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Abstract

The burstiness of compressed video complicates the provisioning of network resources for emerg-
ing multimedia services. For stored video applications, the server can smooth the variable-bit-rate
stream by prefetching frames into the client playback buffer in advance of each burst. Drawing
on a priort knowledge of the frame lengths and client buffer size, such bandwidth smoothing tech-
niques can minimize the peak and variability of the rate requirements while avoiding underflow
and overflow of the playback buffer. However, in an internetworking environment, a single service
provider typically does not control the entire path from the stored-video server to the client buffer.
To develop efficient techniques for transmitting variable-bit-rate video across a portion of the route,
we investigate bandwidth smoothing across a tandem of nodes, which may or may not include the
server and client sites. We show that it is possible to compute an optimal transmission schedule
for the tandem system by solving a collection of independent single-link problems. To develop effi-
cient techniques for minimizing the network bandwidth requirements, we characterize how the peak
rate varies as a function of the buffer allocation and the playback delay. Simulation experiments
illustrate the subtle interplay between buffer space, playback delay, and bandwidth requirements
for a collection of full-length video traces. These analytic and empirical results suggest effective
heuristics for provisioning network services for the transmission of compressed video.

1 Introduction

The emergence of high-speed internetworks facilitates a wide range of new multimedia applications,
such as distance learning and entertainment services, that rely on the efficient transfer of compressed
video. However, video traffic typically exhibits significant burstiness on multiple time scales, due to
the frame structure of the compression algorithm as well as natural variations within and between
scenes [1-6]. The presence of this burstiness complicates the effort to allocate network resources
to ensure continuous playback of the video at the client site. To avoid excessive loss and delay in
the network, service providers can provision link and buffer resources to accommodate the variable
bandwidth requirements. However, the high peak and variability of the transmission rates substantially

increase the network resources required to transfer the video.
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To reduce the end-to-end resource requirements, a stored-video server can smooth the outgoing
stream by prefetching frames into the client playback buffer in advance of each burst. By initiating
transmission early, the server can send large frames at a slower rate without disrupting the client
application; the client system can then retrieve, decode, and display frames at the stream frame
rate. Drawing on a priori knowledge of the frame lengths and client buffer size, bandwidth smoothing
algorithms [7-11] can generate a server transmission schedule that consists of a sequence of constant-
bit-rate runs that avoid underflow and overflow of the playback buffer. With a modest client buffer
size, effective smoothing algorithms can produce schedules with a fairly small number of runs and a
significant reduction in both the peak and variability of the transmission rates, as discussed in the
overview in Section 2.

Previous work on smoothing prerecorded video has been based on a video-on-demand model of a
server that stores the entire sequence of frames and can directly coordinate access to the client prefetch
buffer. However, in a realistic internetworking environment, a single service provider may not have
control over the entire path from the stored video at the server, through the communication network,
to the playback buffer at the client site. Instead, each network service provider has dominion over a
portion of the route that may or may not include the server and client locations. Still, bandwidth
smoothing can be extremely effective at reducing the overheads for transporting variable-bit-rate
video within a subset of the route through the network. To minimize resource requirements in an
internetworking environment, this paper generalizes the bandwidth smoothing model to a sequence of
nodes along the path from the stored-video server to the playback buffer.

Given the distribution of buffer space at the nodes in the route, it is possible to determine an
optimal transmission schedule by solving a collection of single-link problems, as discussed in Section 3.
For an N-frame video that traverses n links, this optimal schedule can be computed in O(nN) time by
applying an existing O(N) algorithm [9] to the smoothing constraints on each link. Then, in Section 4
and Section 5, we characterize how a video’s peak-bandwidth requirement varies as a function of the
buffer distribution and start-up delay in the tandem system. These results show that a simple binary-
search algorithm is sufficient to compute buffer and delay allocations that minimize the peak rate. In
Section 6, simulation experiments with full-length MPEG and motion-JPEG video traces highlight
the performance of the smoothing algorithm and suggest effective heuristics for provisioning network
services for the transmission of compressed video. Section 7 concludes the paper with a discussion of

future research directions.
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Figure 1: Constraint Curves: The sample transmission plan S is a non-decreasing curve consisting
of three linear runs that stay between the upper (U) and lower (L) smoothing constraints. The second
run increases the transmission rate to avoid an eventual buffer underflow, while the third run decreases
the transmission rate

2 Bandwidth Smoothing

A multimedia server can substantially reduce the rate requirements for transmitting prerecorded video
by prefetching frames into the client playback buffer. Previous work on bandwidth smoothing typically
assumes an infinite-source single-link model, where the server stores the entire video stream and
generates a single transmission schedule that prefetches frames based on the overflow and underflow

constraints on the client buffer.

