An Evaluation of Object Management System
Architectures for Software Engineering Applications

Jayavel Shanmugasundaram, Barbara Staudt Lerner, Lori Clarke
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003 USA
+1 413 545 3787
{shan, lerner, clarke}@cs.umass.edu

ABSTRACT

Software engineering applications require sophisticated
object management system support for creating and
manipulating software objects. One of the key issues for
object management systems is distribution. Address-
ing this issue in the context of software engineering ap-
plications is particularly challenging because they have
widely varying object access profiles. Two fundamental
approaches to dealing with distribution are the object
server architecture, where objects are shipped to the
application program, and the operation server architec-
ture, where operation requests are shipped to where the
objects reside. We compare these architectures experi-
mentally to determine the conditions under which each
performs better.

KEYWORDS
Distributed object management, experimental evalua-
tion

1 INTRODUCTION

Software engineering applications create and manipu-
late software artifacts that tend to be large, inter-related
collections of objects with many complex operations
performed on them, sometimes over a long duration of
time. One effective technique to aid in the creation and
manipulation of such software artifacts is to use an un-
derlying object management system that models objects

This work was supported in part by the Air Force Ma-
teriel Command, Rome Laboratory, and the Advanced Research
Projects Agency under Contract F30602-94-C-0137. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the De-
fense Advanced Research Projects Agency, Rome Laboratory, or
the U.S. Government.

Jayavel Shanmugasundaram’s current address is Computer
Sciences Department, University of Wisconsin - Madison, Madi-
son, WI 53706 USA

as instances of abstract data types (ADTs) and provides
features like persistence and concurrency control.

With the advent of global networking, software engi-
neering activities are becoming increasingly distributed
as can be witnessed in new and emerging applica-
tions such as collaborative software engineering (e.g.,
[2, 7, 9, 10]) and software processes (e.g., [1, 6]). As a
result, one of the key issues to be addressed by object
management systems for software engineering is distri-
bution, where objects and the application programs ac-
cessing the objects are located on different machines,
perhaps located at various geographical sites. Since ac-
cesses to remote objects incur a network overhead that
is likely to be much more expensive than local com-
munication overhead, the performance implications of
a distributed object management system architecture
need to be carefully evaluated.

There are two fundamental ways to deal with distri-
bution. One way is to ship the remote objects to the
application program so that the application program
can perform operations on the object. The other way
is to ship the operation requests from the application
program to the place where the object resides, so that
the operations can be performed on the object. These
two approaches, which we call the object server architec-
ture and the operation server architecture respectively,
represent two ends in a spectrum of architectures for
distributed object management systems. Most object
oriented databases use an architecture similar to the
object server architecture [3, 4] while most relational
databases use an architecture similar to the operation
server architecture [12].

Addressing this issue of distribution is particularly chal-
lenging in the context of software engineering applica-
tions because they have widely varying object access
profiles, unlike most traditional database applications.
For example, during design a software engineer might
use a browser to search for an object containing a partic-
ular piece of the design from a relatively large collection
of objects, resulting in a single comparison operation
being applied to each object that is accessed until the
matching object is found. In contrast, a static analysis

tool might operate on a fine-grained representation of a
program containing 10° nodes or more using algorithms
that have quadratic complexity or worse. Given these
different object access profiles, it seems unlikely that one
distribution approach will perform well for both appli-
cations. On the other hand, it may be possible to pre-
dict which architecture will perform best for a particular
application so that the appropriate architecture can be
chosen.

While these two architectures are not new, there has
been little work comparing the performance of the two
architectures in order that such predictions can be made
in a scientific manner. Most of the work comparing the
architectures has been in the context of query optimiza-
tion [5, 8]. In this paper, we evaluate the performance of
the object server architecture and the operation server
architecture and present an empirical model to aid in
the selection of the appropriate architecture for a par-
ticular application. The rest of the paper is organized
as follows. Section 2 describes the object management
system model and introduces the object server and the
operation server architectures. Section 3 presents a de-
tailed performance study of these two architectures and
identifies the conditions under which each architecture
excels. Section 4 summarizes our results and discusses
plans for future work.

