 2426.67+1989.61
50 408.81+3.65 1253.20+13.55
75 356.89+3.89 1269.30+15.15
100 334.8213.08 1275.30+12.20
Data for the 80x80 stochastic maze
with the 256% error rate
Asking Rate Actions | Trials
0% did not complete
1 did not complete
5 did not complete
10 did not complete
25 did not complete
50 516.27+12.20 | 1284.60+40.23
75 466.86+14.48 | 1305.87+£44.55
100 512.50+31.37 | 1449.37+87.79
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The following tables give the data for the race track task. The information pro-
vided here represents the results of the experiment described in Section 5.4, which
starts on page 97. The first column shows the Asking Rate, as a percentage. The col-
umn labeled “Actions” shows the mean and 95% confidence interval for the number

of actions necessary to achieve the stopping criterion.

Data for the First Track
Asking Rate Actions Trials
0% 65.21+8.95 4861.601+594.54
1 63.09+11.33 | 4656.15+717.59
5 59.821+11.30 | 4421.20+746.12
10 54.7249.61 4078.901+645.03
20 38.50+8.39 2912.20+-614.66
30 25.48+7.04 1894.404503.85
40 15.71+2.74 1126.254+195.48
50 13.47+2.06 902.754+140.38
60 10.29+1.39 625.00+84.19 .
70 6.76+1.39 362.75+75.87
80 8.15+2.43 376.95+111.98
85 27.65+10.87 | 1176.55+460.24
90 108.824+49.23 | 4448.051-961.05
95 428.47+0.00 | 15255.5740.00
Data for the Second Track
Asking Rate Actions Trials
0% 338.35+83.61 | 15495.35+3108.14
1 277.59+51.81 | 13232.7041920.43
5 236.12+50.99 | 11759.554+1955.59
10 177.56+£29.62 | 9585.90+1167.43
20 117.86+£11.45 | 7206.65+483.29
30 106.42+11.87 | 6614.454+551.24
40 78.06+13.82 | 4976.65+761.76
50 54.27+8.42 3439.75+496.13
60 25.50+3.90 1491.95+229.29
70 16.57+2.65 821.90+131.32
80 17.17£3.52 655.65+133.41
85 44.49+12.58 | 1433.80+398.59
90 123.69+31.49 | 3320.11+843.55
95 did not complete
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The following tables give the data for the maze experiment with the uncertainty
asking strategy, which is discussed in Section 5.5 starting on page 102. In all of the
tables, the column labeled “Actions” shows the mean and 95% confidence interval for
the number of actions needed to achieve the stopping criterion, in 1,000’s. “Trials”

shows the mean and confidence interval for the number of trials performed.

Data for the 20x20 deterministic maze
with the 0% error rate

Asking Factor Actions Trials
Q 135.81+38.34 | 608.78+730.64
0.0 9.47+0.57 | 179.60+8.42
0.0001 5.86+0.21 | 158.20+5.69
0.001 6.13+£0.21 | 165.80+5.71
0.01 6.46+0.10 | 175.3042.70
0.1 6.80+0.26 | 185.40+7.20
0.25 6.72+0.17 | 183.70+4.54
0.50 6.66+0.22 | 182.7045.90
0.75 6.65+0.28 | 182.80+7.64
1.0 6.61+£0.16 | 183.50+-4.45

Data for the 20x20 deterministic maze
with the 10% error rate

Asking Factor || Actions Trials
Q 135.81+38.34 | 608.78+730.64
0.0 16.53+16.62 | 338.20+389.66
0.0001 6.51+0.18 | 160.70+4.25
0.001 6.924+0.18 | 169.90+4.69
0.01 7.14+0.19 | 173.90+4.69
0.1 7.32+0.28 | 176.60+6.76
0.25 7.53+0.38 | 180.70+9.20
0.50 7.624+0.28 | 182.50+6.93
0.75 7.2140.33 | 171.50+7.70
1.0 7.67+£0.15 | 179.00£3.60
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Data for the 20x20 deterministic maze
with the 25% error rate

