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Abstract

Finite-state verification (e.g., model checking) provides a powerful
means to detect errors that are often subtle and difficult to reproduce.
Nevertheless, the transition of this technology from research to practice
has been slow. While there are a number of potential causes for reluctance
in adopting such formal methods in practice, we believe that a primary
cause rests with the fact that practitioners are unfamiliar with specifica-
tion processes, notations, and strategies. Recent years have seen growing
success in leveraging experience with design and coding patterns. We pro-
pose a pattern-based approach to the presentation, codification and reuse
of property specifications for finite-state verification.

1 Introduction

Formal specification and verification have been active areas of research for
over two decades. While formal approaches offer practitioners some significant
advantages over the current state-of-the-practice, they have not been widely
adopted. In addition to a lack of definitive evidence in support of the cost-
saving benefits of formal methods, a number of more pragmatic barriers to
adoption of formal methods have been identified [26] including the lack of good
tool support, expertise in organizations, good training materials, and process
support for formal methods.

We believe that the recent availability of tool support for finite-state verifi-
cation provides an opportunity to overcome some of these barriers. Finite-state
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verification refers to a set of techniques for proving properties of finite-state
models of computer systems. Properties are typically specified with temporal
logics or regular expressions, while systems are specified as finite-state transi-
tion systems of some kind. Tool support is available for a variety of verification
techniques including, for example, techniques based on model checking [23],
bisimulation [8], language containment [18], flow analysis [15], and inequality
necessary conditions [3]. In contrast to mechanical theorem proving, which of-
ten requires guidance by an expert, most finite-state verification techniques can
be fully automated, thus relieving the user of the need to understand the inner
workings of the verification process.

Despite the automation, users of finite-state verification tools still must be
able to specify the system requirements in the specification language of the tool.
For example, a user who wants to verify that “Between process A updating a
value and process B reading the value, the value must be flushed from process
A’s cache” using a linear temporal logic (LTL) [21] model checker would have
to translate this prose into the formula:

O((UpdateA A O ReadB) — —ReadB U FlushA)

Although the property and the formula are relatively simple, writing the LTL
formula requires knowledge of several standard LTL idioms. For example, the
property is (implicitly) a safety property, thus the formula begins with the O
operator. To say event @) always follows event P, we would usually write a
specification of the form P — <@. In our case, however, we want to constrain
the intermediate events, so we use the until operator i instead of <. Since the
FlushA need not occur unless the ReadB does, we prohibit ReadB until FlushA
only if a ReadB does eventually occur.

Even if they do not make use of all of the features and expressive power
of the specification formalisms associated with formal verification techniques,
users of those techniques do need to be expert enough to accurately express the
requirements they wish to verify in the appropriate specification formalisms. We
contend that acquiring this level of expertise represents a substantial obstacle to
the adoption of automated finite-state verification techniques and that providing
an effective way for practitioners to draw on a large experience base can greatly
reduce this obstacle.

We propose to capture this experience base and enable the transfer of that ex-
perience between practitioners by way of a specification pattern system. Patterns
were originally developed to capture recurring solutions to design and coding
problems [17]. Design and coding languages are rich expressive formalisms that
provide for a wide-variety of solutions to a given problem, but the full range of
possible solutions is is usually much wider than is necessary or useful. Patterns
are successful because practitioners want to solve naturally occurring domain
problems. They don’t need the full expressiveness of the languages they use
and would often prefer guidance on how best to use language features to solve
a specific problem. The same appears true in formal specification languages for
concurrent and reactive systems. While there are a number of very expressive



formalisms, such as CTL* and the modal mu-calculus, the specifications that are
documented in the literature, for example in [1,6,12,14,24,27], appear relatively
simple. They can be expressed fairly simply in existing specification formalisms
and don’t require advanced, complex features. Thus, we believe a collection of
simple patterns can be defined to assist practitioners in mapping descriptions
of system behavior into their formalism of choice, and that this may improve
the transition of these formal methods to practice.