2 THE OBJECT MANAGEMENT SYSTEM:
MODEL AND ARCHITECTURE

In this section, we outline the object management sys-
tem model that we assume in this paper and then de-
scribe a simple non-distributed architecture, the object
server architecture, and the operation server architec-
ture for such a system.

2.1 The Object Management System Model

In our object management system model, we assume
that objects are instances of ADTs. The operations
that can be applied to objects are specified as part of
the ADT definition. We also assume that each object
has a uniquely identifying object id. An object may
refer to other objects by means of their object ids. An
object referred to by other objects is called a component
object.

2.2 Non-Distributed Object Management Sys-
tem Architecture

A simple non-distributed architecture of an object man-
agement system is shown in Figure 1. In the interest of
clarity, we restrict our current discussion to the case
where an application program accesses instances of just
one ADT.

There are three main parts in the architecture, namely
the ADT implementation, the object cache and the stor-

APPLICATION PROGRAM
_ (1) |
S T !
Z 1 | ADTIMPLEMENTATION (4) |
|
:zz Z C OBJECT CACHE) !
£
=% |
cZ @) 6) :
=2 STORAGE MANAGER .
o |

1) Application invokes operation.

2) Object is requested from storage manager

3) Storage manager retrieves and returns object
4) Operation is performed on object.

5) Result is returned to application.

Figure 1: Non-Distributed Architecture

age manager. Application programs invoke operations
on an object. If the object is not present in the object
cache, a request is sent to the storage manager for the
desired instance. The storage manager reads the ob-
ject from the disk and returns it to the object cache.
The invoked operation is then performed on the object
present in the object cache. As part of the execution
of this operation, the application may indirectly invoke
operations on component objects. If these component
objects are not present in the object cache, they are
requested from the storage manager before operations
can be performed on them. The result of the invoked
operation is then returned to the application program.

A session is the unit of interaction between the applica-
tion program and the object management system. All
the modified objects in the object cache are flushed to
the storage manager at the end of every session.

The non-distributed architecture was designed for the
situation in which the different parts could interact us-
ing local procedure calls. In the case where application
programs need to access remote objects, however, alter-
native architectures have to be explored.

2.3 The Object Server Architecture

In the object server architecture, the storage manager
is the server and the remaining parts of the architec-
ture reside with the application program in the client.
The architecture is so named because the interaction be-
tween the client and the server is at the level of objects.
This architecture is similar to the “data-shipping” ar-
chitecture commonly used in object oriented database

systems [3].

The key difference between the non-distributed archi-
tecture and the object server architecture is in the cost
of sending objects to the client and returning modified
objects to the server at the end of a session.

2.4 The Operation Server Architecture

In the operation server architecture, the storage man-
ager and the ADT implementation form the server and
the application program becomes the client. The ar-
chitecture is so named because the interaction between
the client and the server is at the level of operations
on objects. This architecture is similar to the “query-
shipping” architecture used in relational database sys-
tems.

The key difference between the non-distributed archi-
tecture and the operation server architecture is in the
cost of sending operation requests to the server and re-
turning the results to the client.

3 PERFORMANCE STUDY OF THE ARCHI-
TECTURES

In this section, we present the results of a study com-
paring the performance of the operations within a single
session using the non-distributed, object server, and op-
eration server architectures. We first identify the factors
that affect the performance of architectures and then
study their effects experimentally.

3.1 Factors of Applications Affecting Perfor-
mance

The five main steps listed in Figure 1 are the same for
all architectures. These steps give rise to the following
factors that are likely to vary significantly from applica-
tion to application. The factors derived from the appli-
cation as well as the communication costs derived from
the architectures determine the overall performance of
an application. The empirical model employs both the
application factors and communication costs to predict
application performance as described in Section 3.2. In
the following list of application factors, we show in ital-
ics the identifier that represents each factor in the em-
pirical model.

e Number of operations invoked directly on an
object by the application program (num_of_ops).

e Number of objects retrieved by the storage
manager by an operation invoked (directly or indi-
rectly) by the application program (num_of_objs).

e Size of object operated on by an operation in-
voked (directly or indirectly) by the application
program (obj_size).

¢ Time to execute an operation performed directly
on a local object, exclusive of the time to exe-
cute operation calls indirectly on component ob-
jects (time_to_execute).

The meaning of the factors is somewhat subtle and thus
requires further explanation.

