Reinforcement Learning and Local Search:
A Case Study

by
Robert Moll, Andrew Barto,
Ted Perkins & Richard Sutton
CMPSCI Technical Report 97-44
September, 1997

NOTE: This paper is available by anonymous ftp from the site
ftp.cs.umass.edu in the directory pub/techrept/techreport/1997

REINFORCEMENT LEARNING AND LOCAL SEARCH: A CASE STUDY

Robert Moll, Andrew Barto, Ted Perkins, Richard Sutton
Department of Computer Science
University of Massachusetts, Amherst MA 01003

Abstract

We describe a reinforcement learning-based variation to the combinatorial optimiza-
tion technique known as local search. The hillclimbing aspect of local search uses the
problem’s primary cost function to guide search via local neighborhoods to high quality
solutions. In complicated optimization problems, however, other problem character-
istics can also help guide the search process. In this report we present an approach
to constructing more general, derived, cost functions for combinatorial optimization
problems using reinforcement learning. Such derived cost functions integrate a variety
of problem characteristics into a single hillclimbing function. We illustrate our tech-
nique by developing several such functions for the Dial-A-Ride Problem, a variant of
the well-known Traveling Salesman Problem.

1 Introduction

Combinatorial optimization problems are fundemental in many areas of computer science,
engineering, and operations research. Solving such problems involves searching a discrete,
finite space of feasible solutions for an optimal solution—a solution of least cost. Often,
finding an optimal solution is not possible, and so a good quality near-optimal solution is
acceptable.

One popular and generally effective approach to such problems is the method of local search,
also known as iterative improvement or hillclimbing. The local search algorithm may be
summarized as follows:

1. obtain an initial feasible solution;
2. find a neighboring, less costly solution, and repeat this step; or stop, and report the
most recent best solution—a local optimum.
Local search suffers from two principal defects: it tends to get stuck at poor local optima; and
it can be difficult to apply when a problem is particularly complex or unevenly constrained.

Healy and Moll [4,5] offered one remedy to this situation when they proposed their sacrifice
principle. According to this approach, some of the time the local search algorithm moves
from solution S to neighboring solution T, not because T is less expensive than S, but

because T has a larger local neighborhood than S. Thus, feasible solutions are evaluated
not just by their primary cost, but also by a secondary cost, namely neighborhood size. This
quality sacrifice mechanism allows the algorithm to avoid getting stuck at local optima, and
it also provides a natural way to apply local search to more complex problems, e.g., those
problems with nonuniform neighborhood structures.

In this report we develop a more general framework for addressing the inherent defects
in local search. First, we identify several cost functions that are relevant to a particular
problem. We treat these as features, and we combine them to construct a single, derived,
cost function that is now a suitable vehicle for hillclimbing. To make our discussion more
concrete, we focus on a single traditional combinatorial optimization problem, namely the
Dial-A-Ride problem, or DARP, which is a somewhat complicated variant of the well-known
Traveling Salesman Problem, or TSP.

Our work is closely related to two recent studies that have appeared in the machine learning
community. Boyan and Moore [2] report on a learning-based method for searching a space
of feasible solutions for good initial solutions from which to begin local search. Zhang and
Dietterich [12] consider instances of a NASA space shuttle mission scheduling problem. They
show how reinforcement learning (RL) may be used to acquire a technique for “repairing”
infeasible schedules efficiently in an iterative-improvement style.

This report is organized as follows. In Section 2 we discuss the local search technique in
more detail. In section 3 we describe the DARP problem. In Section 4 we present our
model for integrating local search and RL. In Section 5 we describe the algorithms we have
developed that exploit this integration. In Section 6 we present our experimental results.
And in Section 7 we discuss our work, present some conclusions, and outline directions for
future research.

2 Local Search

Following (8], we distinguish between an optimization problem instance and an optimization
problem. For example, an instance of TSP includes a concrete distance matrix of fixed size
as part of its specification. By contrast the general TSP problem refers to all TSP instances
of all sizes.

