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Abstract

We study three augmentations of ring networks that are intended to decrease a ring’s
diameter significantly while increasing its structural complexity only modestly. Chordal rings
enhance a ring network by adding noncrossing “shortcut” edges, which can be viewed as
chords of the ring. Express rings are chordal rings whose chords are oriented either clockwise
or counterclockwise, allowing them to be viewed as (noncrossing) arcs of the ring. Multi-rings
append subsidiary rings to edges of a ring and, recursively, to edges of appended subrings.
Important measures of structural complexity are: the cutwidth of an express ring, viz., the
maximum number of arcs that cross “above” any ring edge (counting the edge itself); the
depth of a multi-ring, viz., the level of recursive appending of subsidiary subrings. Our
first result demonstrates the topological equivalence of these three modes of augmentation:
for each augmented ring of one type, there are (graph-theoretically) isomorphic augmented
rings of each of the other types; moreover, the cutwidth of an express ring is the depth
of its isomorphic multi-ring, and vice versa. Our second focus is on the question of how
much decrease in diameter is achievable for a given increase in structural complexity. We
establish a tight diameter-cutwidth tradeoff for express rings: for each NV and ¢, we exhibit
a cutwidth-c, N-node express ring whose diameter is at most 2~1/°¢N'/¢; and, we prove
that no such express ring can have diameter smaller than (4e)~'cN'/¢ — ¢/2. Finally, we
prove that our (nontraditional) insistence that the arcs in an express ring of given cutwidth
be noncrossing at most doubles the diameter of the augmented ring.
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1 Introduction

Since the earliest uses of networks for communication and computation, there has been serious
interest in ring networks because of their structural simplicity and (modest) fault tolerance. Of
course, this interest has been moderated by the large diameter and small (bisection) bandwidth
of rings. It was natural for people to seek ways to augment a ring network in a manner
that decreases the network’s diameter significantly while increasing its structural complexity
only modestly. In this paper we study three such avenues for augmentation. After proving
that the three avenues produce networks that are equivalent in a strong sense, we concentrate
on determining how much decrease in diameter these avenues can yield for a given increase
in structural complexity. We obtain a tight tradeoff between diameter and complexity from
express networks (and, via inheritance, for the other two classes of augmented rings).

Our three equivalent augmentations of ring networks are as follows.

e A chordal ring is obtained from a ring network by adding noncrossing “shortcut” edges,
which can be viewed as chords of the ring. Chordal rings were first proposed as cost-
efficient interconnection networks for parallel architectures [1].

e An express ring is obtained from a chordal ring by orienting its “shortcut” chords in either
the clockwise or counterclockwise sense, thereby turning the chords into arcs of the ring.
An important measure of the structural complexity of an express ring is its cutwidth,
i.e., the maximum number of arcs that cross “above” any ring edge (counting the edge
itself). Express rings represent the simplest instance of the express networks of [7]; when
generalized to allow crossing “shortcuts,” they also implement the shortcuts (or, hops)
advocated in [10]-[12], [14] for optical communication networks.

e A multi-ring is obtained from a ring network by appending subsidiary rings to edges
of the ring and, recursively, to edges of subsidiary subrings. An important measure of
the structural complexity of a multi-ring is its depth, i.e., the depth of the recursive
appending of subsidiary rings. Multi-rings are a variation on the theme of multi-level
ring interconnection networks such as one finds in the KSR1 multiprocessor! [4]; they are
also identical with the SONET (Synchronous Optical NETwork) multi-rings [6] that are
important in the realm of communication networks.

These families are defined in more detail in Section 2.1.

Our first, qualitative, results (Section 2.2) establish the equivalence of these three families of
augmented ring networks in a strong sense. Most basically, for each augmented ring of one type,
there are (graph-theoretically) isomorphic augmented rings of each of the other types. More
importantly, any cutwidth-c express ring can be replaced by an isomorphic depth-c¢ multi-ring,
and vice versa.

'Our multi-rings differ from those of the KSR1 in that our subsidiary rings hang off edges of the parent ring,
while those of the KSR1 hang off nodes.



Our second set of results (Section 3) focuses on quantitative aspects of ring augmentation,
improving and/or building on work discussed in Section 3.1. We establish a tight diameter-
cutwidth tradeoff for express rings: for each ¢ and N, we exhibit a cutwidth-¢, N-node express
ring whose diameter is at most 2~'/¢cN'/¢ (Section 3.2); and, we prove that no cutwidth-c, N-
node express ring can have diameter smaller than (4e) 'e¢N'/¢ —¢/2 (Section 3.3). Our bounds
are tight to within a small constant factor when c is “small;” for instance, when ¢ < % logy N,
the bounds are within a factor of 12 of each other. Finally, we prove that our (nontraditional)
insistence that the arcs in an express ring of given cutwidth be noncrossing at most doubles
the diameter of the augmented ring (Section 4.1).

We close the paper by discussing possible avenues for extending our study. In Section 4.2,
we somewhat simplify a proof from [14] which shows that the nontrivial diameter-cutwidth
tradeoff we expose for express rings degenerates for express meshes. In Section 4.3, we present
a partial extension of our tradeoff for augmented rings in which one charges for traversing long
edges.

