Consistency Management
for Complex Applicationss

Peri Tarrx
Lori A. Clarke

CMPSCI Technical Report 97-27
January 1997

*xIBM T.J. Watson Research Center
30 Saw Mill River Road
Hawthorne, NY 10532

1 Laboratory for Advanced Software Engineering Research
Computer Science Department
University of Massachusetts
Ambherst, Massachusetts 01003

t This work was supported in part by the Air Force Materiel Command, Rome Laboratory, and the Advanced
Research Projects Agency under Contract F30602-94-C-0137.

Consistency Management for Complex Applications”

Peri Tarr Lori A. Clarke
IBM T.J. Watson Research Center Department of Computer Science
30 Saw Mill River Road University of Massachusetts at Amherst
Hawthorne, NY 10532 Ambherst, MA 01003
tarr@watson.ibm.com clarke@cs.umass.edu

Abstract

Consistency management is an important requirement in many complex applications, but current
programming languages and database systems provide very limited support for it. To address
this limitation, we have defined a consistency management model, based on what we perceive to
be the underlying requirements of these applications. This paper presents a motivating example
that illustrates some typical consistency management requirements, discusses the requirements in
terms of both functionality and cross-cutting concerns that affect how this functionality is
provided, and then proposes a model of consistency management. This model has been
implemented in the PLEIADES object management system, and we describe some design and
implementation issues that arose in instantiating the model. Although the current
implementation has some drawbacks, users have been extremely pleased with the system and
have provided us with valuable feedback that has influenced the model and our future research
plans.

Keywords: Consistency management, inconsistency management, object management, software
engineering environments

* This work was supported in part by the Air Force Materiel Command, Rome Laboratory, and the Advanced Research
Projects Agency under Contract F30602-94-C-0137.

1. Introduction

One of the difficult tasks that arises in many complex applications is the need to define and
maintain consistency among objects. One or more objects are said to be consistent if they are in
states that satisfy some condition(s) for acceptability or correctness. An example of a complex
application needing support for consistency management is a software engineering environment
(SEE). In this domain, for instance, a source code module may be said to be consistent if it
compiles, while the source code module may be said to be consistent with respect to its object
code if the object code’s time stamp is later than that of the source code. SEEs must facilitate the
specification and enforcement of consistency definitions over objects to enable such activities as
automated verification of task completion and detection of (potentially) erroneous manipulations
of artifacts of the software engineering process. Although many applications and domains can
benefit from consistency management, we draw our motivation and examples for this paper from
SEEs, the domain with which we are most familiar.

Consistency management is the process of controlling the manipulation of objects to ensure that
their consistency definitions are respected. Consistency management comprises the definition of
consistency conditions, identification of consistency violations, reestablishment of consistency
following violations, and control over access to objects that do not satisfy their consistency
conditions. Consider, for example, a source code module that has “is compilable” as a
consistency condition. This condition could be violated upon any modification to the source
code. Depending on the phase of development, a project manager may or may not want to allow
the source code to be in an inconsistent state. If the violation is acceptable, as is often the case,
then the change might be allowed, but some kinds of manipulations of the inconsistent object
might be precluded (e.g., it could not be released or tested). If the violation is unacceptable, a
consistency management mechanism might reject the change and roll the module back to its
previous, consistent state, thus preserving consistency.

Managing object consistency is an important, but difficult, task, for a number of reasons. One is
the degree of diversity of object and consistency semantics that must be supported. Different
kinds of objects may require different consistency definitions and enforcement semantics. For
example, some kinds of objects require invariant consistency definitions (i.e., the consistency
definition may not be violated and any activity that threatens to violate the definition must be
precluded), while other objects will allow temporary violations of their consistency definitions
with the expectation that the violations can be repaired, either immediately or eventually.
Second, the set of consistency definitions and enforcement semantics that apply to any given
object may change during the lifetime of the object. For example, during development phases,
“is compilable” may not be applicable to a source module, but once the project reaches a release
phase, this consistency definition might have to be enforced. The broad spectrum of object,
consistency definition, and consistency enforcement semantics results in some fairly challenging
requirements on consistency management systems. While some existing systems include support
for consistency management, we are unfamiliar with any system that supports the wide range of
consistency semantics that we have found to be needed in advanced applications, such as SEEs.

This paper examines a number of issues involved in supporting consistency management.
Section 2 provides a small but typical example of an advanced application to illustrate some of
the consistency management needs that such applications have, and then uses the example to help
motivate a set of requirements on consistency management systems. Section 3 describes a model
of consistency management that satisfies those requirements. We have implemented much of

if a then

’
end if;
(S

Source Code Syntax Graph Control Flow
Graph

Figure 1: An SEE Motivating Example.

this model in the PLEIADES object management system [42], and in Section 4, we discuss various
tradeoffs involved in satisfying the requirements in PLEIADES, both at the design and
implementation levels. PLEIADES has been used in the implementation of several software
engineering applications. Section 5 describes some of the uses of PLEIADES’ consistency
management system and uses client feedback to evaluate the requirements on, and model of,
consistency management presented in Sections 2 and 3. In Section 6, we examine some related
research in the area of consistency management. Finally, Section 7 discusses ongoing and future
work.

2. Motivating Example and Requirements for Consistency Management

To illustrate some typical consistency management needs in complex applications, we use an
example from the Arcadia SEE project [20]. In this example, there are three types of objects:
source code, abstract syntax trees (ASTs), and control flow graphs (CFGs), along with some
corresponding consistency definitions. As depicted in Figure 1, each AST node is associated
with the source code from which the AST was created, and each node in a CFG is connected to
with the root of the AST subgraph that elaborates the statement associated with the CFG node.
These three kinds of objects may be subject to several complex consistency definitions,
including:

e Acyclic: ASTs are, by definition, trees. Thus, they may not include cycles or shared
substructure.

e Up-to-datedness: To ensure that applications only manipulate ASTs and CFGs that
correspond to the current state of the associated source code, an up-to-datedness
constraint is enforced among these three abstract data types. This constraint indicates
that a set of interrelated ASTs, CFGs, and source modules are up-to-date with respect to
each other either if the time stamp on the source is less than the time stamp of the AST,
which, in turn, is less than the time stamp on the CFG, or if a manager agrees that the
objects are mutually consistent.

