
An Adaptable Generation Approach to Agenda Management
Eric K. McCall, Lori A. Clarke, Leon J. Osterweil

University of Massachusetts
Amherst, MA 01003, USA

+1 413 545 2013
mccall, clarke, ljo @cs.umass.edu

ABSTRACT
As software engineering efforts move to more complex, dis-
tributed environments, coordinating the activities of people
and tools becomes very important. While groupware sys-
tems address user level communication needs and distributed
computing technologies address tool level communication
needs, few attempts have been made to synthesize the com-
mon needs of both. This paper describes our attempt to do
exactly that.

We describe a framework for generating an agenda manage-
ment system (AMS) from a specification of the system’s re-
quirements. The framework can support a variety of AMS
requirements and produces a customized AMS that is ap-
propriate for use by both humans and software tools. The
framework and generated system support evolution in sev-
eral ways, allowing existing systems to be extended as re-
quirements change. We also describe our experiences using
this approach to create an AMS that supports a process pro-
gramming environment.

KEYWORDS
Agenda management, process programming, cooperative
work, tool integration

1 Introduction

Modern computing systems are increasingly viewed as col-
laborations among groups of humans and software systems
whose work must be shared and coordinated. There has been
a considerable amount of work on approaches for facilitat-
ing this coordination. But none of these approaches seems to
provide the full range of capabilities needed to support this
next generation of computing systems.

One common direction of this work has focused on how to
support interoperability among systems. Such approaches
have generally focused on low-level interprocess communi-
cation protocols and mechanisms. While providing a useful

substrate, these mechanisms are at too low a level of abstrac-
tion to support clear exposition in application programs. We
believe that higher level abstractions are needed. A higher
level view of coordination and collaboration is commonly
sought by the Computer Supported Cooperative Work com-
munity, but much of this work is aimed exclusively at coor-
dination of humans.

In our work we seek to establish abstract, yet rigorously de-
fined concepts that address coordination of both humans and
computing systems. The essence of our approach is to ex-
tend and formalize the metaphor of agendas, or to-do lists.
The use of agendas seems to be nearly ubiquitous, having
been applied to problems in such varied domains as software
engineering, the factory shop floor, and routine office work.
Thus specialized instances of this metaphor have already
been used to coordinate people with each other and software
systems with each other. We believe that this metaphor, ap-
propriately applied, could be effective for coordinating hu-
mans and computer systems for a wide range of applications.
In this paper, we explore the problem of designing agenda
management systems (AMSs) that are capable of doing just
that.

To illustrate a typical context in which such an AMS might
be effective, consider the following software engineering
scenario for tracking and fixing software bugs. In this sce-
nario, the bug fixing activity requires the coordination of
many different people and software systems within an orga-
nization. We use this example to show that a well designed
AMS can effectively coordinate the activities of program-
mers, testers, managers, e-mail system, configuration man-
agement software, testing software, and compilers.

Suppose an e-mail message that contains a detailed de-
scription and stack trace information for a suspected
bug in the organization’s software product is sent to the
organization by an off-site beta tester. Alice, the of-
fice manager, reads the message and alerts the software
testers. She requests that any one of the testers verify
and document the bug and, if new, send a report to the
programmers so the bug may be fixed. She includes the
e-mail message in this bug report. Auditing informa-
tion, including the creation date and when the item was
assigned to the testers, is recorded.

1

Later in the day, Bob, a tester, looks at his agenda of
things to do. On this agenda appears Alice’s bug re-
port. He reads Alice’s instructions and the original e-
mail message, and gets to work. He finds that the bug
is new and is able to reproduce it. He marks the re-
port as high priority, and forwards the report, along with
current stack information, to the maintenance program-
mers.

Catherine, a maintenance programmer, notices the ar-
rival of Bob’s annotated bug report, takes responsibility
for it, and begins work on the problem it describes. She
reads the email message and Bob’s additional notes, and
begins browsing source code. She finds that the source
of the bug is a misunderstanding in the parameter or-
ders of some routines that are similar, and decides that
a standard parameter order must be agreed upon. She
must now set up a meeting with Douglas, the program-
mer who wrote the other routines. She does this by
viewing each of their agendas, finding a time when they
are both free, and adding the meeting to their agendas.

During the meeting, Catherine and Douglas agree on
a standard parameter order, and decide to change all
existing code to match their new interface specifica-
tion. They will each modify the code they wrote, but
Catherine will be responsible for final integration. Af-
ter the meeting, Catherine requests that the configura-
tion management (CM) tool grant her write access to
all the source objects which they must change. Because
one of the requested objects is already locked, the CM
tool notifies Catherine that her request is pending and
gives her the option of waiting for the objects to be-
come available or retracting her request. She chooses to
wait and the retract option disappears.

Later, the CM tool is able to lock all of the requested
source objects, so it tells Catherine the current identi-
fiers of all the requested source objects thus granting
her permission to edit them. Catherine and Douglas
agree on who will modify which objects, and Catherine
passes the identifiers of Douglas’ objects to Douglas.
They launch their editors, passing in the object names
supplied by the CM tool’s message.

We can assume that Catherine eventually fixes the integra-
tion problem, the CM tool moves the changes into the main
source repository, and Alice is informed that the bug has
been fixed.

This scenario addresses only a few activities of only a small
part of the organization. Already we see that a plethora of
needs, from event notification to distributed scheduling, can
be met by an AMS that can effectively facilitate and coordi-
nate interaction between the varied entitites in the organiza-
tion.

Our interest in “agendas” and “agenda management” is
hardly unique. Systems dealing with these ideas have ap-

peared before. But the problems of agenda management
have typically been confronted (and solved) differently for
each specific system. In essence each system seems to have
come up with its own, somewhat idiosyncratic, notion of
agenda management and an implementation to match. In
contrast, the main focus of our study is the problem of
agenda management itself. We propose flexible and precise
definitions of key abstractions that can then be used as the
basis for the implementation of a wide variety of different
systems for coordinating humans and tools in a variety of
contexts.