2.1 Smoothing Constraints

As an example of constraints on bandwidth smoothing, consider a server that stores an entire sequence
of N video frames with sizes £y, (s, ..., £y for transmission to a client with a b-byte playback buffer.
For continuous playback of the video stream, the server must always transmit enough data to avoid
buffer underflow, where L; = Zle l; indicates the amount of data consumed at the client by time
k, where k = 0,1,..., N. To prevent overflow of the playback buffer, the client should not receive
more than U = Lp + b bytes by time k, as shown in Figure 1. Any valid server transmission plan
should stay between these vertically equidistant functions. Prefetching occurs whenever the schedule
lies above the underflow curve. To permit prefetching at the beginning of the video, the model can
introduce a playback delay by shifting the underflow and overflow curves to the right by w time units,
resulting in Ly = Zle liy for k=0,1,...,N + w, where {; =0 for j <0.

More generally, the vectors L = (Lg,..., Ly) and U = (Uy,...,Un) can represent a wide variety
of constraints on the transmission of data from the server site. To formalize the bandwidth smoothing
problem, suppose that we are given three vectors, L, U,S € IRN*! such that L. < U. We say that S
is feasible with respect to L and U if and only if Sg = Lo, Sy = Ly, and L < S < U. The vector



R(S) = (S1 — So,...,Sn — Sn—1) represents the schedule as a sequence of transmission rates, where
R} denotes the amount of data transferred during the time interval [k — 1,k), k=1,2,..., N. When
there is no possibility of confusion, we write the schedule S(L, U) as S and its rate vector R(S) as R.
If Riy1 # Ry, then k is said to be a change point in the vector S. Moreover, it is said to be a convex
change point if Rr4q > Ry and a concave change point if Ry < Rg. The example in Figure 1 has a
convex change point, followed by a concave change point. Note that the maximum transmission rate
occurs when a bandwidth increase (convex change point) is followed by a bandwidth decrease (concave

change point).

2.2 Majorization Schedule

The constraints L and U typically result in multiple feasible schedules, each with different performance
properties. Several smoothing algorithms compute schedules that minimize the peak rate max;{ Ry}
to reduce the bandwidth requirements for transmitting the video stream. Minimizing other moments
of the transmission rates can also reduce the video’s effective bandwidth, allowing the server and the
network to multiplex a larger number of streams. The theory of majorization [12] offers an effective
way to compare the smoothness properties of different schedules. For X,Y € IRK | let X1 (Y[Z]) be
the i-th largest component of X (V). Vector Y majorizes X (X < Y) if Zle Xp < Zle Yy, for
k=1,...,K -1 and ZZB:1 X; < ZZB:1 Y;; intuitively, the elements of vector X are more “evenly
distributed” than the elements of Y. The majorization relationship X < Y implies that ¢(X) < (V)
for any Schur-convex function ¢ : IR® — IR. In addition to common smoothness metrics such as the
peak and variance, this class of functions includes ¢(X) = Y-l f(X;) for all convex f : IRK — IR.
Applying the theory of majorization to the bandwidth smoothing problem, there exists an O(N)
algorithm [9] which finds a vector 8* € S(L,U) such that R(S*) < R(S) for all S € S(L,U). In
constructing this majorization schedule S*, the algorithm computes linear trajectories that extend as
far as possible between the lower and upper constraints, ultimately encountering both the L. and U
curves. Whenever a bandwidth increase (decrease) is necessary to avoid crossing the L (U) curve,
the algorithm starts a new trajectory as early as possible to limit the size of the change. Hence,
change points always reside on the L or U curves, with S} = Uj at convex points (rate increases)
and S} = Lj at concave points (rate decreases) [9], as in the example in Figure 1. The majorization
algorithm produces a sequence of constant-bit-rate runs that substantially reduces the peak bandwidth

requirement for transmitting stored video, as shown by the graphs in Figure 2 taken from [13].
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Figure 2: Bandwidth Smoothing Example: The first graph plots a portion of the majorization
schedule for a motion-JPEG encoding of the movie Jurassic Park, while the second graph plots the
peak bandwidth as a function of the buffer size b for twenty full-length motion-JPEG traces.

2.3 Domination and Refinement Results

The majorization algorithm has several properties that facilitate comparisons between different in-
stances of the bandwidth smoothing problem; in particular, the following domination and refinement
lemmas [14] play an important role in analyzing the models introduced in Section 3 and Section 4.

The domination result compares the L and U constraints of two smoothing configurations:

Lemma 2.1 Let Ly < Uy and Ly < Uy be such that Ly < Ly and Uy < U,. Then S7 < S3.
Moreover, if Ly = Ly, and k is a concave change point in S5, it is a concave change point in S7¥.

Similarly, if Uy = Ugq, and k is a convex change point in ST, then it is a convex change point in S3.

Proof. This was established in [14]. 1

Focusing on one set of constraints (L, U), the domination lemma implies that raising the U curve
causes concave change points to gradually disappear in the corresponding majorization schedules;
similarly, lowering the L curve causes convex change points to gradually disappear. These change
points disappear at a series of critical buffer sizes.

Drawing on this result, the refinement property characterizes how the majorization schedule

changes with the size of the prefetch buffer. With a slight rephrasing of the result in [14], we have:

Lemma 2.2 Let Uy = Ly 4+ vec(by) and Uy = Ly + vec(by) be such that by > by > 0, where vec(b;) is
a vector whose components are equal to b;. If Ly = Ly, then the change points in ST are a superset of

the change points in S3.