In the following section we describe the idea of design patterns and how that
idea has been extended to software development domains other than design. Sec-
tion 3 discusses the application of patterns to the description of specifications
and lays out our terminology and format for describing specification patterns.
Section 4 describes an initial specification pattern system for finite-state ver-
ification. We then evaluate and discuss the usefulness of the pattern system
and mechanisms through which this system can mature and grow. Section 6
summarizes and concludes.

2 Design and Other Patterns

Design patterns were introduced [17] as a means of leveraging the experience of
expert system designers. Patterns are intended to capture not only a description
of recurring solutions to software design problems, but also the requirements
addressed by the solution, the means by which the requirements are satisfied,
and examples of the solution. All of this information should be described in a
form that can be understood by practitioners so that they can identify similar
requirements in their systems, select patterns that address those requirements,
and instantiate solutions that embody those patterns. It is important to stress
that not all descriptions of artifacts are patterns. Most design specifications and
documents do capture a solution to a domain problem, describe requirements
and provide an example solution, yet, they are not patterns. Patterns seek to
generalize experience across multiple specific problems. Care must be taken,
however, to keep patterns from being too abstract or removed from practice. A
well-defined design pattern has the following characteristics [2]:

It Solves a Specific Problem, or class of problems, rather than being an
abstract principle or strategy.

It is a Proven Concept that has been demonstrated to be effective in prac-
tice.

The Solution isn’t Obvious and is not a direct application of basic princi-
ples.

It Describes Relationships between solution components rather than iso-
lated components of a solution.

It is Generative in that it demonstrates how to construct a solution.



An active community has grown up around the idea of design patterns, as
evidenced by the formation of numerous workshops (e.g., [10]) and recently
the notion of patterns has been spreading to other software related endeavors.
For example, the idea of patterns has been applied to describe data models
[19], system level analysis and modeling information [16], software process and
organizational structures [5], and curricula for educating software developers
[22]. It is our intention in this paper to adapt and apply the notion of patterns
to the description of specification of properties for finite-state verification.

3 What is a Specification Pattern?

A property specification pattern is a generalized description of a commonly
occuring requirement on the permissible state/event sequences in a finite-state
model of a system. A property specification pattern describes the essential
structure of some aspect of a system’s behavior and provides expressions of this
behavior in a range of common formalisms.

Example specification patterns are given in Figures 1 and 2 (we use a variant
of the “gang-of-four” pattern format [17]). A pattern comprises a name or
names, a precise statement of the pattern’s intent (i.e., the structure of the
behavior described), mappings into common specification formalisms, examples
of known uses, and relationships to other patterns.

Some specification formalisms (e.g., quantified regular expressions (QRE)
[25]) are event-based, while others (e.g., various temporal logics, such as LTL
and computation tree logic (CTL) [7]) are state-based. In our patterns, capital
letters (e.g., P, @, R, S) stand for events or disjunctions of events in event-based
formalisms and stand for state formulas in state-based formalisms.

Each pattern has a scope, which is the extent of the program execution over
which the pattern must hold. There are five basic kinds of scopes: global (the
entire program execution), before (the execution up to a given state/event), after
(the execution after a given state/event), between (any part of the execution
from one given state/event to another given state/event) and after-until (like
between but the designated part of the execution continues even if the second
state/event does not occur). The scope is determined by specifying a starting
and an ending state/event for the pattern: the scope consists of all states/events
beginning with the starting state/event and up to but not including the ending
state/event. Figure 3 illustrates the portions of an execution that are designated
by the different kinds of scopes. We note that a scope itself should be interpreted
as optional; if the scope delimiters are not present in an execution then the
specification will be true.

Scope operators are not present in most specification formalisms (interval
logics are an exception). Nevertheless, our experience strongly indicates that
most informal requirements are specified as properties of program executions or
segments of program executions. Thus a pattern system for properties should
mirror this view to enhance usability.



Absence

Intent
To describe a portion of a system’s execution that is free of certain events or states.
Also known as Never.

