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Abstract

This note is based on my invited talk at the 4th Intl. Colloq. on Structural Information and
Commaunication Complezity (SIROCCO’97). In it, I discuss a few “meta-issues” concerning
theoretical research on networks, and I illustrate these issues with some recent research of mine
(so that all critical remarks can be focused in my direction). My central foci are the selection
of problems and models, and the tools for studying them.

1 Crucial Concerns for Theoretical Researchers

Technology-focused theoretical computer scientists work in a strange laboratory. On the one hand,
the tools they work with are supplied by the field of mathematics. On the other hand, the objects
that they work on come from a very different constituency, the practitioners in the areas of computer
and communication technology. Researchers in this area face a tantalizing temptation to cleave to
the elegance-seeking paradigm of mathematics in their work—at the risk of producing results that
apply only in a gedanken universe. My intention is to describe here some of the dangers that I see
in our research world and to suggest, via examples, ways to avoid some of these dangers. I choose
my exemplary studies just from my own work (with valued collaborators) so that any criticism that
may be engendered by my thesis will be directed solely at me.

1.1 Fundamental Research Questions
I begin my remarks with two research-oriented questions that I view as among the most important
that a theoretician can ask—for only a theoretician can ask them.

What really matters? This question really encapsulates the power of the theoretical researcher’s
ability to abstract from the details of current technology. It allows the researcher to question what
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What if ...? This question embodies the theoretical researcher’s ability (and responsibility?) to
attempt to anticipate technology, with an eye toward informing the technologist of the consequences
of probing in various directions. When possible, this is a very efficient use of (human and tech-
nological) resources, as the theoretician typically works in a small team, using pencils, paper, and
workstations, whereas the technologist may require extensive costly equipment and a large team to
study the same directions.

The final question I wish to raise concerns a relatively new research tool of the technology-
focused theoretical researcher—experimentation. Whereas the more abstractly focused theoreti-
cian has traditionally been satisfied to study optimization problems using purely mathematical
techniques—either establishing the probable computational intractability of a problem or, when
possible, establishing its efficient approximability—the technology-focused theoretician must de-
rive answers even when the tools of mathematics do not (seem to) provide them. This leads the
technology-focused theoretician to the realm of experimental studies, a realm that has been dom-
inated by practicioner. One major danger for the theoretical researcher in this new domain is
to forget Theory’s role in the grand scheme of things and apply experimentation with the rather
limited goals of the practicioner—to establish specific facts. The big need that I see is for the
theoretical researcher to continually address the issue of:

how to devise experiments that show why phenomena occur, not just that they do.

I shall expand on the three questions I have raised in Sections 2-4.

1.2 Responsible Research Guidelines

The basic issue here is that a researcher must pay close attention to the appropriateness of his/her
tools for the goals of his/her investigation. The first two sample questions that I believe a theoretical
researcher should continually ask focus on what one might call the “honesty” of a theoretical study.

e Will the “eventually” implicit in my asymptotic analyses eventuate?

e Do the speculative models that I study plausibly anticipate future technology, or do they
merely create fantasy technology that can exist only as a mathematical construct?

The final question, as in the previous subsection, concerns the truly difficult area of empirical
studies—an area that is still searching for a methodology.



Figure 1: A chordal (left), express (center), and multi-ring (right) augmentation of a ring.

e Why should anyone believe my experimental “results?”

— How should I select relevant sample inputs?

— How should I analyze my raw data?

2 A Sample “What Matters?” Study [1]

2.1 What Matters in Networks: An Historical Perspective

Several notions of “equivalence” of specific networks have been studied.

Equivalence for all purposes. This strong form of equivalence demands that two network topolo-
gies be interchangeable for all computational/communicational applications. Such equivalence has
been established most often using the notion of quasi-isometry—the inter-embeddability of two
families of networks with small dilation. One finds in sources such as [2, 8, 14, 17] proofs of the
strong equivalence of network topologies such as: paths and rings; meshes and tori; de Bruijn and
shuffle-exchange networks; butterfly, FF'T, and Cube-connected-cycle networks.

Equivalence on important classes of problems. This form of equivalence has received less
attention than the stronger form, hence has engendered fewer generally applicable tools. Among
the most interesting studies of computation-specific equivalence appear in: [21], where de Bruijn
and butterfly and hypercube networks are shown to be equally efficient on “normal” algorithms;
and [12], where a computationally more robust replacement for quasi-isometry is proposed and
studied.

