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Justus H. Piater and Paul R. Cohen

Abstract— Three factors enter into analyses of performance
curves such as learning curves: the amount of training, the learn-
ing algorithm, and performance. Often we want to know whether
the algorithm affects performance, whether the effect of training
on performance depends on the algorithm, and whether these ef-
fects are localized in regions of the curves. Analysis of variance
is adapted to answer these questions. The carryover effects of
learning violate the assumptions of parametric analysis of vari-
ance, but they are rendered harmless by a novel, randomized
version of the analysis. After a brief outline of the statistical pre-
liminaries, we present the procedure along with some examples
on real learning curves, discuss power and Type I error, and give
some examples of how our method can be applied to answer more
advanced questions in comparing performance curves.

1 Introduction

Evaluation of machine learning algorithms typically involves learning curves
that plot the amount of training versus the performance of the algorithm. A
common question is whether the learning curves generated by two (or more)
algorithms are different. These differences can be characterized in terms of
the following two effects:

Algorithm Effect: Does one algorithm generally achieve higher performance
than another?

Interaction Effect: Does the influence of training on performance depend
on the algorithm?
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Figure 1: Some kinds of differences between learning curves. The columns
on the right indicate the presence of an Algorithm or Interaction effect: (a)
Algorithm effect only; (b) Interaction effect only; (c), (d) both effects. In
case (c), the Interaction effect disappears at the later stages of training; in
case (d), both effects disappear.



Figures 1la and 1b illustrate prototypical cases for each effect. In practice,
however, some combination of both effects will occur. In Figure lc, for
instance, both curves start out at similar slopes, but one of them converges
to a lower asymptote. Figure 1d shows a case where both curves start at the
same point and achieve similar asymptotic performances, but one algorithms
learns faster (with respect to the amount of training) than the other. In this
latter case, we find that both algorithm and interaction effects concentrate
in the early stages of training, and both effects essentially disappear after
the amount of training exceeds some threshold t,.

The purpose of this paper is to present a method for detecting and localizing
the presence of Algorithm and Interaction effects among curves generated by
different algorithms. This method is not restricted to learning curves, but
applies to any kind of performance curves. Our methods test two null hy-
potheses (see the following section for an introduction to hypothesis testing):

e The mean performances of each algorithm A; are the same (no Algo-
rithm effect).

e The relationship between training ¢, and performance does not depend
on Algorithm (no Interaction effect).

We also want to answer the following question:

e What fraction of observed Algorithm and Interaction effects can be
assigned to a particular training interval?

2 Hypothesis testing and Analysis of Vari-
ance

Suppose we have two learning algorithms A; and A,, each of which trains
on a set of k instances in a 10-fold cross validation procedure. Then we

have ten estimates of the performance of each algorithm at each level of

training. Alternatively, we have ten “lines” Lgl), cee L%) for A; and another

ten lines LgQ), cee Lg%), where each line is a list of £ numbers that represent

the performance of the algorithm at level 1 < h < k of training, on that



particular fold of the cross validation. A schematic data table is shown in
Figure 2, where the axes of the table represent the factors Training and
Algorithm. Lines may of course be generated by methods other than cross-
validation; for instance, in the experiments reported below, each line is a
training session of a reinforcement learning algorithm. The important thing
is that the data points on a line are not independent. In statistical parlance,
they are “repeated measures” and there is a “carryover effect,” meaning that
the performance represented by earlier points on a line influences, or carries
over, to later performance.

Training
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Figure 2: Data table setup for randomized ANOVA. This example shows
[ = 4 learning curves per algorithm.

Were it not for these carryover effects, analysis of variance (ANOVA) would
be an ideal tool to analyze learning curves. Analysis of variance tests for main
effects of factors and interaction effects between factors. As is common in
statistical hypothesis testing, hypotheses are stated in terms of null effects,
and the procedure is to reject these null hypotheses if the probabilities of
sample statistics under the null hypotheses are very low. The hypotheses,
then, are

e There is no effect of training.



e There is no effect of algorithm.

e Any effect of training is constant across algorithms, and any effect of
algorithm is constant at all levels of training.

