Consistency Management for Complex Applications

Peri Tarr
IBM T.J. Watson Research Center
30 Saw Mill River Road

Hawthorne, NY 10532
tarr@watson.ibm.com

ABSTRACT

Consistency management is an important requirement,
in many complex applications, but current program-
ming languages and database systems provide inade-
quate support for it. To address this limitation, we have
defined a consistency management model and incorpo-
rated it into the PLEIADES object management system.
This paper presents a motivating example that illus-
trates some typical consistency management require-
ments and discusses the requirements in terms of both
functionality and cross-cutting concerns that affect how
this functionality is provided. It then describes the
model and some design and implementation issues that
arose in instantiating it. Finally, we discuss feedback
we have received from users and future research plans.

KEYWORDS
Consistency management, inconsistency management,
object management, software engineering environments

1 Introduction

The need to define and maintain consistency among ob-
jects is a difficult task that arises in many complex appli-
cations. One or more objects are consistent if they are in
states that satisfy some condition(s) for acceptability or
correctness. An example of a complex application need-
ing support for consistency management is a software
engineering environments (SEE). SEEs must facilitate
the specification and enforcement of consistency defini-
tions over objects to enable such activities as automated
verification of task completion and detection of (poten-
tially) erroneous manipulations of artifacts. Although
many applications and domains can benefit from con-
sistency management, we draw our motivation and ex-
amples for this paper from SEEs, a domain with which
we are familiar.

Consistency management is the process of controlling
the manipulation of objects to ensure that their con-
sistency definitions are respected. Consistency manage-
ment comprises the definition of consistency conditions,

This work was supported in part by the Air Force Ma-
teriel Command, Rome Laboratory, and the Advanced Research
Projects Agency under Contract F30602-94-C-0137.

Lori A. Clarke
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003
clarke@cs.umass.edu

identification of consistency violations, reestablishment
of consistency following violations, and ensuring the
meaningful manipulation of objects that are not in con-
sistent states. Consider, for example, a source code
module that has “is compilable” as a consistency condi-
tion. This condition could be violated upon any modi-
fication to the source code. Depending on the phase of
development, a project manager may or may not want
to allow the source code to be in an inconsistent state.
If the violation is acceptable, as is often the case, then
the change might be allowed, but some kinds of manip-
ulations of the inconsistent object might be precluded
(e.g., it could not be released or tested). If the violation
is unacceptable, a consistency management mechanism
might reject the change and roll the module back to its
previous, consistent state, thus preserving consistency.

Managing object consistency is an important, but diffi-
cult, task. One reason for this is the degree of diversity
of object and consistency semantics—different kinds of
objects may require different consistency definitions and
enforcement semantics. For example, some kinds of ob-
jects require invariant consistency definitions (i.e., the
consistency definition may not be violated and any ac-
tivity that threatens to violate the definition must be
precluded), while other objects will allow temporary vi-
olations of their consistency definitions with the expec-
tation that the violations can be repaired, either im-
mediately or eventually. Further, some kinds of con-
sistency definitions apply within an object, some apply
across objects, and some apply globally [26]. Another
factor that makes consistency management difficult is
that the set of consistency definitions and enforcement
semantics that apply to any given object may change
during the lifetime of the object. For example, during
development phases, “is compilable” may not be appli-
cable to a source module, but once the project reaches
a release phase, this consistency definition might be en-
forced. The broad spectrum of object, consistency def-
inition, and consistency enforcement semantics results
in some fairly challenging requirements on consistency
management systems. While some systems support con-
sistency management, we are unfamiliar with any sys-
tem that supports the wide range of consistency seman-

tics that we have found to be needed in advanced appli-
cations, such as SEEs.

This paper presents a model for consistency manage-
ment and reports on an instantiation of the model and
experiences using it. Section 2 provides a small but typ-
ical example of a SEE application to illustrate some of
the consistency management needs of such applications,
and it uses the example to help motivate a set of require-
ments on consistency management systems. Section 3
describes a model of consistency management that sat-
isfies these requirements. We have implemented much of
this model in the PLEIADES object management system
[36]. Section 4 discusses various design and implemen-
tation tradeoffs involved in instantiating the model for
PLEIADES. PLEIADES has been used in the implementa-
tion of several applications. Section 5 describes some of
these uses and, based on client feedback, evaluates our
proposed requirements on, and model of, consistency
management. Section 6 examines related research. Fi-
nally, Section 7 discusses ongoing and future work.

2 Motivating Example and Requirements

To illustrate some typical consistency management
needs in complex applications, we use an example from
the Arcadia SEE project [17]. This example includes
three types of objects: source code, abstract syntax
trees (ASTs), and control flow graphs (CFGs), along
with some consistency definitions. Each AST node is
associated with the source code from which it was cre-
ated, and each CFG node is connected to the AST sub-
graph that elaborates the statement associated with the
CFG node. These three kinds of objects may be subject
to several complex consistency definitions, including;:

Acyclic: ASTs are, by definition, trees. Thus, they
may not include cycles or shared substructure.

Up-to-date: To ensure that applications only manip-
ulate ASTs and CFGs corresponding to the current
source code version, an up-to-date condition is enforced
among these three types of objects. This condition indi-
cates that a set of related ASTs, CFGs, and source are
mutually up-to-date either if the source’s time stamp is
less than the AST’s, which is less than the CFG’s, or if
a manager considers the objects mutually consistent.

No def/use errors: Def/use errors in programs in-
clude anomalies like references to undefined variables.
During the later stages of program development, CFGs
may be subject to a constraint that they are consistent
only if they do not contain any def/use errors.