Example Mappings

CTL P is false:

Globally AG(~P)
Before R A[-P U(RV AG(—R))]
After Q AG(Q — AG(~P))

Between Q and R AG(Q — A[-P U(RV AG(—R))])
After Q until R~ AG(Q — —~E[~R U(P A —R)])

LTL P is false:

Globally o(—P)
Before R OR —+-PUR
After Q 0(Q — O(=P))

Between @ and R O((Q AOR) - —-P UR)
After Q until R 0(Q — —~P U(RV O-P))

Quantified Regular Expressions Let ¥ be the set of all events, let [— P, Q, R] denote
the expression that matches any symbol in & ezcept P, Q, and R, and let e’ denote
zero or one instance of expression e.

Event P does not occur:

Globally -P]*
Before R [~ R]*|[-P, R]* R®*
After Q —QI*(Q[-PI")’

Between Q and R ([—Q]*Q[—P, R]*R)*[-Q]*(Q[-R]*)’
After Quntil R ([-Q]*Q[—P, R]* R)*[—Q]*(Q[-P, R]*)’

Examples and Known Uses
The most common example is mutual exclusion. In a state-based model, the scope
would be global and P would be a state formula that is true if more than one process is
in its critical section. For an event-based model, the scope would be a segment of the
execution in which some process is in its critical section (i.e., between an enter section
event and a leave section event), and P would be the event that some other process
enters its critical section.

Relationships
This pattern is the dual of the Existence pattern. In fact, in many specification
formalisms negation and explicit queries for existence will be used to formulate an
instance of the Absence pattern, as seen in the examples above.

Figure 1: Absence Pattern

4 A System of Specification Patterns

We propose to develop a system of property specification patterns for finite-state
verification tools. The pattern system is a set of patterns organized into one or
more hierarchies, with connections between related patterns to facilitate brows-
ing. A user would search for the appropriate pattern to match the requirement
being specified, use the mapping section to obtain the essential structure of the
pattern in the formalism used by a particular tool, and then instantiate that
pattern by plugging in the state formulas or events specific to the requirement.

We believe the most useful way to organize the patterns will be in a hierar-



Response

Intent
To describe cause-effect relationships between a pair of events/states. An occurrence
of the first, the cause, must be followed by an occurrence of the second, the effect. Also
known as Follows and Leads-to.

Example Mappings
In these mappings P is the cause and S is the effect.

CTL S responds to P:

Globally AG(P — AF(S))

Before R A[(P = A[-RU(S V AG(=R))]) U(R V AG(~R))]

After Q AG(Q — AG(P — AF(S)))

Between Q and R Q — A[(P — A[=R U(S V AG(~R))]) U(RV AG(~R))))

AG(
After @ until R AG(Q — ~E[-RU(~P — A[-R U S]) A —R])
LTL S responds to P:

Globally O(P — ©8)
Before R (P—= (~RUS)) U(RV O-R)
After Q 0(Q — O(P — ©89))

Between Q and R O((Q ACR) — (P —- (WRUS)) UR)
After Quntil R~ 0(Q — (P — (R US)) UR) vV O(P — (~R U S)))

Quantified Regular Expressions Let ¥ be the set of all events, let [—P] denote the
expression that matches any symbol in ¥ ezcept P, and let e’ denote zero or one
instance of expression e.

S responds to P:

Globally [-P]*(P[-S]*S[-P]*)*

Before R [—RI*|[-P, R]*(P[-S, R|*S[-P, R]*)* RZ*

After Q [—QI*(Q[—P]*(P[-S]*S[-P]*)*)"

Between Q and R [—Q]*(Q[—P, R]*(P[—S, R]*S[— P, R]*)* R[—Q]*)*
(
[

After @ until R
(Q[—P, R]* (P[-S, R]*S[-P,R]")")"

Examples and Known Uses
Response properties occur quite commonly in specifications of concurrent systems.
Perhaps the most common example is in describing a requirement that a resource must
be granted after it is requested.

Relationships
Note that a Response property is like a converse of a Precedence property. Prece-
dence says that some cause precedes each effect, and Response says that some effect
follows each cause. They are not equivalent, because a Response allows effects to oc-
cur without causes (Precedence similarly allows causes to occur without subsequent
effects).

Note that this pattern does not require that each occurrence of a cause will have its
own occurrence of an effect.