* No def/use errors: Def/use errors can be found via static analysis, and they include such
anomalies as a reference to a variable that is not defined. During the later stages of

program development, CFGs may be subject to a constraint that they are consistent only
if they do not contain any def/use errors.

These three consistency conditions are quite different from each other in nature. The acyclic
property represents an invariant on the AST abstract data type, and, as such, it may not be
violated under any circumstances—any attempt to introduce a cycle or shared substructure can
be viewed as an error and should be prevented. The up-to-datedness constraint, on the other
hand, is one that is expected to be violated during the normal evolution of code. It will be
violated, for example, any time a developer modifies part of a program (either by editing the
source code or by changing a visual depiction of the AST or CFG). Such violations are neither
abnormal nor erroneous, and they should be permitted. It is expected, however, that once a
violation has occurred, consistency can be reestablished by identifying the scope of the change
and recomputing the corresponding parts of the source code, AST, or CFG (depending on which
structure was modified). A failure to reestablish consistency, however, might be considered an
abnormal condition that might or might not be permissible, depending on the stage of
development. “No def/use errors in CFGs” is yet another kind of constraint. Like the up-to-
datedness constraint, “no def/use errors” is a consistency condition that is expected to be violated
during the normal evolution of a program. Unlike the up-to-datedness constraint, however, it
may be possible to violate “no def/use errors” during some stages of development and for the
violation to be acceptable, at least for some period of time. While the CFG is in an inconsistent
state, however, a different set of operations might be permitted on the CFG, and on some of its
related objects, than are permitted while the CFG is in a consistent state. For example, it should
not be possible to invoke the release_system operation on a source module object whose
corresponding CFG fails to satisfy the “no def/use errors” condition, but it may be possible to use
a def/use error visualization tool on the inconsistent CFG. Thus, when consistency violations
cannot be repaired immediately, it may be necessary to rolerate the inconsistency for some
period of time [4, 36, 39] and to manage access to the inconsistent objects appropriately.

These fairly simple examples illustrate some of the kinds of functionality that are needed to
facilitate the definition and management of object consistency. They also demonstrate some
“cross-cutting” requirements, which are constraints on the ways in which the consistency
management functionalities are provided. These functional and cross-cutting requirements are
discussed below.

2.1 Functional Requirements

As the above example indicates, there are many aspects of consistency management. After
carefully examining the needs of several complex applications, we believe that a consistency
management system must provide users with the ability to do the following:

Define consistency conditions: Consistency management starts with the definition of what it
means for one or more objects to be consistent. Essentially, this definition partitions the space of
possible object states. A simple and very common partitioning is “consistent” and
“inconsistent,” but partitionings may be more complex. A consistency management system
should facilitate the specification of any kind of partitioning.

Determine when to detect violations: As shown by the examples above, different kinds of
objects may have consistency definitions that require detection of violations at different points.
For example, the acyclic invariant on ASTs may not be violated, which means that potential

violations must be detected before they actually occur; the up-to-datedness constraint can be
violated, but the violation must be detected immediately so that it can be repaired; and violation
of the “no def/use errors” consistency definition can occur lazily—it need only be detected prior
to the use of any operation that might not be allowed while the CFG is in an inconsistent state.
Thus, it must be possible to detect (potential) violations of consistency conditions in different
ways, as needed to enforce the required kinds of consistency semantics.

Specify enforcement semantics: It must be possible to define appropriate responses to
(potential) consistency violations. As seen in the examples, responses to consistency violations
may range from outright rejection of the action that caused the violation, to rolling the affected
objects forward into a new, consistent state, to allowing the affected objects to remain
inconsistent and controlling access to them. In addition, enforcement semantics must consider
that the initial repair action may not be successful and that subsequent actions may have to be
considered.

Manage inconsistency: Even with a rich set of repair actions, it may not always be possible, or
even desirable, to return an object to a consistent state. When inconsistency is to be tolerated,
however, it is sometimes necessary to restrict access to the inconsistent objects. In the example,
the CFG could be graphically depicted when the “no def/use errors” condition is violated, but the
source code associated with that CFG cannot be released.

Dynamically change the consistency information associated with an object: The consistency
constraints that apply to a given object need to change over time. For example, the “no deffuse
errors” and up-to-datedness constraints can both apply to CFGs, but the former typically is
enforced only during release phases, and not during development phases, while the latter might
be enforced during a CFG’s entire lifetime. Similarly, the repair action associated with the up-
to-datedness constraint may change; during development, recompilation might be invoked
automatically, but during the release phase, a manager might be asked to approve the change.

2.2 Cross-Cutting Requirements

The functionality described above can be implemented using capabilities found in most modern
programming languages and some database systems, but not without extensive programming.
One of our goals in this work was to describe a model of consistency management that provides
more powerful building blocks than those currently found in programming languages and
databases—primitive capabilities that are easy to use, but general enough to permit the definition
of a broad range of consistency management semantics. Towards satisfying this goal, we have
further constrained the set of functionalities discussed above with a set of cross-cutting
requirements [42] that describe more specifically how these capabilities should be provided to
produce a flexible, easy-to-use consistency management system.

Completeness: Computational completeness supports the definition of arbitrarily complex
algorithms, both for determining whether or not objects satisfy consistency conditions and for
specifying enforcement semantics. Type completeness provides the ability to associate
consistency conditions and enforcement mechanisms with any type of object.

Meta-data: To make decisions dynamically, applications require information about their run-
time state or environment, which is commonly referred to as meta-data. Information about the

set of consistency conditions that are currently enforced on an object and about an object’s
consistency status are examples of the kinds of meta-data that may be required.

Generality/heterogeneity: Previous research (e.g., [43, 20, 36, 7]) has demonstrated that
different programming paradigms and models are appropriate for different kinds of applications.
Generality means that a consistency management system must provide a set of primitive
capabilities that facilitate the implementation of alternative consistency management paradigms.
Heterogeneity means that a consistency management system must allow alternative consistency
management models and implementations to coexist peacefully and, when appropriate, to be used
together in an integrated manner.