Our approach is to provide a framework and a means of
specifying and generating agenda management systems. By
taking this approach we believe we can provide an impor-
tant piece of communication and coordination infrastructure
to system designers. Because agenda management needs
change over time, generated agenda management systems
must be able to evolve to meet changing system-wide re-
quirements. Because they are used by a variety of types of
users, they must be adaptable to meet differing user require-
ments. These issues are addressed with an iterative gener-
ation approach, flexible data structures, and decoupled user
interfaces.

In this paper, we describe some typical requirements that
might be encountered by agenda management system de-
signers, and assert that a solution to the general problem of
agenda management should be able to support these require-
ments. We then present our framework and describe its com-
ponents and use. We describe a prototype implementation
of the system and its use in supporting a process program-
ming environment. Finally, we mention some related work
and directions for future research.

2 Requirements

To identify the requirements for a general solution to the
problem of agenda management, we informally define five
entities that form the foundation of our work. These are at-
tribute, agenda item, agenda, agent, and view.

An attribute is a name, type, value triple; it is the basic
unit of information in an agenda management system. An
agenda item is a collection of attributes. An agenda is a
collection of agenda items and may also have a collection
of attributes associated with it. An agent is a person or ex-
ecutable software component that can view and/or modify
agendas. A view of agendas is a rendering of the contents of
one or more agendas. Conceptually, an agenda corresponds
to a set of things for an agent to do, and an agenda item is an
element in that set. Clearly these concepts are broad enough
to span a wide variety of specific instances of AMSs having
widely varying requirements.

To illustrate the use of these terms, suppose an agent is pre-
sented with a view of all the agenda items contained in an
agenda. In this view, assume the items are sorted into a list

by an associated attribute named “priority” so that agenda
items containing the highest priority value appear at the top
of the list. The agent may change the priority attribute of a
particular agenda item, causing its position in the rendered
list to change. In the scenario, when Bob sends the high-
priority bug report agenda item to the programmers’ agenda,
it might be shown near the top of each programmer’s view.

2.1 Requirements for Agenda Management Systems

To give a sense of the breadth of issues confronting an AMS
designer, we now provide a list of commonly occurring re-
quirements for AMSs, many of which might be required by
any specific system, such as the one described in the bug-
tracking scenario.

hierarchy: support the dynamic decomposition (and
composition) of agenda items into sub-items and agen-
das into sub-agendas
priority: allow the agenda items within an agenda to
be prioritized and allow priorities to be changed
prerequisites: allow attributes of an agenda item to de-
pend on the values of attributes of other agenda items
or agendas.
alternative items: allow an item to be composed of
alternative items, meaning there is an exclusive-OR re-
lation between them.
data persistence: support varying persistence require-
ments, handling both transient data and data that should
persist for long durations.
access control: support the ability to control which
agents may invoke operations on particular entities.
auditing: make available a record of an entity’s his-
tory (e.g., which agent created, modified, or moved
an item to another agenda) and associated information
(e.g., what other items depend on an item).
reflection: respond to queries about the system itself.
a variety of views: support the customization of views.
sharable: support the sharing of entities among agents.
distributed, concurrent. support distribution across
different platforms and concurrent access by multiple
users.
coherent: guarantee coherent views of entities.
integration of tools and people: support both tools and
people, without making assumptions about which will
be using the agenda management system.
evolution: support the changing needs of its users.

In addition to usual requirements for software systems, such
as scalability, openness, efficiency, and generality, this list
enumerates the range of requirements that any general ap-
proach to agenda management must be prepared to address.
These requirements are addressed by different parts of our
approach, described in the next section.

Designer-defined
specificationrequirements

agenda management

Substrate

Generated classes

Root classes

AMS generator
designer

AMS

Figure 1: Agenda system creation process

3 Approach

An approach to agenda management should meet an organi-
zation’s requirements while still accommodating subsequent
changes in those requirements, including individual users’
demands. We propose a generational approach that accomo-
dates a range of different sorts of subsequent evolution and
customization, because

generating from a basic framework an AMS that meets
an organization’s requirements greatly reduces the ef-
fort required to create an agenda management system,
ensuring that the capabilities of a generated system can
be incrementally augmented (evolved) to meet addi-
tions to requirements reduces the effort required by the
organization to maintain its AMS, and
allowing users of an AMS to customize (adapt) it ac-
commodates informal changes and specialization in the
representation and use of the AMS.

Figure 1 depicts generation of a new AMS. The system
designer is responsible for translating the requirements for
agenda management into an appropriate specification for an
AMS. The language in which the specification is written al-
lows a designer to specify extensions to a set of basic capabil-
ities. Once the specification is produced, it is provided to the
AMS generator, represented by the rounded rectangle in fig-
ure 1. The AMS generator’s function is to produce an AMS.
The AMS consists of generated subclasses which extend the
capabilities of several root classes, and a generic substrate.
These extended capabilities meet the specification given by
the designer. The extension mechanisms include an inher-
itance mechanism, which allows for type-strong extension
of the root classes, and a policy mechanism, which provides
control over the use of objects of generated classes. The root
classes are the building blocks from which the more complex
data structures needed by most agenda management systems
are constructed. The substrate is a set of underlying facilities
that support concurrency, distribution, and other fundamen-
tal needs. It may be thought of as an extended operating
system library that supports agenda management. The root

user

viewer
custom

viewer
custom

viewer
custom

agenda
agendaagenda

agenda

agenda

agendaagenda

agenda

agenda

AMS

agenda

viewer
custom

tool

user

Figure 2: Agents using an adapted AMS

classes and substrate are not modified during AMS genera-
tion, but remain constant regardless of the specification. This
is indicated by shading in the figure. The generated AMS is
then deployed to meet the requirements originally presented
to the designer. Agent specific interface code may then be
linked with the application programming interface (API) to
the AMS to provide agents with views of, and a means of
modifying, AMS data.

For a generational approach to agenda management to be
practical, it should allow the AMS to change to meet changed
requirements. Our approach supports three kinds of changes:
designer-specified additions to the generated AMS (evolu-
tion of the AMS), agent adaptation of the AMS, and agent
view customization.