Asking Factor | Actions Trials
Q 135.81+38.34 | 608.78+730.64
0.0 9.38+0.57 | 150.80+9.25
0.0001 7.85+0.29 | 159.20+5.20
0.001 8.56+0.24 | 169.0015.67
0.01 8.42+0.28 | 163.30+5.09
0.1 9.05+0.14 | 168.704+2.52
0.25 9.10+0.40 | 168.00+6.73
0.50 9.49+0.21 | 169.50+4.78
0.75 9.73+0.37 | 170.1046.83
1.0 10.174+0.32 | 169.40+4.12 .

Data for the 20x20 deterministic maze
with the 50% error rate

Asking Factor Actions Trials

Q 135.81+38.34 [ 608.78+730.64
0.0 13.31+0.71 | 139.2045.72

0.0001 17.82+1.06 | 160.20+6.50

0.001 18.15+0.73 | 152.60+6.70
0.01 19.07+0.84 | 150.40+7.30
0.1 18.73+0.86 | 134.90+8.60
0.25 19.14+1.01 | 133.50+8.47
0.50 20.72+1.41 | 135.70+10.74
0.75 20.97+0.83 | 132.10+5.28
1.0 22.23+1.51 | 135.30+8.56

Data for the 40x40 deterministic maze
with the 0% error rate

Asking Factor Actions Trials

Q 1800.69+561.96 | 3667.56+7206.77
0.0 30.724+2.23 260.504+17.06
0.0001 23.194+0.91 305.204+11.83
0.001 24.61+0.94 324.40+12.26
0.01 28.42+1.26 375.10+16.26
0.1 27.36+1.04 363.00+13.76
0.25 29.94+1.34 397.80+17.53
0.50 29.08+1.51 387.90+19.73
0.75 29.00+1.51 388.70+20.18
1.0 30.81+1.87 416.30+25.31
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Data for the 40x40 deterministic maze
with the 10% error rate

Asking Factor Actions Trials
Q 1800.69+561.96 | 3667.56£7206.77

0.0 31.50+2.33 264.10-+17.79

0.0001 26.77+1.12 317.50+14.05

0.001 29.594:0.99 348.40+£12.16
0.01 30.67+1.13 360.20+13.82
0.1 32.54+1.64 378.50+19.60
0.25 32.71+0.54 378.50£7.11
0.50 33.24+1.37 382.10+16.29
0.75 34.47+1.73 391.904+19.99
1.0 34.0941.98 383.30+22.09

Data for the 40x40 deterministic maze
with the 25% error rate

Asking Factor Actions Trials
Q 1800.69+561.96 | 3667.567206.77

0.0 35.1942.20 272.80+19.44

0.0001 35.944-0.90 335.10+9.20

0.001 36.65+1.03 335.80+11.56
0.01 39.5241.22 354.90+11.77
0.1 42.404-1.48 369.20+13.98
0.25 42.38+1.61 362.40+14.30
0.50 44.03£2.76 363.00£23.98
0.75 44.92+1.76 361.80+14.09
1.0 47.13+1.98 368.40+15.87

Data for the 40x40 deterministic maze
- with the 50% error rate

Asking Factor Actions Trials

Q 1800.69+561.96 | 3667.56+7206.77

0.0 150.32+208.68 | 1348.60+2428.76
0.0001 105.69+5.32 347.801+21.76
0.001 110.0945.29 343.70+19.30
0.01 111.12+3.97 326.80+14.48
0.1 119.71+6.52 326.30+17.71
0.25 119.8944.43 315.80+15.04
0.50 126.71+5.96 313.90+14.80
0.75 126.55+5.05 302.40+12.24
1.0 133.60+5.76 310.90+13.43
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Data for the 60x60 deterministic maze
with the 0% error rate