Briefly, the logic of hypothesis testing is analogous to proof by contradiction:
To “prove” a proposition P, one shows that the state of the world is inconsis-
tent with not P. In statistics, we substitute “improbable” for “inconsistent”:
The state of the world, as represented by a statistic’s value, is very unlikely
to have arisen if not P were true, so not P probably isn’t true. More for-
mally, hypthesis testing involves these steps: Assert a null hypothesis H.
Decide on a statistic ¢. Collect a sample s of size n and calculate ¢(s) for
the sample. Derive the probability distribution S of all possible values of ¢(i)
for samples ¢ of size n under Hy. These restrictions important: S isn’t the
distribution of ¢ for any sample, but for samples of size n that would arise
if the null hypothesis were true. S is called the sampling distribution of ¢.
One may then ask, “What is the probability of obtaining a statistic value of
¢(s) or more by chance if Hy were true?” The answer, called a p value, is the
area of S above ¢(s). Suppose p = .01, should you reject the null hypothesis?
There isn’t a correct answer to this question, but you can be assured that if
you do reject Hy, the probability that you do so in error is no greater than
p. Rejecting Hy when it is true is called a Type I error. Failing to reject Hy
when it is false is a Type II error, and the power of a test—the probability
that you will reject Hy when it is false—is one minus the probability of a
Type II error. One may also ask, “What value of ¢(s) must I exceed to be
assured that my p value is less than some threshold a?” This is called the
critical value of ¢ and, obviously, it varies with a.

To illustrate, suppose we have a coin ¢ that we suspect is biased, and we want
to test this statistically. Let Hy be that c is fair, and let ¢(c) = 16 be the
number of times that ¢ lands heads in a sample of n = 20 tosses. Let S be the
probability distribution of ¢(i) where 7 is a fair coin, thus S is the sampling
distribution of ¢(i) under Hy (it happens to be a binomial distribution with
.5 and 20 as parameters). The probability of £ > 16 heads in 20 tosses can
be calculated from S; it is approximately p = .006. The critical value for this
experiment, for o = .05 is ¢(s) = 14; that is, if ¢ lands heads 14 times or
more then one can reject Hy with a probability of error less than o = .05.

It is easy to specify F' statistics that measure main effects and interaction
effects. However, because of the carryover effects it is not so easy to spec-



ify the sampling distributions for these statistics. Classical F' distributions
are derived under some assumptions, and while F' tests are robust against
departures from most of these, learning curves violate an important one:
homogeneity of covariance. To see what this means, note that we could cal-
culate a correlation between the four data points in the Ay, ¢; cell of Figure 2
and the four in the Ay, ¢y cell. Under homogeneity of covariance, this corre-
lation would be constant for any pair of cells Ay, ¢; and Ay, t;. However, the
correlation between performance after ¢ and ¢ 4+ 1 training instances is apt
to be higher than the correlation between performance after ¢ and ¢ + 100
instances, so homogeneity of covariance is apt to be violated.

The effect of violating homogeneity of covariance is to underestimate p values,
or, equivalently, to underestimate the probability of asserting an effect when
there is no effect. Authors differ on the seriousness of this underestimation
(Cohen 1995 (p. 306), Keppel 1973, O'Brien and Kaiser 1985).

The homogeneity of covariance problem can be sidestepped, however, and
accurate p values can be obtained, by deriving sampling distributions for F
statistics that take the nonindependence of learning curve data into account.
The procedure is called randomization (see, e.g., Cohen 1995, ch. 5). Con-
sider first the null hypothesis that Algorithm has no effect on performance.
If it were true, then the lines associated with algorithm A; in Figure 2 might
equally well be associated with A, or with any other algorithm. Thus, if
we randomly redistribute lines among algorithms, and then calculate Fy, in
the usual way, we will derive one value of Fjj, under the null hypothesis that
Algorithm is independent of performance. For clarity, denote this statistic
Fy, to remind us that it was derived by randomization, that is, shuffling
lines, and to distinguish it from the sample statistic F}j, that was calculated
from the original (unshuffled) data table. If we shuffle the lines again, we will
get another, somewhat different value of Fj;,, and if we shuffle 1000 times we
can get a distribution of 1000 values of this statistic.

