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Abstract

We describe a simple technique for convert-
ing heuristic search algorithms into anytime al-
gorithms that offer a tradeoff between search
time and solution quality. The technique is re-
lated to work on use of non-admissible evalu-
ation functions that make it possible to find
good, but possibly sub-optimal, solutions more
quickly than it takes to find an optimal solu-
tion. Instead of stopping the search after the
first solution is found, however, we continue the
search in order to find a sequence of improved
solutions that eventually converges to an op-
timal solution. The performance of anytime
heuristic search depends on the non-admissible
evaluation function that guides the search. We
discuss how to design a search heuristic that
“optimizes” the rate at which the currently
available solution improves.

1 Introduction

One of the most widely-used frameworks for problem-
solving in artificial intelligence is heuristic search for a
least-cost solution path through a tree or graph. A prob-
lem is specified by giving a start node, a goal node (or
set of goal nodes), operators for moving from one node
to the next, and costs for the operators. A solution path
represents a sequence of steps for solving the problem
represented in this way. There are well-known search
algorithms, among them A* and AO*, for finding least-
cost solution paths through trees and graphs of various
kinds.

For large and complex problems, finding an opti-
mal solution path may take a long time and a sub-
optimal solution that can be found quickly may be
more useful. Various techniques for modifying heuris-
tic search algorithms to allow a tradeoff between so-
lution quality and search time have been studied. All
make the search non-admissible, either by using a non-
admissible heuristic to start with, or by weighting an ad-
missible evaluation function to make it non-admissible,

e.g.,[Pohl, 1970; Harris, 1974; Ghallab & Allard, 1983;
Pearl, 1984; Bagchi & Srimani, 1985; Davis et al., 1988;
Chakrabarti et al., 1988; Koll & Kaindl, 1992]. In the
substantial literature on these techniques, the assump-
tion is virtually always made that the search stops as
soon as the first solution is found. Analysis has fo-
cused on characterizing the tradeoff between the time
it takes to find the first solution and its quality. Prov-
ing that this technique is e-admissible, for example, in-
volves proving that the first solution found is guaranteed
to be within a factor € of optimal [Pohl, 1973; Pearl &
Kim, 1982; Ghallab & Allard, 1983; Davis et al., 1988;
Koll & Kaindl, 1992].

In this paper, we begin with the simple observation
that there is no reason not to continue a non-admissible
search after the first solution is found. By continuing the
search, a sequence of improved solutions can be found
that eventually converges to an optimal solution. This
observation has been made before in passing [Harris,
1974; Korf, 1993], but here we study it at length. We are
intrigued by the fact that it provides a general technique
for converting heuristic search algorithms into anytime
algorithms. Anytime algorithms are useful for problem-
solving under varying and uncertain time constraints
because they have a solution ready whenever they are
stopped, and the quality of the solution improves with
additional computation time [Dean & Boddy, 1988;
Horvitz, 1988]. Because heuristic search is used so
widely, a general method for transforming heuristic
search algorithms into anytime algorithms could prove
useful for applications for which good anytime algo-
rithms are not otherwise available.

In section 2, we describe how to transform any heuris-
tic search algorithm that uses open and closed lists into
an anytime algorithm. A similar strategy can be used
to create anytime versions of search algorithms that use
other methods of organizing the search. Our chief inter-
est is not in describing how to do this — it is straightfor-
ward — but in studying the performance of the anytime
heuristic search algorithm that results. The performance
of an anytime algorithm can be characterized by a per-
formance profile that predicts expected solution quality



as a function of running time. (See figures 1 through 3.)
Because different search strategies give rise to different
performance profiles, in section 3 we discuss the difficult
problem of how to “optimize” (so far as this is possible)
the performance profile of anytime heuristic search, that
is, how to conduct the search in such a way that the
best possible anytime search algorithm results. Section
4 reports initial experiments that test the feasibility of
our approach, and section 5 discusses some issues that
we are continuing to investigate.