2 Three Augmented Ring Networks

In this section, we formally define our three avenues for augmenting rings, and we prove that
all three avenues lead to the same family of enhanced ring networks.

2.1 The Three Augmentations
The N-node ring network Ry has node-set Zy & {0,1,..., N — 1} and edge-set {(,7 + 1 mod
N) | i€ Zy}. Fig. 1 depicts the ring Ris.

Chordal rings. One obtains a chordal ring by adding noncrossing “shortcut” edges (which can
be viewed as chords) to a ring network. Fig. 2 depicts a chordal augmentation of the ring Ris.
Chordal rings seem to have originated in [1], and their diameters were studied in [3].2 Neither
of the preceding references demands (as we do) that “shortcuts” be noncrossing, but this added
requirement is essential for the equivalence we demonstrate in Section 2.2; and, as we show in
Section 4.1, the requirement does not impact our quantitative results materially.

Express rings. One obtains an express ring by supplying (independently) either a clockwise or
counterclockwise orientation to each “shortcut” of a chordal ring, thereby allowing the “short-
cuts” to be viewed as (noncrossing) arcs of the ring. Fig. 3 depicts an express ring that is
topologically equivalent to the chordal ring of Fig. 2, with the edge-orientations indicated in
Table 1 (which does not list the underlying ring edges). Using the convention of the third col-
umn of the table, we shall henceforth avoid the need to label edges of express rings explicitly,
by viewing the edges as ordered pairs of nodes. Henceforth, let us use the word hop to refer
ambiguously to an arc of an express ring or an edge of the underlying ring.

>The converse problem, of determining how deleting edges can increase diameter is studied in [5].



Figure 1: The 18-node ring network Rig.

A natural measure of the complexity of an express network R is its cutwidth, i.e., the
maximum number of hops that “cross over” an adjacent pair of ring nodes. More precisely, if
R has N nodes, then its cutwidth is the maximum cardinality, over all 7 € Zy, of the set

{(j,k) € Hops(R) | j <iand k > i+ 1 mod N}.

Multi-rings. One obtains a multi-ring by appending subsidiary rings to edges of a ring network
and, recursively, to edges of subsidiary subrings. Fig. 4 depicts a multi-ring that is topologically
equivalent to the express ring of Fig. 3, as we shall verify in Section 2.2. Since the equivalence
of multi-rings and our other augmentations is a bit subtler than the equivalence of chordal rings
and express rings, we now define our notion of multi-ring formally.

The node-set of a c-level multi-ring M consists of ¢ pairwise disjoint sets, V1, Vb, ..., V., each
V; comprising the level-i nodes of M. The edges of M are specified implicitly as follows.

e The induced subgraph on the level-1 node-set V; is the (unique) level-1 ring of M.
In Fig. 4, V; ={0,4,8,12,13}.

e The level-2 node-set V5 is a disjoint union of some number ky < |Vi| disjoint sets,
VQ,I’ V2,27 feey ‘/Q,kg'

— Each set V5 ; is associated with a distinct pair of nodes uy j,v2 ; that are adjacent in
the level-1 ring of M,

— the induced subgraph of M on each node-set V5 ;U {us ;,v2 ;} is a level-2 ring of M.



Figure 2: A chordal augmentation of Risg.

In Flg 4: ‘/2,1 = {3}, ‘/2,2 = {6}7 V2,3 = {11}, V2,4 = {15}

e For each level 7 > 2, the level-2 node-set V; is a disjoint union of some number k; <
|Vi—i| + ki—1 disjoint sets, Vi1, Vio, ..., Vig,.

— Each set V; ; is associated with a distinct pair of adjacent nodes u; j,v;; from a
level-(i — 1) ring of M. At least one of w; j, v; ; must be an element of V;_;; the other
could belong to a lower-index Vj.

— The induced subgraph of M on each node-set V; j U {u; j,v; ;} is a level-i ring of M.
In Fig. 4: V31 = {1}; V3o = {5}; Va3 = {7} V34 = {10}; V35 = {14}; V36 = {16,17};
while ‘/21,1 = {2}7 ‘/21,2 = {9}

The reader should recognize how this definition formalizes our earlier description of the model.

2.2 The Equivalence of the Models

We now show that the three models of Section 2.1 are just different views of the same family
of graphs.

Theorem 2.1 (a) [9] In linear time, one can transform any chordal ring into a (graph-
theoretically) isomorphic express ring of minimum cutwidth, and vice versa.

(b) In linear time, one can transform any cutwidth-c express ring into a (graph-theoretically)
isomorphic c-level multi-ring, and vice versa.



Figure 3: An express ring realization of the chordal ring of Fig. 2.

Proof. We prove only part (b) of the theorem, since the two claims of part (a) are either simple
or known: One can transform an express ring to an equivalent chordal ring simply by ignoring
the (clockwise, counterclockwise) arc orientations; one finds in [9] an efficient algorithm for
transforming a chordal ring to an equivalent express ring having optimal cutwidth (a slightly
simpler but less efficient algorithm appears in [15]).