These three consistency conditions are quite different in
nature. The acyclic property represents an invariant on
the AST abstract data type, and, as such, it may not be
violated under any circumstances—any attempt to in-
troduce a cycle or shared substructure can be viewed as

an error and should be prevented. The up-to-date con-
dition, on the other hand, can be violated during the
normal evolution of code. It will be violated whenever
a developer modifies part of a program (either by editing
the source code or by changing a visual depiction of the
AST or CFG). Such violations are neither abnormal nor
erroneous and should be permitted. It is expected, how-
ever, that once a violation has occurred, consistency will
be reestablished by identifying the scope of the change
and recomputing the corresponding parts of the source
code, AST, or CFG (depending on which object was
modified). A failure to reestablish consistency, however,
might be considered abnormal and might or might not
be permissible, depending on the stage of development.
“No def/use errors” is yet another kind of condition.
Like the up-to-date condition, “no def/use errors” can
be expected to be violated during the normal evolution
of a program. Unlike the up-to-date condition, however,
it may be possible to leave the “no def/use errors” con-
dition violated, at least for some period of time, during
some stages of development. While the CFG is in an
inconsistent state, however, a different set of operations
might be permitted on the CFG and some of its related
objects than are permitted while the CFG is consistent.
For example, it should not be possible to release source
code whose corresponding CFG fails to satisfy the “no
def/use errors” condition, but it may be possible to run
a debugger on the inconsistent CFG. Thus, when con-
sistency violations cannot be repaired immediately, it
may be necessary to tolerate the inconsistency for some
period of time [3, 31, 33] and to ensure the meaningful
manipulation of inconsistent objects appropriately.

This simple example illustrates some of the kinds of
functionality needed to facilitate the definition and
management of object consistency. They also demon-
strate some “cross-cutting” requirements, which are
constraints on how the functionalities are provided.

2.1 Functional Requirements

After carefully examining the needs of several complex
applications, we believe that a consistency management
system must provide the ability to do the following;:

Define comnsistency conditions: Consistency man-
agement starts with the definition of what it means for
objects to be consistent. Essentially, this definition par-
titions the space of possible object states. A common
partitioning is “consistent” and “inconsistent,” but par-
titionings may be more complex, to specify different
degrees of consistency or inconsistency. A consistency
management system should permit any partitioning.

Determine when to detect violations: Different
kinds of objects have consistency definitions that require
detection of violations at different points. For example,
the acyclic invariant on ASTs may not be violated, so

potential violations must be detected before they actu-
ally occur; the up-to-date condition can be violated, but
violations must be detected and repaired immediately;
and violations of the “no def/use errors” condition can
be detected as needed to ensure meaningful manipula-
tion while a CFG is inconsistent. These are examples
of operation-driven detection. Other kinds of detection
may also be desirable, including checks initiated at a
client’s request or at specified process steps. Thus, it
must be possible to detect (potential) violations of con-
sistency conditions in different ways, as needed to en-
force the required consistency semantics.

Specify enforcement semantics: It must be possi-
ble to define appropriate responses to (potential) con-
sistency violations. Responses may range from outright
rejection of the violating action, to rolling the affected
objects forward into a new, consistent state, to allowing
the objects to remain inconsistent and managing them
accordingly. In addition, enforcement semantics must
consider that an initial repair action may be unsuccess-
ful and that subsequent actions may be required.

Manage inconsistency: Even with a rich set of re-
pair actions, it may not always be possible, or even de-
sirable, to return an object to a consistent state imme-
diately. Managing inconsistency means being able to
detect inconsistencies, ensure the meaningful manipu-
lation of inconsistent objects, and ultimately, reachieve
consistency. Tolerating the presence of inconsistency
requires support from tools and processes (i.e., they
must know how to interact with inconsistent objects)
and from the consistency management system (i.e.,
to provide a means for tools to indicate the level of
(in)consistency they can handle and to ensure that tools
manipulate objects only in meaningful ways). Ensur-
ing meaningful manipulation may entail, for example,
changing the set of operations with which an inconsis-
tent object can be manipulated. In the example, CFGs
containing def/use errors can be debugged, but their
associated source code cannot be released.

Dynamically change consistency specifications:
The consistency conditions that apply to a given ob-
ject may change over time. For example, “no def/use
errors” and “up-to-date” both apply to CFGs, but the
former typically is enforced only during release phases,
while the latter might be enforced throughout a CFG’s
lifetime. Similarly, the repair action associated with
“up-to-date” may change; during development, recom-
pilation might be invoked automatically, but during re-
leases, a manager might have to approve the change.

2.2 Cross-Cutting Requirements

As discussed in Section 6, the functionality described
above can be implemented using capabilities found
in many modern programming languages and some

databases, but not without extensive programming.
One of our goals in this work was to develop a model
of consistency management that provides more power-
ful building blocks than those currently found in pro-
gramming languages and databases. This model would
provide primitive capabilities that are easy to use, but
general enough to permit the definition of a wide range
of consistency management semantics. Our intention
was to provide a consistency management model that
subsumes those found in programming languages (e.g.,
exceptions and assertions) and in databases (e.g., rules
and constraints), and that provides useful capabilities
not present in existing systems. Towards satisfying this
goal, we have further constrained the set of function-
alities discussed above with a set of cross-cutting re-
quirements [36] that describe more specifically how these
capabilities should be provided to produce a flexible,
broad-spectrum consistency management system.

Completeness: Computational completeness sup-
ports the definition of arbitrarily complex algorithms,
both for determining whether or not objects satisfy con-
sistency conditions and for specifying enforcement se-
mantics. Type completeness provides the ability to as-
sociate consistency conditions and enforcement mecha-
nisms with any type of object.

Meta-data: To make decisions dynamically (e.g., re-
flection [10]), applications require information about
their run-time state or environment, which is commonly
referred to as meta-data. Information about the set of
consistency conditions that are currently enforced on an
object and about an object’s consistency status are ex-
amples of the kinds of meta-data that may be required.

Generality /heterogeneity: Previous research (e.g.,
[7, 31, 17]) demonstrated that different kinds of appli-
cations require different programming paradigms and
models. Generality means that a consistency manage-
ment system must provide a set of primitive capabilities
that facilitate the implementation of alternative con-
sistency management paradigms. Heterogeneity means
that a consistency management system must allow alter-
native consistency management models and implemen-
tations to coexist peacefully and, when appropriate, to
be used together in an integrated manner.

First-class status and identity: First-class status
provides the ability to treat all objects uniformly. The
ability to pass a consistency condition or action as a pa-
rameter to an operation is an example of this require-
ment. Identity means that a given entity has a unique
identifier that is separate from its state. First-class sta-
tus and identity facilitate the modeling of relationships
among conditions and/or actions to enable, for example,
condition decomposition and the definition of ordering
constraints (e.g., “up-to-date” should be checked before

“no def/use errors”). Identity facilitates sharing, which
makes it easier, for example, to share enforcement se-
mantics among constraints.