2 Anytime A*

We first describe how to convert a heuristic search algo-
rithm that uses open and closed lists into an anytime al-
gorithm. We use A* as an example, although the frame-
work we describe can be applied to related memory-
limited search algorithms [Chakrabarti et al., 1989;
Russell, 1992]. All of these algorithms systematically
search a space of possible solutions by maintaining two
lists: an open list that contains nodes on the frontier
of the search that are candidates for expansion, and a
closed list that contains nodes that have already been ex-
panded. (A closed list is necessary for graph search prob-
lems only, not for tree search problems.) Open nodes
are selected for expansion in best-first order, based on
an evaluation function f(n) = g(n) + h(n), where g(n)
is the cost of the least cost path currently known from
the start node to n, and h(n) is a heuristic estimate of
h*(n), the cost of a minimum cost path from n to a goal
node. If h(n) is admissible, that is, if it never overesti-
mates h*(n), then the first solution path found by A* is
guaranteed to be optimal.

To convert A* to an anytime algorithm, we make two
simple changes. First, we use a non-admissible evalua-
tion function to select which node to expand next. We
have wide latitude in choosing an evaluation function,
and different evaluation functions will give rise to dif-
ferent performance profiles. To create a good anytime
algorithm, we would like to optimize the rate at which
the quality of the currently available solution improves.
We discuss how to define such an evaluation function in
the next section. For now, we simply note that nodes
are selected for expansion based on an evaluation func-
tion that is non-admissible because we want to find a
good, but not necessarily optimal, solution as quickly as
possible.

A second change we make to A* is, of course, to con-
tinue the search after the first solution is found. Because
the search is continued, an auxiliary, admissible evalua-
tion function is still used. It provides a lower bound on
the cost of the best solution path through a node and is
used to prune the open list. Because the best solution
found so far is an upper bound on the cost of an opti-
mal solution, any node on the open list that has a lower
bound — given by an admissible evaluation function —
that equals or exceeds the current upper bound can be
pruned. Pruning the open list is important because it
makes it possible to detect convergence to an optimal

solution. As soon as the open list is empty, the search
algorithm has converged.

Weighted evaluation function

Our anytime version of A* uses a non-admissible evalu-
ation function to select nodes for expansion and an ad-
missible evaluation function to prune the open list. Let
f denote the admissible evaluation function and let f’
denote the non-admissible evaluation function. It is pos-
sible (although not necessary) for both evaluation func-
tions to use the same heuristic h. We now briefly review
a widely used method for using an admissible heuristic
to create a non-admissible evaluation function that can
find an approximate solution faster than it would take
to find an optimal solution. Although this technique is
not the only way to create a non-admissible evaluation
function, it works well and provides a reference point to
which we can compare other approaches.

Beginning with [Pohl, 1970], various researchers have
explored the effects of weighting the two factors g(n) and
h(n) in the node evaluation function of heuristic search
differently. In general, f(n) = (1 —w) * g(n) + w = h(n),
where the weight w is a parameter set by the user. (Or
equivalently, f(n) = g(n) + w'h(n), where w = %)
If w < 0.5, the resulting search is admissible as long
as the h-heuristic is admissible. But if w > 0.5, the
(first) solution found may not be optimal, although it
is often found much faster because adding a distance-
dependent weight to h gives the search more of a depth-
first aspect. An appropriate setting of w makes possible
a tradeoff between the quality of the solution found and
computation time.

A weighted evaluation function can be used with any
heuristic search algorithm, and not just those that use
open and closed lists. For example, Korf (1993) uses
this technique with RBFS and Chakrabarti et al. (1988)
show how to use it with AO*. These heuristic search
algorithms and others can also be continued after the
first solution is found, creating anytime algorithms. The
details of how to transform them into anytime algorithms
vary depending on how each keeps track of its progress
through the search space, but the differences from what
we have described for A* are minor.

Use of this technique raises the question: what weight
provides the best performance? A weight of 0.6 cre-
ates one anytime algorithm and a weight of 0.75 cre-
ates another. In some cases, it is possible to improve
search performance by adjusting the weight dynamically
with the depth or progress of the search [Pohl, 1973;
Koll & Kaindl, 1992]. Is there a principled way of devel-
oping a good heuristic evaluation function for anytime
search aside from simple trial-and-error testing of differ-
ent weights to find the best one for a given problem? Is a
weighted evaluation function even the best way to design
a non-admissible evaluation function for anytime search?
In the rest of this paper we address these questions.