Definition: An optimization problem instance is a pair (F,c), where F is a set of feasible
solutions, and c is a cost function that assigns a real number to each solution. We say f € F
is a global minimum for the instance if ¢(f) < ¢(g) for all g € F.

Local search imposes a neighborhood structure on the set of feasible solutions of a problem
instance. Informally, g is a neighbor of f for a particular instance—that is, g € N(f)—if g
is “close” to f in some discernible way. A solution f is a local minimum if for all g € N(f)

we have that ¢(f) < ¢(g).

The local search algorithm uses the neighborhood structure of a problem to limit search.
The algorithm may be summarized as follows:

1. Find an initial feasible solution fo
2. Given feasible solution f, search for g € N(f) for which ¢(g) < ¢(f);
3. Ff there is such a g, say g*, goto 2, replacing f with g*;

4. Else return f (the local minimum).

We call the actions embodied in Steps 2 and 3 above, which move the algorithm from solution
f to neighboring solution g, one cycle of the local search algorithm.

Traditionally local search proceeds with respect to the natural cost function of a problem,
e.g., length of tour in the case of TSP. When search proceeds by moving to the first discov-
ered element of N(f) with lower cost, the resulting algorithm is called a first-improvement
algorithm. If all members of N(f) are considered, and the algorithm advances to a neighbor
with lowest cost, the resulting algorithm is called a best-improvement algorithm.

3 DARP

DARP has the following concrete formulation. A van is parked at a terminal, and the driver
receives N phone calls from customers who need rides. Each call identifies the location
of the calling customer, as well as that customer’s destination. After the calls have been
received, the van must be routed so that it starts from the terminal, visits each site in every
pick-up/drop-off pair in some order, and then returns to the terminal. There are precedence
constraints on the van’s tour: it is constrained to pick up a passenger before eventually
dropping off that passenger.

The van tour should be of minimal length. Failing this goal—and DARP is NP-complete,
so it is unlikely that optimal DARP tours will be found easily—at least a good quality tour
should be constructed. We assume that the van has capacity N, where N is the number of
customers, and that the distances between pick-up and drop-off locations are represented by
a symmetric Euclidean distance matrix.

We use the notation ,
012-13-3-2

to denote the following tour: “start at the terminal (zero), then pick up 1, then 2, then drop
off 1 (thus: —1), pick up 3, drop off 3, drop off 2 and then return to the terminal (site 0).”
We will sometimes refer to single-leg tour segments, e.g., the segment from 0 to 1, 3 to -3,
etc., as edges of the tour.

Given a tour T, we define Np(T) to be the set of all legal tours obtainable from T by

subsequence reversal. For example, for the tour above, the new tour created by the following
subsequence reversal

01/2 -13/ -3 -2 — 013 —-12 -3 —2

is an element of N3(T). We say that Ny(T) is the 2-opt neighborhood of T'. Notice that
because of the precedence constraints not all such reversals lead to feasible tours. For
instance,

012/ -13-3/ -2 — 012 -33 -1 —2

is infeasible, since it asserts that passenger 3 is dropped off first, then picked up.
The neighborhood structure of DARP is highly non-uniform. Tours of the form
012345..N-1-2-3-4-5...—-N
have feasible N2 neighborhood size of O(N2), whereas tours of the form
01 -12-23 -34-45-5...N —N

\

have feasible N; neighborhood size of O(N).

In our discussions of the N, neighborhood structure, we assume throughout that there is a
fixed, standard order of enumeration of the neighbors of any tour T.

Definition: Let T be a feasible DARP tour. By 2-opt(T) we mean the tour obtained by
first-improvement hillclimbing using the N, neighborhood structure (presented in a fixed,
standard enumeration), with tour length as the cost function. By slight abuse of terminology
we also use the term 2-opt to refer to the local search algorithm that uses the 2-opt(T)
iterative improvement step.