Transforming an express ring to a multi-ring. Let R be any cutwidth-c express ring. We
transform R into an equivalent c-level multi-ring by decomposing it into ¢ shells: shell 1 will
be a subring of R, and each other shell will be a set of subrings. The subrings within each shell
k will turn out to be the level-k subrings of R’s equivalent multi-ring. The reader should note
that each subring within shell 4 > 1 contains precisely one edge from a subring within shell
1—1; and distinct subrings within shell 7 may intersect in at most one node. The decomposition
proceeds as follows.

Shell 1 of R is the subring formed by the hops of R that are “exposed,” in the sense of not
being contained in any other hop of R. The level-1 node-set of R comprises the nodes of the
shell-1 ring. In Fig. 3, shell 1 comprises the ring

0481213« 0,
so V1 ={0,4,8,12,13}.

Shell 2 of R is obtained by focusing, in turn, on each hop of shell 1. Say that (u,v) is such
a hop, but that nodes v and v are not adjacent in the ring underlying R. Then there is a path
in R that connects nodes u and v and that uses hops that become “exposed” when the hops of
shell 1 are removed. The intermediate nodes of that path become one of the level-2 node-sets
V5 ; of R; and, that path, plus hop (u,v) becomes one of the subrings of shell 2. In Fig. 3, shell



Chord | Orientation Arc notation
(0,3) clockwise (0,3)
(0,4) clockwise (0,4)
(0,13) | counterclockwise | (13,0)
(0,15) | counterclockwise | (15,0)
(1,3) clockwise (1,3)
(4,6) clockwise (4,6)
(4,8) clockwise (4,8)
(6,8) clockwise (6,8)
(8,10) | clockwise (8,10)
(8,11) | clockwise (8,11)
(8,12) | clockwise (8,12)
(13,15) | clockwise (13,15)

Table 1: The arc-orientations that transform the chordal ring of Fig. 2 to the express ring of
Fig. 3.

2 comprises the subrings

0340
44684
811+ 12+ 8
13 <> 15 < 0 < 13,

so Vo = {3,6,11,15}.
In general, shell 2 + 1 of R is obtained by focusing, in turn, on each hop of shell 7 that

contains at least one node from node-set V; & U; Vij- Say that (u,v) is such a hop, but that
nodes u and v are not adjacent in the ring underlying R. Then there is a path in R that
connects nodes u and v and that uses hops that become “exposed” when the hops of all shells
k < i are removed. The intermediate nodes of that path become one of the level-(i + 1) node-
sets Vi41,; of R; and, that path, plus hop (u,v) becomes one of the subrings of shell 7 4 1. In

Fig. 3, shell 3 comprises the subrings

0130
4564
6786
810+ 11 <+ 8

13+ 14+ 15 < 13
154 16 & 17 <+ 0 < 15,

so V3 ={1,5,7,10,14,16,17}; and shell 4 comprises the subrings



Figure 4: A multi-ring realization of the express ring of Fig. 3.

1231
8¢+ 9 << 10 < 8,

so Vi ={2,9}.

We have, thus, constructed a multi-ring whose nodes and edges are, respectively, the nodes
and hops of the express ring R. The reader can verify that our running example has constructed
the multi-ring of Fig. 4 from the express ring of Fig. 3.

Transforming a multi-ring to an express ring. The easiest way to perform this transfor-
mation proceeds in two steps. First, trace the obvious hamiltonian cycle in a given multi-ring,
making all unused edges into chords of the ring obtained from the trace. Then, invoke part (a)
to transform the resulting chordal ring into an express ring. The problem with this approach
is that one must proceed carefully if one wants a c-level multi-ring to produce a cutwidth-c
express ring. We choose, therefore to use an iterative transformation that allows us to keep
track of the parameter ¢ in both the multi-ring and the express ring in a perspicuous way.

We begin with a c-level multi-ring M. We transform M into an equivalent express ring by
successively “collapsing” its subsidiary rings. We begin with the level-1 ring of M. Make all of
its edges level-1 tentative edges of the express ring R4 that we are constructing. In general,
we look at each tentative edge in turn. When we are looking at a level-i tentative edge (u,v):
if there is no level-(i + 1) ring that contains edge (u,v), then we make this a final edge of R oq;
if there is a level-(i + 1) ring u <> wy <> wy > -+- <> wg <> v <> u that contains edge (u,v),
then we make this edge a final arc between nodes u and v, and we incorporate under this new
arc the path wy <> wy ¢ -+ > wy, with each edge of the path being a level-(i + 1) tentative
edge of Rrq. When no tentative edges remain—which must happen since each tentative edge is
scanned just once before being converted to a final entity (edge or arc), we shall have produced



an express ring Raq whose nodes and hops are, respectively, the nodes and edges of M. The
reader should be able to use this recipe to construct the the express ring of Fig. 3 from the
multi-ring of Fig. 4. [

3 The Diameter-Structure Tradeoff

As usual, the diameter, Diameter(G), of a graph G is the maximum distance between two
nodes of G. For positive integers ¢, N, we denote by Diameter.(/N) the minimum diameter of
any cutwidth-c, N-node express ring. This section is devoted to proving the following tradeoff
between the cutwidth of an express ring (the parameter c), and the optimal diameter achievable
for that cutwidth (the quantity Diameter.(N)).