Number of operations. The client-server commu-
nication for the operation server involves the sending
of operation requests from the application to the ob-
ject management system and the returning of results
to the application. As a result, increasing the number
of operation requests stresses this communication and
decreases the expected performance of the application.
Only the requests going from the application program
to the ADT implementation incur this communication
overhead. The requests from the ADT implementation
to component objects are local procedure calls that oc-
cur entirely on the server. As a result, the experiment
varies the number of operations from the application
program with the expectation that the more operations
that are performed on a single object, the worse the
operation server architecture will perform compared to
the object server architecture.

We do not consider the size of parameters to an opera-
tion and the size of the return result of an operation as
factors. In an object oriented environment, we expect
most operations to take few parameters and these pa-
rameters will either be object ids or simple scalar types
like integers. Similarly, we expect the return results of
operations to be object ids or simple scalar types. Thus,
the size of the parameters and the size of the return re-
sults of operations are not expected to vary widely from
application to application.

Number of objects retrieved and size of objects.
The client-server communication for the object server
architecture involves sending objects from the storage
manager to the ADT implementation. Thus, the fac-
tors in an application program that will affect the com-
munication costs for the object server architecture are
the number of objects retrieved by an operation and the
size of the objects. Since the ADT implementation re-
sides at the client, all objects manipulated during the
execution of an application program must be shipped to
the client. As a result, the number of objects retrieved
includes the objects retrieved directly by operation calls
made from the application program as well as the com-
ponent objects retrieved by operation calls made by the
ADT implementation (and thus indirectly from the ap-
plication program). The experiment used only read op-
erations. To include write operations, we would also
need to add a factor to represent the number of objects
modified during a session since these objects must be
sent back to the storage manager at the conclusion of a

session.

Time to execute. The time that it takes to execute an
operation depends upon the number of objects that need
to be shipped to the client during its execution in the
case of the object server, and the number of operation
calls made to component objects in the case of the oper-
ation server. Thus, measuring the raw time of the oper-
ations would have been redundant with the other factors
that we were measuring. To avoid this redundancy, the
time that we measured is the time spent in an operation
minus the time spent retrieving objects and the time
spent in operation calls on component objects. The time
to execute an operation therefore roughly equates to the
architecture-independent complexity of the operation.
Time to execute will vary as the power and load on the
client and server machines vary. In our experimentation
we used equivalently-powered and similarly-loaded ma-
chines for the client and server and therefore expected
the time to execute an operation to be the same on both
architectures. As we later describe, we were surprised
to find that complex operations performed worse on the
operation server architecture than on the object server
architecture even under these conditions.

3.2 A Simple Empirical Model

We model the time required for performing operations
in an architecture by determining the time required for
performing the five steps outlined in Figure 1. The
time for each step depends on the application fac-
tors listed above as well as client-server communication
costs, which are architecture dependent. This leads to
an empirical model that can be used to predict the ex-
pected performance of an application given the expected
values for the factors and the measured values of the
architecture-dependent costs. The time for each step is
modeled as follows:

e Operation invocation by the application pro-
gram. The time required for performing this step
is characterized by the formula:

op-invocation_time X num-of _ops

where op_invocation_time is the time for a single
operation invocation by the application program.
We expect op_invocation_time to be significantly
higher for the operation server architecture than
for the other architectures.

e Requests to the storage manager. The time
required for making requests for objects (directly
or indirectly accessed by an operation) is charac-
terized by:

storage_mgr_request_time X num_of_objs

where storage_mgr_request_time is the time re-
quired for a single request message to be sent to
the storage manager. We expect this time to be
significantly higher for the object server architec-
ture than for the other architectures.

e Retrieving and returning objects from the
storage manager. The time for retrieving objects
and sending them to the object cache is represented
by the formula:

(retrieval overhead + send_overhead +
(retrieval time + send_time) X
obj_size) X num_of _objs

where retrieval_overhead is the overhead for a
retrieval operation in the storage manager and
retrieval _time is the time to retrieve an object
of unit size (excluding the overhead). Similarly,
send-overhead is the overhead for sending an ob-
ject from the storage manager to the object cache
and send_time is the time to send an object of unit
size (excluding the overhead). We expect the val-
ues of retrieval_overhead and retrieval time to be
approximately the same for all the architectures.
However, we expect the values of send_overhead
and send_time to be higher for the object server
architecture than for the other architectures.

e Performing operations on objects. The for-
mula given below characterizes the time for per-
forming operations on objects.

time_to_execute X num_of_objs X num_of_ops

Since all the variables given above are application
factors, we expect the time required for performing
operations on objects to be approximately the same
for all the architectures, assuming equally powerful
and equally loaded clients and servers.

