Gaining Confidence in Distributed Systems

Gleb Naumovich,
Lori A. Clarke,
and Leon J. Osterweil

University of Massachusetts, Amherst

Computer Science Department

University of Massachusetts
Ambherst, Massachusetts 01003
(413) 545-2013

{naumovic|clarke|ljo}@cs.umass.edu

Matthew B. Dwyer
Kansas State University, Manhattan
Department of Computing and
Information Sciences
Kansas State University
Manhattan, KS 66506
(913) 532-6350
dwyer@Qcis.ksu.edu

Introduction

Increasingly software systems are being written as distributed systems. The advent of Java and the World
Wide Web will no doubt accelerate this trend. Distributed systems have many benefits, such as improved
performance and flexibility. Unfortunately, it is much more difficult to test such systems. Distributed systems
are inherently nondeterministic; executing the same program on the same inputs might produce different
results depending on such things as the system load and scheduling algorithm. There has been considerable
work on developing testing platforms for distributed systems, which primarily monitor behavior and support
re-execution or post-mortem examination of intermediate results. As with all testing approaches, the results
are only as good as the selected test data. The next input may expose an error in the system.

An alternative approach is to verify that certain properties must be guaranteed to hold for any execution
of the system. This approach is independent of the choice of test data or any of the factors that could affect
execution, such as the system load. Formal verification techniques have not been widely successful in the
past primarily because they require a complete specification of the behavior, which is usually very difficult
to write and often as prone to errors as the code itself. In addition, formal verification approaches are
computationally expensive, and they also require considerable amount of expertise on the part of the user.
We propose an alternative approach, which uses data flow analysis to verify, automatically and efficiently,
user-specified properties of distributed systems.

With this approach, properties are usually not a full specification of the system’s expected behavior but
instead describe important requirements of the system, such as the elevator door can not open while the
elevator is moving. Thus, instead of a test case which would exercise one path to show that the door can not
be open when the elevator is moving, a property that states that this should not happen on any execution
of the system is formulated. If it is verified, it is proven that no execution could cause the door to be open
while the elevator is moving. If it is not verified, then a counter example is given which provides a trace
through the program where the door is open while the elevator is moving.

This approach can be used throughout the software development lifecycle. Properties describing desirable
behavior can be formulated as early as on the requirements stage. After the design of the system is completed,
this approach can be used to verify whether the design conforms to the behaviors described by the set of
properties. This allows errors to be detected early, rather than discovering them later during testing or even
after the system has been deployed. This process can be repeated after the coding stage, enhancing the
initial set of properties with additional ones reflecting the specific design and implementation choices.

Each property is proved separately so properties can be added to or removed from the property set as the
system changes or more information is acquired. For example, if a system fails during execution, the analyst
may have a hunch about the cause of that failure and can formulate a property to validate that hunch. If
the property can be verified, then the analyst must consider alternative hunches. If the property is shown
to be false, confirming the hunch, then the analyst can look at some counter examples, to help pinpoint the
cause of the failure. After the analyst has ”fixed” the system, the property should again be verified to assure
that the analyst has found all the causes of the failure.

Using data flow analysis to statically detect errors in software systems was first proposed in the DAVE
system [5], which could detect anomalous sequences of variable definitions and references in sequential
FORTRAN programs. The CESAR system [6] extended this approach to general user-specified properties.
The FLAVERS system (FLow Analysis for VERifying Specifications), which is the system described here,
extends this approach to be applicable to distributed systems and provides a means for improving the
accuracy of the results. FLAVERS has been used to verify properties of the benchmark programs that
appear in the concurrency analysis literature [7], properties of network protocols [9] and high-level software
architectures [8], and by industry to prove properties about Advanced Distributed Simulation software.

Technical Overview

FLAVERS [1] can be used to verify explicitly stated event sequence properties of concurrent or distributed
systems. With this approach, an analyst defines a set of program events of interest and formulates properties
to be checked as sequences of those events. Given a design or implementation of a concurrent or distributed
system, annotated with these events, and a property to which that system should adhere, the technique
determines whether the property holds on all system executions.

