Interactive Training of Pixel Classifiers Opens
New Possibilities

Justus H. Piater, Edward M. Riseman, and
Paul E. Utgoff

CMPSCI Technical Report 97-51

October 1997

Computer Science Department
Lederle Graduate Research Center
University of Massachusetts
Ambherst, MA 01003-4601

lastname@cs .umass . edu






Interactive Training of Pixel Classifiers Opens New
Possibilities

Justus H. Piater Edward M. Riseman Paul E. Utgoff

Abstract — We propose a novel interactive, incremental method for pixel classifier
construction which yields very efficient decision tree classifiers, and allows extension to
training of hierarchical classifiers for recognition of more complex objects.

Traditionally, image pixel classifiers are constructed off-line using pre-selected training
instances, many of which may not be informative with respect to improving classification
accuracy. Manually preparing these training instances is a costly process in most realistic
tasks. We propose an incremental, interactive method, the “Learning Classifier”, which
relies on real-time feedback. It makes highly efficient use of human effort and yields
decision tree classifiers with the desirable property of very few nodes. In experiments
on a realistic terrain classification task, the number of training instances involved in
building a classifier was reduced by several orders of magnitude, at no perceivable loss
of classification accuracy.

Furthermore, two novel concepts made possible by the Learning Classifier are demon-
strated: (1) Incremental training of a decision tree classifier on a stream of images
permits incremental, non-iterative improvement by dynamic addition of user-specified
informative training pixels. The training process has the potential of fast convergence,
and revisitation of training images is not necessary.

(2) Hierarchical classification extends the concept of pixel classification from labeling
pixels directly with their categories to utilizing these class labels to describe more com-
plex objects. From a label image created by a classifer, additional features are extracted
and passed to the next level classifier. We propose a set of simple and generic feature
functions that characterize spatial relationships between class labels. These can be used
hierarchically to express potentially complex context-sensitive spatial structure. Thus,
a human can convey more structural knowledge into the classifier construction process
than any reasonable conventional feature set can express. This makes the Learning
Classifier capable of solving object recognition tasks beyond the realm of traditional
pixel classifier systems, which is exemplified by a seagull counting problem.

Keywords: interactive incremental image pixel classification, decision trees, hierarchical clas-
sification, image features, human effort



1 Introduction

Image pixel classification is a fundamental task in computer vision. Pixel classifers are
an important component of many vision applications, e.g. texture-based segmentation
(7), image understanding (1)(2)(15), object recognition (11)(17) and obstacle detection
(16), medical image analysis (22), geoscience (3)(4), and agriculture (24).

Despite these abundant applications, the construction of high-performance pixel classi-
fiers usually involves substantial cost in terms of human effort. A traditional procedure
for classifier construction is illustrated in Figure 1: A number of training instances
(i.e. completely or partially hand-labeled images) are selected and passed to a classifier
construction system. The resulting classifier is then evaluated, typically by comparing
its output with ground truth data and assessing its accuracy. If the performance is
not satisfactory, some parameters of the system are changed, such as the feature set
or the training set, or the classifier construction algorithm, and the entire procedure is
repeated.

raw image,
classes

select build |y evaluate
train. insts. classifier classifier

es

Figure 1: Traditional classifier construction.

The training set has a great influence on the performance of a classifier. For this reason,
great effort is traditionally put into the construction of the training set. This work
is concerned with efficient selection of informative training instances. In the case of
image pixel classification, substantial cost is incurred by the requirement to provide
correct labels for the training pixels by hand. Therefore, one would like to be able to
provide a small number of well chosen training instances relatively quickly, at no loss of
classification accuracy (or even improved accuracy (23)).

Besides the cost of manual labeling, there are other benefits to keeping the training
set, small. For example, a typical decision tree classifier will attempt to place training
instances of different classes in separate leaf nodes, as long as they are discernible based
on their feature vectors. However, in most practical applications the distributions of the
different classes overlap in feature space, which leads to overly specialized and very com-
plicated decision trees with poor generalization properties. This is typically addressed
by elaborate pruning algorithms which try to detect overspecialization and simplify a
tree, in essence trading classification accuracy on the training set for improved gener-
alization. Other types of classifiers address this problem differently, e.g. by drawing
maximum-likelihood boundaries between classes in feature space. To generate optimal
classifiers, such algorithms require a sufficiently large number of training instances whose



distributions in feature space meet the statistical assumptions made by the algorithm.
In many practical applications this requirement cannot be met.