2.2 What Matters in Networks: A Recent Result
Consider the following three significant augmentations of ring networks, which are illustrated in
Fig. 1.

A chordal ring is obtained by adding “shortcut” edges to a ring network, in order to decrease its
diameter. In [1] we study chordal rings whose “shortcut” edges do not cross, a restriction that we



show increases diameter by at most a factor of 2. An express ring is obtained from a chordal ring
by routing its “shortcut” edges around periphery of ring in a way that preserves their noncrossing.
An important parameter of an express ring is its cutwidth—the maximum number of edges that
travel “above” adjacent nodes. A multi-ring is obtained from a ring by appending subsidiary rings
to edges of the ring and, recursively, to edges of subsidiary rings. An important parameter of a
multi-ring is its depth—the number of levels of augmentation.

The significance of these augmentations is attested to by the volume and variety of the literature
they have engendered. Chordal rings have been studied as potential interconnection networks for
parallel computers [3, 15]. Networks with express links (express rings being the simplest instance)
have been studied in connection with interconnection networks [7]. Express rings, in particular,
have been studied in connection with communication networks [10, 13]; their relation with chordal
rings has been established in [9, 18]. Multi-rings have been studied both as interconnection networks
[5, 16, 23] and as communication networks [6].

It is shown in [1] that these augmented rings are equivalent in a very strong sense. When
edge-crossings are allowed, the augmented topologies are quasi-isometric. When crossings are not
allowed, they are actually (graph-theoretically) isomorphic.

Theorem 1 (a) For every chordal ring, there is an isomorphic express ring, and vice versa. (b)
For every cutwidth-c express ring, there is an isomorphic c-level multi-ring, and vice versa.

A Surprising Fact: In linear time, one can transform a chordal ring (even with crossing chords)
into a minimum cutwidth isomorphic express ring (possibly with crossing arcs) [9].

Of course, the significance of Theorem 1 is that researchers and/or technologists who want to
work efficiently with any of these network topologies now have access to a substantial body of
literature that was not obviously relevant to their concerns.

3 A Sample “What if ...?” Study [19, 20]

The underlying goal of “What if ...?” questions is to investigate the computational and/or com-
municational consequences of currently speculative technology. Of course, one wants to keep one’s
models and analyses “honest” and relevant while anticipating technological advances. The danger
one always faces is of forgetting the limitations of (currently) conceivable technology, or even of
physics; cf., [4, 22]. Common offenses in this regard include:

e analyzing the asymptotics of f(n) even when n must be small

e ignoring the time for traversing long wires or, even worse, for passing through many switches.

We now describe a “What if ...?7” study that tries to be both “honest” and relevant. The
study concerns the Reconfigurable Ring of Processors (RRP), a parameterized family of parallel
architectures specified as follows.



The (N, £)-RRP comprises a ring of N identical single-port processors (PEs) hanging off a recon-
figurable bus having ¢ lines, each one “word” wide. Every PE has ¢ communication PEs (CPEs)
which control the bus-lines for that PE. Under SIMD control, the CPEs (independently) can:

e establish point-to-point bidirectional paths, which persist throughout a message transmission;

e relay words actively along their line;

e insert a word from their PE onto their line and/or remove a word for their PE from their line

What makes our study of RRP’s notable is the posited delay model. We assume that the time
to transmit a one-word message in an N-RRP, along the path

Pi—>Pi+1—>~--—>Pj_1 —>Pj

is [log(j — 7 mod N)] time units, where a time unit is the number of machine cycles it takes:

aPEto... a CPE to ...

put a word into its PE
receive a message via one CPE | | and/or

get a word from its PE

and

do a computation or

and

send a message via one CPE actively relay a word

Now, a logarithmic-latency delay model is not unique to RRP’s, even within the realm of pa-
per architectures with reconfigurable buses. What is unique to our study—to the best of our
knowledge—is our attempt to argue the technological plausibility of our model (in contrast to its
technological feasibility, which we have not yet established, but which we hope to). This plausibility
derives from the following strategy for achieving logarithmic message latency.