Asking Factor Actions Trials
Q 5963.28+1525.81 | 7104.30+9407.78
0.0 149.494-25.92 820.60+182.67
0.0001 103.33+2.48 879.90+21.17
0.001 112.44+1.71 957.80+14.69
0.01 129.20+2.83 1101.40+23.87
0.1 151.36+3.29 1293.70+£28.20
0.25 155.31+1.99 1332.70+17.17
0.50 154.81+1.92 1337.80+16.66
0.75 153.63+2.25 1340.70+19.58
1.0 152.45+1.84 1337.30+16.12

Data for the 60x60 deterministic maze
with the 10% error rate

Asking Factor | Actions Trials
Q 5963.28+1525.81 | 7104.30+9407.78
0.0 252.18+256.94 | 1625.50+1921.70
0.0001 114.61+2.22 883.10+16.58
0.001 126.81+2.18 975.60+16.75
0.01 143.28+1.41 1100.80+10.61
0.1 170.98+3.01 1304.50£23.32
0.25 172.98+3.38 1308.30£25.48
0.50 178.77£1.78 1330.60+13.17
0.75 180.03+2.82 1313.70+20.09
1.0 181.04+2.00 1312.40+14.67

Data for the 60x60 deterministic maze
with the 25% error rate

Asking Factor | Actions Trials

Q [ 5963.28+1525.81 | 7104.30+9407.78

0.0 243.81+272.08 | 1542.50+2078.83
0.0001 147.474+2.25 910.50415.04
0.001 163.77+2.65 1004.40+16.23
0.01 184.25+2.75 1120.00+17.60
0.1 213.41+3.98 1259.50+23.85
0.25 219.60+4.97 1252.90+31.34
0.50 239.67+3.94 1285.70+20.69
0.75 252.2243.77 1278.20+21.01
1.0 252.41+3.52 1265.10+17.14
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Data for the 60x60 deterministic maze
with the 50% error rate
Asking Factor Actions Trials
Q 5963.28+1525.81 | 7104.30+-9407.78
0.0 236.35+8.25 657.30+33.35
0.0001 468.16+11.01 1042.20+19.75
0.001 509.37+15.99 1057.70+34.50
0.01 533.27+11.97 1024.70+30.71
0.1 546.001+7.42 981.30+20.16
0.25 550.86£13.97 950.20+-23.14
0.50 625.07+£18.27 941.50+25.28
0.75 654.48+13.17 931.40+18.74
1.0 653.04+13.55 917.70+17.23

Data for the 80x80 deterministic maze
with the 0% error rate

Asking Factor | Actions Trials
Q 29745.13+£9581.29 | 47278.86+46996.19

0.0 182.39+3.15 767.401+9.62

0.0001 150.46+1.44 934.50+8.68

0.001 161.15+1.40 1001.10+8.54
0.01 173.561+2.59 1079.40+16.07
0.1 190.54+1.76 1188.60+-10.86
0.25 195.62+2.52 1226.90+15.82
0.50 195.59+1.39 1239.70+8.76
0.75 196.13+3.27 1252.90+20.98
1.0 194.81+1.35 1248.8018.64

Data for the 80x80 deterministic maze
with the 10% error rate

Asking Factor Actions | Trials
Q 29745.131+9581.29 | 47278.86+46996.19

0.0 185.9142.60 766.10+7.31
0.0001 165.81+1.98 942.50+11.08
0.001 175.45+1.82 994.80+10.13

0.01 190.17+1.28 1076.60+7.27
0.1 208.23+1.70 1171.20410.36
0.25 215.81+4.24 1200.70+23.62
0.50 225.124+2.97 1221.90+15.45
0.75 227.71£2.59 1222.40+13.79
1.0 228.41+2.28 1219.30+12.04
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Data for the 80x80 deterministic maze
with the 25% error rate

Asking Factor Actions Trials
Q 29745.131+9581.29 | 47278.86+46996.19

0.0 199.80+3.81 768.60+12.47

0.0001 204.30+2.60 953.40+12.87

0.001 220.80+2.56 1024.80+12.14
0.01 234.724+2.12 1076.60+11.82
0.1 256.88+3.61 1145.70+17.41
0.25 272.15+2.32 1155.40+9.16
0.50 296.19+3.96 1157.20+13.34
0.75 304.31+4.17 1154.60+15.41
1.0 305.52+3.16 1145.60+12.80