Figure 2: Response Pattern

chy based on their semantics. For example, some patterns require states/events
to occur or not occur (e.g., the Absence pattern), while other patterns constrain
the order of states/events (e.g., the Response pattern). One organization for our
pattern system is the hierarchy illustrated in Figure 4. This hierarchy distin-
guishes properties that deal with the occurrence and ordering of states/events
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Figure 3: Pattern Scopes

Property Patterns
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Occurrence Order Compound

Absence Bounded Precedence Response Chains Boolean

Universality ~ Existence EXistence

Precedence Response
Figure 4: A Pattern Hierarchy

during system execution. It also provides separate patterns for compound prop-
erties that are built up from combinations of more basic patterns. Since different
users may think about patterns in different ways, patterns could appear under
several categories. For example, the Absence pattern with a non-global scope,
in Figure 1, could be seen to constrain the order of states/events and could
be put under ordering patterns in Figure 4. Patterns can also be organized
into hierarchies based on their syntactic structure. This would allow someone
who can specify a property in one formalism to find the corresponding pattern
quickly, from which he or she could determine how to specify the property in
another formalism. (Note that the hierarchy shown here does not explicitly
address fairness issues, which will be included in the complete pattern system.)

In defining a specification formalism, one attempts to give a small set of
independent concepts from which a large class of interesting specifications can
be constructed. With the collection of specification patterns, however, we are
neither trying to give a smallest set that can generate the useful specifications
nor a complete listing of specifications. Patterns are in the system because they
appear frequently as property specifications. In our experience, only a small
fraction of the possible constraints that can be specified using logics or regular



expressions commonly occur in practice.

4.1 The Patterns

Space limitations prohibit description of the patterns in full detail; for that we
have set up a web-site [13]. The full patterns will contain additional exam-
ples, explanation of pattern relationships, and mappings in other formalisms
including Graphical Interval Logic (GIL) [12], the INCA query language [11],
automata, and various process algebra formalisms (e.g., CCS and CSP) [8]. Here
we give the intent of some common patterns.

Occurrence Patterns include

Absence A given state/event does not occur within a scope. This pattern is
also known as Never. Figure 1 gives the key elements of the pattern.

Existence A given state/event must occur within a scope. This pattern is
also known as Future and Eventuality.

Bounded Existence A given state/event must occur k times within a scope.
Variants of this pattern specify at least k occurrences and at most k occur-
rences of a state/event.

Universality A given state/event occurs throughout a scope. This pattern
is also known as Globally, Always and Henceforth.

Ordering Patterns include

Precedence A state/event P must always be preceded by a state/event Q
within a scope.

Response A state/event P must always be followed by a state/event Q
within a scope. This pattern is also known as Follows and Leads-to.
This pattern is a a mixture of Existence and Precedence, and expresses
a causal relationship between two subject patterns. Figure 2 gives the key
elements of the pattern.

Compound Patterns include

Chain Precedence A sequence of states/events P, ..., P, must always be
preceded by a sequence of states/events Q1,...,Qn. This pattern is a
generalization of the Precedence pattern.

Chain Response A sequence of states/events Pi,..., P, must always be
followed by a sequence of states/events Q1,...,Q.. This pattern is a
generalization the Response pattern. It can be used to express bounded
FIFO relationships.

Boolean Combinations Most of the patterns delimit scopes and describe
inter-scope properties in terms of individual events/states. There are cases
where we want to generalize the patterns to allow for sets of states/events
to describe scopes and properties. In some cases this is straightforward and



disjunctions or conjunctions of state/event descriptions can be substituted
into patterns; in other cases this yields the incorrect specification. These
patterns outline how boolean combinations can be applied in different cases.

4.2 Related Work

There have been some attempts at describing taxonomies for property specifi-
cations.

The most popular and long-lived of these distinguishes safety and liveness
properties [20]. While this provides a very high-level intuitive understanding
of classes of specifications, i.e., “nothing bad will ever happen” vs. “something
good will eventually happen” it is much too coarse to be of practical use in
constructing particular specifications.