Consequently, it would be beneficial to select a small number of informative training
instances that are known (or thought) to be typical representatives of their class, rather
than a large number from an unknown distribution. In the case of decision tree classifiers,
such a procedure should ideally eliminate the need for pruning altogether.

This raises the question of what constitutes a well-chosen training instance. If one could
know where the classifier makes mistakes, one could generate an informative instance
by providing a correct label for a currently misclassified pixel (19)(20). This suggests
an interactive tool.

We propose an interactive system for efficient construction (in terms of human involve-
ment) of pixel classifiers. In our system, the off-line iterative procedure (Figure 1)
is replaced by an on-line interactive Teacher-Learner paradigm (Figure 2), which we
call the “Learning Classifier”. The Teacher is a human domain expert who operates
a graphical user interface to select images for training and, for any image, select and
label small clusters of pixels. The Learner is a computer program that operates through
a well-defined communication interface with the Teacher’s interface. The Learner can
receive images and training instances, and can produce a classifier, which in turn pro-
duces labels for the pixels of the current training image, according to the most recent

classifier.

Teacher Learner
selects training instances,| training instances,_| incrementally updates classifier,
correcting errors, reclassifies image
addmg classes visual feedback

Figure 2: Interactive, incremental classifier construction.

A fundamental aspect of this model is that it is incremental. The Teacher does not need
to provide a large number of instances that may or may not be informative. Instead,
each time the user provides a new instance, the Learner revises its classifier as necessary,
and begins to relabel the current training image. This lets the user see the misclassified
pixels immediately. Training is simple because the Teacher can produce a new training
instance by a simple point-click of the mouse, using a flexible visualization interface.
This interactive display-selection loop can operate quickly. In particular, this helps the
Teacher to decide where additional or revised training instances are most needed, and
when the set of accumulated training instances is sufficient.

This notion of incremental training makes the Learning Classifier suitable for training
on image streams. Traditionally, the classifier construction procedure is performed using



some fixed set of training and test images. Once a good classifier is found, it is retained
and expected to perform well on previously unseen images. The Learning Classifier, in
contrast, does not require fixed training and test sets: Training is started on the first
image and continues until the result is satisfactory, and the image may never be consid-
ered again. When the next image comes in, training resumes, until good classification
has been achieved. This process is continued as necessary. Assuming that the images
in the given class are sufficiently similar — as must be the case in any classification task
— this training procedure is expected to converge in the sense that less and less training
is required to achieve satisfactory performance, as more images are seen. An example
of this procedure is presented and quantitatively evaluated in Section 3 below.

The interactive nature of the training can be exploited to allow the user to convey —
by by giving examples — more knowledge into the classifier construction process than
any reasonable feature set can express. This idea led to the concept of hierarchical
classification, which is presented in Section 4.

2 Implementation Issues

The interactive Teacher-Learner paradigm requires a learning algorithm that can classify
pixels quickly (thousands of pixels per second), and can update its classifier quickly as
new instances become available from the Teacher. If the classifier is updated slowly,
the user will experience delay in seeing the effects of training, which slows down the
process of correcting misclassified points, and basically defeats some of the advantages
of the interactive process. More importantly, the various costs associated with a complex
classification problem (time, human labor, psychological burden) are reduced when the
user rapidly gets to see the effect of the training examples that are incrementally supplied
to the classifier construction algorithm. Thus, reducing the feedback delay between
selecting a training example and obtaining the classification results within a current
region of interest is essential.