The Cooperative Message Transmission Protocol operates as follows. Say that PE P; has a
one-word message which it wants to transmit in the clockwise direction to PE P; along line a.
At Step 0, CPE PZ(-a) sends the message to Pgi)l along line a; schematically:

e — 0 —30—30—30—>0—3+0—30 —H0 — -+

At Step 1, Pgi)l starts helping Pga) by relaying the message actively; schematically:
e—e0—0—30—30—30—30—+0 —>0 —> -
At Step 2, 732(-?2 and PE% start helping P and Pgi)l by relaying the message actively; schemati-
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At Step k, Pgi)Qk,l,Pgi)Qk,lﬂ, - ,PE?Q,C_I start helping Pga),PEi)l, ... ,Pgi)2k,1_1 by relaying the

message actively; schematically:

O —> 00— 00— 0 —> 0 —> 0 —> 0 —> @0 —> 0 — -+

(a)

This continues until the message reaches P, which puts the message into PE P;.

Notes. This scheme (if it works) decreases just capacitive delays, so we never approach speed-of-
light limitations. Moreover, the scheme works just for one-word messages, not for worms. Most
importantly for our message here: If RRP’s can be made to work with logarithmic message latency,
then it will be within something like an MOS wafer-scale technology. This implies that

N will always be modest in size. Therefore, one is not justified in using asymptotic
analyses to determine the capabilities of logarithmic-latency RRP ’s!

Even when timing is expressed in terms of explicit, rather than asymptotic bounds, RRP’s are
unexpectedly efficient, as the following theorem indicates.

Theorem 2 An (N,{)-RRP can:
log? N
log? °

(a) execute any N -leaf tree-sweep computation within time log N loglog ¢ +

When £ > N'/10818 N " this is time 21og N loglog N + Lo.t.
Such computations can perform: broadcast; accumulation; parallel-prefix.

(b) ezecute any N-node hypercube normal algorithm, with slowdown < 4loglog N.

Such algorithms can perform: matrix operations; fast fourier transform; sorting.

The times reported in Theorem 2 are within constant factors of optimal.

4 A Sample “Educational” Empirical Study [11]

As we noted in Section 1, the basic questions concerning empirical studies revolve around the
credibility and extendibility of their results. Challenges exist at both the coarse and fine levels of
planning an experimental study. At the coarse level, one must try to devise experiments that have
some hope of explaining why phenomena occur, not just that they do. At a more detailed level, one
must plan how to select sample inputs that are relevant to the real-life situation one is attempting
to study empirically; and, one must devise a method of analyzing one’s experimental results in a
manner that legitimately supports the claims that one makes.



We look now at a sample empirical study that attempts to deal with these issues. The study
attempts to analyze and compare two competing policies for scheduling branching computations on
ring-structured parallel computers. The study has two quite distinct goals, one relating to parallel
computation and one to experimental methodology. Within the former domain, we wish to devise
efficient scheduling strategies for large classes of important computations on processor-rings, despite
their large diameters and small (bisection) bandwidths. Within the latter domain, we wish to craft
a methodology for evaluating parallel scheduling policies, that will compare one policy’s schedules
against another’s (a standard goal) and explain each policy’s sources of efficiency and inefficiency
(a decidedly nonstandard goal).

In broad overview, the computations we wish to schedule have the structure of dynamically
evolving binary trees with unit-sized tasks at each node. We start with just one node, which is
simultaneously the root of the tree and its only leaf. Inductively, when a leaf-node is executed, it
either “dies”—thereby becoming a permanent leaf of the tree—or spawns two children—thereby
becoming an internal node of the tree. The scheduling policies that form the focus of our study are
specified as follows.

e Policy K0SO (KEEP-ONE-SEND-ONE) has each PE retain one child of a spawning task and
send the other child to its clockwise neighbor.

e Policy K0sO* (refined KOsO) has each PE behave like K0s0, but send child to its clockwise
neighbor only if the neighbor has a lighter load.

Both policies schedule in a local breadth-first fashion; i.e., each PE executes the lexicographically
smallest node in its eligible-queue.

Our hypothesis is that both K0sO and K0sO* produce “good” schedules (i.e., ones that achieve
close to optimal p-fold speedup on the p-PE ring R,) when scheduling trees that turn out to be
“bushy;” but, we expect KOSO* to produce better speedup, because of its more intelligent load
balancing.