Manna and Pnueli [21] describe a finer taxonomy based on the syntactic
structure of LTL formulae. This taxonomy is defined in terms of canonical
forms. Some of these forms do not match the way that specifications are typ-
ically encoded in LTL, so they provide some alternate codings for canonical
forms. They also give number of examples along with textual descriptions of
the intuition behind the specifications. This is the closest thing to a pattern
catalog that appears in the literature on specification of concurrent and reactive
systems. Unfortunately, even this taxonomy is too coarse for many practition-
ers. Furthermore, since it is syntactic in nature, it suffers from two additional
drawbacks from the standpoint of practitioners. First, it specific to LTL, while
practitioners using particular finite-state verification tools may need to couch
their specifications in another formalism. Second, practitioners do not naturally
attack a problem starting from its syntax in a particular specification formal-
ism, but rather begin from an informal understanding of the meaning of the
requirements. Thus, a taxonomy organized by features related to meaning is
more appropriate.

5 Experience with a Small Pattern System

We have taught a one semester graduate course in specification and verifica-
tion of reactive systems. This course is a component of a Masters of Software
Engineering curriculum. The students in the course were almost exclusively
non-traditional students working in the software industry. A number of these
students had never taken a logic or discrete mathematics course while a few had
taken such courses in the distant past. We believe this group is representative
of a broad class of practicing software developers who are clearly not experts
in formal methods. The course involved development of a significant collec-
tion of formal specifications for selected realistic systems including graphical
user interfaces [14], transactional processing in an inventory control system, an
automobile control system, and a home security system. These specifications
were derived from informal English language statements of system requirements,



which had been refined into a stylized structured English. The specifications
were subsequently verified using model-checking.

We presented the writing and reading of formal specifications as a process of
identifying and composing a small set of patterns similar to those described in
Section 4. Students were able to write correct specifications for their projects
in a matter of weeks; they also were able to read and critique each others
specifications. While the project work focused mostly on CTL as a specifi-
cation formalism, students were also required to express properties in other
formalisms including LTL, QREs, finite state automata, and GIL. The benefits
of the pattern-based approach stood out here since for most of these formalisms
mapping from CTL to patterns and back to alternative formalisms is straight-
forward.

While our experience to date is limited and anecdotal we do feel that the
pattern-based approach is useful as an educational tool and as a means of trans-
ferring expert knowledge. All students in the course, including those with the
weakest formal backgrounds, were capable of producing readable specifications,
in more than one specification language, by the end of the semester. Subse-
quently, it has become clear that at least three students have internalized the
pattern system and mappings sufficiently well to apply them independently in
projects for their master’s degrees. We plan on using the pattern system again
and gathering additional anecdotal evidence while teaching the course a second
time in the Fall of 1997.

6 Conclusions

Patterns and the people who define them are characterized by an “aggressive
disregard for originality” [4]. Patterns are not research; they are an expression
of best-practice in a software domain. A pattern system does not belong to an
individual, but to the community of experts and practitioners who contribute
to and use it. It is important that a pattern system be agreed upon by that
community. For these reasons, the system described in this paper should only
be viewed as a starting point. If it is to become useful it must grow through
a process of open dialog and critical review. There are efforts underway in
other pattern domains (e.g., [9]) to provide a web-based mechanism for such
collaborative development of pattern systems. We believe that specification
patterns would flourish if a similar collaboration were undertaken by the formal
specification community and towards this end we have set up a web-site [13]
to store the current and future versions of the specification patterns system.
In particular, we want to stress our belief that users of specification patterns
will benefit from a variety of views of the pattern system, reflecting semantic
hierarchies, the syntactic structure of specifications in particular formalisms,
and other organizing principles, and we hope the web site will be a vehicle for
collecting and disseminating these views as well as individual patterns.

In this paper, we have suggested that finite-state verification might be made
more readily accessible to developers of concurrent and reactive systems through
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definition and use of a pattern system. We have describe an initial version
of a pattern system for specification of properties for finite-state verification
tools. Our experience suggests that such a pattern system enables non-experts
to become proficient at writing and reading formal specifications for realistic
systems relatively quickly.

Development of a pattern system is a community activity requiring partici-
pation by a broad range of experts both in patterns and in the formal specifica-
tion domain. It is our hope that such a collaboration will become a reality and
that the resulting pattern system will be studied and put to use by practicing
developers.
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