As with TSP, DARP admits a 3-opt algorithm, where a 3-opt neighborhood N3(T) is defined
and searched in a fixed, systematic way, again in first-improvement style. This neighborhood
is created by inserting three rather than two “breaks” in a tour. 3opt is much slower than
2-opt, more than 100 times as slow for N = 50 for each run starting from a random tour. But
it is much more effective, even when 2-opt is given equal time to generate random starting
tours and then complete its iterative improvement scheme. We will write 3-opt(T’) to denote
the tour obtained by hillclimbing on the standard cost function starting from tour T and
using the N3 neighborhood structure.

Because infeasible tours may arise when subsequences are reversed and interchanged using
2-opt and 3-opt, both algorithms employ auxiliary data structures to filter out infeasible
neighbors. In particular, 2-opt uses a one-dimensional array, which records, at position j,
for how much further in the array reversals are legal. A similar 2-dimensional array is used
for 3-opt. Note, however, that given a tour and a legal neighbor, judging whether that
neighbor has lower cost can be done in constant time since only the tour edge l?rea}cs and
reattachments figure in the new cost calculation (recall that we assume a symmetric distance

matrix).

Psaraftis [9] was the first to study 2-opt and 3-opt algorithms for DARP. His work applies
only to tours of size up to N = 30, and he reports that at that size, 3-opt tours are about
30% shorter on average than 2-opt tours. Stein [13] has done theoretical studies of DARP,
and has shown that for sites placed in the unit square, the globally optimal tour has a length
which asymtotically approaches 1.02v/2N with probability 1, where N is the number of pick-
ups in the tour. This work applies to our study—although we multipy position coordinates
by 100 and then truncate to get integer distance matrices—and thus a value of 1020 gives
us a baseline estimate of the globally optimal tour cost for N = 50.

Healy and Moll [4,5] consider the problem of using a secondary cost function to extend local
search on DARP. In addition to primary cost (tour length) they consider as a secondary cost
the ratio of tour cost to neighborhood size, which we call cost-hood. They alternate between
these two costing functions: starting from a random tour T', they first find 2-opt(T'); then
they perform a limited hill-climb using the cost-hood function, which has the effect of driving
the search to a new tour with a decent cost and a large neighborhood. The cost-hood phase
is bounded as follows. Each cost-hood cycle involves a subsequence reversal in a tour. The
cost-hood hillclimbing phase is terminated when the sum of the lengths of the reversed
subsequences exceeds the number of sites in a tour. These alternating processes are repeated
until a time bound is exhausted, at which point the least cost tour seen so far is reported as
the result of the search. This technique worked well, and the effectiveness of the algorithm
developed for DARP fell midway between 2-opt and 3-opt.

4 Learning Derived Cost Functions

While 2-opt is a fast, effective algorithm for finding legal tours of reasonable quality, the
non-uniform structure of the DARP neighborhood system—a significant characteristic of
DARP—plays no role in the 2-opt algorithm. Exploiting size of neighborhood structure, as
well certain other problem-specific characteristics, can be accomplished using RL.

Many significant applications of RL to date involve direct stochastic interaction with a
(simulated) dynamic environment. This is the case, for example, with TD-gammon [11] and
elevator dispatching [3]. Both problems are explicitly stochastic in nature. For TD-gammon,
a dice roll determines the possible moves at every play; for elevator dispatching, riders request
elevators from particular floors of a building with a certain probability distribution while
elevator simulation is in progress. Recently efforts have been made to formulate of RL for
“static” settings, that is, settings in which a complete description of an instance is available
at initial execution time. Qur work applies to problems in this “static” class.

Our RL-based approach to local search operates in two distinct phases. In the first phase
we learn a value function V, which blends various measures of solution quality into a single
function. In the second phase, we use V as a replacement for ¢, the cost function that is
traditionally used for iterative improvement.

4.1 State-Transition Costs

Our DARP-based study of RL employs a model in which each tour is identified as a state,
and the transition dynamics are determined by the N, neighborhood described above. The
available actions are: move to a neighboring tour; or terminate the trial.

We consider two different transition cost structures for this state space, M and Z, defined
below. Let T be the current tour in some trial and 7" a neighbor of T. Let € be a small
positive value to be assessed as a penalty.