First-class status and identity: First-class status provides the ability to treat all objects
uniformly. The ability to pass a consistency condition or action as a parameter to an operation is
an example of this requirement. Identity means that a given entity has a unique identifier that is
separate from its state. First-class status and identity facilitate the definition of consistency
constraints among constraints and/or actions to facilitate, for example, the decomposition of
constraints and the representation of preconditions on conditions (such as checking the up-to-
datedness condition before the “no def/use errors” condition, since a failure to satisfy the former
automatically results in the failure of the latter). Identity facilitates sharing, which makes it
easier, for example, for enforcement semantics to be shared among constraints. First-class status
and identity also facilitate reflection [13].

3. Model of Consistency Management

Based on the requirements described in Section 2, we have defined a model of consistency
management, which is presented here. A formal specification of this model is given in [41]. In
addition, we have incorporated much of the model into the PLEIADES object management system
[42, 41] in order to evaluate the model and to better understand implementation considerations.
This section describes the consistency management model.

To facilitate the description of the consistency management model, we assume an abstract data
type (ADT) programming model. We view all objects as instances of ADTs, which means that
access occurs solely via operation invocation. This assumption implies that the only way to
violate a consistency condition is by invoking an operation on an object.! We rely on this
assumption throughout the remainder of this section.

The consistency management model recognizes and enforces a set of semantics specified in the
form of consistency constraints. A consistency constraint comprises a consistency condition, a
set of points at which violations are to be detected, enforcement semantics, and inconsistency
management semantics. An instantiation of a consistency constraint represents the enforcement
of a given constraint on one or more objects. Both constraints and instantiations can be changed
throughout execution, providing applications with extensive dynamic control over consistency
management. We describe conditions, violation detection, enforcement semantics, and
inconsistency management below.

! Observe that temporal constraints can be modeled using ADTs as well—i.e., the clock is an instance of an ADT on

which operation to change time are invoked. Note that we do not propose this as an implementation mechanism, but
rather, as a modeling mechanism.

3.1 Consistency Conditions

The specification of what it means for objects to be consistent is accomplished by defining
conditions. A condition is a function whose return value is a consistency status flag that
indicates in what state the object is. By default, the consistency status values are in the set
{consistent, inconsistent, partial, unknown}. Consistent and inconsistent mean that
the condition does or does not hold, respectively. It is possible to describe decomposition
relationships among conditions (e.g., to facilitate incremental condition satisfaction). Partial
means that some, but not all, subcomponents of a condition evaluate to consistent. Unknown
means that not enough information is available to the status of one or more objects [37]. This
may happen, for example, if human intervention is required, but not available, to determine
whether or not a condition is satisfied, or if concurrency control conflicts arise that preclude
access to objects whose states affect the status of one or more objects with respect to a condition.
Consistent and inconsistent are the most commonly used partitions, though the other values
may also be needed in some circumstances (e.g., in software process programming). The set of
consistency status values must be user-extensible, to facilitate the definition of application-
specific consistency status values.

Conditions are computationally complete, which means that any necessary condition can be
specified. They may be enforced on objects statically or dynamically, on a per-instance or per-
type basis. Applications can check, at any time, to see what the consistency status of one or more
objects is, with respect to a given condition.

3.2 Violation Detection

Since we employ an ADT model, it is only possible to modify or examine the state of an object,
and thus, to violate an enforced constraint or view an object in an inconsistent state, by invoking
an operation on an object. Thus, information about when to detect violations is specified in
terms of a set of tuples of the form <operation, when>, where operation is the name of an
operation in which a condition should be checked, and when is in the set {preinvoke,
precondition, postcondition, postinvoke}. Preinvoke means that a condition will be
checked prior to the invocation of the specified operation. This is particularly useful in cases
where failure to satisfy the condition precludes the invocation of the operation. Preconditions
are checked during the execution of the specified operation, but before the operation takes any
other actions, while postconditions are checked after the operation has performed its task, but
before it terminates. Pre- and post-condition checks are used in cases where the runtime context
in which the operation executes is important to the checking of the condition, and for cases in
which the operation may have to be prevented from committing due to a violation. Postinvoke
means that a condition will be checked after the specified operation finishes executing and
commits. In general, we believe that postcondition checks are more common than postinvoke
checks, since postconditions can affect the commit of the operation while postinvoke checks
cannot, but a postinvoke check may be useful, for example, in circumstances where the
satisfaction of a condition depends on whether or not the specified operation actually committed.

The description of when (potential) violations should be identified can be done dynamically or
statically, at the per-constraint, per-object, and per-type levels.

3.3 Definition of Enforcement Mechanisms

It is possible to define an action to be taken when the consistency of one or more objects is
violated (with respect to a given condition). By default, the violation of a condition is assumed
to be undesirable, so a diagnostic exception is raised. Actions are essentially procedures and are
computationally complete, so any required action may occur in response to a violation. In
general, actions are intended to prevent or correct a consistency violation, though they may
perform any tasks deemed necessary, such as sending mail to a developer, logging the violation,
etc.

Actions may be associated with selected conditions enforced on particular objects, and
mechanisms are provided to specify this association both statically and dynamically. In addition,
both instance- and type-level control are provided; thus, two objects of the same type could take
different actions upon violation of the same condition.

Ideally, once its associated action has been run, the violated condition will be satisfied. Clearly,
this need not be the case, however. For situations in which additional actions must be taken if
the original fails to restore consistency, developers may specify action chains. Action chains are
essentially postconditions on actions. They indicate what new action to take if a given action
fails to restore consistency. These chains may be as long as needed and may be modified
dynamically.

3.4 Inconsistency Management

It is possible that, after applying all actions in an action chain, a condition still will not be
satisfied. Developers are, therefore, given the option of describing which operations on the
object are permissible (or not permissible) while a given condition is in a state other than
consistent. By default, objects are assumed not to be allowed to end up in any state but
consistent; thus, if an action chain fails to restore consistency, a diagnostic exception is raised.
Inconsistency management semantics can be associated with a given instance or type, and they
can be changed dynamically. Different inconsistency management semantics also can be
associated with different consistency status values.

3.5 Using the Model

To demonstrate how this consistency management model could be used, we now revisit the
motivating example presented in Section 2 and describe how one of the three consistency
definitions presented in that section, namely, the acyclic constraint, could be represented using
the model. We employ PLEIADES-like syntax throughout this section to illustrate the concepts.