Theorem 3.1 For all positive integers c, N,

ich/C — £ < Diameter (N) < (l> e cNYe
de 2~ =2 '

Remarks.

e The upper and lower bounds in Theorem 3.1 differ by only a constant factor when ¢ <
(1/a) logy N, where « is any constant larger than (1 4 logye). For instance, when ¢ <
% logy N, the bounds are within a factor of 12 of each other.

e By invoking the transformation of Theorem 2.1(b), one can infer from Theorem 3.1 a
tradeoff between the number of levels of a multi-ring and the optimal diameter achievable
for that number of levels.

We establish the upper bound of Theorem 3.1 in Section 3.2 and the lower bound in Section
3.3. Before we do so, however, we should review prior related work, both for the sake of
completeness and for basic ideas that we shall use in our constructions and analyses.

3.1 Related Work on Diameter Bounds

The most relevant work we know of, for the study in this section, is the work of [12, 14]. Both
of those sources study what can be described briefly as unidirectional express paths. In short,
both sources start with a path and add hops in order to decrease the maximum distance from
the left end of the path to any other node. We find in [12] the following exact, albeit implicit,
determination of the quantity® BC(N ), which is the minimum such distance for any cutwidth-c
N-node unidirectional express path.

3The superposed arrow in “P” is intended to stress the unidirectionality of the express-path problem.



Theorem 3.2 [12] If

then Do(N) = d.

This result is proved by embedding a carefully crafted unbalanced c-ary tree into the N-node
path, with the root of the tree at the left end of the path.

Although the bounds of [14] are less definitive than those of [12], the methodology of [14] is
of interest, especially as we contemplate generalizing our work to express rings whose arcs are
weighted with a delay function which increases with the length of the arc; cf. Section 4.3. The
upper bound in [14] is established via a very uniform recursive construction that is based on
the well-known game:

[ am thinking of an integer between 1 and N. To win the game, you must determine
my integer with the fewest guesses, while never guessing a number that exceeds mine
more than c times.

The natural recursive solution has you make the guesses 1, NYe aN/e 3NYe . until T tell
you that you have exceeded my integer, at which point you have bracketed my integer in an
interval of size N'/¢; you then recurse within this interval with parameter ¢ — 1 (since you have
used one of your allowed big guesses). This technique leads to the recurrence

—

Bo(N) < mjn (5 + Ba(0)) )

which yields the upper bound, EC(N ) < eN'/¢, of [14]. The lower bound in that paper (which
is a factor of ¢ smaller) emerges from noting the following facts, where = denotes the size of the
biggest “hop” in the guessing game.

e It takes at least N/z hops to get from the left end of the path to the right end.

e Once having landed at the left end of an interval of length z, using the biggest possible
hops, it takes at least D._1(z) hops to get around within the interval. (This requires a
bit of argumentation, but it remains valid even if one allows the hops of express paths to
cross one another.)

This chain of reasoning leads to the recurrence

Bo(N) > win (max {2, Do (@)}) (2)

T

which yields the lower bound, D,(N) > LNY/e of [14]. The reader should note that, were we
able to replace the maximization in recurrence (2) by a summation, as in recurrence (1), then
one would recover the factor of ¢ that separates the upper and lower bounds of [14]. We shall
return to this point in Section 4.3.

10



3.2 The Upper Bound in the Tradeoff

This section is devoted to proving the upper bound of Theorem 3.1, i.e., the inequality
1 I/C
Diameter,(N) < (§> eN'e,

We choose a construction that follows the strategy of [14] rather than that of [12], for two
reasons. Most importantly, the former strategy is more easily converted to a bidirectional
one—and this bidirectionality buys us most of the improvement over prior bounds. Secondly,
one would expect that our highly regular construction (and that of [14]) would be easier to
implement than would be the construction of [12], at least within an electronic medium.

The basic recurrence. Let us be given an N-node ring R which we want to augment with
hops—up to cutwidth ¢—in order to obtain the claimed bound. Our augmentation proceeds in
two stages.

e We augment R with uniform upper-level hops, of common length £ (to be chosen later).*

e We augment the paths that connect the endpoints of each long hop via a cutwidth-(c — 1)
bidirectional analog of the path-augmentation of [14]. Specifically, we view each inter-hop
length-¢ path as two length-(£/2) paths—one from each endpoint—and we recursively
augment each path.

We then route each path between node u of R and node v, via the following 3-segment path.

1. Find a shortest path from node u to the upper-level hop “highway;” the path traversed
crosses no more than #/2 nodes of R.

2. Find the analogous path for node v.

3. Connect the two low-level paths just constructed via a shortest path of < N/Z upper-level
hops.

The first two segments of this path involve a bidirectional solution of the path-augmentation
problem, which, recall, seeks shortest paths from the endpoint of the path to an arbitrary other
node w. Our bidirectional solution to this problem involves adding upper-level hops of uniform
length £ along the half of the path nearest the endpoint, and recursing within these upper-level
hops, down to the appropriate cutwidth. Routings in this solution involve 2-segment paths such
as the following.

1. Find a shortest path from node w to the upper-level hop “highway;” the path traversed
crosses no more than #/2 nodes of R.