3 Model of Consistency Management

Based on the requirements described earlier, we have
defined a model of consistency management. A formal
specification of this model is given in [35]. We have in-
corporated much of the model into the PLEIADES object
management system [35, 36] to evaluate the model and
to explore implementation considerations. This section
describes the consistency management model.

To facilitate the description of this model, we assume
an abstract data type (ADT) programming model. We
view all objects as instances of ADTs, which means that
access occurs solely via operation invocation. This im-
plies that the only way to violate a consistency condition
is by invoking an operation on an object.! We rely on
this assumption throughout this section.

The consistency management model recognizes and en-
forces a set of semantics specified in the form of consis-
tency constraints. A consistency constraint comprises
a consistency condition, a set of points at which vio-
lations are to be detected, enforcement semantics, and
inconsistency management semantics. An instantiation
of a consistency constraint represents the enforcement
of a given constraint on one or more objects. Both
constraints and instantiations can be changed through-
out execution, providing applications with extensive dy-
namic control over consistency management. We de-
scribe conditions, violation detection, enforcement se-
mantics, and inconsistency management below.

3.1 Cousistency Conditions

Conditions are used to specify what it means for objects
to be consistent. A condition is a function whose re-
turn value is a consistency status flag that indicates the
object’s state. By default, the consistency status val-
ues are in the set {consistent, inconsistent, partial,
unknown}. Consistent and inconsistent mean that
the condition does or does not hold, respectively. Par-
tial means that some, but not all, parts of a condition
evaluate to consistent. This facilitates the use of decom-
position relationships among conditions (e.g., to enable
incremental condition satisfaction). Unknown means
that not enough information is available to evaluate the
status of one or more objects [32]. This may happen,
for example, if human intervention is required, but not
available, to determine whether or not a condition is
satisfied, or if concurrency control conflicts arise that

1Observe that temporal constraints can be modeled using
ADTs as well—i.e., the clock is an instance of an ADT on which
operations to change time are invoked. This is not proposed as an
implementation mechanism, but rather, as a modeling mechanism.

preclude access to objects whose states affect the eval-
uation of a condition. Consistent and inconsistent
are the most commonly used values, though the oth-
ers may also be needed in some circumstances (e.g., in
software process programming). The set of consistency
status values must be user-extensible, to facilitate the
definition of object-specific consistency status values.

Conditions are computationally complete, which means
that any necessary condition can be specified. They
may be enforced on objects statically or dynamically,
on a per-instance or per-type basis. Conditions can be
enforced to satisfy any consistency status—e.g., the up-
to-date condition on a CFG can be enforced so that it
must evaluate to either consistent or partial. This en-
ables weakened enforcement of consistency definitions,
rather than only all-or-nothing. Applications can check,
at any time, the consistency status of one or more ob-
jects with respect to a given condition. This facilitates
types of consistency checking that are not tied to oper-
ations on objects (e.g., user-initiated and plan-based).

3.2 Violation Detection

Since we employ an ADT model, it is only possible to
modify or examine the state of an object and, thus,
to violate an enforced constraint or view an object in
an inconsistent state, by invoking an operation on an
object. Thus, information about when to detect viola-
tions is specified in terms of a set of tuples of the form
< operation, when >, where operation is the name of an
operation in which a condition should be checked, and
when is in the set {preinvoke, precondition, post-
condition, postinvoke}. Preinvoke means that a
condition will be checked prior to the invocation of the
specified operation. This is particularly useful in cases
where failure to satisfy the condition results in the in-
vocation of an operation other than the one specified.
Preconditions are checked during the execution of the
specified operation, but before the operation takes any
other actions, while postconditions are checked after
the operation has performed its task, but before it ter-
minates. Pre- and post-condition checks are used in
cases where the runtime context in which the operation
executes is important to the checking of the condition,
and for cases in which the operation may have to be
prevented from committing due to a violation. Postin-
voke means that a condition will be checked after the
specified operation finishes executing and commits. In
general, we believe that postcondition checks are more
common than postinvoke checks, since postconditions
can affect the commit of the operation while postinvoke
checks cannot, but a postinvoke check may be useful,
for example, if the satisfaction of a condition depends
on whether the specified operation actually committed.

The description of when (potential) violations should be

identified can be done dynamically or statically, at the
per-constraint, per-object, or per-type levels.

3.3 Definition of Enforcement Mechanisms

It is possible to define one or more actions to be taken
when the consistency status of one or more objects (with
respect to a given condition) is found to be unaccept-
able. By default, violating a condition is assumed to
be undesirable, so an exception is raised. This default
can be overridden. Actions are essentially procedures
and are computationally complete, so any required ac-
tion may occur in response to a violation. In general,
actions are used to prevent or correct a violation, but
they may perform any tasks deemed necessary, such as
sending mail to a developer, logging the violation, etc.

Actions may be associated with selected conditions en-
forced on particular objects, and mechanisms are pro-
vided to specify this association both statically and dy-
namically. In addition, both instance- and type-level
control are provided; thus, two objects of the same type
could take different actions upon violation of the same
condition or could enforce different conditions.

Ideally, once its associated actions have been run, the
violated condition will be satisfied. Clearly, this need
not, be the case, however. For situations in which ad-
ditional actions must be taken if the original fails to
restore consistency, developers may optionally specify
action chains. These chains may be as long as needed
and may be modified dynamically.

3.4 Inconsistency Management

After applying all actions in an action chain, a condition
may still be violated. Developers are, therefore, given
the option of describing which operations on the object
are permissible (or not permissible) while a given condi-
tion is in a state other than consistent. By default, ob-
jects are assumed only to be allowed to be consistent;
thus, if an action chain fails to restore consistency, an
exception is raised. Inconsistency management seman-
tics can be associated with a given instance or type,
and they can be changed dynamically. Different incon-
sistency management semantics also can be specified to
cover different consistency status values.

3.5 Using the Model

To demonstrate how this consistency management
model could be used, we now revisit the example
presented in Section 2 and describe how one of the
three consistency definitions presented in that section,
namely, the acyclic constraint, could be represented
using the model. We employ PLEIADES-like syntax
throughout this section to illustrate the concepts.