Additions to generated agenda management systems may be
made by iteratively using the generation framework depicted
in figure 1. To add to an existing AMS, a designer (or pos-
sibly a user acting as a designer) writes a specification that
describes the additional required capabilities (in the form of
additional root object subclasses) and provides this specifica-
tion to the system generator. The system generator then gen-
erates additional modules that augment the AMS with new
types and implementations. These modules are translated
and dynamically linked with the rest of the system to provide
the additional capabilities. Because the additional modules
are linked dynamically, only they must be generated (hence
the use of the word “incremental”), and the possibility of
augmenting a running system in place exists. These kinds
of changes can be characterized as global changes to the
AMS because the newly generated object classes are avail-
able system-wide.

The second kind of support, agent adaptation of AMS ob-
jects, is accomplished with dynamic data structures. By pro-
viding collections, a very flexible, dynamic data structure,
users have a great deal of flexibility in creating instances that
are composed of existing types. An example of when this
flexibility might be useful can be found in the scenario. If

the AMS designer had omitted a place to store the original
email report about the bug in the bug fix type of agenda item,
but had created a section for arbitrary user notes, Alice could
simply copy the email message into the notes field of the
item. In cases where the bug was reported by phone, this
“field” could be left blank with no ill effects. This kind of
adaptation supports changes that require additional informa-
tion for only a subset of the instances or agents associated
with a particular AMS.

The third kind of support for change is a decoupling of
“view” from the AMS itself: agents can be provided with
a customized viewer that presents AMS information in the
way each user or tool desires, as shown in figure 2. While
automating this kind of adaptation is currently outside the
scope of our approach, it is important to note that the ap-
proach has been designed with it in mind, and it is a logical
future direction. In fact, decoupling a viewer from the AMS
greatly aids efforts to treat human and software tool users of
an AMS uniformly.

When a customized viewer is combined with agent-adapted
AMS objects, it becomes possible for users to make local
changes to the AMS that approach the power of changes
made with iterative generation. If, for example, the bug
testers’ agenda viewers were designed to look in the user
notes field of bug report items, it could find and render email
messages specially, even allowing users to respond to the
original email message using their favorite email systems.

The remainder of this section describes the root classes, the
AMS generator, and the architecture of an instantiated AMS,
which we refer to collectively as Grapevine. It also shows
how these pieces work together to form an AMS that meets
the designer’s requirements.

3.1 Root Classes

Six root classes (attribute, agenda item, agenda, attribute col-
lection, attribute iterator, and agenda iterator) form the basic
extensible structure upon which all customized classes are
built. This structure is conceptually simple, yet provides de-
signers with enough expressive power to specify the struc-
ture of data for many different AMSs. These classes are
discussed in this subsection, and the following subsections
present the means for extending AMS classes from these root
classes.

Figure 3 shows the root classes’ fields and methods and the
way in which subclasses are generated from them through
the inheritance mechanism (described in the next subsec-
tion). Each root class and how it is extended is described
in detail below.

An attribute is a class that is the fundamental building block
of an AMS, forming a “field” of agenda item and agenda
classes. Each attribute class consists of a name, a data type,
and a value. Methods are provided to get and set each at-
tribute’s value and to get each attribute’s name and type

Attribute <name, type, value>
String Get_Name()
String Get_Type()
Type1 Get_Value()

Attribute Get_Next_Attribute()
boolean Is_Complete()

Attribute Iterator
void Initialize(Attribute_Collection ac)

 - example generated private field
- example generated subclass method

Courier
Italic

Key:

Normal - overridable public root class method

Attribute Collection
Attribute_Collection Select_Attributes(String name)
Attribute_Collection Select_Attributes(String type)
Attribute_Collection Select_Attributes(Type1 val)

void Remove_Attribute(Attribute a)
void Add_Attribute(Attribute a)

int Number_Of()

void Initialize(Agenda a)
Item Get_Next_Item()
boolean Is_Complete()

Agenda Iterator

int Number_Of()

Agenda
String Get_Type()

Attribute2
Attribute1

...

...

Type1 Get_Attribute1()

Type2 Get_Attribute2()
void Set_Attribute2(Type2 a2)

void Set_Attribute1(Type1 a1)

Agenda Select_Items(String type)
void Remove_Item(Item i)
void Add_Item(Item i)

Agenda Item
String Get_Type()

Attribute2
Attribute1

...

...

void Set_Attribute1(Type1 a1)

void Set_Attribute2(Type2 a2)
Type2 Get_Attribute2()

Type1 Get_Attribute1()

Figure 3: Root class and subclass template definition (not all methods are shown).

fields.

The type field of an attribute subclass may be any standard
data type (e.g., integer, float, character, and arrays of these)
plus any user-defined type, and is represented by “Type1” in
the figure. Because the attribute root class has no type, it
cannot be instantiated. Attributes are defined as root objects
to provide a uniform, reflective way to store AMS data. They
are uniform because they allow any type of data to be stored,
and they are reflective because query methods are provided
to answer queries about the type and name of that data.

An example of an attribute is the status of the bug re-
port item. This attribute would have the name “status”, be
of enumerated type, and have some descriptive information,
e.g., “Fixed” or “Aborted”, as its possible value.

An attribute collection is a collection of attributes whose
membership may change dynamically. Methods are pro-
vided to add attributes to, and remove attributes from,
the collection as well as to associatively construct sub-
collections based on member attributes’ name, type, or value,
or some such combination. Attribute collections are used
for grouping together related AMS entities and for dynamic
adaptation of AMS data.

An attribute iterator is a class that is used to visit in turn
each attribute in an attribute collection. Methods are pro-
vided to initialize the iterator for a particular attribute col-
lection, to check whether any members remain to be visited,
and to get the next unvisited member from the collection.
Defining an attribute iterator to be a class enables multiple
simultaneous iteration over any single given attribute collec-
tion. If the designer of an AMS specifies that an iterator may
only iterate over attribute collections of a particular subclass,

the initialization and get next attribute methods are changed
accordingly.

An agenda item (also referred to as just “item”) is a class
consisting of zero or more attributes, none of which has the
same name. The root agenda item class has no attributes
and consequently no attribute-specific methods. If specific
attributes, indicated by italics in figure 3, are added to sub-
classes of the root agenda item class by the designer, meth-
ods to get and set the value of each attribute are generated.
An item may be queried to determine its type.