Data for the 80x80 deterministic maze
with the 50% error rate

Asking Factor || Actions Trials
Q [ 29745.13+9581.29 | 47278.86+46996.19

0.0 318.49+7.17 784.20+£12.26
0.0001 537.42+8.08 1029.30+16.24
0.001 568.811+4.43 1025.30+12.17
0.01 596.69£8.51 996.90+11.13
0.1 619.15+9.90 958.80£15.24

0.25 685.62+6.32 937.00+9.09
0.50 740.37+13.37 937.80+15.64
0.75 788.68+14.43 939.10+16.59
1.0 785.61+11.57 927.50+13.41

Data for the 100x100 deterministic maze
with the 0% error rate
Asking Factor Actions Trials -

Q 48149.624+0.007 | 12249.004-0.00
0.0 436.10+13.24 | 1365.30+37.13
0.0001 256.96+3.53 1290.90+17.89
0.001 275.4243.04 1384.40+15.60
0.01 301.15+2.11 1515.10+10.71
0.1 344.28+4.84 1738.70+24.51
0.25 355.78+4.26 1806.30+21.74
0.50 363.70+2.43 1859.50+12.18
0.75 359.011+2.94 1845.10+15.13
1.0 363.13+3.87 1871.80+19.95

1 Based on only 1 run.
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Data for the 100x100 deterministic maze
with the 10% error rate

Asking Factor Actions Trials

Q 48149.62+0.007 | 12249.00+0.00
0.0 405.49+11.47 | 1253.10+32.98
0.0001 284.70+3.87 1294.00+17.31
0.001 304.67+3.85 1381.60+16.79
0.01 337.60+3.89 1526.90+17.94
0.1 377.43+6.60 1693.90+29.06
0.25 397.87+5.64 1763.60+£25.41
0.50 414.46+4.37 1810.30+18.20
0.75 413.4943.92 1788.00+£16.89
1.0 420.554-5.12 1810.90+22.25

t Based on only 1 run.

Data for the 100x100 deterministic maze
with the 25% error rate

Asking Factor Actions Trials

Q 48149.62+0.00T | 12249.00+0.00
0.0 396.12+10.41 | 1150.80+29.55
0.0001 356.27+4.94 1303.90+18.43
0.001 393.44+4.29 1427.90+13.86
0.01 424.52+9.79 1521.60+33.91
0.1 478.231+8.11 1662.10+27.43
0.25 517.39+8.14 1714.10£25.02
0.50 543.69+6.22 1709.20+19.41
0.75 " 560.47+8.24 1717.50£25.44
1.0 564.97+7.46 1721.50+£22.99

1 Based on only 1 run.
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Data for the 100x100 deterministic maze
with the 50% error rate

Asking Factor Actions Trials
Q 48149.62+0.00" | 12249.0040.00

0.0 603.70+£32.54 | 1161.504+106.48

0.0001 1010.04+16.05 | 1524.404-19.18

0.001 1069.49+49.04 1544.90+13.59
0.01 1128.70+16.23 | 1540.30+25.20
0.1 1191.48+19.81 | 1478.80425.25
0.25 1298.91+23.36 | 1488.00+26.48
0.50 1395.86£17.32 | 1457.60120.38
0.75 1427.42425.09 | 1443.704+26.94
1.0 1423.10£22.01 | 1431.00421.70

t Based on only 1 run.