This work is primarily concerned with effective selection of training instances. Another
important issue in classifier construction is the definition of a feature set. It is known
that increasing the size of a feature set can adversely affect classifier performance (6).
Selection of an optimal feature subset from a given universe of features has been shown
to be infeasible in practice (8). Classifiers that utilize the entire feature set (such as
neural networks, nearest-neighbor clusterers, linear machines) are particularly sensitive
to redundant and noisy features. This motivates the use of a decision tree classifier
which consults only a single feature at each decision node. Only informative features
are incorporated into the tree, and features of little discriminative power are disregarded
entirely. “Informative” here refers to the ability of the classifier to classify the training
set correctly. One is still left with the problem of selecting representative training
instances that will cause the tree induction algorithm to select those features that will
result in good generalization. Thus, we have not solved the feature selection problem,

4



but by employing an interactive decision tree paradigm we can address these issues in
terms of training instance selection.

We selected the incremental decision tree inducer ITI (27)(28). ITI revises its tree
incrementally, meaning that it can accept and incorporate training instances serially
without needing to rebuild the tree repeatedly. The algorithm builds the same tree for
the same accumulated set of training instances, regardless of the order in which they are
received. Furthermore, the algorithm maintains data structures that allow it to revise
its tree dynamically without reinspecting the training instances.

In this work, we are not concerned with some of the issues that are important within
the machine learning research community. Our goal is to allow the user to construct a
reasonably small tree (to produce a fast classifier with good generalization properties)
through an acceptably small amount of training. If a tree were produced that was
a little larger than might otherwise be necessary, and required a few more training
examples than might otherwise be necessary, but were produced much more quickly,
then the overall task of producing the component pixel classifier nevertheless might still
be accomplished more cheaply, due to less wasted time.

Whenever the Learner is done updating its tree, it begins to classify pixels of the current
training image until it has classified the entire image, or until a new tree is available.
To reduce feedback delay, this classification process begins at the location of the latest
mouse click, and continues in the shape of a growing square centered at this location.
This gives the user immediate feedback at the location which is likely to be most im-
portant to him. In practice, the user will have to wait only a few seconds until she or
he detects new candidates for informative training instances. Our experiments suggest
that a growing-radius scheme like this is the key to operating on images of virtually
unlimited size in interactive time.

3 Quantitative Results

In this section, we compare our Learning Classifier with a previously published classifi-
cation result by Wang et al. (29). We chose this example because it uses state-of-the-art
techniques, the task is realistic, and their data include ground truth.

Wang et al. considered an orthographic aerial image of a rural area in Ft. Hood, Texas
(Figure 3). The goal was to build a pixel classifier to recognize the four terrain classes
BARE GROUND (road, riverbed), FOLIAGE (trees, shrubs), GRASS, and SHADOW. Their
most effective feature set consisted of 12 co-occurence features (angular second moment,
contrast, and entropy at four angular orientations each (12)), four three-dimensional fea-
tures introduced by Wang et al., and the intensity. The co-occurence features employed
have previously been claimed to be highly effective for classification (5)(7)(21)(30). The
3D features are generated along with the orthographic image and a digital elevation
map during stereo processing of a calibrated image pair (25) and were recently shown



to be highly discriminative in this task. The Foley-Sammon transform (FST (9)) was

employed as a classifier. FST is a linear discriminant method that is considered effective
(18)(30).

. SHADOW, . GRASS, FOLIAGE, BARE GROUND

Figure 3: (a) Subimage (250 x 200 pixels) of Ft. Hood scene; (b) manually generated
ground truth (note the difficulty of this task on this particular subimage); (¢) classifi-
cation results generated by an ITT classifier built in traditional batch mode using Wang
et al.’s training data; (d) classification results generated by an interactively trained ITI
classifier.

As a training set, Wang et al. used four homogeneous square regions of different sizes:
99x99 (FOLIAGE), 75X75 (GRASS), 37x37 (BARE GROUND), and 11x11 (SHADOW).
This was one of their best training sets found after extensive experimentation. The
16916 training pixels constitute less than 1% of the entire image (1,936,789 pixels).
Ground truth was generated by hand. The achieved classification accuracy is shown in
Table 1. For more details, refer to Wang et al. (29).

To provide a baseline of the performance of ITI with respect to FST on this task, we
ran ITT in batch mode on the same input data as described above (Table 2). Note that
ITT here outperformed FST in terms of classification accuracy.