For example, the bug tracking item subclass from the sce-
nario might have two attribute members, the status at-
tribute mentioned previously, and a name attribute that has a
name of “name,” a string type, and a value that describes the
agenda item, in addition to others.

Attribute collections and agenda items differ in important
ways. First, an agenda item’s attributes are static and deter-
mine its type, while the number and identities of an attribute
collection’s members may vary dynamically and don’t di-
rectly determine its type. Second, an item may not contain
two attributes having the same name, while an attribute col-
lection has no such restriction.

The value of any attribute of an agenda item can be an at-
tribute collection. This definition affords enough dynamism
for items to provide required functionality, such as annota-
tion and auditing, while still being strongly typed. For ex-
ample, consider an auditing log for the bug tracking item.
The log attribute’s value might be an attribute collection con-
sisting of any number of log entries. Log entries may thus be
dynamically added to an item without changing its type. This
is exactly the behavior we require.

An agenda is a class with zero or more attributes, none of
which have the same name, and a collection of agenda items
whose members may change dynamically. Methods that get
and set the value of each attribute and methods for adding
and removing items from the agenda are provided. These
methods allow associative access to the items of an agenda.
The agenda root class has no attributes; its only methods are
the three to allow manipulation of the agenda’s associated
items, one to query its type, and standard create and destroy
methods.

An agenda iterator is used to visit each item on an agenda
in turn. Methods are provided to initialize the iterator for it-
eration over a particular agenda’s item collection, to check
whether any members remain to be visited, and to get the
next unvisited item from the agenda. Having agenda itera-
tors be a separate class allows multiple simultaneous itera-
tion over an agenda’s item collection. The designer of an
AMS may specify an iterator subclass to only iterate over
agendas of a particular class.

These six root classes, in conjunction with the extension
mechanism described in the next section, allow an AMS de-
signer to create customized classes of agenda items. A way
in which subclasses of these root classes might be used to or-
ganize data in an AMS is shown in figure 4. Iterator objects
are typically instantiated when needed, used, then discarded,
so they do not appear in the figure.

It is important to observe that these root class definitions
encourage the notion that every collection of items is an
agenda. Conspicuously absent are the classes “Item Col-
lection” and “Item Iterator,” having been replaced with
“Agenda” and “Agenda Iterator.” We have taken a minimal-
ist approach in the specification of the root agenda class to
avoid specification and performance penalties in the imple-
mentation of what we believe is the most common type of
agenda, namely a single collection of items (usually of the
same type) with some associated attributes that describe the
collection.

Allowing agendas to be sharable permits multiple ways of
implementing the concept of a group of users in an organi-
zation. In our scenario, Alice needed to notify all the organi-
zation’s testers of the existence of the reported bug. If each
tester views an agenda shared by all the testers as well as his
or her own personal agenda, Alice could simply add the bug
fix item to the shared agenda. Each tester’s viewer would
then display the new item. Because items are also sharable,
another way Alice might accomplish this is to add the item
to each tester’s personal agenda. In this way, each tester’s
viewer would also display the new item.

Having more than one way of enabling a group of agents to
view an item seems necessary. One key difference between
these two methods of posting the item is the degree to which
the “group” is formalized. In the scenario, a shared agenda
formalizes the group “testers”, which is entirely appropriate

given the process by which bugs are fixed in the organization.
On the other hand, if Catherine needs to schedule a meeting
with Douglas and their manager, she should not have to con-
struct a group agenda for the three of them, and ensure they
are all viewing it. Intuition and experience with another form
of collaboration, e-mail, indicates that using more than one
way of designating groups is natural. Most e-mail systems
allow mail to be addressed to multiple recipients as well as
to system-wide mailing lists.

As shown in figure 1, the output of the system generation
phase is generated code for an AMS that meets the require-
ments given to the designer. To allow agents to use the AMS,
agent specific interface code must be linked with the AMS.
Human user interface code is included with the root type and
specialized with each subtype to aid in the construction of
user interfaces. Automatic user interface specialization is
not discussed further because user interface issues are not
the focus of this paper.

3.2 Extension Mechanisms

Inheritance and policy are the two mechanisms that allow ex-
tending root classes to create the specialized classes required
by a specific agenda system. By inheritance we mean the ex-
tension of classes with additional fields and methods, as in a
typical object-oriented language with single inheritance. By
policy we mean the specification of higher-level constraints
on the use of AMS data. Inheritance can be provided by the
object-oriented inheritance found in a reasonable implemen-
tation language (e.g., Java), but code to implement policies
must be synthesized during AMS generation.

3.2.1 Inheritance Mechanism Extension of the root
classes by inheritance is specified through use of the
keywords extends, type, attribute, method,
itemclass, and private. These keywords are used to
specialize the root classes for use in a particular agenda man-
agement environment. The keywordextends names a sub-
class, type specifies the type of the contents of a class,
attribute specifies that an attribute should be part of
an object, method adds a designer specified method to the
class, itemclass specifies the type of items in an agenda’s
collection, and private is used to control which methods
are visible outside of the specification, i.e., to the agents.

To give a better idea of how a specification is written, an
example that might be used to create an AMS for the intro-
ductory scenario is provided below. Some attributes that are
predefined have been used.

LogEntry extends Attribute
type String;

LogCollection extends Attribute Collection
type LogEntry; // collection of LogEntry attributes

Log extends Attribute
type LogCollection;

LogCollection

Attributes

Bug_Track_Item

Attributes

Bug_Track_Item

Attributes

Bug_Track_Item

Items

Attributes

Tester_Agenda

LogCollection

LogEntry

Items

Attributes

Name
<Name, String, "theAgenda">

Personal_Agenda <Name, String, "theItem2">

<Log, Attribute_Collection, theAC2>

<Name, String, "theItem3">

<Log, Attribute_Collection, theAC3>

<Log Entry, String, "Created at 4pm">

<Log Entry, String, "Retracted at 5pm">

<Log Entry, String, "Created at 6pm">

<Log, Attribute_Collection, theAC1>

<Name, String, "theItem1">

LogEntry
<Log Entry, String, "Created at 3pm">

<Log Entry, String, "Started at 4pm">

Name

Name

Name

Log

Log

Log
LogCollection

LogEntry

LogEntry

LogEntry

Figure 4: Example instantiated subclasses diagram.