Proof. This was established in [14] by invoking LLemma 2.1 twice. Applying the lemma to the original
pair of smoothing constraints shows the result for concave change points; applying the lemma a second

time, after raising the Ly and Uy curves by by — by, implies the result for convex change points. I

Capitalizing on the majorization algorithm and its properties, the next section analyzes a more general
model that consists of a sequence of smoothing nodes with finite buffer space, where the source node

may consist of a finite buffer that cannot store the entire incoming video stream.

3 Optimal Smoothing in a Tandem System

This section formally introduces the tandem smoothing model and develops an efficient technique for
computing link transmission schedules. By applying the majorization algorithm to a collection of
independent single-link problems, we determine the transmission schedules that minimize any Schur-

convex function of the link rate vectors across the tandem system.

3.1 Tandem Model

The tandem smoothing model consists of n 41 nodes with node i feeding node ¢+1,7¢=0,1,...,n—1,
as shown in Figure 3. Each node ¢ includes a buffer of size 0 < b; < oo. Consider a stream of data which
arrives at node 0 destined for node n. The stream has an arrival vector A = (A, ..., An), where Ay
corresponds to the amount of data which has arrived at node 0 by time £ =0,1,..., N. It is assumed
that Ay > Ag_1, k= 1,..., N. Similarly, the stream has a playout vector D = (Dy, ..., Dy), where
Dy, corresponds to the amount of data that must be removed from node n by time £ =0,1,2,..., N.
It is assumed that Dg = 0 and Dy > Dy_1, £k = 1,..., N. For a valid playout vector for the arriving
stream, we assume that Ay > Dy for £k = 0,1,..., N, with Ay = Dy at the end of the transfer.
To ensure that the smoothing buffers can store any outstanding data in the tandem system, we also
require that Ag < by and

A — D}t < b;.
Og}%v{ r— Di} < ;

Hence, we assume that the links do not introduce latency or jitter; extensions to the model could
capture the effects of propagation delay, which effectively introduces additional storage in the tandem
system as well as a constant term in the end-to-end delay.

Each node 7 = 0,1,...,n has a smoothing schedule S; = (S;0,...,5; n), where S;; denotes the
cumulative amount of data that node ¢ — 1 has sent to node ¢ by time £ = 0,1,..., N. Asin Section 2,
Sik > Sik-1, k = 1,...N. Each schedule S; has a corresponding rate vector R; = (R;1,..., RiN)

where R;, = S;p — Sigp—1, K = 1,2,..., N. In deriving the smoothing constraints on the tandem



Figure 3: Tandem Smoothing Model: The tandem model consists of nodes ¢ = 0,1,...,n with
buffer space b;. The video stream has an arrival vector A at node 0 and a playout vector D at node
n. Given these constraints, a solution to the tandem smoothing problem produces link transmission
schedules S; fori=1,2,...,n.

system, we focus on the schedule S;, as shown in Figure 3. To avoid buffer underflow and overflow at

node ¢, a feasible schedule for node 7 must satisfy the inequality
Sit1 < 8; < Sipq + vee(h;). (1)

A similar inequality holds for the schedule S;_;. Consequently, the set of link schedules in the tandem

system must satisfy the constraints
max{S;_1 — vec(bi_1),Sit1} < S; < min{S;11 +vec(b;),Si—1}, i=1,...n (2)

where Sg = A and S,,41 = D. Here the maximum and minimum of two vectors are taken componen-
twise.

Let S(A, D, b) denote the set of feasible schedules for the buffer allocation b = (bo,...,b,). For
the case n = 1, this system reduces to a single-link smoothing problem with L = max(D, A — vec(bo))
and U = min(D + vec(by), A). Hence, the O(N) majorization algorithm can determine a schedule S*
that minimizes any Schur-convex function of the rate vector R*, as discussed in Section 2. The next
subsection shows how to decompose the tandem smoothing problem in Figure 3 into a collection of n in-
dependent single-link problems. In particular, Theorem 3.1 implies that the rate vectors R associated
with the link majorization schedules minimize any function of the form g(fi(R4),..., fu(R.)), where
¢ is a non-decreasing function and the f; are (possibly different) Schur-convex functions. Furthermore,

these majorization schedules can be obtained in O(nN) time.

3.2 Optimal Schedules

To relate the tandem smoothing model to the single-link problem, observe that the link entering
node ¢ has upstream buffer space from nodes 0,1,...,2 — 1 and downstream buffer space from nodes

t,1+1,...,n, as shown in Figure 3. Let S} be the majorization schedule associated with a single-link
system with a source buffer of capacity Z;;% b; and a receiver buffer of capacity >°7_; b;. That is, S*

is the majorization schedule associated with the constraints
L; = max{A —vec (Z;;b bj) ,D},
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U; = min{A,D + vec (Z?:Z bj) 1
for i = 1,...,n. Drawing on these definitions, we have the following result:
Lemma 3.1 The schedule St satisfies the following constraints.
max{S;_; —vec(b;_1),S7 1} < ST <min{S] | +vec(b;),S]_1}, i=1,...n.
Proof. It suffices to establish the following,

Sip <87 <S8k Fovee(b), i=1,...n. (3)

Observe that L; and U; are nonincreasing in 7. Moreover, L;1; < L; < L;y1 + vec(b;) and U4y <

U; < U,4; + vee(b;). Hence, the inequalities in (3) follow from an application of Lemma 2.1. 1

We then show that these optimal single-link solutions {S;}I_, are also optimal link transmission

schedules for the tandem system:

Theorem 3.1 The majorization schedules {S*}7_, associated with the finite-source, single-link prob-

lems with playout function D and client buffers >77_; b; satisfy the following relations,
R; < R;, V feasible {S;}.