*As is customary in such constructions, we assume that all necessary divisibilities hold—such as N being
divisible by £ here. Correcting such assumptions via rounding affects only low-order terms.

11



2. Connect the path just constructed via a shortest path of < N/¢ upper-level hops to the
endpoint of the path.

The construction just described gives rise to the following simultaneous recurrences, where
(N) denotes the bidirectional analog of the unidirectional diameter-from-endpoint quantity

D,
De(N).

First, for the diameter-from-endpoint problem, our construction yields the recurrence
. (N
DoN) < min (5 + Decae/2)) (3)
We already know from [14] that diameter D.(IV) satisfies an inequality of the form
DC(N) < K'ch/cy

for some parameter k. that depends only on ¢. Using recurrence (3), we determine that we can
use a parameter k. that satisfies the recurrence

1 1/e 1 1-1/e /e
w=(5) (=) = @

Solving this recurrence (via substitution), we find that

ke = 21/ ¢
so that
D.(N) < 2Y/¢=1eNe, (5)

(Not surprisingly, this improves the unidirectional bounds of [14] by roughly a factor of 2, at
least for large c.)

For the express-ring-diameter problem, our construction yields the following bound for
Diameter.(N).

N
Diameter(N) < min (27 + 2DC_1(£/2)> . (6)
Using our bound (5) on D.(NN), we convert inequality (6) to the explicit form
i in (N 1/(e=1)
Diameter.(N) < min | +(c—1)¢ . (7)

Standard techniques show that the optimal upper-level hops have common length ¢ = (N/ 2)1-1/e,

so that
Diameter,(N) < 27 '/¢cN1/e,

as claimed. []

12



3.3 The Lower Bound in the Tradeoff

This section is devoted to proving the lower bound of Theorem 3.1, i.e., the inequality

1 c
Diameter,(N) > —cN'/¢ — =,
iameter.(N) > ¢ 5
We begin with the following lemma, which indicates where the elusive factor of ¢ in the lower
bound comes from.

Lemma 3.1 FEvery cutwidth-c express ring is embeddable in a c-dimensional mesh with dilation
2.

Proof. We begin by invoking Theorem 2.1(b) to replace the given cutwidth-c express ring R by
a topologically equivalent c-level multi-ring M. We embed M into the c-dimensional lattice®
with dilation 2, thereafter finding a mesh that encloses the image of M. Our embedding employs
the following strategy which minimizes the interference among the many subrings of M.

e We number the dimensions of the c-dimensional lattice starting from 1, from left to right.
For i =1,2,...,c, we allocate dimension i of the lattice to the level-i subrings of M.

e We embed M’s level-i subrings in a sinuous pattern, so that for ¢ > 1, the (at most) two
level-i rings incident to each level-(¢ — 1) node of M proceed in opposite directions (one
proceeds to the “left” and the other to the “right”).

We now supply some details of the node-mapping component of the embedding, the edge-routing
being specified implicitly.

Embedding M’s level-1 subring. We use the familiar dilation-2 embedding of a ring in a
path. To wit, letting this subring have nodes (in clockwise order) vy, v1,...,v,_1, we take an
n-step “walk” along dimension 1 of the lattice, starting at the origin (0, 6) During the 7th step
of the walk, where 0 < i < n, we visit node (i,0) of the lattice. When i is even, we deposit
node vj/, of the ring at this node; when ¢ is odd, we deposit node v,,_;/o7 of the ring at this
node; see Fig. 5.

Embedding M'’s level-k subrings, k£ > 1. Let us focus on an arbitrary level k£ > 2. Each
level-k subring of M contains two adjacent nodes of one of M’s level-(k — 1) subrings. We call
a level-k subring tight if its two level-(k — 1) nodes are adjacent in the ¢-dimensional lattice and
loose if these nodes are distance 2 apart in the lattice. (The claimed dilation implies that these
two categories of subrings exhaust the possibilities.) We formulate “standard” embeddings of
tight and loose level-k subrings, which will then be oriented to create a sinuous pattern, and

®As usual, the c-dimensional lattice is the infinite analogue of the c-dimensional mesh, with nodes (lattice
points) that are c-tuples of (positive and negative) integers and adjacencies between nodes that differ by precisely
+1 in precisely one coordinate.

13



stretched when necessary to resolve collisions. In the details that follow, we repress subscripts
to enhance clarity.

The “standard” embedding of a tight subring. If a tight subring has (even) length
2/, then its standard embedding has the form

(%,1,0,0) < (£,i,1,0) <+ - < (&i,0—1,0)

!

(Z,i+1,0,0) < (£,i+1,1,0) & -  (Zi+1,0-1,0).

If a tight subring has (odd) length 2¢ 4 1, then its standard embedding has the form

(#,i,0,0) & (Z,i,1,0) < - < (#i0—1,00) < (Z,i,0,0)
)
(Z,i+1,0,0) < (Z,i+1,1,0) < - & (£i+1,0-1,0) « ©

The “standard” embedding of a loose subring. If a loose subring has (even) length
2¢, then its standard embedding has the form

-,

(%,1,0,0) <«  (%,i,1,0) < - < (&i,0—1,0)
7
_ _ L
(,i +2,0,0) < (§,i+2,1,0) © - o (fi+2,6—10).
If a loose subring has (odd) length 2¢ + 1, then its standard embedding has the form

(7,i,0,0) & (£,4,1,0) < - & (&i,0—1,0)
o
(Z,i+1,0—1,0)

!