Bug Track Item extends Agenda Item
attribute Name;
attribute Owner;
attribute Priority;
attribute Status;
private attribute Log; // visible only in specification
private attribute LogEnabled;
method void AddNote(String Note)

method implementation
method void RemoveNote(String Note)

method implementation
method String printLog()

method implementation

Bug Agenda extends Agenda
itemclass Bug Track Item;
attribute Name;
method void MoveItem(Agenda toAgenda

Bug Track Item anItem)
method implementation

This specification provides simple examples of extension of
the attribute, attribute collection, agenda item, and agenda
root classes. Instantiation of these classes in an AMS could
produce the example graph of objects shown in figure 4.

Grapevine generates code that defines the subclasses speci-
fied by the designer. The specification of attribute, attribute
collection, attribute iterator, and agenda iterator subclasses
serves mainly to define their type. The root class methods of
these classes are overridden or replaced by methods with the
correct signature for the subclass. Agenda and agenda item
subclass implementations are generated by directly copying
specified methods, creating private fields with the name and
type of the specified attributes and generating methods to get
and set the values of these fields. The names of the gen-
erated methods are synthesized by concatenating the strings

“Get” and “Set” with the names of the attributes the gener-
ated methods access. The designer may also use the speci-
fication to override methods that a subclass inherits from its
superclass.

The use of a generator facilitates the specification of classes
and subclasses in a type strong manner. By providing the
type and itemclass keyword and by generating appro-
priately typed subclasses, the designer may create many
classes of agenda items and agendas for an AMS while en-
suring that these types do not inappropriately intermix. Al-
lowing attribute collections to be included as attributes of
agendas and agenda items provides much of the adaptability
that is lost in the generative approach.

3.2.2 Policy Mechanism Our approach also allows the
designer to specify policies, or rules for the use of subclass
methods. This provides the designer with a rudimentary
mechanism for enforcing consistency among the objects that
comprise an AMS and to discipline their use.

For example, suppose a designer wants to design a system
that adds a log entry to an item every time the name of the
item is changed. The designer could use the log attribute we
introduced in the previous subsection to store the log, but ev-
ery generatedSet Namemethod in every object would have
to be rewritten to ensure that a log entry was made. The pol-
icy mechanism is the component of the extension mechanism
that automates this task.

A policy is specified with a named collection of constraint,
action and method name triples (similar to the ECA model
presented in [5]) that is to be applied to class methods. As il-
lustrated below, the keyword policy names a policy and
the keywords enforce and for bind to specific meth-

ods the constraints that make up the policy. The keywords
constraint, action, check as, precondition,
postcondition, and prepostcondition specify the
contents of a policy. The bodies of the constraints and ac-
tions making up a policy are written in the implementa-
tion language. Constraints return a boolean value, indicat-
ing whether or not the action should be taken. Actions do
not return a value; they either successfully complete or in-
terrupt execution flow by raising an exception. This mecha-
nism allows policies to be applied to classes orthogonally to
the class inheritance hierarchy. This need might also be met
with multiple inheritance mechanisms, as in C++, or with
subject oriented programming approaches described in the
literature [8].

The following example will help make the way in which
policies are specified clearer. It specifies a logging policy,
such as what might be designed for the bug tracking item,
with the bodies of the constraints and actions written in Java.

policy logging(String opname)
constraint IsLoggingDisabled(String s)

return not GetLogEnabled();
action AddLogEntry(String s)

LogAttrCollect ac = GetLog();
LogEntry entry =

new LogEntry(opname+s+"invoked");
ac.AddAttribute(entry);

constraint IsLoggingDisabled(UID u)
return not GetLogEnabled();

action AddLogEntry(UID u)
LogAttrCollect ac = GetLog();
LogEntry entry =

new LogEntry(opname+u+"invoked");
ac.AddAttribute(entry);

check as precondition;

An example of binding the above policy to an item’s methods
is provided below.

enforce logging("SetPriority") for
Bug Track Item.SetPriority(String pri);

enforce logging("SetOwner") for
Bug Track Item.SetOwner(UID owner),
Tester Agenda.SetOwner(UID owner);

This example also demonstrates how parameters are used.
The policy parameter (String opname in the example)
is provided to pass to the constraints and actions infor-
mation about the method on which a policy has been en-
forced. The names of the policy parameters may be used
within the constraint and action implementations as regular
identifiers. The method parameters (String priority
and UID owner in the example) are used to pass to the
constraints and actions information about the arguments to
methods on which a policy has been enforced. Multiple con-
straint and action definitions may be provided in a policy

Name Type Name Type
Name String Description String
Priority integer Status enumerated
Deadline Date Subitem Agenda
Owner UID Prerequisites Agenda
Alternatives Agenda Reference URL
Log Attribute

Collection
Notes Attribute

Collection
LogEnabled boolean LogEntry String

Table 1: Predefined attributes

definition. Only those constraints and actions whose param-
eters match the method parameters will actually be bound to
the methods. If there are no matching constraints, an error
will be signalled during AMS generation.

When a subclass is defined which overrides methods that
have a policy enforced, the overridden methods no longer
have the policy applied. The designer must explicitly re-
enforce the policy for the overridden method. This allows
a designer to define a subclass that has a different kind of
policy (or no policy at all) enforced for the same method.

3.3 Predefined Classes and Policies

Several predefined objects and policies are provided for the
AMS designer to use. By providing an ever-growing library
of common high-level components, we hope to further ease
the development of custom AMSs.

Predefined attributes are shown in table 1. We assume that
all of these types (including UID) are available in the imple-
mentation language; if any are not, they must be defined and
provided at run-time. Many of these attributes are comple-
mented by one or more predefined policies.

Several of these attributes are self-explanatory or have been
presented previously. Two new ones are the alternatives at-
tribute, which designates items that can be worked on in-
stead of this one, and the prerequisites attribute, which des-
ignates an agenda that holds items which must all be “com-
pleted” before this one is “started” (as reflected by the status
attribute).

Several predefined policies are also provided and described
in table 2. Many policies are meant to be used in conjunction
with specific attributes.