M transition costs | ¢(T') — ¢(T) + ¢ [if moving from 7T to T"
c(T) — ¢(2-opt(T")) | if search terminates at T

Z transition costs € if moving from T to T"
¢(2-opt(T)) | if terminate search at 7

Roughly speaking, the M structure supplies a transition cost equal to the drop in the primary
cost at each state transition, plus a small penalty factor, which is included to discourage
long hillclimbing trajectories. (Contrary to the usual RL formulation, we are attempting to
minimize rather than maximize returns. This formulation is more common for combinatorial
optimization problems.)

The M transition cost structure leads to a convienent expression for the path-cost (cost-to-
go) function. If Ty, T,..., T, is a sequence of tours visited during an M-based hill-climb,
then the path cost starting from T} is: ¢(T3)—c(Ty)+c(Ts)—c(T2)+. . Ae(Th)—e(Tn—1)+ne =
¢(Tn) — ¢(T1) + ne. So, if we ignore the penalty term, minimizing returns is equivalent to
choosing a path that maximizes ¢(T}) — ¢(T5,), that is, the improvement in tour cost from
start to finish.

Z is modeled after Zhang and Dietterich’s [12] formulation for solving the NASA space
shuttle scheduling problem. Each intermediate local search step incurs a fixed small penalty
as transition cost, and the final transition cost is simply the cost of the 2-opt image of
the tour at termination. This reward structure attempts to create a search space in which
low-cost tours can be found with the least number of search steps; the path cost can be
interpreted as the expected cost of the final tour found by local search, plus e times the
number of steps to that tour. Because we have simplified our study by focusing on a single
large problem size, we do not perform a problem-size normalization, as is done in [12].

For either transition cost structure, performing a 2-opt run from the final state of a derived
cost function hillclimbing episode guarantees termination at a local optimum of the true cost
function. With DARP, 2-opt is computationally cheap and relatively effective, and is thus a
sensible endgame to the value function-based local search.

4.2 Learning a Derived Cost Function

We used both TD(0) and TD(1) to learn value functions, based on the transition cost struc-
tures described above. Our learning studies applied both to particular instances of the DARP
problem, and to an averaged-across-instances case. For very small instances we were able to
learn using a lookup table of states, and we observed convergence to the optimal derived cost
function as expected. That is, after learning, it was possible to hill-climb from any starting
point to a globally optimal tour. Of course this exhibition proves little, since it is an optimal
tour we seek, but we must have found it already in order for the look-up table to be effective.
We also experimented with feature-based approximators in linear, quantized feature space
table, CMAC, and sigmoidal feed-forward neural net formats. With such approximators we
learned on problem sizes up to N = 50 (50 pick-ups, 50 drop-offs).

Our most successful derived cost function was represented using a linear approximator,
expressed as a linear sum of the following DARP features: neighborhood size, or hood-size;
tour cost; how-near(k), which considers the k least expensive edges of the instance, and
measures how far apart these edges are in the current tour; and the feature cost-hood, which
is the ratio of a tour’s cost to its neighborhood size.

We have diverged a bit from the action/selection procedures typical of RL systems. In our
case, rather than following the traditional“greedy” rule of always selecting the state with
the best value, we instead mirror the behavior of first-improvement local search. When the
search is at tour T with derived cost V(T'), we step through a random enumeration of T"s
neighborhood in search of the first T/ for which

V(T') + transition-cost (T, T") < V(T).

That is, we look for the first neighbor T” such that the transition cost to T plus path cost
from T" is less than the expected return from T. If no such neighbor exists, we terminate
the search at T'. In this way, our algorithm can be interpreted as performing local search as
before, but substituting a new derived cost function for the original primary cost function.