¢ Returning results to the application pro-
gram. The time required for returning the results
of operations to the application programs is given
by the formula:

result_return_time X num_of _ops

where result_return_time is the time required for
returning the results of a single operation to the ap-
plication program. We expect result_return_time
to be higher for the operation server architecture
than the other architectures.

Combining the time required for all steps detailed
above, we arrive at the following formula for the perfor-
mance of operations in an architecture within a session:

op_commumnication_cost X num_of_ops +
constant_storage_mgr_cost X num_of_objs +
variable_storage_mgr_cost x obj_size X num_of_objs +
time_to_execute X num_of_objs X num_of_ops

where op_communication_cost = op_invocation_time +
result_return_time, constant_storage_mgr_cost is the
storage manager overhead that is independent of object
size which equates to storage_-mgr_request_time + re-
trieval _overhead + send_overhead, and variable_stor-
age_mgr_cost is the storage manager cost that varies
with object size which equates to retrieval_time +
send_time. From the discussion above, we expect
op_commumnication_cost to be higher for the operation
server architecture than for the object server architec-
ture and constant_storage_mgr_cost and variable_stor-
age_mgr_cost to be higher for the object server architec-
ture than for the operation server architecture. This il-
lustrates the basic tradeoff between the operation server
architecture and the object server architecture - the op-
eration server architecture is expected to perform bet-
ter when an operation accesses many different objects
while the object server architecture is expected to per-
form better when there are many operations invoked on
the same object.

3.3 Experimental Setup

For the purpose of this evaluation, we used Pleiades
[14], an ADT based object management system, as the
underlying object management system and modified it
to implement the object server and operation server ar-
chitectures by replacing local procedure calls with the
appropriate remote procedure calls. The results of this
evaluation, however, are not tied to Pleiades and should
be applicable to any ADT based object management
system satisfying the model described in Section 2.1.

For this performance evaluation, we investigated the ef-
fects of the factors outlined in Section 3.1 on the perfor-
mance of operations within a session. For the purpose
of keeping the experimentation tractable, we designed
the experiment such that

e The cache is large enough to hold all objects needed
during a session.

e All entries in the object cache are invalidated at
the end of a session.

e Objects are brought over one at a time from the
storage manager to the object cache.

e All operations are read operations.

e During a session of the application program:

— Each invocation of an operation on an object
is deterministic.

— Each object has the same size.

— The time required to execute an operation lo-
cally on each object, exclusive of operation
calls on component objects, is roughly con-
stant.

The experimentation involved running applications with
different values for the factors identified earlier. We
selected values that one might reasonably expect soft-
ware engineering applications to possess. All applica-
tions used list traversal as their main operation. The
number of operations invoked was controlled by chang-
ing the number of times the traversal operation was in-
voked during a session of the application program. This
was varied from 1 to 2001 in steps of 100. The number
of objects retrieved was varied by changing the length of
the list from 1 to 391 in steps of 30. The size of the ob-
ject was varied by changing the size of each entry in the
list from 50 bytes to 3122 bytes, in steps of 1024 bytes.
The time to perform an operation on each object was
varied by changing the complexity of the operation per-
formed on each object during the traversal. This took
on the values 1, 2, 4 and 6, where an operation with
complexity value of 1 was a very simple operation on an
ADT instance requiring a few 100s of machine instruc-
tions to execute. Operations with a higher complexity
value, say x, had to execute approximately = times as
many instructions as the operation with a complexity
value of 1.

The experiment was performed on DEC Alpha worksta-
tions, with a clock speed of 166 MHz, running Digital
UNIX V3.2C. For the non-distributed architecture, all
components of the architecture resided on the same ma-
chine. In the case of both the object server and the op-
eration server architectures, the client and server com-
ponents resided on different machines. The machines
were connected using a 10 Mbps ethernet LAN and the
client and server machines communicated using Q re-
mote procedure calls [11]. All experiments were per-
formed when there were no other user processes run-
ning on the machines and when there was little network
traffic. Each experiment was repeated four times and
the average time for the last three runs was used as the
measured time. This was done in order to warm the
processor cache during the first run and to eliminate
any noise during the subsequent three runs. All timing
was performed using the Unix ¢ime command.