The acyclic invariant is modeled as a condition that is checked as a precondition to each insertion
into, and edge redefinition of, an AST.? If the proposed insertion or edge modification would
create a cycle or shared substructure, the update is prevented and a diagnostic exception is raised.

condition Is_Acyclic (The_AST : AST;
Source_Node_For_New_Edge : AST_Node;

? Note that removal of nodes from an AST cannot cause cycles to occur, so this constraint need not be checked upon
node removal.

Target_Node_For_New_Edge : AST Node) is
begin
-- If the target node of the new edge does not already have a
-- parent, the change is acceptable. If it already has a
-- parent, the change will introduce a cycle or shared
-~ substructure.
if (Get_Parent (Get_Target (Target_Node_For_New_ Edge))
/= Null_AST_ Node) then
return Inconsistent;
else
return Consistent;
end if;
end condition;

action Reject_Update (The_AST : AST;
Target_Node_For_New_Edge : AST _Node) is
begin
-- First, report the error:
Put_Line (“Attempted to define edge that introduced a cycle”);
-- Raise a diagnostic exception. This will terminate execution
-- of the update operation.
raise Attempt_To_Violate_Acyclicity;
end action;

By default, Is_Acyeclic is not enforced on instances of type AST, which means that the “treeness”
invariant can be violated. The consistency management model provides both static and dynamic
mechanisms to enforce Is_Acyclic on ASTs. The static mechanism is a declarative statement
which indicates that, at least initially, Is_Acyclic should be enforced on instances of type AST:

check Is_Acyclic in Set_Edge as precondition;

The dynamic mechanism is provided in the form of two operations, Enforce_Constraint and
Relax_Constraint, which control the enforcement of constraints on particular instances of a

type:

procedure Enforce_Constraint
(The_Condition : Condition_Name;
On_Object : Object_Type;
Enforcement_Mechanism : Enforcement_Info);
procedure Relax_Constraint

(The_Condition : Condition_Name;
On_Object : Object_Type;
Enforcement_Points : Enforcement_Info);

Thus, applications may enforce or relax constraints on objects at any point during the objects’
lifetimes. Although dynamic control is not required for the enforcement of invariants, like
Is_Acyclic, it would be very useful for constraints, like “no def/use errors,” that apply during
more limited periods of time during an object’s lifetime.

4. Design and Implementation Concerns

The model of consistency management presented in the previous section is both general-purpose
and language-independent. To enable developers to use it, the model must be instantiated for,
and bound into, a particular programming language.” Developers can then continue to use their

3 A programming language enhanced with capabilities like consistency management, persistence, concurrency control,
and other object management capabilities is typically referred to as a database programming language [3].

favorite language for software development and draw on the consistency management
extensions. PLEIADES represents one such instantiation of the model, for the Ada programming
language [44].

Instantiating the consistency management model required us to address a number of design and
implementation issues; indeed, the model could have been instantiated in any number of ways,
depending on which decisions we made. While some of these are specific to an Ada instantiation,
many are general issues that must be addressed by any instantiation. This section describes these
issues and discusses justifications for, and the implications of, some of the decisions we made in
implementing PLEIADES. A more detailed discussion can be found in [41].

General Issues: The purpose of imposing the cross-cutting requirements was to ensure the
definition of a consistency model that is powerful and flexible enough to facilitate the description
of many different consistency management semantics. With this flexibility comes a number of
tradeoffs, however.

The requirement for computational completeness means that any necessary consistency
specification can be defined. The negative side of computational completeness is the difficulty
of reasoning about a computationally complete formalism. The ability to reason about
consistency specifications and instantiations is, however, very important. It can produce, for
example, information about conflicting or redundant consistency conditions, and about the set of
operations that could violate a given constraint. On the other hand, formalisms that are more
amenable to analysis and reasoning are not complete, so they restrict the set of possible
consistency conditions. Any instantiation of the consistency model described in Section 3 must
decide where it falls on the spectrum between completeness and analyzable.

As noted earlier, first-class status and identity of objects provides the ability to model
relationships among, and constraints over, any kinds of objects. The identity requirement,
however, can lead to a fairly serious problem in implementing a consistency management system.
The problem, which we call the container problem [41], arises when the consistency status of
one object depends on the states of other, independent objects. Perhaps the best-known example
of the container problem is the dangling references problem. For example, an application might
destroy a node in an AST without realizing that other nodes still refer to it. The destroyed node
affects the consistency of those that refer to it, according to a referential integrity constraint. The
container problem is pervasive in many software systems and is particularly problematic in its
effect on consistency management. Numerous ad-hoc solutions to this problem have been used,
including domain-specific approaches like garbage collection (to address the dangling reference
problem) and general-purpose approaches like invertible pointers, wrappers, polling, and event-
based notification, but no existing approach scales to address all forms of the container problem
in the context of consistency management. We are developing an approach to address the
container problem by identifying different kinds of container problems and different object
features that affect the selection of the most appropriate approach for managing consistency in
given contexts.

The dynamic control requirement provides a great deal of flexibility. Satisfying this requirement
raises some important issues, however. One is the inverse relationship between dynamic control
and optimizability and analyzability—more dynamic control implies fewer opportunities for
optimization and analysis. This may be acceptable in many situations, but in cases where a
developer knows declaratively that they do not require dynamic control (e.g., in the case of

enforcing invariants, like “is acyclic”), it might be desirable to include mechanisms by which this
information could be imparted to the compiler. The increased potential for optimization and
analysis comes at the cost of additional complexity, however; thus, the selection of a point on the
optimizability vs. dynamic control spectrum must occur as part of the mapping of the consistency
model to a particular programming language.

Current status: The current implementation of PLEIADES supports much of the model described
in Section 3 and addresses many of the functional and cross-cutting requirements described in
Sections 2.1 and 2.2, respectively.

PLEIADES is implemented as a preprocessor for Ada. Developers describe abstract data types
using primitives PLEIADES provides, as illustrated in Section 3, and PLEIADES produces an Ada
package, called an interface package, which provides a set of type and operation definitions for
creating, manipulating, and enforcing consistency over instances of those abstract data types.
Applications can then use these packages as they would use any other.