Though nonstandard for RL situations, this action selection procedure suffices to produce
convergence of derived cost function estimates in the case of single instance learning and a
linear approximator, with suitably initialized state values, because random starting points
guarantee that the full state space will be explored [10]. '

We used the four-feature linear approximator described above, along with a bias term, in
the context of two different learning/transition cost schemes, TD(0) and the Z transition
cost structure, and TD(1) or MonteCarlo learning using the M transition cost system. In
the TD(0)/Z case, the function approximator, f, applied to tour T, returns the expected
tour cost obtained if f-hillclimbing starts at T', and ends with a 2-opt image of the resulting
f local optimum. In theTD(1)/M scheme, the function approximator estimates the 2-opt
image of a tour directly. We found that our linear function approximators were quite stable
across multiple instances of a fixed size.

In the algorithms developed in the next section, the effectiveness of the value function as

an estimator of future quality is of considerable significance. With high certainty, we would
like to believe that if V(T}) < V(T3), then hillclimbing on V as described above will lead to
tours T} and Ty for which ¢(T}) < ¢(Ty). For Z and Monte-Carlo hillclimbing we (somewhat
crudely) assessed the quality of our function approximators at size N = 50 by measuring the
correlation between the estimates provided by the value functions and the costs of the tours
arrived at after hillclimbing. In each case we examined samples of 100 randomly generated
tours. With each tour, we paired the estimate supplied by the value function V with the
actual tour cost arrived at after V hillclimbing. In the case of the TD(0)/Z regime, we
obtained correlation coefficients for these paired value samples of between .77 and .81; In the
MonteCarlo (TD(1)/M) case, similar tests yielded correlation coefficients between .3 and
45.

5 Algorithms

Throughout our study, we use 2-opt as an inexpensive “one-step” operator, which, of course,
leaves us at a local optimum with respect to the primary cost function. This complicates
matters, because starting local search with respect to our learned cost functions works poorly
when started from pure local optima—all too often the algorithm quickly returns to the local
optimum starting point. We therefore “move away” from such local optima before doing M
or Z hillclimbing. In what follows, “moving away” from a local optimum means doing a fixed
number of hillclimbing cycles with respect to the cost-hood (cost divided by neighborhood)
cost function.

We summarize below a sample of the algorithms that we considered. We perform our ex-
periments as follows. Given a data set at N = 50, we do 3 3-opt runs from random starts,
reporting the total time used and the best result found. We then use this total time figure
to bound the running of the other much faster algorithms. Thus when we report the best
value returned by 2-opt, we have run 2-opt repeatedly from different random starts until the
3-opt time bound has been used up.

Our first two algorithms are analogous to traditional measures of local search quality. In
each case we successively generate 2-opt images of random tours, and then hillclimb with
respect to the M and Z secondary cost functions.

o M-hillclimbing. Generate the 2-opt image of a random tour, and move several cycles
away from it. Hill-climb directly using the M transition costs. When an M-optimum
tar is found, report the cost of 2-opt(tar). If there is time remaining, generate a new
2-opt image of a random tour and repeat the above, keeping track of the best result

seen so far.

e Z-hillclimbing. Exactly like M-hillclimbing, except that the Z transition costs are
used.

o Modified Healy. This algorithm is based on the algorithm reported on in [5]. In that
work, the authors achieve good results by alternately hillclimbing on the standard cost
function, and then hillclimbing on the metric cost-hood, the ratio of the tour cost to
its neighborhood size. Here we begin with a random tour, followed by a fixed number
of cost-hood cycles, then a 2-opt. If there is time remaining, the cost-hood/2-opt
cycle is repeated from the last 2-opt optimum obtained. When time expires, the best
score found is reported. The results reported here are superior to those reported in
[5], we believe, because careful coding has made the cost-hood hillclimb run faster.
Notice, however, that this algorithm differs slightly from the algorithm in [5}, in that
the number of cost-hood cycles is fixed.