3.4 Experimental Results

In this section, we present selected performance results!
of the non-distributed, object server, and operation
server architectures using the experimental setup de-

1 More detailed results can be found at
http://laser.cs.umass.edu/dot-experiment.html.

scribed above. As expected, the non-distributed archi-
tecture always outperforms the other architectures and
so we do not discuss that architecture further.

Effect of Number of Operations. As expected, the
operation server performs better than the object server
when the number of operations performed is low. Fig-
ure 2 compares the performance of operations under the
three architectures when the number of objects is 181,
the object size is 50 bytes and the operation complexity
is 1. With this configuration, the object server per-
forms better after about 800 operations are executed
during the session, meaning that the cost of retrieving
an object whose size is 50 bytes and performing the op-
eration in the client is approximately 4.4 times the cost
of invoking the operation remotely and performing the
operation on the server for operation complexity 1. The
crossover point at which the object server does better
varies depending on the object size and operation com-
plexity as will be shown later.

Effect of Number of Objects. As expected, the ob-
ject server performs better when the number of objects
retrieved is low. Figure 5 compares the performance
of operations under the three architectures when the
number of operations is fixed at 1001 and the operation
complexity is 1 but the number of objects varies. Here,
the operation server architecture does better when each
operation retrieves 200 or more objects. The crossover
point again varies depending on operation complexity
and object size as is shown later.

Note that the performance of the operation server ar-
chitecture is roughly constant when the number of op-
erations is large and the number of objects is small.
We believe that this is due to the fact that each call
to the operation server results in scheduling and pro-
cess switching overhead. When operations execute very
quickly, the server is waiting longer for an opportunity
to execute than it actually spends in execution, result-
ing in a measurable impact on server performance. As
the execution time increases, the impact of this over-
head lessens as is demonstrated here by increasing the
number of objects and later in Figure 6 by increasing
operation complexity.

Effect of Operation Complexity. We expected op-
eration complexity to degrade the performance of the
operation server and object server equally since we used
equally-powered and similarly-loaded machines for the
client and the server. The experimental results, how-
ever, indicated that operation complexity has a bigger
impact on the operation server. Figure 3 compares the
performance of operations under the three architectures
when the number of objects is 181 and the operation
complexity is 4. Comparing this to Figure 2, we see
that the crossover point moved from 800 operations to

600 operations as the complexity increased from 1 to 4.
Figure 6 compares the performance of operations under
the three architectures when the number of operations
is fixed at 1001 and the operation complexity is 4. In
this case, the object server architecture always outper-
forms the operation server architecture. This contrasts
with the results from Figure 5 where the operation com-
plexity was 1, and the operation server architecture per-
formed better when there were more than 200 objects.

Effect of Object Size. As expected, operation server
performance improves relative to object server perfor-
mance as the size of the objects increases, since this
increases the client/server costs for the object server
architecture. Figure 4 compares the performance of op-
erations under the three architectures when the number
of objects is 181, the operation complexity is 1 and the
size of an object is 2098 bytes. The operation server ar-
chitecture always performs better than the object server
architecture at this object size. Compare this with Fig-
ure 2 where the object size was 50 bytes. In that case
the object server architecture did better only when more
than 800 operations were applied to the objects. Simi-
larly, Figure 7 compares the performance of operations
under the three architectures when the number of oper-
ations is fixed at 1001, the operation complexity is 1 and
the size of an object is 2098 bytes. Here the object server
architecture outperforms the operation server architec-
ture only when fewer than 10 objects are retrieved. In
contrast, Figure 5, where the object size was 50 bytes,
performed better until 180 objects were retrieved.

Application Performance. As per the empirical
model discussed in section 3.2, we expect the perfor-
mance of applications in the architectures to vary as
per the following formula:

op_communication_cost X num_of_ops +
constant_storage_-mgr_cost X num_of _objs +
variable_storage_mgr_cost X obj_size X num-of_objs +
time_to_execute X num-_of_objs X num_of_ops

Table 1 shows the values for the unknowns for the differ-
ent architectures obtained using the least mean square
approximation technique when the object size is 50
bytes and the operation complexity is 1.