3.4 Substrate

In the preceding subsections, we have described how a de-
signer can meet some specific agenda management require-
ments by extending a set of root classes. The architecture of
the substrate on which the root classes (and consequently the
rest of the system) are built must allow a customized system
to meet other requirements commonly found in an agenda
management domain. The substrate must address require-
ments such as concurrency control, data persistence, distri-

Name Description
logging creates a new LogEntry attribute that

describes the method that has been in-
voked and adds this to the log attribute
collection.

access control uses an external access control table and
the owner attribute to look up access
privileges, providing control over who
may invoke a method.

alternatives This policy, used with the alternatives
and status attributes, automatically re-
moves all alternatives to an agenda item
once that item has been started.

prerequisites This policy, used with the prerequisites
and status attributes, prevents an item
from having its status modified until its
prerequisite items have been completed.

Table 2: Predefined policies

My_Agenda LJIL_AgendaMy_Item LJIL_ItemNameLog

AgendaAgenda ItemAttribute

Tool
Human user interface

Root object API (server)

Agent API (client)

Figure 5: Interfaces of instantiated AMS.

bution, coherence, and scalability of the AMS. In this sub-
section, we describe how the substrate underlying any gen-
erated AMS can work with designer-specified subclasses to
meet its requirements.

When an AMS is specified, the system generation mecha-
nism must create an AMS to meet these requirements. A
client-server substrate sufficies to meet the previously men-
tioned requirements. The server part of the substrate imple-
ments only the six root classes, and provides their methods
to the clients via remote procedure calls. Thus, the root ob-
jects’ interface (API) and implementation on the server are
identical for any generated instance of AMS.

All designer-specified subclasses of the six root classes are
implemented entirely on the client side. The designed sub-
class methods are implemented in terms of the small set of
generic root class methods that are exported by the server.
The architecture of an example instantiated system is shown
in figure 5. The designer-specified subclasses appear in the

client at the bottom of the figure. They subclass client-side
representations of the root objects, whose methods merely
make remote procedure calls to the root classes on the server
that actually perform the requested function. Agent specific
interfaces connect to the AMS API at the bottom of the fig-
ure. A human’s user interface looks to the AMS like just
another tool using the system; the special case code required
by people is confined to the user interface software used by
people.

Advantages of this single-server architecture include easily
understandable distributed operation, straightforward syn-
chronization of client execution, server-side persistence, and
the ability to update clients with newly generated code while
the server is left running. Disadvantages include security
problems (because policies are implemented in client code,
they can be easily circumvented), a single point of failure,
lack of scalability, and other standard problems associated
with centralized software architectures.

While providing only a single fixed substrate architecture
means that there is no explicit control over the nature of ob-
ject serverization, it also isolates designers from the details
of distributed operation, simplifying system design and the
instantiation process. It might be better to allow the designer
to specify where the client-server split should occur, but al-
lowing this adds complexity to the designer’s task with dubi-
ous benefit.

4 Preliminary Evaluation

4.1 Prototype of Grapevine

We have partially implemented a prototype version of
Grapevine to evaluate the fundamentals of this approach. We
used this prototype to help generate some simple AMSs and
evaluate their utility.

The prototype implementation of Grapevine’s substrate is
split into a client and server as described previously. On
the server side, all root classes are written in Pleiades/Ada
[19]. Clients communicate with the server via an interlin-
gual RPC mechanism, called Q [17]. The substrate does not
currently provide for callbacks when locally cached AMS
data are changed. Thus, clients must poll for changes.

Clients are currently implemented in Java. The Java inher-
itance mechanism is used to support Grapevine inheritence
directly. The policy mechanism is not yet implemented but
we have experimented with manually doing the associated
generation. All of the predefined attributes and policies are
implemented. The prototype currently has a generic user in-
terface based directly on root class implementations on the
server. This interface is easily modified to use the client in-
terface of each generated AMS.

The prototype does not support concurrency control due to
performance considerations. Instead we rely on clients to
avoid interfering with one another. It is not clear what sort of

concurrency control is appropriate in cooperative environ-
ments; this is an area of current research [2, 15]. Because
Java classes are loaded on-demand, the prototype is able to
support significant dynamism and user adaptability, though
we have not yet experimented with these capabilities.

4.2 Evaluation of a Generated AMS

The Grapevine prototype was evaluated by using it to gen-
erate an AMS to support the execution of process programs
written in a subset of JIL [11]. JIL programs are executed by
human and software agents, and we coordinated these agents
with a Grapevine-generated AMS.

The utility of the created AMS was evaluated in the context
of execution of a rudimentary process program for a phase of
the Booch Object Oriented design process. In this process,
the AMS helps coordinate the activities of a human designer
and a software client in creating a class diagram. As this pro-
cess executes, the process interpreter creates agenda items
and assigns them to an execution agent by posting them to
the agent’s agenda.

One type of agenda item and agenda were used in the pro-
totype AMS. This item contained the predefined name, sta-
tus, log, subitem, and alternative attributes, and enforced the
policies for controlling alternative item choice and for adding
log entries upon item creation. The process interpreter used
the provided agent interface to the AMS, although the lack
of a callback mechanism required implementation of a sep-
arate agenda monitoring thread. Since the Grapevine proto-
type is not complete, as described above, manual assistance
was needed to generate this AMS. The substrate and root
classes were used as provided by Grapevine. Attributes were
attached to items and agendas and accessor methods were
provided in a mechanical way. Policies were applied to item
methods uniformly.

Overall the use of Grapevine to generate the AMS and the
resulting AMS proved successful. It was interesting that pre-
liminary discussions of the role of an AMS in process exe-
cution showed that there were as many notions of what an
“agenda” is as there were people involved. Having a con-
crete language with well defined semantics for specifying
AMS components helped the group reach consensus and pro-
ceed with design. The design went through many iterations,
however, in which having the Grapevine prototype, albeit in-
complete, proved extremely useful. All of this reinforced
our belief in the value of a language based AMS generation
approach.