According to one interpretation, the value function estimates the quality of a tour as
a starting point for value function-based local search. The next two algorithms exploit
this characteristic of the value function. They incorporate a mechanism for maintaining
a list of tours—a cache—with low value function scores (good estimates). Suppose a
tour T is reached, which is a local optimum with respect to the primary cost function,
and which is the best tour seen so far. Then, in the hope that T represents an entire
region of high quality tours, tours near T' with low value-function scores are cached
for future exploration. The algorithms discussed below build and explore such caches
before returning to a more conventional local search regime.

e M-Cache. This time-bounded algorithm at size N = 50 is competitive with 3-opt.
It first does M-hillclimbing, ending with a standard 2-opt optimization. This tour
is checked, and if it exceeds (is worse than) the best score seen so far by more than
1%, then the search moves several cycles away from the optimum, and M-hillclimbing
is tried again from this new starting position. If, however, the new optimum is a
new best, or if it is within 1% of a new best, then the algorithm moves to a tour
several cycles away from the optimum, searches the entire neighborhood of that tour,
and caches the k neighbors with the lowest M scores (i.e. the k best M-estimates).
The algorithm then works through the cache, regarding each cache entry as an M-
hillclimbing starting point. If a new best tour is found, this new best is recorded and
the caching process begins again from scratch. If the cache produces no new high
quality tours, then the top-level M-hillclimbing mode begins again from the last tour
examined. The algorithm terminates when time runs out.

o Z-Cache. This algorithm is exactly like the M-Cache algorithm above, except that Z
hillclimbing replaces M hillclimbing.

We discuss the relative effectiveness of these algorithms in the next section.

6 Experimental Results

Our experiments were implemented using MacCommonLisp on a PowerMac 7600. Compar-
isons were done at one representative size: N = 50, i.e. 50 pick-ups, 50 drop-offs, and a

10

single origin site. We generated five data sets at this size, i.e., we generated five symmetric
distance matrices. The matrices were constructed by generating random points in the plane
inside the square bounded by the points (0,0), (0,100), (100,100) and 100,0). The “terminal”
of the data set was placed at the point (50,50). At this size, a typical 3-opt run took 15-45
minutes. For each of the five data sets, 3-opt was run from 3 random starts, and the best of
these was chosen as the 3-opt score. The time for these three runs was recorded, and each of
the other algorithms was run for an equivalent amount of time, which in each case involved
between 200 and 500 algorithm cycles. In the chart below, a “#” denotes the best result
found for each dataset.

Notice that both M-Cache and Z-cache are competitive with 3-opt, and each reports the
best tour found on some data sets. Modified Healy is also quite effective, and does not trail
the other algorithms by very much.

datasetl | dataset2 | dataset3 | dataset4 | dataset5

M-hillclimb 1250 1191 1227 1301 1275
Z-hillclimb 1238 1270 1274 1209 1320
modified Healy || 1013 1008 1003 954 1021
M-cache 1027 1016 958* 995 996*
Z-cache 986 1023 1012 947 998

2-opt 1359 1216 1304 1240 1275
3-opt 966* 974* 962 974 1010

We believe much of the success of the caching algorithms is due to the cache mechanism
itself. Cached tours are tours with high quality estimates, and it makes sense to explore
them as candidates before moving on to less promising tours. Indeed, this procedure makes
especially good sense in the case of Z caching, since the Z value function estimates correlate
so highly with outcomes. Anecdotally, we found that caching was quite effective, in the sense
that the vast majority of new best tours were found in the caching phases of the algorithms.
This observation is illustrated in Figure 1, which displays the costs of each of 365 starts over
45 minutes at size N = 50 using the M-cache algorithm. The darker portion of the graph
represents starts from tours in the cache; the lighter portion represents standard starts.

7 Discussion

Our work has demonstrated a broadly applicable model that combines machine learning
with local search in the context of traditional combinatorial optimization. In particular our
reinforcement-learning-based value function method provides an evaluation function that
blends significant secondary features with the primary cost function of the DARP problem to
form a more powerful and useful combined function. While DARP has no explicit stochastic
characteristics, we are able to introduce this aspect by suitably randomizing the presentation

of a tour’s neighborhood.