Proof. We begin by showing that any feasible solution for the tandem model is a feasible solution for

the set of single-link models; that is,

max{A — vec (Z;;b bj) ,D} < max{S;_1 —vec(bi—1),Sit1}

IN

min{S; 1 + vec(b;), S;—1} min{A, D + vec (Z?:Z bj) 1.

This is accomplished by establishing the following four inequalities for ¢t = 0,...,n + 1

A — vec (Z %bj) < S (4)
D < S; (5)
S, < A, (6)
S; < D+vwec (Z?:Z bj), (7)

Inequality (4) is satisfied by Sg because it is defined as So = A; for S;, inequality (4) follows through
repeated application of inequality (1). Similarly, as S,11 = D, repeated application of (1) yields



(5). Inequalities (6) and (7) are established in the same manner. Lemma 3.1 can now be applied to

establish the theorem. n

Henceforth, we shall let S¥(A,D,b) denote the majorization schedules associated with S(A,D,b).
The schedules can be computed in O(nN) time by solving the n independent single-link problems.

4 Buffer Allocation

The previous section describes how to compute optimal link schedules for a tandem system based on
the size of the smoothing buffer at each node. Based on these results, we now investigate how to
allocate an M-byte buffer budget among the nodes to minimize the cost of transmitting the video
stream. For many important cost metrics, such as the peak transmission rate, selecting an optimal
buffer allocation in the tandem system reduces to solving a single-link optimization problem. By
characterizing the shape of the peak-rate curve, we show that a simple binary search algorithm is
sufficient to determine a buffer allocation that minimizes the maximum bandwidth of the smoothed

video stream.

4.1 Reducing the Tandem Model to a Single-Link Problem

Initially, we consider an important special case of the tandem smoothing model, where the ingress
node has sufficient buffer space to store the entire video; for example, this scenario arises when the
ingress node is the actual server that stores the prerecorded video stream. When by > Apn, the
buffer allocation problem reduces to allocating M > 0 bytes among nodes 1,2,...,n. Let B(M) =
{(b1y..ybp) |b;>0,0=1,...,m;5 1 b; = M} be the set of feasible buffer allocations. Then:

Lemma 4.1 If the ingress node has sufficient buffer to store the entire video (bg > An ), then the
optimal allocation of M units of buffer to the remaining nodes is b* = (0,...,0, M) in the sense that

R:(b*) < Ri(b), Vb e B(M).

Proof: The proof follows from Theorem 3.1. ]
As a consequence of this majorization relationship, the optimal buffer allocation b* = (0,...,0, M)
minimizes cost functions of the form ¢(fi(Ry),..., fo(R,)) where g is a non-decreasing function and

the f; are (possibly different) Schur-convex functions. A similar result holds when the egress node has
an arbitrarily large buffer (i.e., b, > Anx) and M > 0 bytes are allocated among the remaining nodes.
A similar, albeit slightly weaker, result applies to the more general problem of allocating M bytes

among all n + 1 nodes. A feasible smoothing schedule requires M > maxy{A; — Dy} to ensure



that the tandem of nodes can accommodate the outstanding data at any time k. For the set of
B(M) = {(bg,...,bs)|bo > Ag;b; > 0,i = 1,...,m;> .~ ob; = M} of feasible buffer allocations, we

have:

Lemma 4.2 For any buffer allocation b € B(M) there exists a buffer allocation b’ = (b(,0,...,0,b)),
with b’ € B(M), such that

g(f(Ri(b)),.... f(R(D))) < g(f(Ri(b)),..., f(R}(b)))

whenever g is non-decreasing and f is Schur-convez.

Proof. et jo = arg min f(R:(b)). Clearly g(f(R?, (b)), (R, (b)) < g(f(Ri(b), ..., f(R5 (b)),
However, this can be achieved by simply allocating 230261 b; units of buffer to the ingress node (node

0) and 377, b; units of buffer to the egress node (node n). I

Note that LLemma 4.2 shows that the buffer allocation b = (b, 0,...,0,b,) with by, b, > 0 minimizes
non-decreasing cost functions that apply the same Schur-convex function f to each link, in contrast to
the stronger result in Lemma 4.1. Still, for a wide set of performance metrics, such as the peak and the
variability of the transmission rates, Lemma 4.2 shows that we need only consider allocations with b =
(bo,0,...,0,b,). Also, we know from Theorem 3.1 that we need only consider majorization schedules
associated with particular buffer allocations. The remainder of the section focuses on minimizing
the peak bandwidth (g, f = max) in a single-link system by showing that a locally optimal buffer

allocation is a global optimum.