5 Related Work

Research related to agenda management has been primarily
in the areas of process centered environments, tool integra-
tion environments, groupware and workflow systems, and in
asynchronous computer supported cooperative work. Con-
siderable overlap between these areas exists [7]. In constrast

to most related work, we have focused on a solution to the
problem that is applicable to a variety of domains and is use-
ful for both human and software tool agents. The importance
of allowing agent adaptation has also been central to the de-
velopment of systems such as Oval [16] and Agenda [12].

By virtue of the need to communicate with humans in a
programmable way, several process execution environments
have formalized the notion of agenda.

Process Weaver [6] has an integrated agenda that is used
to coordinate the activities of humans by posting and dele-
gating “work contexts.” There is apparently no decoupling
of “agenda” from “view”, so supporting groups of users
may be problematic. It is also not clear that work con-
texts are decomposable into subtasks. While Process Weaver
is built with hooks for tools that provide process automa-
tion, it “aims at giving process support to software devel-
oper teams,” and is focused on supporting human users,
who may then invoke tools. Process Weaver includes a pro-
cess modeling language that has notions of concurrency with
semaphores, message passing, distribution, modularity. In
contrast, we have decoupled process from the mechanism.
An AMS is relatively passive; it serves to facilitate and con-
trol client interaction. An agent may be human or tool; this
decision too is decoupled from the design of the AMS itself.
Our aim has been to build a framework that could be used to
construct, for instance, a Process Weaver-style AMS.

The importance of decoupling process state representation
from process modelling language was noted in [9]. Pro-
cessWall is a process state server, intended to be used to
facilitate process execution, as with an AMS. Process state
is represented as a DAG of task nodes, and operations are
provided to create tasks, add precedence edges, and add sub-
tasks to the DAG. The notion of task “satisfaction” is also
introduced. Task nodes can be seen to roughly correspond to
agenda items, and supporting these sorts of operational se-
mantics in generated AMSs (through predefined attributes)
was a primary design goal of Grapevine. In the ProcessWall
there are “task parameters” which allow data to be passed be-
tween task nodes. Grapevine has no explicit data flow con-
cept, so it is not clear whether a generated AMS could pro-
vide the functionality of the ProcessWall. In ProcessWall,
clients are divided into tools, process-constructors, process-
constrainers, and user-intermediaries. We have no notion of
the middle two; these are considered ordinary tools. Process-
constrainers seem to provide a way of “enforcing any con-
straints on the legal structure of the process and product
state.” In contrast, we might build this function into the
system with our policy mechanism. It is possible that both
kinds of constraint enforcement are needed; further research
is needed.

The Marvel software development environment [3] has ad-
dressed the issue of assigning tasks to users, though this is
tightly integrated with the process environment. The issue of

supporting cooperation in Marvel was explored in [2], how-
ever this exploration concentrated on an appropriate concur-
rency model for cooperative work, not the higher level issues
addressed here.

In [1] the authors explore using the SPADE-1 environment
to support asynchronous cooperative work. Like Grapevine,
SPADE-1 is “based on the principle of separation of con-
cerns between process model enactment and user interac-
tion environment.” The environment consists of a number
of tools, among which is an Agenda tool. The Agenda uses
a configuration file to define its behavior (via an event-based
transition model) and the structure of tasks (the name and
type of attributes of the agenda items) that will appear on the
agenda, providing some tailorability. The Agenda tool is in-
voked by each human user and allows humans to send and
receive information, however, a separate tool, SPADEShell,
is used to send requests to the process execution environ-
ment.

Lotus Agenda [12] is a personal information manager char-
acterized as a new type of database, an “item/category
database.” Users add items to the database and assign them
to categories either by hand or automatically through selec-
tion rules. These categories may be viewed in a variety of
ways. Agenda has given enormous flexibility to the end user,
and in the process has lost the benefits of strong typing. In
addition, Agenda is not designed to be used by tools and does
not have facilities for controlling flow (as with our policies).

Lotus Notes [4] can be loosely characterized as a general
replicated database system that allows programmers to create
a variety of collaborative applications. While Notes might be
used to provide a substrate on which an approach to agenda
management may be based, no guidance to this end is pro-
vided: the concepts of agenda and agenda item are absent.

Similarly, while approaches to tool integration such as Desert
[18] and distributed object computing standards such as
CORBA address several of the requirements of agenda man-
agement provided by the AMS substrate, these systems pro-
vide little guidance for implementing an agenda manage-
ment system and are not explicitly designed to be used by
humans.

The Workflow Management Coalition’s reference model[10]
has many of the components of our framework and substrate,
and has standardized APIs for humans and tools. But, as a
reference model, it is not intended to be used to generate
specific agenda management systems.

Oval [16, 13] is a tool for cooperative work that offers adap-
tation abilities that are well beyond those outlined in this pa-
per. Oval is a “radically tailorable system” that allows users
to create applications from semistructured objects, user cus-
tomizable views, rule-based agents, and links. The objects
are formed from templates of named (but not typed) fields
and grouped in a type hierarchy, similar to how AMS design-

ers create subclasses of agenda items by adding attributes.
Folders exist for grouping together collections of objects;
these are similar to agendas. Furthermore, a user can cre-
ate rule-based agents that perform automated actions on the
user’s behalf; policies can be thought of as a global, proce-
dural approximation of user agents. However, Oval is not
intended to be used as a tool integration mechanism, and
in ObjectLens (Oval’s precursor) there is no global object
space; objects are copied and sent as messages to each other.

6 Concluding Remarks, Future Work

We have proposed a framework for generating agenda man-
agement systems that

can evolve to meet organizational changes in require-
ments,
can adapt to meet differences in agent requirements, and
are useful integration mechanisms for both humans and
tools.

We described the attributes, agenda items, and agendas that
comprise an AMS and described the implementation and use
of AMSs.

Preliminary use of an AMS generated (with manual assis-
tance) from a prototype version of Grapevine has been en-
couraging. We believe that further experimentation will
show that the requirements listed in section 2 can all be met
with Grapevine-generated AMSs, but more research and ex-
perience is required to validate this intuition.

While we believe that Grapevine, as described here, will
prove to be very flexible and useful, we now outline some
obvious ways in which its capabilities might be beneficially
extended in future work.