The acyclic invariant is modeled as a precondition of

each insertion into, and edge redefinition of, an AST.?
If the proposed insertion or edge modification would
create a cycle or shared substructure, the update is pre-
vented and an exception is raised.

condition Is_Acyclic (The_AST : AST;
Edge_Source : AST_Node;
Edge_Target : AST_Node) is
begin
-- Change is acceptable if target does not
-- already have a parent.

if (Get_Parent (Get_Target (Target_Node_For_New_Edge))

/= Null_AST_Node) then return Inconsistent;
else return Consistent;
end condition;

action Reject_Update (The_AST : AST;
Edge_Target : AST_Node) is
begin
Put_Line ("Attempted to introduce a cycle");
raise Attempt_To_Violate_Acyclicity;
end action;

By default, Is_Acyclic is not enforced on instances
of type AST, meaning that this invariant can be
violated. The consistency management model pro-
vides both static and dynamic mechanisms to enforce
Is_Acyclic on ASTs. The static mechanism is a
declarative statement indicating that, at least initially,
Is_Acyclic should be enforced on AST objects:

check Is_Acyclic in Set_Edge as precondition;

The dynamic mechanism is provided in the form
of two operations, Enforce_Constraint and Re-
lax_Constraint, which control the enforcement of con-
straints on particular instances of a type:

procedure Enforce_Constraint
(The_Condition : Condition_Name;
On_Object : Object_Type;
Enforcement_Mechanism : Enforcement_Info);
procedure Relax_Constraint
(The_Condition
On_0Object
Enforcement_Points

: Condition_Name;
: Object_Type;
: Enforcement_Info);

Thus, applications may enforce or relax constraints on
objects at any point during the objects’ lifetimes. Al-
though dynamic control is not required for the enforce-
ment of invariants, like Is_Acyclic, it is very useful for
constraints, like “no def/use errors,” that apply dur-
ing more limited periods of time. Note that inter-
object constraints are enforced using the same mech-
anism, but a set of objects is included as the value of
the On_Object parameter.

2Removal of nodes from an AST cannot cause cycles to occur,
so this constraint need not be checked upon node removal.

4 Design and Implementation Concerns

The model of consistency management presented is both
general-purpose and language-independent. To enable
developers to use it, the model must be instantiated for,
and bound into, a particular programming language.?
Developers can then use their favorite development lan-
guages and draw on the consistency management ex-
tensions. PLEIADES represents one such instantiation
of the model, for the Ada programming language.

Instantiating the consistency management model re-
quired addressing a number of design and implemen-
tation issues; indeed, the model could have been instan-
tiated in any number of ways, depending on the partic-
ular decisions. While some issues are specific to an Ada
instantiation, many are general issues for any instantia-
tion. This section describes some of these issues and dis-
cusses justifications for, and the implications of, some of
the decisions we made in implementing PLEIADES. [35]
includes a more detailed discussion.

General Issues: The purpose of imposing the cross-
cutting requirements was to ensure the definition of a
consistency model that is powerful and flexible enough
to facilitate the description of many different consis-
tency management semantics. With this flexibility
comes a number of tradeoffs, however.

The requirement for computational completeness means
that any necessary consistency semantics can be de-
fined. On the negative side, computationally complete
formalisms are difficult to reason about. The ability
to reason about consistency specifications and instan-
tiations is, however, very important. It can produce,
for example, information about conflicting or redun-
dant consistency conditions, and about the set of op-
erations that could violate a given constraint. On the
other hand, those formalisms that are more amenable
to analysis are not complete, so they restrict the set of
possible consistency semantics. In instantiating the con-
sistency model, one must choose an appropriate point
on the completeness vs. analyzability spectrum.

As noted earlier, first-class status and identity of ob-
jects provides the ability to model relationships among,
and constraints on, any kinds of objects. The identity
requirement, however, can lead to a fairly serious con-
sistency management system implementation problem.
The problem, which we call the container problem [35],
arises when the consistency status of an object, o, de-
pends on the states of other objects whose states can
change independently of 0’s. A well-known example of
the container problem is the dangling reference prob-
lem. For example, an application might destroy a node

3 A programming language enhanced with capabilities like con-
sistency management, persistence and concurrency control is typ-
ically referred to as a database programming language [2].

in an AST without realizing that other nodes refer to it.
The destroyed node affects the consistency of those that
refer to it, according to a referential integrity constraint,
but it can be destroyed without the knowledge of the re-
ferring nodes. The container problem is pervasive and
occurs in many forms, and it is particularly problematic
in the context of consistency management. Numerous
ad-hoc solutions to this problem have been used, includ-
ing problem-specific approaches like garbage collection
(which addresses only the dangling reference problem)
and general-purpose approaches like invertible pointers,
wrappers, polling, and event-based notification, but no
existing approach scales to address all forms of the con-
tainer problem in the context of consistency manage-
ment. We are developing an approach to address the
container problem by identifying different kinds of con-
tainer problems and different object features that affect
the selection of the most appropriate approach for man-
aging consistency in given contexts.

The dynamic control requirement provides considerable
flexibility. Satisfying this requirement raises some im-
portant issues, however. One is the inverse relation-
ship between dynamic control and optimizability and
analyzability—more dynamic control implies fewer op-
portunities for optimization and static analysis. This
may often be acceptable, but when developers know
that they do not require dynamic control (e.g., for en-
forcing invariants), they should be able to impart this
information to the consistency manager. The increased
potential for optimization and analysis comes with a loss
of flexibility, however; thus, the selection of a point on
the optimizability vs. dynamic control spectrum must
occur when instantiating the consistency model.

Current status: PLEIADES currently supports much
of the model described in Section 3 and addresses many
of the functional and cross-cutting requirements.

PLEIADES is implemented as a preprocessor for Ada.
Developers describe ADTs using primitives PLEIADES
provides, as illustrated in Section 3, and PLEIADES pro-
duces an Ada package that provides type and opera-
tion definitions for creating, manipulating, and enforc-
ing consistency over instances of those ADTs. Applica-
tions use these packages as they would use any other.