4.2 Minimizing the Peak Rate in a Single-Link System

Consider the problem of allocating an M-byte buffer budget in a single-link system, with an z-byte
egress buffer and an (M —z)-byte ingress buffer, where 0 <z < M + Dy — Ag (to account for any data
in the ingress buffer at time 0). Let p(xz, M) denote the peak rate associated with the majorization
schedule S*(A,D, (M —z,2)). When there is no ambiguity, we shall refer to the peak rate as p(x) and
the associated majorization schedule as S*(z). To characterize how p(z) varies with z, we parameterize

the smoothing constraints:

Li(z) = A+vec(z— M)
Ui(z) = D+ vee(z)
L2 ($) = D

10



As more buffer space is allocated to the egress node, the pair (Lq,Uy) rises relative to the pair
(L2, Uy), which remains stationary. Recall that S*(z) is the majorization schedule associated with
S(max{L;(z),La(2)}, min{Uy (2), Uy(z)}, (M — z,z)).

By characterizing how the schedule S*(z) changes with z, we can show that p(z) is a piecewise-
linear function in z with a decreasing phase, followed by a constant phase, and ending with an in-
creasing phase. First, we generalize the concept of change points in the majorization schedule to apply
to the smoothing constraints V(z) = {Lq(2), La(2), Us(2), Ug(2)}. Point k£ (0 < k < N) is said to
be an anchor point (or anchored) on V(z) € V(z) if and only if Vi(z) = S} (z). Observe that some
points may not be anchored on any vector in V(z). Such points will be referred to as floating points.
Note that change points are anchor points but that the reverse is not necessarily the case. A segment
(k1, k2) of the schedule S*(z) is anchored on Vy(z), Vy(z) € V(z) if k; is anchored on V;(z), 1= 1,2
and the remaining points on the segment are floating, i.e., k is floating, ky < k < kg. Note that
Vi(2) = Vy(z) is permitted as is ky = k, ko = k+ 1. Similar to the results in Section 2.3, we draw on

the fact that anchor points appear or disappear at certain critical buffer sizes. First, we show that:
Lemma 4.3 The peak rate, p(x, M), of the single-link system is a piecewise-linear function of x.

Proof. We say that b is a buffer switching value if either there exist a pair of vectors Vy(b), Vo(b) €
V(b) and a point k, 0 < k < N such that & is anchored on Vy(z) but not on Vy(z) for z = b~ and k
is anchored on Vy(z) but not on V() for z = b% or there exists a vector V(b) € V(b) and a point
k such that either k is anchored on V() for z = b~ and is floating for = bt or vice versa, i.e., it
is a floating point when z = b~ and an anchor point on V(z) when = b*. The single-link system
exhibits the following behavior as z is varied. If we focus on a point k, we observe that for 0 < x < M,
it follows one of the progressions given in Figure 4. Consequently, as z varies, the system has a finite
number, r, of buffer switching values 0 < by < --- < b, < M, analogous to the results in Section 2.3.

The following properties are sufficient to establish the progressions given in Figure 4:

1. S*(2) is non-decreasing in z € (0, M + Dy — Ag),

[\

. dSH(z)/de < 1,2 € (0,M+ Do — Ag),i=0,...,N

wo

cdUy (2)/de = dLy i(z)/de =1,2 € (0, M+ Do — Ap),i=0,...,N
4. U; > L, i j=1,2.

The non-decreasingness property follows from the fact that Uy(2) and Ly(z) increase in x coupled
with Lemma 2.1. Consider the second item. If i is an anchor point, then either dS;(z)/dz = 0 because

i is anchored on Ly or Uy, both of which are stationary or dS?(z)/dz = 1 because ¢ is anchored on

11
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Figure 4: Increasing Client Buffer Size: This figure illustrates how the majorization schedule at
time k can vary as the client buffer size increases. At a series of critical buffer allocations, the schedule
at time k changes from an anchor point on one of the curves, to a floating point or an anchor point
on a different constraint curve. The schedule eventually settles at an achor point on either Ly or Us.

Ly or Uy, both of which move up at rate 1. If 7 is floating on a segment attached to ¢y # ¢ and iy # 1,
i1 < iy, then either dS? (z)/dx < dS}(z)/dx < dS}, (x)/dz or dS}, (z)/dx < dS}(z)/dx < dS} (z)/dz.
The second item follows in both cases because dS? (z)/dz,dS? (v)/dz € {0,1}. The last two items
follow from the definitions of Ly (z), Uy(2), La(z), Ug(2).

The frame rate R} (z) is piecewise-linear with the segments potentially changing at {b;}, i.e.,
Ri(z) =a;p 4+ 25, by < x < by, k=1,...,N. Let (ky, k) be the segment of S*(z) containing k,
k1 < k < ky. Now,

If ky and k2 are anchored on Vi (z) and Vy(z) respectively where the pair (Vy(z), Va(2)) comes from
the fOHOWing7 (L1($), L2($))7 (L1($)7 U2($)), (Ul(x)v U2($)), (L2($)7 U1($)) for bl <z < bi-l-lv then

1/ (k2 — k1), Vi(z) € {La(z), Uz(2)}; Va(z) € {Li(z), Us(2)}
cip =1 1/(k1— k), Vi(z) € {Li(2),Ui(z)}; Va(z) € {L2(2), Uz(2)}
0, otherwise.