(Z,i+2,0,0) < (Z,i4+2,1,0) < - & (i+20—1,0)

Additionally, each standard embedding has a positive aspect, which we have just specified,
and a negative aspect, which is obtained from the positive aspect by negating the dimension-k
component of a lattice point, as in

(Z,i,0,0) = (Z,i,—¢,0).

The embedding. We proceed along the image-path of M’s level-(k — 1) subring. As we
encounter each node v along this path, we use a positive-aspect standard embedding for one
of node v’s level-k subrings and a negative-aspect standard embedding for node v’s other level-
k subring. This alternation of positive and negative aspects creates our sinuous pattern and
precludes any collisions between “adjacent” level-k subrings, i.e., subrings that share a node.
This completes the embedding for levels £ > 2. For level 2, however, there may be collisions

14



between “complementary” level-k subrings, i.e., subrings that are made adjacent in the lattice
by our embedding of M’s level-1 ring; indeed, one level-2 subring may have collisions with both
of its “complementary” ones. It is easy to verify that such collisions can be removed as follows.
One starts at the origin of the lattice and proceeds along the path that contains M'’s level-1
subring. One resolves each encountered collision between “complementary” level-2 subrings, by
stretching a subpath of the colliding subring that is farther from the origin: one stretches the
offending subpath of this subring by moving a path of the form

“one step along,” to become the path

(i,4(j +1),0) < (i,2(j +2),0) <> --- & (i, (£ +1),0).

The level-1 subring  ~ .

Some level-2 subrings ===z-------- _-

-~ 2
e

Figure 5: FEzemplifying the dilation-2 embedding of a “typical” 2-level multi-ring. The level-1
subring and two of the level-2 subrings are highlighted.

Fig. 5 depicts the complete embedding of a “typical” 2-level multi-ring M into the 2-
dimensional lattice.

Summarizing, we embed M’s level-1 ring into the c-dimensional lattice with dilation 2. We
then embed M'’s higher-level subrings, level by level, using initial standard embeddings that
incur dilation 2, “refined” by collision-resolving stretches that create length-2 subpaths from
unit-length ones, hence never increase the dilation beyond 2. We thus have the advertised
embedding of M. [

Returning to the proof of our lower bound: Lemma 3.1 shows each N-node cutwidth-c
express ring to be an N-node connected subgraph of the (graph-theoretic) square of the c-
dimensional lattice, i.e., the lattice augmented with all length-2 shortcuts. It follows that
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the diameter of such an express ring can be no smaller than the smallest diameter of any
such subgraph, which is, easily, one-half the smallest diameter, call it d.(N), of any N-node
connected subgraph of the c-dimensional mesh. We can bound d.(N) from below by noting
that it is no smaller than the smallest integer p such that

Ng2€<p+c>. (8)

C

This inequality follows from the fact that, for any r,

)

is the number of lattice points within distance r of the origin in the nonnegative orthant
of c-dimensional space—so that 2¢ times this quantity is strictly larger than the number of
lattice points in the radius-r c-dimensional ball. It follows that the integer p is no larger
than the radius of the N-node c-dimensional ball. Straightforward reasoning and estimates
now convert inequality (8) to the inequality d.(N) > (1/2e)eN/¢ — ¢. Tt follows directly that
Diameter.(N) > (1/4e)eN'/¢ — ¢/2 as was claimed. ]

4 Extensions

4.1 The Impact of the Noncrossing Requirement

The chordal rings and express rings that we have studied here differ from those often encoun-
tered, in our insistence that chords and hops, respectively, not cross. We show now that this
structural simplification cannot cost us more than a factor of 2 in diameter. This bound cannot
be improved in general, specifically, for rings having N > 4 nodes, and for infinitely many
cutwidth parameters c. To wit, any unit-diameter N-node express (resp., chordal) ring is topo-
logically equivalent to an N-node clique (completely connected graph). Since the N-node clique
is not outerplanar for any N > 4 [13], such an augmented ring must have crossing hops (resp.,
chords).

Theorem 4.1 Any cutwidth-c N-node express ring R in which arcs are allowed to cross can
be transformed to a crossing-free cutwidth-c N-node express ring R' such that

Diameter(R') < 2 - Diameter(R).
Proof. We produce ring R’ from ring R in two stages.

First, we replace R by a cutwidth-c N-node express ring R” whose hops form a tree (whose
edges may cross). Specifically, we obtain R” by choosing an arbitrary node v of R and growing
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a breadth-first spanning tree of hops outward from v. All paths within R” constitute a walk up
the tree to its root v, then down the tree to the desired destination. Since R” is a shortest-path
spanning tree of R, it follows that

Diameter(R") < 2 - Diameter(R).