By shuffling lines instead of, say, individual data points among algorithms,
we preserve the dependencies among the data points on each line. Said differ-
ently, we treat a line as a unit for the purpose of estimating the distribution
of Fj,, so the degree of dependence among the data on a line is irrelevant.
It is known that when homogeneity of covariance is violated, comparing Fj,
to a conventional F' distribution will underestimate p, that is, it will make
F,i, look significant at a given level of o when it is not. The distribution of

F}, protects against this error.



aig 18 not technically a sampling distribution but it serves some of the same
purposes, namely, to estimate a p value for a sample result, or to find a critical
value that F}j; must exceed to reject Hy with some level o of confidence. Con-
ventional sampling distributions test hypotheses about populations (e.g., the
hypothesis that in an infinite number of trials, there would be no difference
between the mean performance of one algorithm and another). Randomized
sampling distributions say nothing about populations, so the null hypothe-
sis is that Algorithm is independent of performance, on this data set. One
should not lose sight of this important difference between classical sampling
distributions and randomized sampling distributions (Cohen 1995, p. 175).

3 The Procedure in Detail

Consider a set A of m learning algorithms A, ..., A,,. For each algorithm A,
we have a set L& of [ learning curves LIV, ..., Lgl). Each learning curve Lg-l)
constitutes a k-tuple (L;Z%, cee L%) of real numbers, where each L% gives

the performance score of the learning algorithm A; on the jth run after A; has
performed an amount #; of training.! Note that k, [ and the ¢, (1 < h < k)
are the same for all algorithms.

We will test two null hypotheses: There is no effect of Algorithm on per-
formance, and there is no effect of Algorithm on the relationship between
Training and performance. These correspond to F' tests of a main effect and
the interaction effect in a two-way analysis of variance, so we will compute
the appropriate statistics, Fy, and Fj,, but we will compare them to the
randomized sampling distributions and

*

*
alg int*

The complete procedure can be summarized as follows:
1. For each algorithm ¢, collect [ learning curves Lgi), ceey Lgi). If there are
m algorithms, this will produce a data table like the one in Figure 2.

2. Run a conventional two-way analysis of variance on this data table to
obtain sample statistics Fyj; and Fiy.

!The “amount of training” is an abstract notion here which could be given by the
number of training instances processed, the number of trials run, or even by the training
time.



* .,

3. Generate the sampling distributions and Fj,:

alg
Throw the m x [ learning curves into a “pool” P.
Doi=1...z times (where z is large, e.g., 1000):

(a) Shuffle P and reassign each of the ml learning curves to the m
algorithm categories (rows in the data table) such that each
row contains [ curves. Shuffling P enforces the null hypothesis
of no association between performance and algorithm.

(b) Run a conventional two-way analysis of variance on the re-

sulting data table and record Fj, ; and Fj, ;.

4. Find the critical values in the distributions F), and Fj,. If o = .05
and z = 1000 then the critical value in each sorted distribution is the
950th, because 5% of the distribution lies above this value. In general,

the critical value is the a100th quantile.

lg,i

5. If Fyg exceeds the critical value for the Fy;, distribution, reject the null
hypothesis that Algorithm does not affect performance. Similarly for
-Fint~

6. The p value for each hypothesis is derived from the rank of the closest
value in the sorted sampling distribution. For example, if Fj;, = 10.3
and the closest value in Fjj, is 10.2, and if the rank of this value is 972

out of 1000, then p < (1000 — 972)/1000 = .028.

Note that for small [ and very small m, one can save time (and gain accuracy)
by performing exact randomization, i.e. computing the F' values of all possible
assignments of curves to categories. There are c,,; such assignments, where

1 ifm=1
Cm’ = ml .
: %Cmfl,l ifm>1

However, this number grows very rapidly with m. For example, ¢y 7, ¢34 and
ca3 are all greater than 1000.

4 Experimental results

Unless otherwise mentioned, all examples in this section use real learning
curves obtained from a toy problem (see appendix). The number of curves
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per algorithm was [ = 10, and k = 8 levels of training were used (0, 200, 500,
1000, 2000, 3000, 5000, 8000). The randomized distributions each consisted
of 1000 values.