The results of an analysis may indicate that the property holds on all executions of the system, no
executions of the system, or some executions of the system. The first two results are called conclusive, while
the latter is called inconclusive. One of the reasons for an inconclusive result is that an error has been found,
and thus the property does not hold on some executions of the system. Another reason, however, could be the
potential imprecision of the model of the system that was used during the analysis. As is typically the case
with static analyses, to assure that the results are always conservative, the model of the system overestimates
the possible executable behaviors of the system. If the results of an analysis are inconclusive because the
property holds on all real executions of the system but does not hold on some infeasible executions of the
model, we call such results spurious.

The accuracy improving approach of FLAVERS allows the analyst to add control and data flow infor-
mation incrementally to the analysis to increase its precision. The information is added in the form of
constraints, represented as finite state automata. For example, the analyst might decide that the results
are inconclusive because the value of some variable is used as a sentinel in a conditional statement in the
software system under analysis, and this conditional statement affects the precision of the results. Using the
automated tools provided, the analyst can build an automaton representing the values of that variable. An-
other example of a constraint that is often necessary to increase the accuracy of the analysis of a distributed
software is an automaton that represents the control flow of a single process in the distributed system.

After new constraints are constructed, they are incorporated in the next run of the analysis. Figure 1
illustrates the high-level structure of the accuracy improving data flow approach of FLAVERS. The dashed
line from the inconclusive results to the set of constraint automata for the system shows the process of using
previous analysis results to guide the selection of new constraints for improving the accuracy of the results.

To analyze non-trivial properties of concurrent systems, the analyst may need to go through the process
of adding constraints several times; each time getting inconclusive results, realizing the cause of the inconclu-
siveness, and incorporating additional relevant information into the analysis. The advantage of this technique
is that each attempt is relatively efficient and straightforward and, thus, an analyst can prove interesting
properties easily and efficiently, compared to other techniques such as theorem proving and reachability
analysis. Descriptions of the application of this technique appear in [1] and [9].

In addition to improving the analysis accuracy, the constraint mechanism can be used in other ways,

Constraints

Property /

Inconclusive
Result

Mode of the
-1 Solve the Data
software

Flow Problem \ .
system Conclusive

Result

Figure 1: Accuracy Improving Data Flow Analysis

such as specifying behaviors of missing pieces of software and modeling the environment in which the system
executes. Modeling behaviors of some not yet created parts of the system in the form of constraints allows
the analysis process to start earlier, without waiting until all components of the system are built. Con-
straints mechanism can also be used to specify assumptions about the environment (e.g. hardware or human
interactions) in which the system executes. For example, the behavior of a communication link connecting
network entities can be modeled to provide certain restrictions that the hardware imposes, but which cannot
be obtained from the software. For example, an assumption can be made that the link cannot lose more
than a predefined fixed number of messages in a row [9].

Theoretical Basis

The incremental accuracy improving technique models the system under analysis with a Trace Flow Graph
(TFG), whose nodes are annotated with events of interest. The TFG represents the flow of information
through the system. Interleavings of events located in different tasks are represented explicitly with a special
kind of edge. Both properties and constraints are represented as Finite State Automata (FSA) over the set
of the events of interest. During data flow analysis a set of state tuples is associated with each node of the
TFG, where a tuple contains one state from each of the FSAs. A state tuple associated with a TFG node
means that there is a trace through the TFG to this node that is constrained by the set of FSAs so that the
FSAs are in their associated state when this node is reached. Data flow equations describe the appropriate
propagation of the FSA state information through the nodes of the TFG. These equations can be defined so
that the solution always converges to the Maximal Fixed Point [4].

Once the Maximal Fixed Point solution is obtained, the information about the states of the property
automaton is extracted from the unique final node of the TFG graph, which represents the termination of
the software system. If only accepting states of the property automaton are observed in the final node, then
this implies that the property holds on all executions of the system. If no accepting states of the property
automaton are observed, this implies that the property holds on no executions of the system. Finally, if both
accepting and non-accepting states of the property automaton are present in the final node, this implies that
the analysis is inconclusive, either because the property really holds on some but not other executions of the
system, or because of spurious paths through the TFG. These paths are selectively shown to the analyst,
who must decide if they represent a real error in the system or if more information must be provided via

constraints to eliminate these spurious paths in subsequent analysis runs.

Tool Summary

FLAVERS consists of a number of tools for creating the artifacts necessary for the analysis, for running the
analysis, and for examining the results of the analysis. A graphic user interface guides the user through the
various stages of the analysis.