Next, we perform a series of transformations of R” to eliminate all crossings of hops—
without increasing either diameter or cutwidth. We eliminate crossings starting with the
edges/hops emanating from the root of the tree and proceeding steadily down toward the
leaves. Since each transformation replaces (at least) one offending hop with a shorter hop, no
“uncrossing” step can create a new crossing; this fact guarantees that our algorithm terminates.
Our “uncrossing” algorithm is the analog for bidirectional trees of the similarly motivated al-
gorithm in [12]—which has many fewer cases since its trees have each nonroot node lying to
the right of its parent.

We describe our algorithm by specifying how it “uncrosses” two arbitrary crossing hops
(a,c) and (b,d) while never increasing the level of any node, i.e., the node’s distance from the
root. With no loss in generality (since the hops cross), assume that nodes a, b, ¢, and d appear
in that order in a clockwise traversal of the ring. Our primary breakdown into cases considers
how hops (a,c) and (b, d) are oriented relative to the root of the spanning tree.

(a) a b c d

(b) a b c d

(© a b c d
Figure 6: Resolving a Case-1 crossing.

Case 1. level(a) < level(c); level(b) < level(d); see Fig. 6(a). We branch on the relative levels
of nodes a and b.

Case 1l.a. level(a) < level(b). Eliminate hop (b, d); add hop (c,d); see Fig. 6(b).
Case 1.b. level(a) > level(b). Eliminate hop (a,c); add hop (b, c); see Fig. 6(c).
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(a) a b c d

(b) a b c d
— T =
(c) a b c d

Figure 7: Resolving a Case-3 crossing.

Case 2. level(a) > level(c); level(b) > level(d). This case is clearly symmetric to Case 1.

Case 3. level(a) < level(c); level(b) > level(d); see Fig. 7(a). We branch on the relative levels
of nodes a and d.

Case 3.a. level(a) < level(d). Eliminate hop (d,b); add hop (c, b); see Fig. 7(b).
Case 3.b. level(a) > level(d). This case is symmetric to Case 3.a.

Case 3.c. level(a) = level(d). Eliminate hops (a,c) and (b,d); add hops (a,b) and (d, ¢);
see Fig. 7(c).

(a) a b c d

(b) a b c d
Figure 8: Resolving a Case-4 crossing.

Case 4. level(a) > level(c); level(b) < level(d); see Fig. 8(a). We branch on the relative levels
of nodes b and c.

Case 4.a. level(b) < level(c). Eliminate hop (b, d); add hop (c, d); see Fig. 8(b).
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Case 4.b. level(b) > level(c). This case is symmetric to Case 4.a.

By the time we reach the leaves of the spanning tree, we shall have transformed the express
ring R” to the express ring R’ which has no crossing hops and which has diameter no greater
than that of R”. [ |

4.2 Express Meshes

We wish to consider the mesh-based analogue of the problem of Section 3. First, let us choose a
reasonable notion of cutwidth for an augmented mesh. We assume that every augmenting edge
is routed using a sequence of edges of the underlying mesh. The cutwidth of an augmented mesh
is the number of edges that are routed along an edge of the underlying mesh; it is, therefore,
just the congestion of the routing that underlies the augmentation. As with express rings, we
say by convention that the unaugmented mesh has unit cutwidth.

Let us denote by Diameter™®") () the analogue of Diameter.(N) for N-node square meshes.

As the following theorem indicates, the diameter-cutwidth problem degenerates for meshes. The
¢ = 2 case of the following theorem appears in [14].

Theorem 4.2 For all positive integers N and all c,

log N
: (mesh) _ _ g
Diameter, (N) ©(log. N) C) ( log c ) .

Proof Sketch. We refer the reader to [14] for the degree-based argument that yields the lower
bound. For the upper bound, we sketch a more direct, hence slightly simplified alternative to
the proof in that paper.

Our construction will add “one layer” of augmenting edges to the mesh (so that ¢ = 2) in a
way that connects all mesh-nodes via a balanced binary tree, thus achieving logarithmic diam-
eter. The reader can easily generalize our construction to general cutwidth c, by constructing
a c-ary spanning tree (instead of a binary tree), to obtain diameter O(log, N).

Our construction begins by partitioning the N-node mesh My into N/log3 N submeshes,
each of dimensions logy N x log, N.

Next, for each submesh S, use paths of mesh-edges to connect every node of S to the node
in the “bottom-left corner” of S (using the standard drawing of My). Each tree so created
has depth 2log, N, hence diameter < 4log, N.

Finally, use augmenting edges to connect all of the “bottom-left corner” nodes together via
a binary tree. First, connect all nodes in the same row using row-trees. Then hook all the
row-trees together using a single column-tree. Using the tree-layout of [8], we can route both
the row trees and the column tree so that no two augmenting edges share a mesh-edge, ensuring
that ¢ = 2. [
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4.3 Honoring Physical Limitations

As is pointed out in [2, 17], physical limitations on fan-out and on signal transmission prevent
the model that we have studied here from scaling indefinitely to larger architectures. Somewhat
mitigating the fan-out problem is the fact that the upper bound of Theorem 3.1 indicates that
near optimal diameter can be achieved using cutwidth that is only logarithmic in N. Somewhat
mitigating the problem of long edges is the fact that, via Theorem 2.1(b), we can physically
realize express rings as (almost-)subgraphs of c-dimensional meshes, which allows one always
to achieve hop-lengths that are sublinear in N. Having said this, though, large fan-outs and
long hops remain a problem that merits further study.