We selected a preprocessor implementation strategy because it was the most expedient way to
develop a prototype for evaluation, especially since we did not have access to an open Ada
compiler and because our potential users felt more comfortable with an extension that created
standard Ada code, rather than becoming dependent on a one-of-a-kind compiler. The selection
of a preprocessor strategy had some negative consequences, however. In the area of consistency
management, the primary one is that developers are restricted in the set of instantiations of
constraints they can describe declaratively. Specifically, since inputs to PLEIADES describe
types, not instances, only declarative instantiations of type-level constraints can occur. Instance-
level instantiations must occur dynamically. In addition, PLEIADES cannot perform any analyses
that involve the client code, such as identifying consistency conditions that are defined but never
used, or statically determining when an attempt is made to enforce a consistency condition on an
object to which it does not apply.

PLEIADES supports all aspects of the consistency model presented in Section 3, with a few
exceptions. First, the set of consistency status values that can be returned from conditions is
predefined to be consistent and inconsistent, and this set is not currently extensible. Second,
PLEIADES can perform consistency condition checking as preconditions and/or postconditions,
but it does not yet implement support for preinvoke and postinvoke checks. Third, action chains
are not supported adequately in the current version of PLEIADES. Specifically, if developers wish
to define an action chain, they must define each action so that it invokes the next action in the
chain. Fourth, PLEIADES does not provide an adequate degree of support for inconsistency
management. In particular, it does not provide a simple, declarative means of indicating which
ADT operations can or cannot be invoked while a given object is inconsistent. For most of the
current limitations, we believe that users can achieve the desired semantics using the existing
capabilities, but this requires more programming intervention than we believe is desirable and
permits fewer opportunities for analysis and automated support. These restrictions exist because
we did not initially recognize the need for these capabilities, but user feedback indicated that
they would be useful. None are particularly problematic to implement, and we plan to include
them in future versions of the system. Finally, PLEIADES does not, at present, satisfy two of the
cross-cutting requirements: it does not make conditions and actions first-class entities, and it is
not type-complete—constraints can be enforced only on a subset of types. The former restriction
comes directly from Ada, which does not satisfy the first-class status requirement, and is
discussed in Section 5. The latter is a result of using a preprocessor implementation approach,

10

since we simply did not have the resources available to analyze all Ada types to the degree
required to permit consistency management.

5. Experimental Evaluation

PLEIADES is currently in use in a number of real-world applications, both academic and
industrial. It is, of course, difficult to quantify, and thus evaluate, functionality. In this section,
we summarize feedback we obtained from PLEIADES users to help evaluate the PLEIADES
prototype and the consistency model.

The evaluation we performed was based on information and feedback obtained directly from
several PLEIADES users [1, 17, 28, 30, 38, 48]. The client applications about which we obtained
information were a reusable components library [48], the Arcadia language processing tool set
[46, 47], TAOS (Testing with Analysis and Oracle Support) [33], the Booch Object-Oriented
Design process program (BOOD) [40], FLAVERS (Flow Analysis and VERification System)
[14], an agenda management system [28], and an avionics validation and verification system
[25]. The process we used to perform the evaluation was as follows. We constructed a
questionnaire that included approximately fifty questions. The questions attempted to determine
whether, and how, each PLEIADES client had used capabilities resulting from each of the
functional and cross-cutting requirements, how closely the functionality provided satisfied the
user’s needs, and whether current limitations or existing features of PLEIADES caused the user
difficulties. We then performed an evaluation of each user’s experiences, based on the
information provided. Once this evaluation was written, it was sent to the user for correction and
feedback. A description of the complete evaluation we performed is outside the scope of this
paper but appears in [41].

Support for consistency management was added to PLEIADES fairly late. Thus, by the time
consistency management was implemented, several clients were already using the system and
had managed to work around the lack of consistency management functionality. Some users
reengineered their systems to use the new consistency management capabilities, but several did
not. Thus, the amount of feedback we have about client use of consistency management is more
limited than about other PLEIADES functionality.

The results of the evaluation suggest that, in general, the consistency management requirements
and model we proposed are sound. Clients liked and made use of most of the capabilities
associated with satisfying the functional requirements, and they made use of all the capabilities
associated with the cross-cutting requirements. It was typically the case that problems reported
were due to a failure to satisfy either a functional or cross-cutting requirement.

As noted in the previous section, feedback from users led to some changes in the consistency
management model. The feedback we obtained pointed up some other noteworthy items as well.
These include:

e PLEIADES’ constraint enforcement mechanism was found to be too fine-grained for some
kinds of objects. In particular, the number and complexity of constraints on the BOOD
artifacts makes the cost of constraint checking very high; BOOD cannot tolerate the
performance cost of checking these constraints upon each potential violation.
Consequently, the BOOD artifact constraints are left unenforced much of the time, and
they are checked manually by BOOD at appropriate times. This suggests a need to

1"

associate constraint enforcement with blocks of operations, as well as with individual
operations. This is similar to the transaction model used in database systems.

One user noted that it was somewhat difficult to specify some kinds of inter-object
constraints in PLEIADES. Specifically, because Ada operations are not first-class entities,
constraints and actions in PLEIADES, which are modeled as operations, are not first-class
entities. This limitation, combined with Ada’s (and consequently, PLEIADES’) static type
model, means that only those constraints specified as part of an ADT’s type definition
can apply to instances of that ADT. To work around this limitation, this user had to
define all of the ADTs to which inter-object constraints applied in the same
specification, rather than separating them appropriately, which reduced the modularity of
his application.

In evaluating client use of PLEIADES, we have noted the pervasiveness of several general
classes of constraints. These include:

¢ Up-to-datedness constraints: Up-to-datedness constraints are used commonly to
assure percolation of changes among related objects. They are often used to
maintain “is derived from” relationships among objects, and they have been used to
help identify the impact of a change, even in cases where repair was undesirable or
not possible.