We selected a preprocessor implementation strategy be-
cause it was the most expedient way to develop a pro-
totype for evaluation, especially since we did not have
access to an open Ada compiler. Our potential users
also felt more comfortable using an extension that cre-
ated standard Ada code, rather than becoming depen-
dent on a one-of-a-kind compiler. The selection of a
preprocessor strategy had some negative consequences,
however. In the area of consistency management, the
primary one is a restriction on the set of constraint in-

stantiations that can be described declaratively. Specif-
ically, inputs to PLEIADES describe types, not instances;
thus, type-level constraints can be instantiated stati-
cally or dynamically, but instance-level instantiations
must occur dynamically. In addition, PLEIADES can-
not perform analyses that involve client code, such as
identifying unused consistency conditions or statically
detecting attempts to enforce constraints on objects to
which they do not apply.

PLEIADES directly supports all aspects of the consis-
tency model presented in Section 3, with a few excep-
tions. First, the set of consistency status values is prede-
fined to be consistent and inconsistent, and this set
is not currently extensible. Second, PLEIADES can per-
form consistency condition checking as preconditions
and/or postconditions, but it does not yet implement
support for preinvoke and postinvoke checks. Third,
action chains are not supported adequately in the cur-
rent version of PLEIADES. Specifically, if developers
wish to define an action chain, they must define each
action so that it invokes the next action in the chain.
Fourth, PLEIADES does not provide adequate support
for inconsistency management. In particular, it does
not provide a simple, declarative means of indicating
how objects can or cannot be manipulated while they
are inconsistent. For most of these limitations, we be-
lieve that users can achieve the desired semantics using
existing capabilities, and in fact, some users have done
so, validating both the need for these semantics and
the feasibility of providing them. Achieving these se-
mantics currently requires more programming interven-
tion than we believe is desirable, however, and permits
fewer opportunities for analysis and automated support.
These restrictions exist because we did not initially rec-
ognize the need for these capabilities; user feedback sug-
gested their utility. None are particularly problematic
to implement, and we plan to include them in future
versions of the system. Finally, the current implemen-
tation of PLEIADES only partially satisfies two of the
cross-cutting requirements: objects are first-class enti-
ties, but conditions and actions are not; and conditions
can be enforced only on a subset of types (thus failing
to satisfy type completeness fully). The former restric-
tion comes directly from Ada, which does not satisfy
the first-class status requirement, and is discussed in
Section 5. The latter is a result of using a preprocessor
implementation approach, since we simply did not have
the resources available to analyze all Ada types to the
degree required for consistency management. We be-
lieve that addressing these problems in a more modern
language, like Java, is straightforward, both conceptu-
ally and from an implementation perspective.

5 Experimental Evaluation

PLEIADES is currently in use in a number of real-world

applications, both academic and industrial. It is, of
course, difficult to quantify, and thus evaluate, func-
tionality. In this section, we summarize feedback we
obtained from PLEIADES users to help evaluate the
PLEIADES prototype and the consistency model.

The evaluation we performed was based on information
obtained directly from several PLEIADES users. The
client applications about which we obtained information
were a reusable components library, the Arcadia lan-
guage processing tool set, TAOS (Testing with Analysis
and Oracle Support) [29], the Booch Object-Oriented
Design process program (BOOD) [34], FLAVERS (Flow
Analysis and VERification System) [12], an agenda
management system, and an avionics validation and
verification system [21]. The process we used to per-
form the evaluation was as follows. We constructed
a questionnaire that included approximately fifty ques-
tions. The questions attempted to determine whether,
and how, each client had used capabilities resulting
from each of the functional and cross-cutting require-
ments, how closely the provided functionality satisfied
the user’s needs, and whether current limitations or ex-
isting features of PLEIADES caused the user difficulties.
We then evaluated each user’s experiences, based on the
information provided. Once this evaluation was written,
it was sent to the user for correction and feedback. A
complete description of the evaluation appears in [35].

The results of the evaluation suggest that, in general,
the consistency management requirements and model
we proposed are sound. Clients liked and made use of
most of the capabilities associated with the functional
requirements, and they made use of all the capabilities
associated with the cross-cutting requirements. Typi-
cally, problems reported could be traced to a failure to
satisfy either a functional or cross-cutting requirement.

As noted earlier, feedback from users led to some
changes in the consistency management model. It
pointed up other noteworthy items as well, including:

Granularity issues: PLEIADES’ constraint enforce-
ment mechanism was found to be too fine-grained for
some kinds of objects. In particular, the number and
complexity of constraints on the BOOD artifacts makes
the cost of constraint checking very high; BOOD can-
not tolerate the performance cost of checking these con-
straints upon each potential violation. Consequently,
the BOOD artifact constraints are left unenforced much
of the time, and they are checked manually by BOOD
at appropriate times. This suggests a need to associate
constraint enforcement with blocks of operations, as well
as with individual operations. This is similar to the
transaction model used in database systems.

Inter-object constraints: One user noted that it
was somewhat difficult to specify some kinds of inter-

object constraints in PLEIADES. Specifically, because
Ada operations are not first-class entities, constraints
and actions in PLEIADES, which are modeled as opera-
tions, are not first-class entities. This limitation, com-
bined with Ada’s static type model, means that only
those constraints specified as part of an ADT’s defini-
tion can apply to its instances. Thus, this user had to
group all the ADTSs to which inter-object constraints ap-
plied in the same specification, rather than separating
them appropriately, which reduced modularity.

In evaluating client use of PLEIADES, we have noted the
pervasiveness of several general classes of constraints.
These include:

Up-to-date constraints are used to assure percola-
tion of changes among related objects. Applications dif-
fer widely in the semantics they attach to failure to re-
pair violations of such constraints, however. Some rely
on the success of a repair and cannot continue if repair
fails. Others recognize that repair may fail and try alter-
native repair mechanisms or tolerate the inconsistency.

“Well-formedness” constraints impose type and
instance semantics not expressible using standard pro-
gramming language type models. For example, the
AST’s acyclic constraint is a well-formedness constraint.