One possible avenue for increasing the range of scalability of express rings is to use the
technique of repeated drivers, described in [16], to obtain logarithmic signal delay along long
hops, at least in wafer-scale implementations, in which delays are largely capacitive. Such a
delay model will honor physical constraints for larger values of N than will the isometric delay
model of Section 3. Within this model, we have the following extension of the upper bound of
Theorem 3.1, which is established by techniques similar to those of the Theorem.

Proposition 4.1 For all ¢ and N,

Diameter(°8) (N) < keN'Y<(log N)' /e,

Extending the lower bound of Theorem 3.1 seems to be significantly more challenging. The
techniques that yield the optimal bounds of [12] and the strong lower bound of the current paper
depend quite strongly on the isometry of all hops in an express ring. Hence, they cease to apply
when we weight hops by some function of their lengths. The somewhat weaker techniques
of [14], however, are quite robust in this respect. They can, therefore, be used to derive the
following lower bound to complement the upper bound of Proposition 4.1.

Proposition 4.2 For all ¢ and N,

Diametergog) (N) > K'N'¢(log N)'~1/e.

While the dominant behavior of IV is visible in this lower bound, the bound is off by a
factor of ¢ from our upper bound. We believe that the best road to bridging this gap would be
to figure out how to replace the maximization in recurrence (2) by a summation (which would
match the one in recurrence (1)). This alternative route to the lower bound in Theorem 3.1
should extend to non-unit delay models, such as the logarithmic model.

The avenue for achieving this extendible argument has eluded us thus far.

Acknowledgments. The research of A. Rosenberg was supported in part by NSF Grant
CCR-92-21785 and in part by US-Israel BSF Grant 94-00266. The research of R. Sitaraman

20



was supported in part by NSF Grants CCR-94-10077 and CCR-9703017. A portion of this
research was done while F. Chung and A. Rosenberg were visiting Bellcore, and a portion was
done while A. Rosenberg was visiting the Dept. of Computer Science at the Technion (Israel
Inst. of Technology).

References

[1] B.W. Arden and H. Lee (1981): Analysis of chordal ring networks. IEEE Trans. Comput.,
C-30, 291-295.

[2] G. Bilardi and F.P. Preparata (1995): Horizons of parallel computation. .J. Parallel
Distr. Comput.

[3] B. Bollobds and F.R.K. Chung (1988): The diameter of a cycle plus a random matching.
SIAM J. Discr. Math. 1, 328-333.

[4] H. Burkhardt et al. (1992): Overview of the KSR1 computer system. Tech. Rpt. KSR-TR
9202001, Kendall Square Research.

[5] F.R.K. Chung and M.R. Garey (1984): Diameter bounds for altered graphs. J. Graph
Th. 8, 511-534.

[6] S. Cosares, I. Saniee, O. Wasem (1992): Network planning with the SONET toolkit. Bell-
core Ezchange (Sept./Oct., 1992) 8-15.

[7] W.J. Dally (1991): Express cubes: improving the performance of k-ary n-cube intercon-
nection networks. IEEFE Trans. Comp. 40, 1016-1023.

[8] M.J. Fischer and M.S. Paterson (1980): Optimal tree layout. 12th ACM Symp. on Theory
of Computing, 177-189.

[9] A. Frank, T. Nishizeki, N. Saito, H. Suzuki, E. Tardos (1992): Algorithms for routing
around a rectangle. Discr. Appl. Math. 40, 363-378.

. Gerstel an . Laks : e virtual path layout problem in fast networks. 13%

10] O. G 1 and S. Zaks (1994): The vi 1 path 1 blem in f: ks. 13th
ACM Symp. on Principles of Distributed Computing, 235-243.

[11] O. Gerstel and S. Zaks (1995): The virtual path layout problem in ATM ring and mesh
networks. 1st Conf. on Structure, Information and Communication Complexity, Carleton
Univ. Press, Ottawa.

. Gerstel, A. ool, 5. Zaks : ptimal layouts on a chain network.

12] O. G I, A. Wool, S. Zaks (1997): Optimal 1 hain ATM k
Discr. Appl. Math., to appear.

13] F. Harary (1969): Graph Theory. Addison-Wesley, Reading, Mass.

[ y p Y y; 8

21



[14] E. Kranakis, D. Krizanc, A. Pelc (1995): Hop-congestion tradeoffs for high-speed networks.
7th IEEE Symp. on Parallel and Distr. Processing, 662-668.

[15] A. Litman and A.L. Rosenberg (1993): Balancing communication in ring-structured net-
works. Tech. Rpt. 93-80, Univ. Massachusetts.

[16] C. Mead and L. Conway (1980): Introduction to VLSI Systems. Addison-Wesley, Reading,
Mass.

[17] P.M.B. Vitanyi (1988): A modest proposal for communication costs in multicomputers.
In Concurrent Computations: Algorithms, Architecture, and Technology (S.K. Tewksbury,
B.W. Dickinson, S.C. Schwartz, eds.) Plenum Press, N.Y., 203-216.

22