Up-to-datedness constraints tend to be subject to roll-forward enforcement
semantics—that is, violation is expected to occur during the normal evolution of
objects, and it is often expected that repair can occur. Applications differ widely in
the semantics they attach to a failure to repair violations of such constraints,
however. Some rely on the success of the repair, to the extent that they cannot
continue if repair fails. Others recognize that repair may not be successful and are
prepared to try alternative repair mechanisms or to continue operating with
inconsistent objects.

e “Well-formedness” constraints: These constraints are used frequently to impose
type and instance semantics that are not expressible using specification mechanisms
present in standard programming language type models. For example, the “is
acyclic” constraint in an AST is a well-formedness constraint.

e Operation constraints: Many kinds of full or partial order relationships among
invokable entities exist. For example, no Pop operation may occur on a stack object
until the first Push is invoked. In most languages, these kinds of ordering
constraints must be enforced manually, by checks included in operation
implementations. This means that it is much more difficult to reason about, and
change the enforcement of, such constraints. Among the kinds of operation
constraints we found in PLEIADES clients were ordering of operations, condition
checks, and action invocations.

The ubiquity of these classes of constraints suggests that it would be beneficial to
facilitate their description explicitly. Further work is needed to determine how best to
leverage information about these classes of constraints to provide the most support for
developers.

12

6. Related Work

Traditional programming languages are very limited in the ways they support consistency
control. Strongly typed programming languages incorporate predefined notions of consistency in
terms of conformance to type definition, but the set of violations that can be detected are usually
restricted to criteria such as bounds checking and erroneous type usage; they do not support
complex consistency definitions (e.g., well-formedness, up-to-datedness, etc.). Assertion (e.g.,
[34, 26]) and exception handling mechanisms (as in Ada [44] and CLU [23]) are specialized
consistency management mechanisms that have been associated with some programming
languages. Assertions are intended to describe invariant conditions of a running program and to
specify actions to be taken upon detecting a violation of an invariant. Assertions are often used
as an aid for debugging. Exceptions are intended to reflect unusual conditions and to specify
actions to be undertaken if one of these conditions should arise. Exceptions are often used to
support error processing. Assertion and exception handling mechanisms usually do not satisfy
the cross cutting requirements for dynamic control over enforcement® or first-class status or
identity of the conditions or actions associated with these mechanisms.

Many relational database systems support constraints. Their constraint enforcement mechanisms
do not, however, satisfy most of the cross-cutting requirements. Relational databases do not
support application control over constraint enforcement or invocation of different actions at
different times—constraints are enforced at all times except during a transaction, when all
constraints are relaxed. Relational databases support only roll-back semantics—if constraints are
not satisfied at the end of a transaction, the effects of the transaction are undone.

Many database programming languages and object-oriented databases support only a limited,
predefined set of consistency definitions, such as referential integrity (e.g., [27]) or programming
language kinds of consistency definitions (e.g., [45, 2]), or they support consistency definitions
over only a subset of types (typically collection types; e.g., [39, 11]).

Much research has been done in consistency management in the area of software process
languages [31]. Some of these languages provide little or no support for product consistency
management (e.g., [15, 9, 21]) or rely on consistency management support from an associated
object management system (e.g., SLANG [5, 6]). Many software process languages incorporate
conditions on product state as process control conditions, rather than as product consistency
conditions. For example, EPOS [12] uses guards and postconditions to affect flow of process
control; Grapple [18] and Interact [32] model conditions as goals; Melmac [16] and SLANG use
conditional branching; and Marvel [21], AP5 [11], and Merlin [19] use conditions as a basis for
inferencing. In the absence of explicit consistency management, product consistency is assumed
to be achieved implicitly through process correctness. Several process languages, including APS,
APPL/A [39], Marvel, and Merlin, do provide consistency management mechanisms, though all
are more limited than the model we have proposed. APS handles consistency failures by setting
a flag on the inconsistent data; if a particular application cares, it can check the flag, but there is
no enforcement mechanism in place to manage inconsistent objects. APPL/A facilitates the
definition and enforcement of predicates over relations, but it does not support user-defined
actions to be invoked to attempt to repair a violated constraint. Marvel and Merlin use rules to
specify consistency constraints, but if the actions fail to repair a consistency violation, the

4 PL/1 ON conditions do support dynamic enforcement.

13

violating transaction is aborted. Some process languages also include support for tolerating
inconsistency, but these capabilities tend to be somewhat limited (e.g., AP5’s consistency flags;
APPL/A’s mechanisms for suspending the enforcement of a violated constraint, either locally or
globally, until it can be repaired).

Active database systems, such as [35, 10, 24, 8], include primitives, typically in the form of
event-condition-action (ECA) rules, that can facilitate consistency management. ECA rules are
general-purpose mechanisms for detecting the occurrence of some event and responding to it by
some action. In fact, the underlying capabilities required to implement consistency management
and ECA rules are largely the same, and some researchers have used ECA rules to implement
consistency management capabilities. As has been noted by [39, 21, 11, 19], however, the
semantics of consistency management and reactive control are fairly different. Consistency
management activities are a required part of any computation in which constraints are enforced
on objects—they may affect the validity of the computation. The failure to complete the action
associated with an ECA rule, however, need not affect the validity of the computation. For
example, an ECA rule might be used to send a mail message to a manager when an employee
finishes designing a module. Failure to send the mail message is unlikely to have any
implications for either the design process or the design artifacts. On the other hand, failure to
satisfy well-formedness constraints on the design artifacts impacts the design process and
artifacts. For this reason, many process languages with reactive control draw a distinction
between consistency management and automation rules (e.g., [11, 21, 19, 39]). In these
languages, all consistency maintenance activities associated with a process step must be carried
out before the step can complete; failure to satisfy constraints typically results in the abort of the
associated computation. Automation rules, on the other hand, can be spawned off separately, and
their failure does not affect the associated computation.

The difference between ECA rules and consistency management is further evident in the area of
inconsistency management. We are unfamiliar with any ECA systems that include mechanisms
for specifying and controlling access to inconsistent objects. Depending on the system, it may be
possible to implement such semantics manually, but this is not a desirable approach. ECA
systems also do not usually include support for handling conditions whose return values are
anything other than “true” and “false.” Finally, active databases often have the scalability
problems that are associated with rule-based systems in general—large collections of rules are
difficult to manage and understand. The model of consistency management we proposed helps to
address the scalability problem by localizing constraints to the objects to which they pertain.