The piecewise linearity of p(z) follows from the fact that the maximum of a finite set of piecewise-linear
functions is piecewise-linear. I

Next, we establish that any local minimum of p(z) is also a global minimum. In particular:

Lemma 4.4 There exist by, by € [Ag, M] (b1 < by) such that p(z) is decreasing in [Aog,b1), constant

in [by,bs) and increasing in (b, M].

Proof. We shall refer to these three phases respectively as shrinking, constant, and growing regions.

In the region [Ag, b1), p(x) is determined by points lying on segments that are anchored on U, and

12
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Figure 5: Shape of Peak-Rate Curve: As a function of the buffer allocation x, the peak-rate curve
p(z) has (a) shrinking and growing phases; (b) shrinking phase only; (¢) growing phase only.

L. In the range [b1,b2), p(2) is determined by a single segment anchored either on Uy and Ly, on
U, and Lg, or both on Ls. In the latter case, the point & = 0 is necessarily an anchor point. Last, in
the range [b2, M], p(z) is determined by points lying on segments anchored on Uy and Ly or, in the
case of Ag = Dy, Ly and L. Note that either of the shrinking or the growing regions may be absent
(Figures 5(b) or 5(c), but not both).

We establish this property through contradiction. Assume that there are buffer sizes zg < 21 < 24
such that p(2) = ag + doz, © € [20,21) where dy > 0, and p(z) = a1 + dyz, © € [x1,x2) where d; < 0.
Note that ag + dox1 = ay + dyzq. In the range [21,22) p(x) is determined by a point & on a line
segment anchored between a convex change point on Uy and a concave change point on Ly. If this is
so, then R3(z) > a1 4+ diz > ag + doz1 > ag + doz for 2 < zy which contradicts the assertion that
p(z) = ag + dox is the peak rate in the interval [z, 21). Next, consider the case p(z) = ag + doz,
x € [xo,21), where dy > 0 and p(2) = ag, © € [x1,22). The previous argument can be modified to
show ag < Rj(z) for 21 < x contradicting the assertion that p(z) = ag is the peak rate in the interval

(517 bz]- [ |

With additional work, it is also possible to establish that p(z) is a convexr function in 2. As a
consequence of Lemma 4.4, a simple binary search algorithm is sufficient to determine a value of z

that minimizes the peak rate.

5 Start-up Latency

In addition to allocating buffer space to smoothing, a video service can minimize the bandwidth
requirements of the variable-bit-rate stream by introducing a start-up latency at the egress node. This
section shows that the peak rate of the smoothed stream is a piecewise-linear function of the start-up
latency with a decreasing phase, followed by a constant phase, and ending with an increasing phase,
drawing on the arguments in Section 4.

Delaying playout by w > 0 time units effectively shifts the playout curve at the egress node, as
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discussed in Section 2.1. Hence, we define the playout vector D(w) where

De(w) = {Dk_w, k=w,...N+w

Ay = L A B=0LN
k ) Ay, k=N+1,...N+ w.

Given a buffer allocation (b, b1), the startup latency w is constrained to be less than

Winax = Min {w | 0<;£22]L\)7(+w{14k(w) — Dip(w)} > bo+ bl} :

otherwise some windows of w frames would overflow the combined buffer space. Let p(w) denote the
peak rate as a function of startup latency for given arrival and playout vectors and buffer allocation.
Define w* to be startup latency that minimizes the peak rate, w* = arg ming<u<wma.. P(W)-

Although we are unable to derive a closed form expression for w*, p(w) exhibits a property that
facilitates its computation. To characterize how p(w) varies with w, we parameterize the smoothing

constraints:

Note that Ly (w) and Uy (w) are stationary with respect to each other as are Ly(w) and Uy (w). Recall
that S*(w) is the majorization schedule associated with S(max{L; (w), Lo(w)}, min{U; (w), Ug(w)}, (bo, b1)).

As in Section 4, we show that

Lemma 5.1 The peak rate, p(w), of the single link system exhibits the following properties:
1. it is a piecewise linear function of w, the startup delay;

2. there exist t1,ty € [0, Wmax] (t1 < ta2) such that p(w) is decreasing in [0,t1), constant in [t1,1t2)

and increasing in [tg, Wmax) -

Proof. Observe that, whereas the pair of vectors Ly (z) and Uy (z) in the buffer allocation problem
rise with respect to the other pair of vectors as z increases, Ly(w) and Ujy(w) move to the right

with respect to the pair of vectors Ly(w) and Ug(w). However, the behavior of the points on the
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A= D M Sk X Dy-w
arrival X playout

ingress egress

Figure 6: Network Model: The simulation experiments evaluate a network with an (M —z)-byte
ingress buffer and an xz-byte egress buffer and a with a start-up delay of w frames.

majorization schedules exhibit similar behavior under a latency change as under a buffer change.
Hence, the arguments used in the proof of Lemma 4.3 and Lemma 4.4 are easily modified to apply
here. "

The primary consequence of Lemma 5.1 is that we can now use a binary search algorithm to

determine the optimal startup latency w* for a given buffer allocation.