4.1 ANOVA tables

The first example consists of the two sets of curves shown in Figure 3. The
ANOVA table generated by the randomized procedure is shown in Table
1. We find that A; and A, are different with a high degree of confidence:
The algorithm effect is significant at p = .015. (The interaction effect is
not significant.) The F distributions are shown in Fig. 4. The standard F
distributions for the appropriate degrees of freedom (7 and 144 for F,; 2 and

144 for F,15) look essentially the same, but have different means (Fj,, = 1.02,
Fas = 1.06). If compared to the standard F distributions, the ANOVA
would return a pip, = 0.33 and py, = 0.0016, the latter of which is a crude

overestimation of the significance.
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Figure 3: Ten learning curves each from two different example algorithms A
(solid lines) and A, (dashed lines).

The next example compares algorithm A; with As which turn out to be
indistinguishable (Fig. 5 and Tab. 2). Like in the previous case, a compari-
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df SS MS F P
Tnteraction | 7 490.60  70.09  1.16 0.253
Algorithm | 1 624.10 62410 10.31 0.015

Training 7 139019.30 19859.90 328.17 -
error 144 8714.40 60.52
total 159 148848.40

Table 1: ANOVA table for learning curves L(!) and L® (Fig. 3).

90 T
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20
10 —

400 —

300 —

200 —

100

| ' T j I
1 2 3 5 10 15 20

Interaction (mean = 0.905) Algorithm (mean = 1.837)

Figure 4: Histograms of the F' distributions corresponding to Tab. 1.

son of the F' statistics to the standard F' distributions would underestimate
the significance of the interaction effect (piy = 0.56) and overestimate the
algorithm effect (pa; = 0.645).

df SS MS F P
Interaction 7 5.70 0.81 0.83 0.484
Algorithm 1 0.21 0.21 0.21 0.724

Training 7 123147 17592 179.91 -
error 144 140.81 0.98
total 159 1378.19

Table 2: ANOVA table for learning curves L(!) and L® (Fig. 5).

A third example compares these three sets of curves in one single analysis.
The result is a little less significant than if only L) and L® are compared,
because their difference is shadowed by the close similarity of L) and L®)
(Tab. 3).

To illustrate an Interaction effect without the presence of an Algorithm effect,
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Figure 5: Graphs of learning curves L(!) (solid lines) and L® (dashed).

df ssS MS F P
Tnteraction | 14 771.60  55.12  0.88 0.477
Algorithm | 2 799.31  399.65  6.41 0.026

Training 7 203039.10 29005.59 465.58 -
error 216 13456.90 62.30
total 239  218067.00

Table 3: ANOVA table for learning curves L), L) and L®)
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we created a dataset LU'® by adding the row vector v = [-7,-5,-3,—-1,1,
3,5,7] to each learning curve of L. Because the elements in v sum to
zero, datasets L(Y and L('® differ only in their column means, but not in
their row means. This is the situation shown in Figure 1b. The resulting
ANOVA table is given in Table 4. The interaction between algorithm and
training is significant at the 0.057 level. This significance increases with the
magnitudes of the elements of v. Because of the randomness in the generation
of the distribution of Fjjs, pa slightly differs from 1.

df SS MS F P
Interaction 7 840.00 120.00 1.99 0.057
Algorithm 1 0.00 0.00 0.00 0.984
Training 7 162558.70 23222.67 386.03 —
error 144 8662.80 60.16
total 159 172061.50

Table 4: ANOVA table for learning curves L(") and LU%

4.2 Performance Measurements

The performance of a statistical test is usually measured in terms of the
Type I error and the power (cf. Section 2). To illustrate the power of our
method, we computed power curves using 100 learning curves generated by
algorithm A;, here again denoted L. A second set L(!) is created by
multiplying each item in each learning curve of L) by a constant stretch
factor s. This yields a useful test situation because the learning curves of
both sets start out at roughly the same location on average, but then grow
at different rates, which is a situation commonly encountered in Machine
Learning.

To generate a point in a power curve for the Algorithm effect, the following
procedure was executed:

1. Generate a randomized F}}, distribution under the null hypothesis by

alg
repeating for s = 1...10000:

(a) Randomly draw two disjoint, unique samples of appropriate size
from LM u L1,

(b) Compute statistic Fy, ;.

12



2. Obtain the 0.05 critical value ¢, from the distribution of alg by aver-
aging 21 values (the 95th percentile and the ten values preceding and
following it, to increase accuracy).