3 Optimizing search effort

Because admissable evaluation functions do not con-
sider search effort, or the potential tradeoff between
search effort and solution quality, they are unsuitable
for resource-bounded search. Weighting the h-cost com-
ponent of an evaluation function more heavily to make it
non-admissable can accelerate search for a solution be-
cause it makes nodes that are closer to a solution seem
more attractive. In general, the lower the h-cost, the
less search effort is needed to complete a solution from a
node and the more attractive that node should be from
the point of view of finding a good (or improved) solu-
tion quickly. In this way, a weighted evaluation function
has the effect of implicitly adjusting a tradeoff between
search effort and solution quality. What we would like
to do is make this tradeoff between search effort and
solution quality explicit in the heuristic evaluation func-
tion so that we can optimize search effort directly, rather
than relying and trial-and-error to design an evalution
function that results in good anytime performance for a
particular problem.

What does it mean to optimize search effort? For any-
time algorithms that return a stream of improving solu-
tions, we take it to mean optimizing the rate at which
solution quality improves as a function of search time.
In other words, an anytime algorithm should try to im-
prove the currently available solution as fast, and by as
much, as possible. Selecting nodes for expansion in an
order that minimizes the following evaluation function
“optimizes” search performance in this sense:

f'(n) =

~ expected improvement in solution quality

expected search effort

There may be more than one way to estimate this ratio.
One possibility is to define expected search effort as,

> Pr(h (n))SE(R' (n)),
h!(n)

where h'(n) denotes the length of the next solution path
found from node n to a goal node, Pr(h'(n)) denotes the
probability that the next solution path found from node
n to the goal will have length A'(n), and SE(h'(n)) de-
notes the search effort (in time or nodes expanded) for
finding this path. We can then define expected improve-
ment in solution quality as,

ST Pr () - (9(n) + W' (n))),

B (n)<i—g(n)

where [ denotes the length of the current best solution.
Before the first solution is found, [ represents the penalty
for not finding a solution. (Because [ will change in the
course of the search, the heuristic value of a node can
change after it is opened and the open list may need
to be resorted in the course of the search. Although
there are possible ways of overcoming this inefficiency,
we do not discuss them here because our initial interest
is to appraise how well this heuristic evalution function
works.)

Figure 1: Performance profiles of anytime search with
two different weights.

Figure 2: Performance profiles with weight=0.75 and the
corresponding evaluation using statistical estimates.

Our technique for designing an evaluation function
that optimizes search effort relies on statistics, Pr
and SE, that characterize the performance of anytime
heuristic search using this evalution function. But these
statistical estimates are not available before the algo-
rithm that uses them has been run. To avoid this circu-
larity, we initially use statistics gathered by running any-
time heuristic search with a weighted evalution function.
Then by running the algorithm with our evalution func-
tion, using these statistical estimates, we can generate
new estimates that more accurately reflect the behavior
of anytime heuristic search with the evalution function
we have defined. This suggests a method of iteratively
improving an evalution function. As we generate more
accurate estimates of search performance, we can expect
search performance using an evalution function that re-
lies on the accuracy of these estimates to improve. This
process could continue until search performance “con-
verges.”

4 Example and Analysis

We first tested the performance of anytime A* on the
8-puzzle using a weighted evaluation function. Figure
1 shows the performance profile of anytime A* using
weights of 0.75 and 0.6. Solution quality is normal-
ized with respect to the optimal solution. Search ef-



Figure 3: Performance profiles with weight=0.6 and the
corresponding evaluation using statistical estimates.

fort is normalized with respect to the number of nodes
expanded by standard A*; that is, for each problem in-
stance, search effort is measured as a fraction of the num-
ber of nodes A* expands to find an optimal solution to
the same problem. To average results for randomly gen-
erated 8-puzzle problems we also weighted problems ac-
cording to search effort, reflecting the fact that it is more
important to perform well on hard problems. Note that
although anytime A* usually expands more nodes than
A* before converging, it often finds (what turns out to
be) an optimal solution before standard A*. Note also
that weighting h more heavily tends to create more of
an anytime effect, as would be expected.