4.1 The Design of the Experiments

We need to design experiments that are computationally both feasible and meaningful. Toward the
former end, we must devise an efficient method of generating inputs for our study; toward the latter
end, we must ensure that the inputs we generate faithfully model some real-life application. As our
“reality check,” we selected the real-life application of numerical integration using, say, Simpson’s
Rule or the Trapezoid Rule. These algorithms can be viewed as the simplest instances of the
important family of multi-grid computations. The correspondence that exposes these algorithms
as instances of the kind of branching computations we wish to schedule appears in the following
table.



Formal Entity ‘ “Real” Entity

tree-node real interval

spawning node | interval being refined

dying node completed interval
(because of smoothness or resolution)

With, say, Trapezoid-Rule integration algorithms as inspiration, we decided to generate random
instances of branching computations via the following one-parameter procedure. We choose a real
number § that is close to, but less than 1. Then we generate d-random trees by having each level-£
node of a tree (where ¢ > 0) spawn with probability ¢ and “die” with probability 1 — §°.

We argue heuristically that the trees generated by the preceding procedure should have structure
similar to those generated by “typical” runs of a Trapezoid-Rule integration algorithm, as follows.
On the one hand, Trapezoid-Rule trees should be “bushy” near their roots, because any nonlinear
function will require some interval splitting. On the other hand, Trapezoid-Rule trees should get
“scrawny” rather quickly, because functions occurring in actual applications are likely to have large
smooth parts. Finally, the limited resolution of any computer should keep Trapezoid-Rule trees
rather shallow.

4.2 The Results of the Experiments

Comparing kK050 and K0sO*. We performed 480 trials, 20 for each setting of: the ring size (4
values of p), the growth parameter (3 values of §), and the scheduling policy (KOSO vs. KOSO*).
The direct results of the trials are summarized in the first line of Table 1.

Prob. that
KOSO KOSO* KOSO*’s mean
= KOSO’s mean
Mean speed 2485 steps | 2237 steps | = 0.17

(large std. dev.)
Mean deviation
from 306 steps 92 steps | < 0.001
ideal speedup

Table 1. The results of our experiments

While it appears clear from looking at the raw and mean run times of the computations sched-
uled by K0s0 and K0SO* that the latter policy produces better schedules than the former, we
discovered to our chagrin that the anticipated “clear” superiority of KOSO* is not borne out in
a statistically significant manner by our results! Once we developed the intuition that this lack
of significance resulted from the large standard deviation in KOSO’s performance, we decided to
look at each run’s deviation from ideal (p-fold) speedup, rather than its raw speed. We thereby



2000 — 2000 —
*

ZotHnwn
ZotHnwn

1000 —| X xx 1000 —|
& * * x;s&xx
oK 3

XX X

XX
P
e
T o T T ' il T

10000 20000 30000 40000 10000 20000 30000 40000
N N

Figure 2: The plotted deviation from ideal speedup for KOSO (on the left) and KOSO* (on the right).
In the plots: x = 20 PEs, + = 10 PEs, + = 6 PES, 7 = 3 PEs.
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Figure 3: The time-series profile of the busy PEs on Rg for KOSO (on the left) and KOSO* (on the
right).

generated the second line of Table 1, which does indicate in a statistically significant manner that
policy KOSO* outperforms policy KOSO.

Not surprisingly, the superiority of KOSO* over KOSO is clearly visible in Fig. 2, which plots
the observed deviation from ideal speedup of both policies. What we must stress here is that one
cannot reliably draw conclusions from eyeballing plots: we were initially “fooled” by the plot of
raw speeds into thinking that we had a statistically significant demonstration.

Why k0s0* Outperforms K0s0. Figs. 3 and 4 illustrate eloquently that KOSO* earns its superi-
ority over KOSO in two fundamental ways. Fig. 3’s time-series profile of the busy PEs of Rg during
our experimental runs illustrates that KOSO* keeps almost all PEs of Rg busy almost all of the time.
In particular, KOSO* enjoyed “steeper” warm-up and cool-down phases (wherein, respectively, the
PEs of Rg initially load up with work and finally empty out) than kK0so. Additionally, Fig. 4’s
time-series profile of the queue-sizes of the PEs of Rg during our experimental runs illustrates that
KOSO* balances the workloads of the PEs of Rg almost perfectly, certainly more evenly than KOSO
does.
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Figure 4: The time-series profile of queue-sizes on Rg for KOSO (on the left) and KOSO* (on the
right).
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