11

Figure 1: Hill-climbing from Cached starts

1800
1700 T e L o= PSR PP SRS
1500 ... {

1500 -

1400

Tour Length

1300

1200 -

1100 -

1000

Iterations

Unlike the work of Zhang and Dietterich [12] and Boyan and Moore [2], we have applied
our analysis to a relatively pure optimization problem—DARP—which possesses a relatively
consistent structure across problem instances. This has allowed us to construct a reliable
learned cost function that apparently works well for all instances of a fixed size. Indeed
we believe that with suitable normalization this cost function could be made to work for
all instances of all sizes. We believe this approach could be applied to a variety of core
NP-complete optimization problems with similar broad uniformity of structure, e.g. graph
coloring.

Our success in developing several N;-based learning algorithms that are competitive with
3-opt is the result of 1) the automatic construction of a value function that blends a number
of features that bear on tour’s potential for local improvement; 2) the high quality of learned
estimates; 3) the caching mechanism, which allows us to exploit the value function as a
provider of estimates of future quality; and 4) careful coding, which allowed us to “look
ahead” at the evaluation of members of a tour’s neighborhood without having to construct
neighboring tours explicitly.

In light of these observations, the appropriateness of this approach to other optimization
problems rests particularly on the identification of decisive features that indirectly bear on a
problem solution’s potential for local search. Moreover, in domains where speed is important,
it is important to identify features that can be evaluated incrementally in a “look-ahead”

12

fashion. We believe many traditional combinatorial optimization problems such as graph

coloring, bin packing, and graph partitioning are suitable for the kind of LS-RL applications
we have reported on here.

Acknowledgement

This research was supported by a grant from the Air Force Office of Scientific Research,
Bolling AFB (AFOSR F49620-96-1-0254).

References

(1] Barto, A. G., Bradke, S. J., and Singh, S. P. (1995). Learning to Act Using Real-Time
Dynamic Programming. Artificial Intelligence, 72: 81-138.

[2] Boyan, J. A., and Moore, A. W. (to appear). Using Prediction to Improve Combinatorial
Optimization Search. Proceedings of AI-STATS-97.

[3] Crites, R. H., and Barto, A. G. (1996). Improving Elevator Performance Using Rein-
forcement Learning. In D. Touretzky, M. C. Mozer, and M. E. Hasselmo (eds.), Advances in

Neural Information Processing Systems: Proceedings of the 1995 Conference, pp. 1017-1023,
MIT Press, Cambridge, MA.

(4] P. Healy (1991). Sacrificing: An Augmentation of Local Search. Ph.D. thesis, University
of Massachusetts, Amherst.

[5] Healy, P., and Moll, R. (1995). A New Extension to Local Search Applied to the Dial-A-
Ride Problem. European Journal of Operations Research, 8: 83-104.

(6] Kernigham, B. W., and Lin, S. (1970). An Efficient Heuristic Procedure for Partitioning
Graphs. The Bell System Technical Journal, 49(2).

[7] Lin, S. (1965). Computer Solutions to the Traveling Salesman Problem. The Bell System
Technical Journal, 44(10).

[8] Papadimitriou, C. H., and Steiglitz, K. (1982). Combinatorial Optimization: Algorithms
and Complezity. Prentice Hall, Englewood Cliffs, NJ.

[9] Psaraftis, H. N. (1983). K-interchange Procedures for Local Search in a Precedence-
Constrained Routing Problem. European Journal of Operations Research, 13:391-402.

[10] Sutton, R. and Barto, A. (to appear). Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA.

13

[11] Tesauro, G. J. (1992). Practical Issues in Temporal Difference Learning. Machine
Learning, 8:257-278.

[12] Zhang, W. and Dietterich, T. G. (1995). A Reinforcement Learning Approach to Job-
Shop Scheduling. In Proceedings of the Fourteenth International Joint Conference on Arti-
ficial Intelligence, pp. 1114-1120. Morgan Kaufmann, San Francisco.

[13] Stein, D. M. (1978). An Asymptotic Probabilistic Analysis of a Routing Problem. Math.
Operations Res. J., 3: 89-101.

14