Data for the 150x150 deterministic maze
with the 0% error rate

Asking Factor Actions Trials
Q did not complete

0.0 1142.20+32.19 | 3080.70+£64.23

0.0001 1400.86+14.46 | 4649.40+47.32

. 0.001 1547.511+37.83 | 5137.40+£124.25
0.01 1856.401+29.30 | 6166.00+96.81
0.1 2313.91+£25.93 | 7766.00+87.25
0.25 2479.89+29.88 | 8366.20+101.11
0.50 2536.74+27.04 | 8600.30+91.89
0.75 2556.54+20.46 | 8689.30+69.51
1.0 8676.10£77.94

2560.77+22.91

Data for the 150x150 deterministic maze
with the 10% error rate

Asking Factor Actions Trials
Q did not complete
0.0 1171.434+40.16 | 2931.80+89.45
0.0001 1589.754+25.09 | 4720.00+74.35
0.001 1780.46+18.01 | 5281.60+54.13
0.01 2141.62+28.50 | 6347.80+85.60
0.1 2680.86+28.37 | 7763.90+80.38
0.25 2908.754-29.40 | 8334.80+82.72
0.50 2991.54+51.43 | 8478.40+£145.65
0.75 3000.704+52.07 | 8463.40+146.63
1.0 3036.09+41.86 | 8554.50+117.25
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Data for the 150x150 deterministic maze
with the 25% error rate

Asking Factor || Actions Trials
Q did not complete
0.0 1255.824+28.21 | 2697.20+50.61
0.0001 2130.41428.94 | 4973.801+69.38
0.001 2396.961+28.63 | 5570.80+72.24
0.01 2827.10+42.42 | 6544.30£104.86
0.1 3702.85+43.07 | 7884.20188.00
0.25 3978.96+42.51 | 8147.50+£85.41
0.50 4144.224-43.79 | 8195.80£85.77
0.75 4213.37+33.44 | 8224.60+£63.37
1.0 4251.701+30.78 | 8286.901+58.69

Data for the 150x150 deterministic maze
with the 50% error rate

Asking Factor Actions Trials
Q did not complete
0.0 3204.69£111.11 | 2942.30+98.29
0.0001 7593.36£114.88 | 6527.90+86.41
0.001 8585.01+£116.72 | 7218.90+122.98
0.01 9480.76£125.60 | 7445.90+103.22
0.1 10989.60+233.30 | 7140.60+127.07
0.25 11835.37£209.02 | 6994.10+106.86
0.50 12542.31£157.49 | 6912.60+91.21
0.75 12435.71£197.32 | 6817.70+108.17
1.0 12372.58+214.14 | 6777.80+113.98

Data for the 200x200 deterministic maze
with the 0% error rate

Asking Factor Actions Trials
Q did not complete
0.0 2179.25+92.51 | 4179.904+110.58
0.0001 1993.73+25.53 | 4919.90+62.66
0.001 2240.13+26.55 | 5530.1065.80
0.01 2595.23+19.11 | 6426.30+:47.18
0.1 3135.14+26.79 | 7885.401+67.18
0.25 3281.78+33.19 | 8288.401-83.92
0.50 3354.74+35.92 | 8501.904+91.12
0.75 3367.88+35.63 | 8544.00+90.46
1.0 3369.88+41.09 | 8553.004104.29
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Data for the 200x200 deterministic maze
with the 10% error rate

Asking Factor Actions Trials
Q did not complete
0.0 1944.051+45.46 | 3579.20+66.27
0.0001 2330.18+29.92 | 5197.801-68.67
0.001 2584.68+33.69 | 5761.20+75.74
0.01 3041.19+54.00 | 6729.80+119.30
0.1 3800.14+31.97 | 8125.004+71.39
0.25 3975.71+£29.06 | 8445.50+57.68
0.50 4083.79+£33.72 | 8621.70+71.19
0.75 4111.50+64.52 | 8662.40+135.14
1.0 4097.56£39.09 | 8626.70+-80.60