We used anytime A* with a weighted evaluation func-
tion to estimate both probable improvement of solution
quality and search effort, gathering statistics from one
thousand randomly generated 8-puzzle problems to es-
timate Pr(h'(n)|h(n)) and SE(h'(n)|h(n)), conditioned
on the Manhattan distance heuristic h(n). Figure 2
shows the performance profile of anytime heuristic search
when its evaluation function uses statistical estimates
based on a weighted evaluation function with a weight
of 0.75. Its performance profile is almost the same as
when the weighted evaluation function is used. Figure 3
shows the performance profile of anytime heuristic search
using when its evaluation function uses statistical esti-
mates based on a weighted evaluation function with a
weight of 0.6. Here we notice a performance difference.
Initially, anytime search using the statistics-based eval-
uation function performs better. But eventually it per-
forms somewhat worse. It is noteworthy that the perfor-
mance profiles of the two statistics-based algorithms are
almost the same, regardless of the weighted version used
to collect statistics. This suggests that the statistics-
based algorithm is not sensitive to initial estimates of
the probabilities and that updating the statistics tends
to cause the algorithm to converge to a particular per-
formance profile. More work is needed to assess the con-
vergence of this process.

The statistics-based approach to designing anytime
search algorithms produced good anytime behavior, con-
firming our initial intuition. However, the results of our

initial evaluation provide little or no reason to prefer a
statistically-based evaluation function that tries to op-
timize search effort directly to a simple weighted eval-
uation function with a weight that can be adjusted by
trial-and-error to fine-turn performance. Although more
work is needed to assess this, we are encouraged to have
observed that the anytime approach in general tends to
perform better for hard problems for which A* must ex-
pand many nodes to find an optimal solution. In the
rest of this section, we make a few other observations
that emerged from our study.

Despite its apparent simplicity, the 8-puzzle may be
a particularly challenging problem for an anytime ap-
proach. Solutions to the 8-puzzle problem are sparse
and at uneven and unpredictable depths in a search tree,
making it possible to search long paths of the search tree
without finding a solution. We also observed some ap-
parent anomalies when the Manhattan distance heuristic
is used to estimate search effort. For example, the statis-
tics we gathered revealed that puzzle-states for which
the value of the Manhattan distance heuristic is even
tend to be somewhat harder to solve, on average, than
puzzle-states for which the value of the Manhattan dis-
tance heuristic is odd. This tends to create a very slight
tendency for the statistics-based heuristic to avoid even-
numbered puzzle-states, a tendency that is obviously
self-defeating.

The evaluation function we constructed can only be
expected to perform consistently if (n), the Manhattan
distance heuristic, is an unbiased predictor of probably
solution improvement and search effort at every point
in the search tree. One possible explanation of some of
the results we obtained is that this assumption holds for
nodes that are shallow in the search tree, but that the
sampling of nodes deep in the search tree is not random
and depends on the path taken to reach these nodes.
This may lead us to a different design of the statistical
estimates in the future.

Finally, we note that it may be unrealistic to expect
that one approach to designing anytime algorithms will
totally dominate all other approaches — for any pos-
sible time duration. Instead, one anytime algorithm
may provide better short-term performance whereas an-
other anytime algorithm provides better long-term per-
formance. In that case, a node evaluation function that
optimizes search effort will also need to take into account
the probable stopping time of the algorithm. If the dead-
line is imminent, for example, it may be advantageous
to emphasize the depth-first aspect of the search more
than it otherwise would be.

The heuristic evaluation function we defined earlier
maximizes the rate of improvement by considering only
the next solution that is found. In other words, it is
greedy. While this seems reasonable, in some cases it
may be more advantageous to consider likely improve-
ment over a time interval ¢ during which many solutions
can be found. To test this hypothesis, we experimented



with the following heuristic:

fy= > P/ ) - (g(n) + K (n)

B (n)<t—g(n)

In this case, Pr! denotes the probability of a solution of
length h'(n) after time ¢t. These probabilities vary with
the “horizon” of the search, meaning we must gather
statistical estimates for each of a number of horizons.
Our experiments with this heuristic were successful to
this extent: using a shorter horizon increased the any-
time behavior of the search. The longer the horizon, the
more the search acts like standard A*. However, further
evaluation of this approach is needed in order to assess
its characteristics.