To give a first impression of the Learning Classifier when trained on an image stream,
we split the image into ten subimages of size 400 x 400 which we shuffled to obtain
a sequence. Since all of the subimages stem from the same image, they are likely to

Slight discrepancies in the totals arise because Wang et al. apparently included their training set
in the test set. Assuming that the entire training set was correctly classified, the resulting overall
classification accuracy is reduced from 83.4 to 83.3%.



FST results: SHADOW GRASS FOLIAGE BARE GRD total

gt-SHADOW 13.8 0.0 27.8 0.2 41.8
gt-GRASS 0.0 468.6 202.7 11.8  683.0
gt-FOLIAGE 2.0 18.0 995.7 2.8 1018.6
gt-BARE GRD 0.0 33.9 21.4 138.1 1934
total 15.8  520.6 1247.5 152.9 1936.8
correctly classified pixel total: 1616.1
overall classification accuracy %: 83.4

Table 1: Contingency table of classification results (from Wang et al.). Numbers rep-
resent pixels in 1000’s. The first row means that of the 41800 ground truth sHADOW
pixels, 13800 were classified as SHADOW, 27800 as FOLIAGE, and 200 as BARE GROUND.

I'TT results: SHADOW GRASS FOLIAGE BARE GRD  total
gt-SHADOW 31.6 0.0 9.8 0.0 41.4
gt-GRASS 1.8  565.4 82.7 27.5 677.4
gt-FOLIAGE 26.9 86.6 881.9 13.6  1009.0
gt-BARE GRD 0.5 18.1 3.9 169.6  192.1
total 60.8  670.0 978.4 210.7 1919.9
correctly classified pixel total: 1648.5
overall classification accuracy %: 85.9

Table 2: Classification results using ITI in batch mode on the same training set as in
Wang et al. Numbers represent pixels in 1000’s.

be more similar than images from a real sequence. On the other hand, local terrain
characteristics vary enough across the large spatial extent to demonstrate our point.

A classifier was then interactively trained on one subimage at a time: Initially, the
Learner knows nothing, i.e. the classifier is empty. Each mouse click creates a single
training instance. The learner receives it, updates its classifier, and begins to reclassify
the current image. As soon as the Teacher observes misclassifications, she/he can choose
to provide another training example. This procedure is repeated until the Teacher
is satisfied with the Learner’s performance. Then, training continues with the next
subimage.

For later analysis of the training process, each decision tree updated as the result of
a mouse click was saved to a file. At the end of the session, the saved decision trees
were used off-line to evaluate the accuracy of the decision tree after each mouse click
by comparing the classification results on the entire image with Wang et al.’s ground
truth data. The results for two separate training sessions (using different subimage
permutations) are plotted in Figure 4.

In both cases, excellent classifier accuracy was achieved after very few mouse clicks.
Most training was performed on the first few images. In subsequent images, little or no

7



—_

o o o
N o
T T T
|
/
7
—
I
N
-
&
LTy
AN
N <
1) o
&
(o) o
N
Il Il Il

o
»
T
|

—— Sequence 1
Sequence 2 |

o
~
T
|
\
\

o
w
T
|

o
N
T
|

Full image classification accuracy
o
()]
T
Il

o
—_
T
I

(=)
o
UIA

10 15 20 25 30 35

Number of training instances

Figure 4: Classifier behavior during interactive training. Digit k£ next to a curve marks
the last training pixel supplied while training on subimage k. In Sequence 1 (top digits),

no training instances were supplied for subimages 8-10; in Sequence 2 (bottom digits),
none were supplied for subimages 4-7 and 9-10.

corrections were necessary. Furthermore, the amount of change in the learning curve
introduced by the application of a single training pixel decreases with training, as is to
be expected. Both observations indicate well-behaved convergence of this incremental
training procedure. This needs to be confirmed on actual video image sequences.

However, the accuracy did not increase monotonically, and training on an atypical
subimage can decrease the overall accuracy. This is the case for one particular subimage
which appears as #6 in Sequence 1 and as #2 in Sequence 2.