7. Conclusions

Consistency management is an important requirement in many complex applications, but current
programming languages and database systems provide very limited support for it. To address
this limitation, we defined a consistency management model, based on what we perceive to be
the underlying requirements of these applications. These requirements are expressed in terms of
both the functional needs as well as cross-cutting concerns that impact how this functionality
should be provided. Much of the model has been implemented successfully in the PLEIADES
object management system. The focus on our work has been on improved functionality for
application programmers, rather than on more quantifiable measures, such as performance. It is
very difficult to evaluate functionality, but we attempted to survey users of the system to
determine which aspects of the system they used and what they liked and disliked about the
system. Based on this evaluation, we have changed some aspects of the model. Other limitations

14

reported by users can be traced directly to our failure to satisfy some of the functional or cross-
cutting requirements in PLEIADES. Overall, clients used most of the capabilities associated with
satisfying the functional and cross-cutting requirements and reported that they were quite happy
with the support provided. These observations suggest that the requirements we imposed, and
the consistency management model we defined, are sound.

Many issues remain to be addressed as future work. First, we would like to make the consistency
management model history-sensitive. This is based on the observation that how applications
reach a particular consistency status matters; for example, knowing that an object is inconsistent
is not as useful as also knowing what its status was previously (i.e., whether a particular action
actually caused the inconsistency or simply failed to correct it). Second, we are exploring a new
approach to addressing the container problem. This approach would incorporate analysis
techniques to help guide the selection of appropriate strategies, and specification mechanism that
allow developers to state properties of objects that are useful in choosing the best enforcement
strategies. Third, we are examining the application of coupling modes [29] to consistency
management. The presence of coupling modes would permit the decoupling of consistency
checking from any associated actions. These modes may be useful, for example, in cases where
a reaction to a consistency violation should be deferred to some later time. Third, we hope to
explore other implementation strategies and to instantiate the consistency management model for
languages other than Ada (in particular, C++ or Java). Our goal in this work would be to
evaluate the model in the context of a language that does not include some of the restrictions Ada
does (e.g., failure to satisfy the first-class status and identity requirements and very limited
dynamic control). Finally, we hope to generalize from the experiences we, and other developers,
have had in using PLEIADES and feed those experiences back into the consistency management
model.

Acknowledgments

This work has benefited from the contributions of many people. We are indebted to our Arcadia
colleagues and the Avionics Validation and Verification project at TASC for using PLEIADES and
for providing us with useful feedback. Lee Osterweil and Stan Sutton have been particularly
helpful and have shared their experiences and insights on consistency management in the
software process programming domain. We have also benefited from ongoing discussions with
Krithi Ramamritham, Jayavel Shanmugasundaram, Arvind Nithrakashyap, and Barbara Lerner.

15

References

(1] Kenneth M. Anderson. Personal communication, August 1996.

[2] Timothy Andrews and Craig Harris. Combining Language and Database Advances in an Object-
Oriented Development Environment. In Stanley Zdonik and David Maier, editors, Readings in Object-
Oriented Database Systems, chapter Object-Oriented Database Systems, pages 186-196. Morgan
Kaufmann, 1990.

[3] Malcolm P. Atkinson and O. Peter Buneman. Types and Persistence in Database Programming
Languages. ACM Computing Surveys, 19(2):105-190, June 1987.

[4] Robert Balzer. Tolerating Inconsistency. In Proc. of the 13th International Conference on Software
Engineering, pages 158-165, May 1991.

[S5] Sergio Bandinelli and Alfonso Fuggetta. Computational reflection in software process modeling: the
SLANG approach. In Proc. of the 15th International Conference on Software Engineering, pages 144-
154, 1993.

[6] Sergio Bandinelli, Alfonso Fuggetta, and Sandro Grigolli. Process modeling in-the-large with SLANG.
In Proc. of the Second International Conference on the Software Process, pages 75-83, 1993.

[7] Naser Barghouti and Gail Kaiser. Concurrency control in advanced database applications. ACM
Computing Surveys, pages 269-317, September 1991.

[8] Naser Barghouti and Gail Kaiser. Modeling Concurrency in Rule-Based Development Environments.
IEEE Expert, 5(6), December 1990.

[9] Gregory A. Bolcer and Richard N. Taylor. Endeavors: A process system integration infrastructure. In
Proc. of the Fourth International Conference on the Software Process, pages 76 - 85, December 1996.

[10]A.P. Buchmann, R.S. Carrera, and M.A. Vazquez-Galindo. A Generalized Constraint and Exception
Handler for an Object-Oriented CAD-DBMS. In Proceedings of the International Workshop on
Object-Oriented Database Systems, pages 38-49, September 1986.

(11]1Don Cohen. AP5 Manual. Technical report, University of Southern California, Information Sciences
Institute, March 1988.

[12]R. Conradi, M. Hagaseth, J.-O. Larsen, M. N. Nguyen, B. P. Munch, P. H. Westby, W. Zhu, M.
Jaccheri, and C. Liu. EPOS: Object-oriented cooperative process modeling. In Anthony Finkelstein,
Jeff Kramer, and Bashar Nuseibeh, editors, Software Process Modeling and Technology, pages 33 - 70.
John Wiley & Sons Inc., 1994,

[13]Reider Conradi, Christer Fernstrom, and Alfonso Fuggetta. Concepts for evolving software processes.
In Anthony Finkelstein, Jeff Kramer, and Bashar Nuseibeh, editors, Software Process Modeling and
Technology, pages 9 - 31. John Wiley & Sons Inc., 1994,

[14]Matthew Dwyer and Lori Clarke. Data Flow Analysis for Verifying Properties of Concurrent Programs.
In ACM SIGSOFT'94 Software Engineering Notes, Proceedings of the Second ACM SIGSOFT
Symposium on Foundations of Software Engineering, v. 19, n. 5, pages 62-75, December 1994,

[15] Christer Fernstrom. PROCESS WEAVER: Adding process support to UNIX. In Proc. of the Second
International Conference on the Software Process, pages 12 - 26, 1993,

[16] Volker Gruhn and Riidiger Jegelka. An evaluation of FUNSOFT nets. In Proc. of the Second European
Workshop on Software Process Technology, September 1992. Trondheim, Norway.