From the above results, we can see that the em-
pirical model fits the experimental results very well,
particularly for the non-distributed and object server
architectures. The standard deviation is higher for
the operation server because the data fits a plane
less well due to the flatness observed when op-
erations execute very quickly, as described -earlier.
As expected, the value of op_communication_cost is
much higher for the operation server architecture than
the object server architecture. Similarly, the stor-
age manager cost (constant_storage-mgr_cost + 50 x

Unknown Non-Distributed | Object Server | Operation Server
Architecture Architecture Architecture
Op communication cost 1.448 ms 1.683 ms 7.534 ms
Storage mgr cost 0.153 ms 18.899 ms 0.337 ms
Time to execute 0.016 ms 0.014 ms 0.008 ms
Standard deviation 0.05s 0.1s 0.7s

Table 1: Values for Architecture Factors: Object size = 50 bytes, Operation complexity = 1

variable_storage_mgr_cost) is much higher for the ob-
ject server architectures. We believe the disparity in
time_to_execute for the operation server architecture is
again due to the relatively poor fit of the data to a plane.

The operation communication cost and storage manager
cost are virtually unaffected by operation complexity
changes, as we expected. Table 2 shows the change in
time to execute for the different operation complexities.
For the non-distributed and object server architectures
the time to execute increases linearly with the operation
complexity. This is not true for the operation server,
however, because the overhead of scheduling and pro-
cess switching has less effect at higher operation com-
plexities (when the time spent performing the opera-
tion dominates scheduling time) and thus the empirical
model fits the experimental results better at higher op-
eration complexities. Also, note that the time to exe-
cute operations of a given operation complexity differs
for the architectures and influences their performance.
In particular, even on an unloaded operation server, the
time to execute anything other than trivial operations is
slower than with the other architectures due to resource
contention with the storage manager and Q.

When we fit the empirical model to the performance re-
sults for each architecture for different object sizes, the
operation communication cost and time to execute are
virtually unchanged, as we expected. Table 3 shows the
changes in the storage manager cost as the object size
is varied, demonstrating how the object server archi-
tecture quickly degrades in performance as object size
increases.

Experimental Conclusions. The experiment con-
firmed our hypothesis that the object server architecture
would perform better when many operations were ap-
plied to a small collection of objects while the operation
server architecture would perform better when a few
operations were applied to a large collection of objects.
Before developing the empirical model and performing
the experiment, however, we did not know exactly where
the tradeoffs would be. The results of our experiment
indicate that object size has a tremendous impact on the
performance of the object server. Indeed, it seems that
the object server architecture should only be considered

in the cases where objects are small or where operations
have high complexity. Even in these situations, it is im-
portant to take into consideration the number of objects
that would need to be transferred and weigh the cost of
transferring those objects against the cost of potentially
many operation calls on the server. On the other hand,
as contention for the server increases, it seems the ob-
ject server architecture will become increasingly attrac-
tive since it reduces the load on the server, although we
have not measured this effect experimentally.

Returning to our earlier example, static analysis tools
use a large number of small objects and an algorithm
with high complexity. In this case, the cost of executing
a polynomial number of operations using the operation
server is higher than sending n small objects to the client
using the object server. In contrast, the searching algo-
rithm is low complexity, and involves potentially many
large objects. In this case, it is better to perform the
search at the server rather than send all the objects to
the client when most of them will never be used again.
The empirical model would facilitate the prediction of
the appropriate architecture for applications with less
extreme object access profiles.