Table 3 compares two interactively trained I'TT classifiers with a traditionally constructed
ITT classifier (using Wang’s training data). All three perform equally well; the differ-
ences in accuracy are neglegible. Striking, however, is the simplicity of the interactively
trained classifiers: Both decision trees are extremely small and consult only four fea-
tures out of the total library of 17 features. On the other hand, the batch-trained I'TI
classifier had to account for a large number of exceptions to the simple rules found by
the simple classifiers. The effects of such overspecialization are illustrated in Figure 3,
which shows subimage classifications created by the batch-generated ITI classifier and
the 14th (interactively trained) ITI classifier from Sequence 1. The batch-generated
classifier, likely overtrained by the large number of training examples, produced a more
cluttered result than the interactively trained classifier.



Overtraining is a general problem that affects most kinds of classifiers. In the context
of decision trees, this problem is typically addressed in the machine learning research
community by pruning algorithms that try to reverse the effects of overspecialization.
Our experiments demonstrate that such overspecialization can be effectively avoided by
selecting training instances in an informed manner. This is a striking example of the
dramatically increased classifier quality achievable by our Learning Classifier approach.

interactive  batch
# Training instances: 14 22 16916

% correct: 85.6 85.2 85.9
# tree nodes: 9 13 181
max. tree depth: 3 3 23
# features used (of 17): 4 4 16

Table 3: Comparison of classification results by different I'TT classifiers. The interactively
trained classifiers are from Sequence 1 (14 training pixels) and Sequence 2 (22 training
pixels). The batch-generated classifier used the training data from Wang et al.

4 Hierarchical Classification

Traditionally, the utility of pixel classification is limited by the locality and simplicity
of the underlying features. For example, it is not usually practical to cast an object
recognition task purely as a classification task and train a classifier to mark all pixels
which are part of a structured object, e.g. a chair. This would either involve a small set
of carefully designed features — which in effect implement the object recognition task
— or a large set of simpler features powerful enough to express the context-sensitive
spatial features that characterize a chair. The latter case constitutes a combinatorial
search space too large to construct, let alone search.

However, in many applications of classification systems, the classes involve some known
structure, such as the distribution, size, and/or shape of pixel classes. Such knowledge
is often incorporated by hand into a classification system. Some of the most powerful
expert systems for classification tasks were built this way (26). In contrast, we now
present an example-based method for user-defined incorporation of structural knowledge
into classification-based systems trained interactively and incrementally.

Many objects can be characterized by a simple combination of simple structural features.
For example, in a wildlife survey with our Forestry department, black-back seagulls on
aerial images appear as adjacent white and dark blobs of certain sizes, representing
head and back. Often the white tip of the tail can be seen as well (Figures 5 and
6). If represented as a single feature set, these relationships would cause it to grow
combinatorially, since the features required to recognize “white” and “dark” would have
to be crossed with those for characterizing the sizes and spatial relationships.



Figure 5: Aerial photographs showing sections of an island off the coast of Maine. Yellow
circles show black-back seagulls. The top image (275 x 258 pixels) was used as a training
image, the bottom one (405 x 328 pixels) as a test image.

Figure 6: Sketch of a typical black-back gull as it appears in Figure 5. The white head
(lower right), white tail (upper left) and black back are represented by adjacent blobs
of pixels.

10



The idea of interactive hierarchical classification is to avoid these combinatorics by
putting the burden of combining features on the human Teacher. While a human will
not generally find an optimal solution, in many cases good feasible solutions are ap-
parent. Consider the gull in Figure 6. It is not generally practical to design a generic
feature set that expresses spatial relationships between blobs of colored pixels. Observe,
however, the hierarchy inherent in the previous formulation. This is what hierarchical
classification can exploit: First, a classifier is trained to recognize blobs of colored pixels.
Then, a second classifier is trained to recognize spatial relationships between the blobs
found by the first classifier. The input to the first classifier are features of the original
image, and the input to the second classifier are features of the label image generated
by the first classifier.

E<%§> yawy

AN S
v vy iy R

Figure 7: The concept of hierarchical classification: The output of one classification
system serves as the input to another one. This can in principle be extended to any
number of hierarchies. The feature extractors f typically differ from level to level, and
a unique classifier ¢ is trained at each level.