Data for the 200x200 deterministic maze
with the 25% error rate

Asking Factor Actions Trials
Q did not complete
0.0 2166.07+30.57 | 3457.80+42.41
0.0001 3288.21+26.71 | 5853.70+49.11
0.001 3634.26+66.26 | 6460.70+122.69
0.01 4371.37+85.37 | 7550.80+140.79
0.1 5683.19+62.99 | 8809.10+94.40
0.25 6040.23+71.81 | 9079.40+104.75
0.50 6151.86+36.77 | 9060.60+£55.65
0.75 6224.40+57.54 | 9107.90+84.05
1.0 6257.83+£51.01 | 9147.00+77.71

Data for the 200x200 deterministic maze
with the 50% error rate

Asking Factor

Actions

Trials

Q did not complete
0.0 5402.694+202.59 | 3801.50+153.63
0.0001 12390.86+214.79 | 8263.50+£169.61
0.001 13458.94+183.89 | 8656.70+103.78
0.01 14952.04+209.95 | 8895.10+135.09
0.1 18507.13+396.92 | 8730.00+181.04
0.25 19556.09+235.42 | 8573.60+£99.48
0.50 20035.41+328.14 | 8512.70+136.60
0.75 20134.04+318.32 | 8510.60+137.57
1.0 19853.75+339.89 | 8396.60+£141.15
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Data for the 20x20 stochastic maze
with the 0% error rate

Asking Factor || Actions Trials
Q did not complete
0.0001 7.70+0.29 | 144.40+5.05
0.001 7.89+0.45 | 149.80+7.83
0.01 8.121+0.35 | 153.20+4.43
0.1 7.58+0.24 | 145.00+4.99
0.25 7.67+0.18 | 147.80+3.63
0.50 7.68+0.34 | 147.90+6.43
0.75 7.91+0.34 | 151.80+6.88
1.0 7.6740.25 | 149.00+5.26

Data for the 20x20 stochastic maze
with the 10% error rate

Asking Factor | Actions Trials
Q did not complete

0.0001 10.074+2.11 | 174.20+36.79
0.001 8.851+0.33 | 152.80+4.68
0.01 8.68+0.37 | 150.20+6.55
0.1 8.89+0.25 | 152.00+4.96
0.25 8.91+0.30 | 151.10+5.29
0.50 8.891+0.36 | 151.10+5.84
0.75 8.95+0.34 | 151.20+£5.70
1.0 8.86+0.38 | 148.60+6.16

Data for the 20x20 stochastic maze
with the 25% error rate

Asking Factor Actions Trials
Q .did not complete

0.0001 26.74+28.07 | 431.201+506.68
0.001 11.65+0.61 | 164.10+5.82
0.01 11.51+0.75 | 163.10+11.17
0.1 11.61+0.51 | 158.80+7.52
0.25 11.68+0.25 | 159.30+2.92
0.50 11.56+0.38 | 153.90+5.06
0.75 12.01+£0.48 | 154.30+6.39
1.0 12.13+0.48 | 151.80+6.26
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Data for the 40x40 stochastic maze
with the 0% error rate

Asking Factor | Actions Trials
Q did not complete

0.0001 58.92+1.65 | 542.60+14.88
0.001 58.13+0.89 | 536.70+6.74
0.01 97.08+£1.60 | 529.10+£15.37
0.1 56.43+1.58 | 527.20+15.02
0.25 56.70+0.63 | 530.80+5.89
0.50 56.27+0.89 | 528.30+7.79
0.75 57.231+0.69 | 541.40+£7.56
1.0 56.36+£1.32 | 534.70+12.14

Data for the 40x40 stochastic maze
with the 10% error rate

Asking Factor Actions Trials

Q did not complete

0.0001 69.24+2.62 | 584.60+20.45
0.001 67.02+2.15 | 563.404+17.42
0.01 66.25+2.73 | 556.60123.64
0.1 64.78+2.59 | 541.60+21.56 |-
0.25 65.57+1.33 | 544.60+11.34
0.50 66.73+1.74 | 549.40+13.42
0.75 67.43+1.85 | 550.30+13.73
1.0 65.83+1.81 | 535.20+14.19