4 CONCLUSIONS AND FUTURE WORK

Software engineering applications have varying object
access profiles that influence the selection of the appro-
priate object management system architecture. In this
paper, we have studied and empirically modeled the
performance of two fundamental architectures to sup-
port distribution, namely the the object server and the
operation server architectures. The performance study
shows that, as expected, the object server architecture
performs better when many operations are performed
on the same object and that the operation server ar-
chitecture performs better when an operation accesses
many objects. Further, an increase in the size of the ob-
jects significantly degrades the performance of the ob-
ject server architecture but not that of the operation
server architecture. The empirical model developed in
this paper helps to quantitatively determine the condi-
tions under which one architecture performs better than
the other. Such an empirical model is likely to be very
useful in practice because in some applications, we ex-

Complexity | Non-Distributed | Object Server | Operation Server
Architecture Architecture Architecture

1 0.016 ms 0.014 ms 0.008 ms

2 0.032 ms 0.029 ms 0.029 ms

4 0.065 ms 0.059 ms 0.068 ms

6 0.096 ms 0.085 ms 0.107 ms

Table 2: Values for Time to Execute: Varying Complexity of Operations, Object size = 50 bytes

Object Size | Non-Distributed | Object Server | Operation Server
Architecture Architecture Architecture
50 0.153 ms 18.899 ms 0.337 ms
1074 0.276 ms 224.282 ms 0.423 ms
2098 0.371 ms 411.577 ms 0.579 ms
3122 0.435 ms 604.342 ms 0.823 ms

Table 3: Values for Storage Manager Cost: Varying Object Size, Operation complexity = 1

pect that selecting the faster architecture would reduce
application program running time considerably.

Although the results presented in this paper help in de-
termining an appropriate architecture for a given appli-
cation, much work remains to be done in this area. The
empirical model should be extended to model the per-
formance of the architectures at session boundaries and
for applications that have many sessions. The empirical
model also needs to be validated using actual applica-
tion programs. Further, the empirical model does not
currently take into account the effects of caching strate-
gies. Sophisticated caching strategies such as page level
caching of objects, where each page could have more
than one object [3], and caching objects in the object
cache between sessions could be used in the object server
architecture. Operation result caching, where the return
value of a read only operation is cached at the client for
future use [12], could be used for the operation server
architecture. The usage of these caching strategies may
significantly affect the tradeoffs between the two archi-
tectures and thus needs to be explored.

One of the long term goals of this work is to tailor an
appropriate architecture for each application, possibly
at run-time and on a per object basis, taking into ac-
count a wide variety of issues. In this context, the ex-
ploration of hybrid architectures that combine features
of the object and operation server seems to be a step
in the right direction. We are also interested in exam-
ining how well these architectures support additional
functionality such as collaboration, heterogeneity, type
evolution, recovery, and resilience to failure.

ACKNOWLEDGEMENTS

We would like to thank Jagan Peri for helping with the
implementation of the object server architecture and
Peri Tarr for her insights into the Pleiades implementa-
tion, assistance in designing the experiments, and com-
ments on the paper.

REFERENCES

[1] V. Ambriola, R. Conradi, A. Fuggetta. Assess-
ing process-centered software engineering environ-
ments. ACM Transactions on Software Engineering
and Methodology, 6(3):283-328, (July 1997).

[2] S. Bandinelli, E. Di Nitto, A. Fuggetta. Supporting
cooperation in the SPADE-1 Environment. IEFE
Transactions on Software Engineering, 22(12):9-20,
(December 1996).

[3] D. DeWitt, P. Futtersack, D. Maier, F. Velez. A
study of three alternative workstation-server archi-
tectures for object-oriented database systems. Pro-
ceedings of the 16th VLDB Conference, Brisbane,
Australia, August 1990.

[4] M. Franklin. Client Data Caching, Kluwer Academic
Press, Boston, 1996.

[5] M. Franklin, B. T. Jénsson, D. Kossmann. Perfor-
mance tradeoffs for client-server query processing.
Proceedings of the SIGMOD Conference, pages 149—
160, June 1996.

[6] A.Fuggetta, A. Wolf, eds. Trends in Software: Soft-
ware Process, Volume 4, John Wiley and Sons, New
York, 1996.