Before the analysis can be run, the software system has to be annotated with events of interest and the
property (or properties) to be verified must be specified. FLAVERS employs automated language processing
tools [2, 3] to build an abstract syntax tree (AST) for the system and a control flow graph (CFG) for each
task in the system. Both ASTs and CFGs are used to create the TFG, the model of the system that is
used during the data flow analysis. Properties are specified in the form of quantified regular expressions
(QREs) [1]. This specification consists of the alphabet of the property, which is a set of the events that are
referenced in the property, an indicator of whether the property should hold on all or on no executions of
the system, and a regular expression that describes the event sequences. After the analyst writes a property
in the QRE language, it is submitted to FLAVERS for a syntactic check and a translation into a FSA
form. All the internal artifacts, e.g., ASTs, CFGs, TFG, and FSAs, are available for viewing in a graphical
form, although analysts do not have to be aware of them to be able to analyze software systems effectively.
FLAVERS includes a number of automated tools to facilitate building constraints. Currently the automated
creation of Task Automata, which model all possible orders of events allowed by the control flow in a single
task, and Variable Automata, which model the execution behavior of selected variables in the system, are
supported.

To assist the analyst in determining the cause of an inconclusive result, FLAVERS displays example
traces through the system on which the property is violated. The analyst has to decide whether these
executions are real, which means that the property really does not hold on some executions of the system,
or whether they are infeasible. Usually, given an infeasible execution, it is easy to understand why this
execution cannot occur in practice and to come up with the necessary constraints that forbid this execution,
and perhaps related sets of executions, from being explored by the data flow analysis in subsequent runs.

FLAVERS is a promising tool for static analysis of distributed systems. It has been shown to be successful
in proving properties of well-known benchmarks programs commonly used by the concurrent static analysis
community, such as the Dining Philosophers, Readers-Writers, and Gas Station problems. In addition there
has been some positive industrial experience applying FLAVERS to real software systems. Our belief that
FLAVERS is scalable and thus applicable to large-scale, distributed software applications is based on the
observation that interesting and important properties often use only a handful of events in a software system.
Once these events are known the TFG model can be reduced significantly. Work on applying FLAVERS
to large-scale distributed software is currently underway. As distributed systems become more prevalent,
tools such as FLAVERS will be imperative for reasoning about these systems and helping to assurance their
reliability.

References

[1] Matthew Dwyer and Lori Clarke. Data Flow Analysis for Verifying Properties of Concurrent Programs.
In ACM SIGSOFT’9) Software Engineering Notes, Proc. Second ACM SIGSOFT Symposium on Foun-
dations of Software Engineering, pages 6275, v. 19, n. 5, 1994.

[2] Peri L. Tarr. Language Processing Toolset Prerelease Notes. Arcadia Document, UM-91-01, Universily
of Massachusetts, 1991.

[3] Peri L. Tarr and Lori A. Clarke. PLETADES: An Object Management System for Software Engineering
Environments. In Proc. of the First ACM SIGSOFT Symposium on Foundations of Software Engineering,
pages 56—70, Los Angeles, CA, December 1993.

[4] M. S. Hecht. Flow Analysis of Computer Programs. North-Holland, New York, 1977.

[5] Leon J. Osterweil and L.D. Fosdick. DAVE — A Validation, Error Detection, and Documentation System
for Fortran Programs. In Software Practice and Experience, pages 473-486, v. 6, n. 4, October 1976.

[6] Kurt M. Olender and Leon J. Osterweil. Interprocedural Static Analysis of Sequencing Constraints. ACM
Transactions on Software Engineering and Methodology, pages 21-52, v. 1, n. 1, January 1992.

[7] A.T. Chamillard, Lori A. Clarke, and George A. Avrunin. Experimental Design for Comparing Static
Concurrency Analysis Techniques. Technical Report 96-84, Department of Computer and Information
Science, University of Massachusetts, Amherst, MA 01002, August 1996.

[8] Gleb Naumovich, George A. Avrunin, Lori A. Clarke, and Leon J. Osterweil. Applying Static Analysis
to Software Architectures Technical Report 97-08, Department of Computer and Information Science,
University of Massachusetts, Amherst, MA 01002, January 1997.

[9] Gleb Naumovich, Lori A. Clarke, and Leon J. Osterweil. Verification of Communication Protocols Using
Data Flow Analysis. In Proceedings of SIGSOFT’96: Fourth Symposium on the Foundations of Software
Engineering, pages 93-105, San Francisco CA, October 1996.