Data for the 40x40 stochastic maze
with the 25% error rate

Asking Factor Actions Trials
Q did not complete
0.0001 90.12+6.80 | 639.90+£50.76
0.001 90.11+4.00 | 621.30+25.51
0.01 88.27+2.76 | 600.90+21.42
0.1 88.141+2.08 | 589.10+13.62
0.25 86.19+£2.04 | 559.10+13.34
0.50 90.42+2.73 | 568.90+17.39
0.75 97.74+4.36 | 596.10+£25.33
1.0 95.66+1.87 | 580.00+11.35
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Data for the 60x60 stochastic maze
with the 0% error rate

Asking Factor |

Actions |  Trials

Q
0.0001

0.001
0.01
0.1
0.25
0.50
0.75
1.0

did not complete
160.29+1.87 | 977.20+11.46
158.13+3.04 | 966.60+19.03
158.31+1.89 | 973.20£10.54
156.57+2.66 | 967.00+16.39
154.64+1.35 | 958.00+8.48
153.91+1.51 | 959.10+9.44
154.1742.22 | 966.40+13.12
152.45+2.35 | 957.00+£14.07

Data for the 60x60 stochastic maze
with the 10% error rate

Asking Factor Actions Trials

Q . did not complete

0.0001 209.58+66.81 | 1168.80+373.03
0.001 180.59+3.60 | 1009.90+19.89
0.01 181.05+2.43 | 1009.20+13.18
0.1 181.72+2.98 | 1008.90+17.03
0.25 185.294+2.22 | 1017.90£11.57
0.50 185.89+2.33 | 1011.60+12.96
0.75 187.50+2.25 | 1013.10+£12.20
1.0 186.88+2.85 | 1005.90+15.40

Data for the 60x60 stochastic maze
with the 25% error rate

Asking Factor Actions Trials
Q did not complete
0.0001 238.94+14.25 | 1134.004-69.63
0.001 239.67+£5.07 | 1117.90420.11
0.01 242.91+3.88 | 1115.50+16.53
0.1 246.24+3.05 | 1096.60+13.47
0.25 261.62+3.32 | 1119.40+17.26
0.50 267.19+3.45 | 1108.20+13.76
0.75 274.40+4.61 | 1113.50+19.05
1.0 274.61+£5.55 | 1110.704+20.99
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Data for the 80x80 stochastic maze
with the 0% error rate

Asking Factor || Actions Trials
Q did not complete

0.0001 287.93+1.78 '} 1247.00+8.09
0.001 286.69+2.28 | 1245.10+8.93
0.01 288.39+2.45 | 1257.10+11.32
0.1 284.9613.53 | 1248.00+15.29
0.25 286.06+3.19 | 1261.00+14.05
0.50 281.13+2.88 | 1251.301+12.85
0.75 280.60+2.59 | 1252.30+10.53
1.0 280.03+3.58 | 1251.80+16.21

Data for the 80x80 stochastic maze
with the 10% error rate

Asking Factor Actions Trials
Q did not complete
0.0001 321.82+3.02 | 1286.101+-12.89
0.001 322.13+2.43 | 1285.70+10.66
0.01 326.72+3.61 | 1297.80+14.57
0.1 324.17+£3.12 | 1278.00+12.37
0.25 329.63+3.25 | 1274.90+11.91
0.50 331.56+3.31 | 1270.00+12.64
0.75 334.67£2.89 | 1279.00+11.35
1.0 337.39+2.87 | 1285.80+10.06

Data for the 80x80 stochastic maze
with the 25% error rate

Asking Factor Actions Trials
Q did not complete

0.0001 400.95+9.10 | 1364.70+31.24

0.001 396.59+5.74 | 1327.10+18.67
0.01 399.43+4.41 | 1307.80+14.89
0.1 418.224+4.61 | 1300.00+12.78
0.25 445.06+£9.51 | 1306.101+28.45
0.50 455.27+£6.98 | 1303.90+20.27
0.75 487.31+39.25 | 1380.62+£112.22
1.0 499.31+38.35 | 1410.80£106.96
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