3. Initialize r to zero.
4. Do 100 times:

(a) Draw a set L(® of [ unique curves randomly from L.
(b) Draw a set L(®) of [ unique curves randomly from L(").

(c) Compute Fy, on L@ and L®.
If Flg > cay, then increment r by one.

5. The power is given by r/100.

Likewise, power curves were generated for the Interaction effect. In Fig. 6,
the number of learning curves [ = 10 was held constant, and the stretch
factor s was varied. In Fig. 7, s = 1.1 was held constant, and the number
of learning curves [ per algorithm was varied. Note that the point s = 1.1,
[ =10 occurs in both graphs.

The power increases rapidly with s and [ and reaches high values early. For
example, in our case, if the performance values of one algorithm exeed those
of the other by 10 percent on average, and we have 10 curves in each set,
then our procedure will detect an algorithm effect about 80 percent of the
time with a Type I error of .05.

5 Further Analysis of Learning Curves

The randomized analysis of variance presented in the previous sections helps
us identify effects of Algorithm and also interactions between Algorithm and
Training on performance, but it does not tell us which of several algorithms
is “best,” nor whether two among several algorithms are significantly differ-
ent, nor whether performance differs in particular regions of two (or more)
learning curves. Questions of this sort, which involve comparing the means
of two or more cells in the data table in Figure 2, are handled by pairwise
comparisons of means or, more generally contrast analysis. The challenge
is to properly estimate the probability of Type I errors, in which the null
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Figure 6: Plot of the stretch factor s versus power of the Fy, (solid curve)
and Fi,; (dashed) statistics. The number of learning curves per algorithm is
[ = 10, and the Type I error 0.05.

hypothesis is incorrectly rejected and an effect is incorrectly asserted. If
one asks many questions of one’s data, for instance by comparing the mean
performances of every pair of algorithms, and if each comparison has a 0.05
probability of Type I error, then the probability of at least one Type I error
in m comparisons is 1 — (1 — 0.05)™. Techniques for guarding against the
underestimation of total Type I error are discussed in Cohen (1995), chs. 7
and TA.

It is often the case that learning curves for algorithms A; and A, are dis-
similar at low levels of training but indistinguishable after a lot of training.
Alternatively, the curves might rise together, then separate after more train-
ing. It would be helpful to know the point at which the difference between
A; and Ay goes away. The interesting thing about F' statistics is that they
are composed of sums; for instance, one term in Fj, is the squared effects of
algorithm, summed over levels of training. This sum is called SSy, for “sum
of squares for algorithm.” (You can see the sums of squares in the ANOVA
tables presented earlier.) This means we can quit summing after some level
of training and ask what proportion of the sum of squares for all levels of
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Figure 7: Plot of the number [ of learning curves per algorithm versus power
of the Fg (solid curve) and Fi,, (dashed) statistics. The stretch factor is
s = 1.1, and the Type I error 0.05.
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training is the sum for just part of the training. If the proportion is very
high, then it suggests that the curves differ at low levels of training and not
at later levels. Conversely, if the sum of squares for early training is a small
fraction of the sum for all training, it suggests that the differences between
the curves are most pronounced later in the curves.

The same trick works for interaction effects. If the curves cross early and
then run roughly parallel, then SS;,; summed over the early levels of training
will be a large fraction of the total SSj;.

6 Conclusion

We have proposed a statistical method for comparing sets of learning curves.
Based on a randomized version of two-way analysis of variance, it detects
Algorithm and Interaction effects with a given probability of Type I error.
Experiments on real data indicated high power to detect existing distinctions.
Our method avoids the problem of multiple pairwise comparisons and the
homogeneity of covariance problem. We recommend it for its simplicity and
hope it will be a helpful addition to the statistical toolbox of the machine
learning community.
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A Learning curves used in Sec. 4

The learning curves used in the above examples were generated by an Al pro-
gram that learned to play TIC-TAC-TOE against a random opponent. The
learning method used was TD(0) Reinforcement Learning (Sutton 1988). The
t, mentioned above refer to the number of training games played. The per-
formance score was the cumulative score of one hundred test games against a
random player, where losses, draws and wins scored -1, 0, and 1 respectively.
The algorithms differed in their learning rates which were 0.001, 0.8 and 0.1
for Ay, Ay and Aj respectively (note the robustness of the learning process
with respect to the learning rate).
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