We now describe this procedure in detail (cf. Figure 7). To formalize traditional pixel
classification, let an image be defined as a scalar function A(i,j), mapping coordinates
to intensities. Ignoring boundary problems, we can define a feature image as a function
F(A;i,j), where each element is computed as some function f of the gray values in a
local square image region of radius &y, centered at (7, j):

F(A,Z,]):f( A(i—kf,j—kf),...,A(i+kf,j—kf) ooy
A=k, j+ k)., Al + kp,j + ky) )

A pixel classifier ¢ takes the features Fi,..., F; of a pixel at (i,7) and returns a class
label. The resulting label image is denoted C(F7, ..., Fj;i,j) with

C(Fry s B ) = e F(d51,), o Fil41,5) ).

In hierarchical classification, we use the label image C' as input to another set of features
f1, -+, [t A superscript from now on indicates the classification hierarchy. At the base

11



level, we let C° = A, and if we provide a suitable set of feature sets — one for each
hierarchy level — we can define hierarchical classification as

CMIU(ED, ... Flii §) = I (Ff(Ch;i,j), . -,Fz'i(Ch;i,j)>

for h > 0, which says that the features for ¢"*! classifier are computed from the classifi-
cation results of the ¢* classifier. In general, ¢"*' may depend on any ¢™ classifier with
0<m<h.

This hierarchy of classifiers is trained from the bottom up, yielding classifiers ¢, cs, . . ..
Since the effects of C* on C"*! are hardly forseeable, this concept relies on interac-
tive training: Informative training examples at one level are selected depending on the
classification results from the previous level.

There is nothing special about the base level (¢!) classifier. The input data to a higher
level feature function f, however, will generally be a label image, i.e. the pixel values
do not represent cardinalities but merely categories. This requires the construction of
a special feature set. For example, we suggest the following window functions (—k <
x,y < k) for capturing simple spatial features:

e To measure the size of an blob of labels, use the number of occurrences of a given
label M:

Fy(i,5) = {(z,9) | Cli+ 2,5 +y) = M}|

e To assess adjacency of two blobs, use the product of the number of occurrences of
two given labels M and N:

Fa(i;g) = {(w,9) [ Clit 2,5 +y) = MY - [{(2,9) | C(i + 2,5 +y) = N}|

This returns a high value if and only if large numbers of both class labels are
present near the current pixel (i,j).

e The previous two features involve just counts and ignore spatial coherence. The
following feature provides a measure of clutter by counting the number of label
discontinuities between neighboring pixels:

F(i,j) = K@) [Clita,j+y) #Cli+a+1j+y)} +
{(z,y) [Clit+a,j+y) #Cli+a,j+y+ 1)}

A generalization of this was proposed by Jarvis (14) as a sharpness criterion for
image processing.

To illustrate an application of hierarchical classification, we trained a classifier to recog-
nize black-back seagulls on color aerial images (Figure 5). At the base level, we interac-
tively trained the three classes LIGHT-GULL (head), DARK-GULL (back), and NOT-GULL.

12



Our 12 features included each of the HSV bands (10), and variance, contrast and dis-
persion (13) within a 3 x 3 pixel window for each of these bands. Each mouse click
produced a 3 x 3 blob of training pixels of the same class. It was not necessary (nor pos-
sible) to identify light and dark parts of gulls uniquely. Rather, base-level training was
stopped after 10 mouse clicks when there were still false positives of both LIGHT-GULL
and DARK-GULL, but gulls appeared reasonably well characterized by adjacent blobs of
LIGHT-GULL and DARK-GULL labels (Figure 9). The trained decision tree is shown in
Figure 8.

t f
[Hsvs <5250 [o-Light-Guil (9)|
t f
[Contrs < 1342.06] [Hswv <71.50]
t f t f
[2-Not-Gull (42)] [Dispv < 12.22] [2-Not-Gull (7)]  [ContrH < 49445.83]
/ \ / \ t f
[2-Not-Guil (12)]  [1-Dark-Gull (4)] [1-Dark-Guil (14)]  [2-Not-Gull 2)] [4-Not-Gull 36)]  [3-Gull (18)]

Figure 8: Decision trees trained for black-back seagull localization (cf. Figure 5). In
the leaf nodes, the numbers of associated training pixels are given in parentheses. Left:
Base-level classifier ¢'. In the decision nodes, the trailing letters of the feature names
refer to the respective HSV band. Right: Classifier ¢2. Only the adjacency feature (F,)
with radius 2 was employed.