6 Performance Evaluation

Service providers can minimize the bandwidth requirements for transferring stored video through
careful provisioning of the buffer resources and the start-up delay. Using full-length video traces,
simulation experiments evaluate a network with a z-byte egress buffer and an (M —z)-byte ingress
buffer, as shown in Figure 6. The experiments assume that the ingress node receives an unsmoothed
sequence of N video frames (Ar = Dy), which are removed from the egress buffer w time units later.

Hence, the smoothing problem has constraints

Ly = max{Dj_y,Dp+2— M}
Uy = min{Dg_, + z, D}

for k=0,1,..., N +w. Playback begins at time k = w, where Dy = 0 for k£ < 0; similarly, playback
ends at time k = N 4+ w, where Dy = Dy for k > N. The simulation experiments investigate how
M, z, and w affect the peak and the variability of the transmission rates in the majorization schedule
S*. The empirical results motivate simple heuristics for selecting these parameters to minimize the

bandwidth requirements of the video stream.

6.1 Buffer Allocation

To investigate the impact of the buffer allocation policy, Figure 7 plots the peak and the coefficient
of variation of the transmission rates for a motion-JPEG encoding of the movie Beauty and the Beast

with a 20-frame start-up delay. Each curve corresponds to a different total buffer size M, where the
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(a) Peak bandwidth (b) Bandwidth variability

Figure 7: Buffer Allocation (B and b): The graphs show bandwidth requirements for a motion-
JPEG encoding of Beauty and the Beast after smoothing with a (M —z)-byte ingress buffer and z-byte
egress buffer using a window w =20 frames (for a minimum of W = 590 kilobytes). From upper left
to lower right, the curves correspond to M = W, 1.25W, 1.5W,2W, 3.

x-axis varies the fraction allocated to the egress buffer. To avoid overflow, the combined ingress and
egress buffers must hold at least W = maxy{ Dy — Dy_,, } bytes; for this video trace, a sliding window
of w = 20 frames has a maximum of W = 604, 036 bytes. From top to bottom, the curves in Figure 7
correspond to M = W, 1.25W, 1.5W, 2W, 3W; as expected, larger buffer configurations reduce both the
peak and variability of the bandwidth requirements. Plots for other video traces and other values of
w show the same basic trends.

Consistent with the theorems in Section 4, the peak-rate curves are piecewise-linear in the buffer
size and consist of decreasing, constant, and increasing phases. Each curve reaches its maximum at
the end points z =0 and z = M, since no smoothing is possible when the network has only ingress
or egress buffering; for these cases, the peak rate stems from the maximum frame size (30367 bytes),
while the coefficient of variation arises from the variability in the frame sizes (a standard deviation
of 3580 bytes and a mean of 12,661 bytes, resulting in a ratio of 0.28). Allocating some buffer space
at both the ingress and egress of the network has an immediate effect on both metrics. This effect
is especially dramatic for MPEG videos (not shown), since a small buffer can remove the significant
amount of burstiness that occurs within a group-of-pictures.

Smaller values of M offer limited opportunities for smoothing, resulting in a nearly flat peak-
bandwidth curve when M = W. Once M is large enough to permit a moderate amount of prefetching,
the benefits of smoothing become more sensitive to the distribution of buffer space between the ingress
and egress points. As M grows larger than W, the flat region gradually shrinks, while remaining

symmetric around @ = M/2, as shown in Figure 7(a). The peak rate often stems from relatively
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small regions of large frames in the video stream. Unbalanced buffer allocations limit the amount
of prefetching (when z is small) or require excessive prefetching (when M —z is small) during these
regions of large frame sizes. Even when the peak-rate curve is flat, moving closer to a symmetric buffer
allocation of x = M /2 reduces the variability in the transmission rates, as shown in Figure 7(b).

The curves for M =2W and M = 3W have the same minimum peak rate of 28048 bytes/frame-
slot, with larger values of M resulting in wider regions of optimal buffer allocations in Figure 7(a).
In these flat portions of the peak-rate curve, the ingress and egress buffers are both larger than W
bytes, ensuring that each buffer can hold any sliding window of w frames; this results in smoothing
constraints Ly = Dj_,, and U, = Dy that do not depend on the exact distribution of the buffer
space. Consequently, these buffer configurations also produce optimal schedules with the same rate
variability, as shown in Figure 7(b). Allocating more than M = 2W does not offer any additional
smoothing benefits. These simulation results in Figure 7, and similar results for other motion-JPEG
and MPEG traces, suggest that service providers should allocate up to 2W bytes of data, with the

buffer space split evenly between the ingress and egress nodes.