Size of Object = 50 bytes, Number of Objects = 181, Operation Complexity = 1

20 T T T
Non-Distributed Architecture —<—
Object Server Architecture -+--
Operation Server Architecture -8--
.|
15 | o} 4
o
°
|5
S
S
3
@»
£
@ 10 - 4
E
=
°
2
3
a
<
w
5 i
- a8’
-
B
0 & . . .
0 500 1500 2000

1000
Number of Operations

Figure 2: Varying Number of Operations: Object
size = 50 bytes, Operation complexity = 1

Size of Object = 50 bytes, Number of Objects = 181, Operation Complexity = 4

45 T T T
Non-Distributed Architecture —<—
Object Server Architecture -+--
40 Operation Server Architecture -2---
35 E

Elapsed Time (in Seconds)

0 = L L L
1500 2000

1000
Number of Operations

Figure 3: Varying Number of Operations: Object
size = 50 bytes, Operation complexity = 4

Size of Object = 2098 bytes, Number of Objects = 181, Operation Complexity = 1
T

T T
Non-Distributed Architecture —~—
100 + bject Server Architecture -+-- |
Operation Server Architecture -8--
g
80 - T]
IS
5 A
k<]
g
S
8
7}
< 60 - i
Y
E
=
=]
°
g af]
w
20 | 4
0 g L L
0 500 1500 2000

1000
Number of Operations

Figure 4: Varying Number of Operations: Object
size = 2098 bytes, Operation complexity = 1

Size of Object = 50 bytes, Number of Operations = 1001, Operation Complexity = 1
T T T T T T

18 J
Non-Distributed Architecture —<—
Object Server Architecture -+--
16 | Operation Server Architecture -2---

Elapsed Time (in Seconds)

300 350 400

.
0 50 100 150 200 250
Number of Objects

Figure 5: Varying Number of Objects: Object size = 50
bytes, Operation complexity = 1

Size of Object = 50 bytes, Number of Operations = 1001, Operation Complexity = 4
T T T T T T

45 T
Non-Distributed Architecture —<—
Object Server Architecture -+--
40 Operation Server Architecture -2---

Elapsed Time (in Seconds)

300 350 400

. .
0 50 100 150 200 250
Number of Objects

Figure 6: Varying Number of Objects: Object size = 50
bytes, Operation complexity = 4

Size of Object = 2098 bytes, Number of Operations = 1001, Operation Complexity = 1
T T T T T

T T
200 Non-Distributed Architecture -<— -
bject Server Architecture -+--
Operation Server Architecture -8--
A

150 -
@
k<]
g
S
8
@
@»
£

g 100]
£
=]
°
2
a
©
w

50 B

0 el L L L L

0 50 100 150 300 350 400

200 2!
Number of Objects

Figure 7: Varying Number of Objects: Object
size = 2098 bytes, Operation complexity = 1

[7] W. H. Harrison, H. Ossher, P. F. Sweeney. Co-
ordinating concurrent development. Proceedings of
the Conference on Computer-Supported Cooperative
Work, pages 157-168, Los Angeles, California, 1990.

[8] B. P. Jenq, D. Woelk, W. Kim, W. Lee. Query pro-
cessing in distributed ORION. Proceedings of the In-
ternational Conference on Fxtending Database Tech-
nology, pages 169-187, Venice, Italy, March 1990.

[9] G. Junkerman, B. Peuschel, W. Schifer, S. Wolf.
MERLIN: Supporting cooperation in software de-
velopment through a knowledge-based environment.
Software Process Modeling and Technology, Re-
search Studies Press Ltd, 1994.

[10] S. M. Kaplan, W. J. Tolone, A. M. Carrol, D. P.
Bogia, C. Bignoli, Supporting collaborative software
development with Conversation Builder. Proceedings
of the Fifth ACM SIGSOFT Symposium on Software
Development Environments, December 1992.

[11] M. J. Maybee, D. M. Heimbigner, L. J. Oster-
weil. Multilanguage interoperability in distributed
systems. Proceedings of the 18th International Con-
ference on Software Engineering, pages 451-463,
Berlin, Germany, March 1996.

[12] N. Roussopoulos, C. M. Chen, S. Kelley, A. Delis,
Y. Papakonstantinou. The ADMS project: Views R
Us. IEEE Conference on Data Engineering, pages
19-28, March 1995.

[13] M. Stonebraker, P. M. Aoki, R. Devine, W. Litwin,
M. A. Olson. Mariposa: A new architecture for dis-
tributed data. IEEE Data Engineering Conference,
pages 54—65, February 1994.

[14] P. L. Tarr, L. A. Clarke. PLEIADES: An object
management system for software engineering envi-
ronments. ACM SIGSOFT Symposium on Foun-
dations of Software Engineering, pages 56—70, Los
Angeles, December 1993.