We then trained the c? classifier to discriminate GULL and NOT-GULL. Eight features
were computed on C', namely adjacency (F,) and clutter (F.) as described above, with
window radii £ = 1,2,4,8 pixels. Training pixels for class GULL were selected near
the junction of head and body of some gulls. An extremely simple tree was generated
(Figure 8) after 6 mouse clicks, which nevertheless achieved perfect accuracy on the
training image and near perfect accuracy on the test image (Figure 9). Accuracy is
measured as the number of GULL-labeled blobs that correspond to actual gulls. In the
test image, there were only a few minor false positives, which were easily removed by
standard noise reduction techniques (e.g. replacing each label with its most common
neighbor).

5 Conclusion

We have demonstrated a new methodology for interactive training of pixel classifiers.
It is a very effective tool for selecting few but informative training instances, resulting
in great reduction of human labor and dramatically simplified classifiers. A simple user

13



Training Image:

LIGHT-GULL
DARK-GULL .
NOT-GULL .

. * Mcu
NOT-GULL

r

Test Image:

Figure 9: Results of hierarchical classification for black-back seagull localization (cf.
Figure 5). Left: Base-level (C') classification results; right: hierarchical (C?) results.

interface allows training with useful real-time feedback, regardless of the size of the
image.

Incremental update of a classifier allows training on an image sequence without a static
training set. Our results suggest that the training procedure converges rapidly, but
further experiments on real image sequences are necessary.

We introduced the new concept of hierarchical classification and demonstrated its use-
fulness on a simple seagull recognition problem. The system will subsequently be used
for vegetal classification of ground cover in environmental monitoring via forestry aerial
images. Future research will apply this technique to other tasks and investigate the
behavior of the training process when more classes and more hierarchies are involved in
order to express more complex object characteristics.

Acknowledgements

The sample implementation makes use of the official I'TI distribution which is accessible
over the internet at http://www-ml.cs.umass.edu/iti/index.html. The decision tree
illustrations were also generated using this package. We thank X. Wang for providing
the feature files and ground truth data for the Ft. Hood imagery.

14



References

[1] M. Blume and D. R. Ballard. Image annotation based on learning vector quantiza-
tion and localized Haar wavelet transform features. Proc. SPIE, 3077:181-190,
1997.

[2] N. W. Campbell, W. P. J. Mackeown, B. T. Thomas, and T. Troscianko. Interpret-
ing image databases by region classification. Pattern Recognition, 30(4):555-563,
1997.

[3] G. A. Carpenter, M. N. Gjaja, S. Gopal, and C. E. Woodcock. ART neural networks
for remote sensing: vegetation classification from Landsat TM and terrain data.
IEEE Trans. Geoscience and Remote Sensing, 35(2):308-325, 1997.

[4] J. R. Carr. Spectral and textural classification of single and multiple band digital
images. Computers & Geosciences, 22(8):849-865, 1996.

[5] R. Conners and C. Harlow. A theoretical comparison of texture algorithms. IEEE
Trans. Pattern Anal. Machine Intell., 2(3):204-222, 1980.

[6] P. A. Devijver and J. Kittler. Pattern recognition: a statistical approach. Prentice-
Hall, 1982.

[7] J. du Buf, M. Kardan, and M. Spann. Texture feature performance for image seg-
mentation. Pattern Recognition, 23(3/4):291-309, 1990.

[8] J. J. Ferri, P. Pudil, M. Hatef, and J. Kittler. Comparative study of techniques for
large-scale feature selection. In E. S. Gelsema and L. N. Kanal, editors, Pattern
Recognition in Practice IV, pp. 403-413. 1994.