Operation constraints enforce many kinds of full or
partial order relationships among invokable entities. For
example, Push must be invoked on a stack before Pop.
In most languages, these kinds of ordering constraints
must be enforced manually, using checks included in
operation implementations. This greatly increases the
difficulty of reasoning about, and changing the enforce-
ment of, such constraints. Among the kinds of operation
constraints we found in PLEIADES clients were ordering
of operations, condition checks, and action invocations.

The ubiquity of these classes of constraints suggests ben-
efits to facilitating their description explicitly.

6 Related Work

Programming languages have useful but limited support
for consistency management. Strongly typed program-
ming languages incorporate predefined notions of con-
sistency in terms of conformance to type definition, but
the set of violations that can be detected are restricted
to such criteria as bounds checking and erroneous type
usage; they do not support complex consistency defi-
nitions (e.g., well-formedness and up-to-date). Asser-
tion (e.g., [30, 22, 25]) and exception handling mech-
anisms (e.g., Ada, CLU [19], and Java) are special-
ized consistency management mechanisms provided by
some languages. Assertions describe invariant condi-
tions of a running program and specify actions to be
taken upon detecting violations of invariants. They are
embedded within the operations in which they should

be checked; thus, they represent static associations of
assertions with operations. While enforcement may be
turned on and off dynamically, as in Eiffel, the lexical
embedding of assertions in operations means that the
set of assertions and actions associated with a given op-
eration is fixed statically. Further, instance-level control
is very difficult to achieve. Eiffel’s support for pre- and
postconditions has a similar limitation. In contrast, the
model we propose provides both static and dynamic as-
sociation of conditions with operations, instances and
actions, providing full dynamic and instance-level con-
trol over consistency management. FExceptions reflect
unusual conditions; exception handlers specify actions
to be undertaken if one of these conditions arises. Again,
lexically embedding code to raise and handle exceptions
makes dynamic and instance-level control difficult to
achieve. Assertion and exception handling mechanisms
usually do not satisfy the cross-cutting requirements
for dynamic control over enforcement, or for first-class
status or identity of the conditions or actions associ-
ated with these mechanisms. They also do not sup-
port weakened notions of consistency or accommodate
inconsistency—their purpose is generally to preclude vi-
olation (particularly in the case of assertions) or to pro-
vide a mechanism for repair. If the repair fails, there
is no means of describing or enforcing the meaningful
manipulation of inconsistent objects.

Many relational database systems support constraints.
Their constraint enforcement mechanisms do not, how-
ever, satisfy most of the cross-cutting requirements
or many of the functional requirements. Relational
databases do not support application control over con-
straint enforcement or invocation of different actions at
different times—constraints are enforced at all times
except during a transaction, when all constraints are
relaxed. Relational databases support only roll-back
semantics—if constraints are not satisfied at the end of
a transaction, the effects of the transaction are undone.

Many database programming languages and object-
oriented databases support only a limited, predefined
set of consistency definitions, such as referential in-
tegrity (e.g., [23]) or programming language kinds of
consistency definitions (e.g., [37, 1]), or they support
consistency definitions over only a subset of types (typ-
ically collection types; e.g., [33, 9]).

Active database systems (e.g., [8, 20, 6]) include reac-
tive control primitives, typically in the form of event-
condition-action (ECA) rules, that can facilitate con-
sistency management. ECA rules are general-purpose
mechanisms for detecting the occurrence of some event
and responding to it by some action. In fact, the
underlying capabilities required to implement consis-
tency management and ECA rules are very similar,
and some researchers have used ECA rules to imple-

ment consistency management capabilities. As noted
by [33, 18, 9, 16], however, the semantics of consistency
management and reactive control are fairly different.
Consistency management activities are a required part
of any computation in which constraints are enforced—
failure to satisfy constraints may invalidate an activity.
The failure to complete an action associated with an
ECA rule, however, need not invalidate the associated
activity. For example, an ECA rule might be used to
send a message to a manager when an employee fin-
ishes designing a module. Failure to send the message
is unlikely to have any implications for either the design
process or artifacts. On the other hand, failure to sat-
isfy well-formedness constraints on the design artifacts
impacts the design process and artifacts. For this rea-
son, many process languages with reactive control draw
a distinction between consistency management and au-
tomation rules (e.g., [9, 18, 16, 33]). In these languages,
all consistency maintenance activities associated with a
process step must be carried out before the step can
complete; failure to satisfy constraints typically results
in aborting the associated step. Automation rules, on
the other hand, can be spawned off separately, and their
failure does not affect the associated step. In addition,
we are not familiar with any ECA systems that include
mechanisms for specifying and managing inconsistency.
It may be possible to implement such semantics man-
ually in some systems, but this is not a desirable ap-
proach. ECA systems also do not usually include sup-
port for conditions whose values are anything other than
“true” and “false.” Finally, active databases often have
the scalability problems that are associated with rule-
based systems in general—large collections of rules are
difficult to manage and understand. The model of con-
sistency management we proposed helps to address the
scalability problem by localizing constraints to the ob-
jects and applications to which they pertain.

Much research has been done in consistency manage-
ment for software process languages [27]. Some of
these languages rely on consistency management sup-
port from an associated object management system
(e.g., SLANG [4, 5]). Many software process languages
incorporate conditions on product state as process con-
trol conditions, rather than as product consistency con-
ditions, which assumes that process correctness ensures
product consistency. For example, EPOS [11] uses
guards and postconditions to affect flow of process con-
trol; Grapple [15] and Interact [28] model conditions as
goals; Melmac [14] and SLANG use conditional branch-
ing; and Marvel [18], AP35 [9], and Merlin [16] use con-
ditions as a basis for inferencing. All of these process
languages provide a more restrictive consistency model
than the one we have proposed. For example, AP5 han-
dles consistency failures by setting a flag on the inconsis-
tent data; if a particular application cares, it can check

the flag, but there is no mechanism in place to man-
age inconsistent objects. APPL/A facilitates the defi-
nition and enforcement of predicates over relations, but
it does not support user-defined actions to be invoked
to attempt to repair a violated constraint. Marvel and
Merlin use rules to specify consistency constraints, but if
the actions fail to repair a consistency violation, the vi-
olating transaction is aborted. Some process languages
also include support for tolerating inconsistency, but, as
noted, these capabilities tend to be somewhat limited.