6.2 Start-up Delay

To study the sensitivity of smoothing to the start-up delay, Figure 8 plots the peak bandwidth
as a function of w for a motion-JPEG encoding of FE.T. — The Fxtra Terrestrial and an MPEG
encoding of Star Wars [3]. Each curve corresponds to a different value of M with a buffer al-
location of 2 = M/2. From upper left to lower right, the curves in Figure 8(a) correspond to
M =0.2,0.4,0.6,0.8,1.0,1.2,1.4 megabytes, whereas the curves in Figure 8(b) correspond to M =
0.6,1.0,1.4,1.8,2.2,2.6, 3.0 megabytes. The curves start at w =0 and end when the start-up delay
exceeds the available buffer space. Consistent with the Lemma 5.1 in Section 5, each peak-rate curve
is piecewise-linear and has decreasing, constant, and increasing phases. Small values of w limit the
number of frames available for prefetching, resulting in larger peak-rate requirements; in fact, for small
w the peak rate is largely independent of the buffer size M, resulting in Ly = Dy_,, and Uy = Dy; as
a result, each curve has the same peak bandwidth in this region.

On the other extreme, large values of w limit smoothing during regions with large frames, since
the combined ingress and egress buffers are nearly full. Hence, for large and small values of w, the
peak rate stems from the maximum frame size. Comparing the two graphs, the F.T. plots exhibit a
significant amount of symmetry, since motion-JPEG compression does not introduce as much short-
term variability, since each frame is encoded independently. In contrast, MPEG compression results in
a mixture of large I frames and (typically) smaller P and B frames within a group of pictures (GOP);
the Star Wars video in Figure 8(b) has a GOP size of 12 frames. For MPEG video, a small change
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(a) E.T. (motion-JPEG) (b) Star Wars (MPEG)

Figure 8: Start-up Delay (w): These graphs plot the peak bandwidth requirements for two videos
after smoothing with a start-up delay of w frames. FEach curve corresponds to a different buffer
allocation of # = M /2, with seven evenly spaced values of M increasing from the upper leftmost curve
to the lower rightmost curve.

in w can substantially increase the minimum buffer requirement (W), limiting the ability to smooth

regions with large frames.

6.3 Optimization Heuristics

Investigating the relationship between start-up delay and buffer size more closely, Figure 9(a) graphs
the optimal start-up delay w* as a function of the total buffer size M for the F.T. trace; experiments
with other video traces show similar trends. As expected, the optimal window size grows as a function
of the total buffer size M. Plots of w* consistently have a staircase shape since the start-up delay
is an integer number of frames. Except for this discretization effect, these plots are nearly linear,
corresponding to the even spacing of the peak-rate curves in Figure 8(a). To minimize the peak rate,
the start-up delay w* must be large enough to permit aggressive prefetching without allowing a window
of large frames to consume too much of the aggregate buffer space.

Figure 9(b) investigates the relationship between the total memory size M and the minimum buffer
requirement for a window of w* frames. The buffer requirement W™ is consistently just over half of the
available memory M. Conceptually, the optimal start-up delay w* is typically the smallest window size
w that removes the buffer size constraints, resulting in Ly = Dg_,, and Uy = Djy. Smaller values of w
limit prefetching since the ingress node cannot prefetch sufficient data to capitalize on the egress buffer
space; similarly, larger values of w result in a large buffer requirement W™ that strains the storage
space in the ingress buffer. Hence, the service could effectively utilize an M-byte buffer budget by
assigning x = M/2 and by selecting the minimum start-up delay that satisfies W* > M /2. This serves
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(a) Optimal start-up delay w* (b) Playback buffer requirement ¥W*

Figure 9: Optimal Buffer Allocation and Start-up Delay: These graphs plot the optimal start-
up delay w™ and the corresponding minimum buffer requirement W* for different buffer sizes M for a
motion-JPEG encoding of E.T. — The Fxtra Terrestrial. In (b), the solid line corresponds to M = 2W.

as a useful heuristic for minimizing the peak and variability of the bandwidth requirements for the

smoothed video stream.

7 Conclusions and Future Work

In this paper, we have investigated bandwidth smoothing across a tandem of nodes, where a service
provider has control over a subset of the path between the video server and the client site. By reducing
the tandem system to a collection of independent single-link problems, we show that the majorization
algorithm [9] can be used to compute an optimal schedule for each of the nodes. Then, by characterizing
the shape of the peak-bandwidth curve, we show that simple binary-search algorithms can be used
to optimize the allocation of buffer space and start-up delay. Finally, simulation experiments with
full-length MPEG and motion-JPEG traces verify the analytic results and suggest effective heuristics
for allocating buffer space and start-up latency in an internetwork.

As part of ongoing work, we are attempting to formalize these heuristics by determining whether
or not a symmetric buffer allocation (b=B=DM/2) and a balanced start-up delay (w*=min{w|W >
M/2}) always minimize the peak rate of the smoothed video stream. To better understand the role
of the start-up delay w, we are simulating a wider collection of MPEG video streams to evaluate the
impact of the group-of-pictures structure. Finally, we are applying the smoothing model in Figure 6
to the transmission of live video, where the ingress node does not know the sizes of future frames;
this work extends the initial approach in [15] to incorporate constraints on the size of the ingress
smoothing buffer. Further generalizations of the tandem smoothing model can include other practical

constraints, such as delay jitter and limitations on link speed, as well as efficient video distribution in

19



a multicast tree.
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