[9] J. D. Foley and J. Sammon, Jr. An optimal set of discriminant vectors. IEEE Trans.
on Computers, 24(3):281-289, 1975.

[10] J. D. Foley and A. van Dam. Fundamentals of interactive computer graphics.
Addision-Wesley, 1982.

[11] W. Hafner and O. Munkelt. Using color for detecting persons in image sequences.
Pattern Recognition and Image Analysis, 7(1):47-52, 1997.

[12] R. Haralick, K. Shanmugam, and I. Dinstein. Textural features for image classifi-
cation. IEEE Trans. Systems, Man, and Cybernetics, 3(6):610-621, 1973.

[13] A. K. Jain. Fundamentals of digital image processing. Prentice-Hall, 1989.

[14] R. A. Jarvis. Focus optimisation criteria for computer image processing. Microscope,
24(2):163-180, 1976.

[15] M.-P. D. Jolly and A. Gupta. Color and texture fusion: application to aerial image
segmentation and GIS updating. In IEEE Workshop on Applications of Com-
puter Vision, pp. 2-7, 1996.

[16] D. Langer and T. Jochem. Fusing radar and vision for detecting, classifying and
avoiding roadway obstacles. In Proc. IEEFE Intelligent Vehicles Symposium, pp.
333-338, 1996.

[17] E. Littmann and H. Ritter. Adaptive color segmentation — a comparison of neural
and statistical methods. IEEE Trans. Neural Networks, 8(1):175-185, 1997.

(18] K. Liu, Y. Cheng, and J. Yang. Algebraic feature extraction for image recognition

15



[19] T.

20] T.
21] P.

22] C.

23] S.

24] D.

25] H.

26] D.

27] P.

28] P.

29] X.

[30] J.

based on an optimal discriminant criterion. Pattern Recognition, 26(6):903-911,
1993.

M. Mitchell. Version spaces: An approach to concept learning. PhD thesis, De-
partment of Electrical Engineering, Stanford University, Palo Alto, CA, 1978.

M. Mitchell. Generalization as search. Artificial Intelligence, 18:203-226, 1982.

Ohanian and R. Dubes. Performance evaluation for four classes of textural fea-
tures. Pattern Recognition, 25(8):819-833, 1992.

Rossmanith, H. Handels, S. J. Poppl, and E. Rinast. Characterisaztion and clas-
sification of brain tumours in three-dimensional MR image sequences. In K. H.
Hohne and R. Kikinis, editors, Proc. Visualization in Biomedical Computing,
pp. 429-438. 1996.

Salzberg, A. Delcher, D. Heath, and S. Kasif. Best-case results for nearest-
neighbor learning. IEEE Trans. Pattern Anal. Machine Intell., 17(6):599-608,
1995.

L. Schmoldt, P. Li, and A. L. Abbott. Machine vision using artificial neural net-
works with local 3D neighborhoods. Computers and Electronics in Agriculture,
16(3):255-271, 1997.
Schultz. Terrain reconstruction from widely separated images. Proc. SPIFE,
2486:113-123, 1995.

M. Slaymaker, K. M. L. Jones, C. R. Griffin, and J. T. Finn. Mapping deciduous
forests in southern New England using aerial videography and hyperclustered
multi-temporal Landsat TM imagery. In Gap Analysis, A Landscape Approach
to Biodiversity Planning, pp. 87-101 and 308-312. 1996.

E. Utgoff. An improved algorithm for incremental induction of decision trees. In
Machine Learning: Proceedings of the Eleventh International Conference, pp.
318-325. 1994.

E. Utgoff, N. C. Berkman, and J. A. Clouse. Decision tree induction based on
efficient tree restructuring. Machine Learning, in press.

Wang, F. Stolle, H. Schultz, E. M. Riseman, and A. R. Hanson. Using three-
dimensional features to improve terrain clasification. In Proc. Computer Vision
and Pattern Recognition, pp. 915-920, 1997.

Weszka, C. Dyer, and A. Rosenfeld. A comparative study of texture measures
for terrain classification. IEEE Trans. Systems, Man, and Cybernetics, 6(4):269—
285, 1976.

16