We believe that the role and implementation of policies in
AMSs warrants further investigation. Currently the policy
capability is rather rudimentary, being intended to enforce
well-formedness constraints on AMS structure and informa-
tion. Constraints are evaluated once, and it is assumed that
responses to constraint failure will either “repair” the vio-
lation or interrupt execution (e.g., by raising an exception).
More complex forms of response (e.g., reevaluation of the
constraint) may indeed prove useful. In addition, in more
complex AMSs, we expect multiple policies to be applied
to a method. Currently there are only primitive defaults for
dealing with interactions among such constraints. A richer
model may be needed.

Supporting adaptation and evolution in ways that are con-
sistent with the generation approach raises a number of ad-
ditional important issues. For example, we would like to
allow users to make local adaptations to an AMS type sys-
tem. This is not currently allowed because of concerns about
how an AMS can share object instances without sharing its
type hierarchies. This issue has also been problematic in sys-
tems such as Lotus Agenda [12] and Oval [16]. We expect to

explore ways in which to do this, as support for local mod-
ifications to type hierarchies can also enable AMS to AMS
communication, another desirable capability.

We would also like to allow for the modification and exten-
sion of existing AMS classes. But this creates the problem
of migrating existing instances of those classes, which is a
research area itself [14]. The generation framework we have
developed should be compatible with solutions to such prob-
lems, and we expect class evolution mechanisms to be incor-
porated into future generations of Grapevine.

Finally, much future work needs to address the user interface
issue. It seems clear that generic user interfaces can be gen-
erated by Grapevine along with the AMS itself. But it also
seems clear that much customization is desirable. Future re-
search should address ways in which generation techniques
could be used to minimize customization effort.

ACKNOWLEDGEMENTS
The authors wish to acknowledge the work of Peri Tarr and
Stan Sutton, who did important preliminary design work
on this project and who provided invaluable assistance in
demonstrating how Pleiades could support server side imple-
mentation. We also wish to thank Alexander Wise for lively
discussions and essential help during integration of our gen-
erated AMS with the Little JIL interpretation system.

REFERENCES

[1] Sergio Bandinelli, Elisabetta Di Nitto, and Alfonso Fuggetta.
Supporting Cooperation in the SPADE-1 Environment. IEEE
Transactions on Software Engineering, 22(12):841–865, De-
cember 1996.

[2] Naser S. Barghouti. Supporting cooperation in the Marvel
process-centered SDE. In Proceedings of the Fifth ACM SIG-
SOFT Symposium on Software development environments,
pages 21–31, 1992.

[3] Israel Z. Ben-Shaul, Gail E. Kaiser, and George T. Heineman.
An architecture for multi-user software development environ-
ments. In Proceedings of the Fifth ACM SIGSOFT Sympo-
sium on Software development environments, pages 149–158,
1992.

[4] Lotus Development Corporation. A Quick Tour Of Lotus
Notes. Lotus Development Corporation, 1993.

[5] Umeshwar Dayal, Meichun Hsu, and Rivka Ladin. Organiz-
ing Long-Running Activities with Triggers and Transactions.
In Proceedings of the 1990 ACM SIGMOD International Con-
ference on Management of Data, pages 204–214, 1990.

[6] Christer Fernström. PROCESS WEAVER: Adding Process
Support to UNIX. In Proceedings of the Second Interna-
tional Conference on the Software Process, pages 12–26.
IEEE Computer Society Press, 1993.

[7] D. Georgakopoulos, M. Hornick, and A. Sheth. Distributed
and Parallel Databases, chapter An Overview of Workflow
Management: From Process Modeling to Workflow Automa-
tion Infrastructure, pages 119–153. Kluwer Academic Pub-
lishers, 1995.

[8] William Harrison and Harold Ossher. Subject-Oriented Pro-
gramming (A Critique of Pure Objects). In Proceedings of
the eighth annual conference on Object-oriented program-
ming systems, languages, and applications (OOPSLA), pages
411–428, 1993.

[9] Dennis Heimbigner. The ProcessWall: A Process State Server
Approach to Process Programming. In Fifth SIGSOFT Sym-
posium on Software Development Environments, December
1992.

[10] David Hollingsworth. The workflow reference model. Tech-
nical Report TC00-1003, Workflow Management Coalition,
Nov 1994. Draft 1.0.

[11] Stanley M. Sutton Jr. and Leon J. Osterweil. The Design of
a Next-Generation Process Language. To appear in the Pro-
ceedings of the Fifth annual conference on the Foundations of
Software Engineering.

[12] S. Jerrold Kaplan, Mitchell D. Kapor, Edward J. Belove,
Richard A. Landsman, and Todd R. Drake. Agenda: a per-
sonal information manager. Communications of the ACM,
33(7):105–116, Jul 1990.

[13] Kum-Yew Lai, Thomas W. Malone, and Keh-Chiang Yu. Ob-
ject Lens: A ”Spreadsheet” for Cooperative Work. ACM
Transactions on Office Information Systems, 6(4):332–353,
Oct 1988.

[14] Barbara Staudt Lerner. TESS: Automated Support for the
Evolution of Persistent Types. In Proceedings of the 12th Au-
tomated Software Engineering Conference, 1997.

[15] Barbara Staudt Lerner, Arvind H. Nithrakashyap, and Lori
Clarke. Cooperative concurrency control for software engi-
neering. In OOPSLA ’97 Workshop on Collaboration in the
Object Development Lifecycle, 1997.

[16] Thomas W. Malone, Kum-Yew Lai, and Christopher Fry. Ex-
periments with Oval: A Radically Tailorable Tool for Coop-
erative Work. In CSCW ’92 Proceedings, pages 289–297,
November 1992.

[17] M. Maybee and D. Heimbigner. Q: A Multi-lingual In-
terprocess Communications System. Technical Report CU-
ARCADIA-101-93, University of Colorado, August 1993.

[18] Steven P. Reiss. Simplifying Data Integration: The Design of
the Desert Software Development Environment. In Proceed-
ings of ICSE-18, 1996.

[19] Peri L. Tarr and Lori A. Clarke. PLEIADES: An object man-
agement system for software engineering environments. In
ACM SIGSOFT ’93 Symp. on Foundations of Software Engi-
neering, pages 56–70, Dec 1993.