5 Related Work

Previous work on resource-bounded heuristic search has
adopted the model of Korfs’s real-time A* algorithm
(RTA*) which assumes that search is interleaved with ex-
ecution [Korf, 1990]. After searching for some bounded
amount of time, the best next action is chosen and the
search-act cycle repeats until the goal state is reached.
Examples include DTA* [Russell & Wefald, 1991], BPS
[Hansson & Mayer, 1990], DYNORA [Hamidzadeh &
Shekhar, 1991], and k-best [Pemberton, 1995]. Because
real-time search algorithms commit to actions before
finding a complete solution, they cannot (typically) find
optimal solutions. In contrast, we assume that a search
phase precedes an execution phase and that the output
of the search is a complete solution. Whereas real-time
search algorithms try to find the best next decision under
a time constraint, our anytime approach tries to find the
best complete solution under a time constraint.

We know of no previous work on meta-level control
of heuristic search for complete solutions. However, the
idea of searching for a complete solution that is sub-
optimal and then continuing to search for improved so-
lutions is not new. Branch and bound strategies often
have this effect. In fact, the strategy we have employed
can be regarded as best-first branch-and-bound search
using a non-admissible heuristic for branching and an
admissible heuristic for bounding (pruning).

A technique similar to the one we have exploited to
create an anytime version of A* has been used to sim-
ilar effect for IDA*, although for a different reason.
IDA* performs poorly on problems such as the travel-
ing salesman where nodes have distinct f-costs because
it may expand only one new node each iteration. To pre-
vent excessive iterations and node re-generations, algo-
rithms such as IDA*-CR [Sarkar et al., 1991] and DFS*
[Rao, Kumar, & Korf, 1991] set successive thresholds
higher than the minimum cost that exceeded the pre-
vious threshold using a technique similar to a weighted
evaluation function. As a result, the first solution found
is not guaranteed to be optimal. After finding an initial
solution, these algorithms revert to depth-first branch-
and-bound to ensure eventual convergence to an optimal
solution. This approach to reducing node re-generations

has the side-effect of creating an anytime algorithm in
which an initial, sub-optimal solution is improved by
continuing to search until an optimal solution is found.
Korf (1993) notes that the same technique can be applied
to RBFS, a linear-space best-first search algorithm.

We have focused on converting heuristic search algo-
rithms into anytime algorithms that can be guaranteed
to eventually converge to an optimal solution. Another
approach to anytime search for complete solutions is lo-
cal optimization. For example, [Ratner & Pohl, 1986]
describe two local optimization algorithms for the n-
puzzle. A drawback of this approach is that it generally
converges to local optima. However, it may be advanta-
geous to use local optimization to find initial solutions
and then switch to anytime heuristic search to ensure
eventual convergence to an optimal solution.

6 Conclusion

We have described a general technique for converting
heuristic search algorithms into anytime algorithms that
offer a tradeoff between search time and solution quality.
We have also discussed how to create a heuristic evalua-
tion function that optimizes the rate at which the quality
of the currently available solution improves. Preliminary
results for this work show that both techniques produce
good anytime algorithms that can improve solution qual-
ity gradually as computation time increases. These al-
gorithms can produce near optimal solutions with sub-
stantial savings of computation time. Thus far, the more
disciplined, statistics-based approach does not appear to
have the performance benefits one may expect over the
weighted approach. But further evaluation of the ap-
proach in different domains is necessary in order to fully
understand its characteristics.

Our anytime technique easily extends to memory-
bounded versions of A* that “retract” nodes from the
open list to keep its size manageable [Chakrabarti et
al., 1989; Russell, 1992], and we plan to implement
a memory-bounded version of anytime heuristic search
that can be tested on problems with larger search spaces.
We also plan to test this approach on more varied and re-
alistic search problems. The range of problems for which
an anytime version of heuristic search may be used is
extensive, including scheduling, planning, and combina-
torial optimization of many kinds. We believe this jus-
tifies further study of how to design a search heuristic
that “optimizes” a tradeoff between solution quality and
search effort.
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