[17]Richard L. Hudson. Personal communication, July 1996.

16

[18]Karen E. Huff and Victor Lesser. A plan-based intelligent assistant that supports the software

development process. In ACM Symposium on Practical Software Development Environments, pages
97 - 106, 1988.

[19]G. Junkermann, B. Peuschel, W. Schifer, and S Wolf. MERLIN: Supporting cooperation in software
development through a knowledge-based environment. In A. Finkelstein, J. Kramer, and B. Nuseibeh,
editors, Software Process Modeling and Technology, pages 103 - 129. John Wiley & Sons Inc., 1994.

[20]R. Kadia. Issues Encountered in Building a Flexible Software Development Environment: Lessons
from the Arcadia Project. In Proceedings of the Fifth ACM SIGSOFT Symposium on Software
Development Environments (SDES5), pages 169-180, Tyson's Corner, VA, December 1992.

[21]1Gail E. Kaiser, Peter H. Feiler, and Steven S. Popovich. Intelligent assistance for software development
and maintenance. IEEE Software, 5(3):40-49, May 1988.

[22] Takuya Katayama. A hierarchical and functional software process description and its enaction. In Proc.
of the 11th International Conference on Software Engineering, pages 343 - 353, 1989.

[23]B. Liskov, R. Atkinson, T. Bloom, E. Moss, C. Schaffert, B. Schiefler, and A. Snyder. Lecture Notes
in Computer Science, Vol. 114, chapter CLU Reference Manual. Springer-Verlag, 1981.

[24] Guy M. Lohman, Bruce Lindsay, Hamid Pirahesh, and K. Bernhard Schiefer. Extensions to Starburst:
Objects, Types, Functions, and Rules. Communications of the ACM, 34(10):95-109, October 1991.

[25]Joseph P. Loyall, Susan A. Mathisen, Pamela J. Hurley, James S. Williamson, and Lori A. Clarke. An
Advanced System for the Verification and Validation of Real-Time Avionics Software. In Proceedings
of the Eleventh Digital Avionics Systems Conference, Seattle, WA, October 1992.

[26]D.C. Luckham and F.W. vonHenke. An Overview of Anna, a Specification Language for Ada. IEEE
Software, 2(2):9-24, March 1985.

[27]1David Maier and Jacob Stein. Development and Implementation of an Object-Oriented DBMS. In
Stanley Zdonik and David Maier, editors, Readings in Object-Oriented Database Systems, chapter
Object-Oriented Database Systems, pages 167-185. Morgan Kaufmann, 1990.

{28] Eric McCall. Personal communication, July 1996.

[29]D.R. McCarthy and U. Dayal. The architecture of an active data base management system. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, 1989, pages
215-224,

[30] T. Owen O'Malley. Personal communication, July 1996,

[31]Leon J. Osterweil. Software Processes are Software Too}. In Proceedings of the Ninth International
Conference of Software Engineering, March 1987, pages 2-13.

[32] Dewayne E. Perry. Policy-directed coordination and cooperation. In Proc. 7th International Software
Process Workshop, 1991. Yountville, California.

[33]Debra J. Richardson. TAOS: Testing with Analysis and Oracle Support. In Proceedings of the 1994
International Symposium on Software Testing and Analysis, August 1994,

[34]David Rosenblum. Towards a Method of Programming with Assertions. In Proceedings of the
Fourteenth International Conference on Software Engineering, May 1992.

(35]David Stemple, Adolpho Socorro, and Tim Sheard. Formalizing Objects for Databases Using
ADABTPL. In Proceedings of the Second International Workshop on Object-Oriented Database
Systems, pages 110-128, Sept 1988.

17

[36)Stanley M. Sutton, Jr. A flexible consistency model for persistent data in software-process
programming languages. In Alan Dearle, Gail M. Shaw, and Stanley B. Zdonik, editors, Implementing
Persistent Object Bases - Principles and Practice, pages 305-318. Morgan Kaufman, 1991.

[37] Stanley M. Sutton, Jr. Preconditions, Postconditions, and Provisional Execution in Software Processes.
Technical Report CMPSCI TR 95-77, University of Massachusetts at Amherst, Computer Science
Department, Amherst, Massachusetts 01003, August 1995.

[38] Stanley M. Sutton, Jr. Personal communication, May 1996.

[39] Stanley M. Sutton, Jr., Dennis Heimbigner, and Leon J. Osterweil. APPL/A: A Language for Software-

Process Programming. ACM Trans. on Software Engineering and Methodology, 4(3):221-286, July
1995.

[40]Stanley M. Sutton, Jr. and Leon J. Osterweil. The design of a next-generation process language.
Technical Report CMPSCI Technical Report 96-30, University of Massachusetts at Amherst,
Computer Science Department, Amherst, Massachusetts 01003, May 1996.

[41]Peri L. Tarr. Object Management Support for the Construction of Complex Applications. PhD thesis,
University of Massachusetts, Amherst, 1996.

[42]Peri L. Tarr and Lori A. Clarke. PLEIADES: An Object Management System for Software
Engineering Environments. In ACM SIGSOFT 93 Symposium on Foundations of Software
Engineering, pages 56-70, Los Angeles, December 1993.

[43]Peri L. Tarr and Stanley M. Sutton, Jr. Programming Heterogeneous Transactions for Software
Development Environments. In Proceedings of the Fifteenth International Conference on Software
Engineering, pages 358-369, Baltimore, MD, May 1993,

[44] United States Department of Defense, Washington DC. Reference Manual for the Ada Programming
Language, January 1983. Military Standard Ada Programming Language.

[45]Scott L. Vandenberg and David J. DeWitt. Algebraic Support for Complex Objects with Arrays,
Identity, and Inheritance. In Proceedings of the SIGMOD International Conference on Management of
Data, pages 158-167. ACM, May 1991.

[46] Alexander E. Wise. IRIS Support Tools User Manual. Arcadia Document 94-03, University of
Massachusetts, Amherst, 1994.

[47] Alexander E. Wise. IRIS-Ada Support Tools User Manual. Arcadia Document 95-01, University of
Massachusetts, Amherst, 1995.

[48] Alexander E. Wise. Personal communication, July 1996.

18