Consistency management has also been a focus of re-
search in the area of viewpoint management. The View-
Points system [26], for example, facilitates multi-agent,
concurrent requirements engineering by associating a
viewpoint with each developer. Each viewpoint repre-
sents that developer’s own perspective on the require-
ments under development and the process by which they
are being developed. An overriding concern in this work
is to support fully distributed development, in which
no shared state or central database is required, so each
viewpoint contains its own copy of any objects being de-
veloped. This work also attempts to address the prob-
lem that different viewpoints may contain different (pos-
sibly conflicting) views of corresponding objects. Work
on consistency of viewpoints in general, and the View-
Points model in particular, shares several points in com-
mon with ours, but it is a fairly different approach to
addressing a related problem. It could be argued that
the ViewPoints approach is similar to optimistic con-
currency control, while our approach is similar to pes-
simistic. Optimistic concurrency control assumes that
conflicts are rare, so it permits them and resolves them
by aborting conflicting transactions. ViewPoints per-
mits conflicts between viewpoints and provides mecha-
nisms for their collaborative resolution. Optimistic ap-
proaches tacitly assume that loss of work due to conflicts
is acceptable. Also, as noted in [13], ViewPoints is lim-
ited in its ability to handle “global” consistency condi-
tions, since there is no concept of global or shared state.
Pessimistic concurrency control assumes that state may
be shared but provides mechanisms that can be used to
avoid conflicts. Our model similarly assumes that tools
and processes may share state and provides mechanisms
for ensuring the meaningful manipulation of objects, in-
cluding the identification and handling of manipulations
that could lead to global or local inconsistencies. It has
been our assumption that, particularly where creative
effort is involved, the loss of work due to such inconsis-
tency is unacceptable. Both the “optimistic” and “pes-
simistic” approaches have advantages and disadvantages
and are likely to be useful in different situations. Pro-
viding support for both would be ideal.

7 Conclusions

Consistency management is an important requirement,
in many complex applications. Depending on the par-
ticular application or domain, the required consistency
semantics may vary considerably. Facilitating a wide
range of consistency semantics is therefore both desir-
able and necessary. Current programming languages
and databases provide some useful kinds of support, but
for a limited range of consistency semantics (and thus,
applications). To address their limitations and facilitate
the specification and enforcement of a broad spectrum of
semantics, we defined a consistency management model,
based on what we perceive to be the underlying require-
ments of complex applications. These requirements are
expressed in terms of both the functional needs as well
as cross-cutting concerns that impact how this func-
tionality should be provided. Much of the model has
been implemented successfully in the PLEIADES object
management system. The focus of our work has been
on improved functionality for application programmers,
rather than on more quantifiable measures, such as per-
formance. It is very difficult to evaluate functionality,
but we surveyed users of the system to determine which
aspects of the system they used and what they liked
and disliked about it. Based on this evaluation, we have
changed some aspects of the model. Many limitations
reported by users can be traced directly to PLEIADES’
failure to satisfy some of the functional or cross-cutting
requirements. Overall, clients used most of the capabil-
ities associated with satisfying the functional and cross-
cutting requirements and reported that they were quite
happy with the support provided. These observations
suggest that the requirements we imposed, and the con-
sistency management model we defined, are sound.

Many issues remain to be addressed as future work.
First, we would like to make the consistency manage-
ment model history-sensitive. This is based on the ob-
servation that how applications reach a particular con-
sistency status may be important—e.g., to determine
whether a particular action actually caused an inconsis-
tency or simply failed to correct an existing one. Sec-
ond, we are exploring a new approach to addressing the
container problem. This approach would incorporate
analysis techniques to help guide the selection of appro-
priate strategies as well as a specification mechanism
that allows developers to state properties of objects that
are useful in choosing the best enforcement strategies.
Third, we are examining the application of coupling
modes [24] to consistency management. The presence
of coupling modes would permit the decoupling of con-
sistency checking from any associated actions. These
modes may be useful, for example, in cases where a
reaction to a consistency violation should be deferred
to some later time. Fourth, we hope to explore other

implementation strategies and to instantiate the consis-
tency management model for languages other than Ada
(notably, Java). This would help us evaluate the model
in the context of a less restrictive language. Fifth, we
believe that both “optimistic” and “pessimistic” consis-
tency management mechanisms are important and use-
ful in different circumstances, and while we believe we
have included many features that are necessary to sup-
port optimistic mechanisms, much of our focus has been
on pessimistic mechanisms. We hope to explore the inte-
gration of optimistic mechanisms, such as that described
in [26, 13], into our model. Finally, we hope to general-
ize from the experiences we, and other developers, have
had in using PLETADES and feed those experiences back
into the consistency management model.

Acknowledgments

We are indebted to our Arcadia colleagues and the
Avionics Validation and Verification project at TASC
for using PLEIADES and for providing us with useful
feedback. Lee Osterweil and Stan Sutton have been par-
ticularly helpful and have shared their experiences and
insights on consistency management in software process
programming. We have also benefited from ongoing dis-
cussions with Krithi Ramamritham, Jayavel Shanmuga-
sundaram, Arvind Nithrakashyap, and Barbara Lerner.

REFERENCES

[1] T. Andrews and C. Harris. Combining Language and
Database Advances in an Object-Oriented Development
Environment, pages 186-196. Readings in Object-
Oriented Database Systems. 1990.

[2] M. P. Atkinson and O. P. Buneman. Types and persis-
tence in database programming languages. ACM Com-
puting Surveys, 19(2):105-190, Jun 1987.

[3] R. Balzer. Tolerating inconsistency. In Proc. 13th Int’l.
Conf. on Software Engineering, pages 158-165, 1991.

[4] S.Bandinelli and A. Fuggetta. Computational reflection
in software process modeling: the SLANG approach. In
Proc. 15th Int’l. Conf. on Software Engineering, 1993.

[5] S. Bandinelli, A. Fuggetta, and S. Grigolli. Process
modeling in-the-large with SLANG. In Proc. 2nd Int’l.
Conf. on the Software Process, pages 75-83, 1993.

[6] N. Barghouti and G. Kaiser. Modeling concurrency in
rule-based development. IEEE Ezpert, 5(6), 1990.

[7] N. Barghouti and G. Kaiser. Concurrency control in ad-
vance database applications. ACM Computing Surveys,
pages 269-317, Sep 1991.

[8] A. Buchmann, R. Carrera, and M. Vazquez-Galindo.
A generalized constraint and exception handler for an
object-oriented CAD-DBMS. In Proc. Int’l. Workshop
on Object-Oriented Database Systems, pages 38—49, Sep
1986.

[9] D. Cohen. AP5 Manual. University of Southern Cali-
fornia, Information Sciences Institute, 1988.

[10]

[11]

[13]

[16]

[17]

[18]

[19]

[21]

[22]

[23]

R. Conradi, C. Fernstrom, and A. Fuggetta. Con-
cepts for evolving software processes. In A. Finkelstein,
J. Kramer, and B. Nuseibeh, editors, Software Process
Modeling and Technology, pages 9-31. 1994.

R. Conradi, et. al. EPOS: Object-oriented cooperative
process modeling. In A. Finkelstein, J. Kramer, and
B. Nuseibeh, editors, Software Process Modeling and
Technology, pages 33—70. 1994.

M. Dwyer and L. Clarke. Data flow analysis for veri-
fying properties of concurrent programs. In Proc. 2nd
Symp. on Foundations of Software Engineering, pages
62-75, Dec 1994.

S. Easterbrook, A. Finkelstein, J. Kramer, and B. Nu-
seibeh. Coordinating distributed viewpoints: The
anatomy of a comsistency check. Int’l. Journal on
Concurrent Engineering: Research and Applications,
2(3):209-222, 1994.

V. Gruhn and R. Jegelka. An evaluation of FUNSOFT
nets. In Proc. 2nd European Workshop on Software
Process Technology, Sep 1992.

K. E. Huff and V. Lesser. A plan-based intelligent as-
sistant that supports the software development process.
In ACM Symp. on Practical Software Development En-
vironments, pages 97-106, 1988.

G. Junkermann, B. Peuschel, W. Schafer, and S. Wolf.
MERLIN: Supporting coooperation in software devel-
opment through a knowledge-based environment. In
A. Finkelstein, J. Kramer, and B. Nuseibeh, editors,
Software Process Modeling and Technology, pages 103—
129. 1994.

R. Kadia. Issues encountered in building a flexible soft-
ware development environment. In Proc. 5th ACM SIG-
SOFT Symp. on Software Development Environments,
pages 169-180, Dec 1992.

G. E. Kaiser, P. H. Feiler, and S. S. Popovich. Intelligent
assistance for software development and maintenance.
IEEE Software, 5(3):40-49, May 1988.

B. Liskov, et. al. Lecture Notes in Computer Science,
volume 114, chapter CLU Reference Manual. Springer-
Verlag, 1981.

G. Lohman, B. Lindsay, H. Pirahesh, and K. B.
Schiefer. Extensions to starburst: Objects, types,
functions, and rules. Communications of the ACM,
34(10):95-109, Oct 1991.

J. P. Loyall, S. A. Mathisen, P. J. Hurley, J. S.
Williamson, and L. A. Clarke. An advanced system
for the verification and validation of real-time avionics
software. In Proc. 11th Digital Avionics Systems Conf.,
Oct 1992.

D. Luckham and F. vonHenke. An overview of ANNA,
a specification language for ada. IEEE Software, 2(2):9-
24, Mar 1985.

D. Maier and J. Stein. Development and imple-
mentation of an object-oriented dbms. In S. Zdonik
and D. Maier, editors, Readings in Object-Oriented
Database Systems, pages 167-185. Morgan Kaufman,
1990.

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

(35]

[36]

(37]

D. McCarthy and U. Dayal. The architecture of an
active database management system. In Proc. ACM
SIGMOD Int’l. Conf. on Management of Data, pages
214-224, 1989.

B. Meyer. Object-oriented Software Construction.
Prentice-Hall, 1988.

B. Nuseibeh, J. Kramer, and A. Finkelstein. A frame-
work for expressing the relationships between multiple
views in requirements specifications. Trans. on Software
Engineering, 20(10):760-773, Oct 1994.

L. J. Osterweil. Software processes are software too. In
Proc. 9th Int’l. Conf. on Software Engineering, pages
2-13, Mar 1987.

D. E. Perry. Policy-directed coordination and cooper-
ation. In Proc. 7th Int’l. Software Process Workshop,
1991.

D. J. Richardson. TAOS: Testing with analysis and
oracle support. In Proc. 1994 Int’l. Symp. on Software
Testing and Analysis, Aug 1994.

D. Rosenblum. Towards a method of programming with
assertions. In Proc. 14th Int’l. Conf. on Software Engi-
neering, May 1992.

S. M. Sutton, Jr. A flexible consistency model for persis-
tent data in software-process programming languages.
In A. Dearle, G. M. Shaw, and S. B. Zdonik, editors,
Implementing Persistent Object Bases—Principles and
Practice, pages 305-318, 1991.

S. M. Sutton, Jr. Preconditions, postconditions, and
provisional execution in software processes. Technical
Report CMPSCI TR 95-77, Computer Science Depart-
ment, University of Massachusetts at Amherst, Aug
1995.

S. M. Sutton, Jr., D. Heimbigner, and L. J. Oster-
weil. APPL/A: A language for software-process pro-
gramming. ACM Trans. on Software Engineering and
Methodology, 4(3):221-286, Jul 1995.

S. M. Sutton, Jr. and L. J. Osterweil. The design of a
next-generation process language. In Proc. 5th Symp.
on the Foundations of Software Engineering, Sep 1997.
(To appear.).

P. L. Tarr. Object Management Support for the Con-
struction of Complex Applications. PhD thesis, Univer-
sity of Massachusetts at Amherst, 1996.

P. L. Tarr and L. A. Clarke. PLEIADES: An object
management system for software engineering environ-
ments. In ACM SIGSOFT ’93 Symp. on Foundations
of Software Engineering, pages 56-70, Dec 1993.

S. L. Vandenberg and D. J. DeWitt. Algebraic support
for complex objects with arrays, identity, and inheri-
tance. In Proc. SIGMOD Int’l. Conf. on Management
of Data, pages 158-167, May 1991.

