The Design of a Next-Generation Process
Language*

Stanley M. Sutton, Jr. and Leon J. Osterweil

Department of Computer Science
University of Massachusetts
Amherst, MA 01003-4610

Abstract. Process languages remain a vital area of software process research. Among
the important issue for process languages are semantic richness, ease of use, appropriate
abstractions, process composability, visualization, and support for multiple paradigms.
The need to balance semantic richness with ease of use is particularly critical.

JIL addresses these issues in a number of innovative ways. It models processes in terms
of steps with a rich variety of semantic attributes. The JIL control model combines
proactive and reactive control, conditional control, and more simple means of control-
flow modeling via step composition and execution constraints. JIL facilitates ease of
use through semantic factoring, the accommodation of incomplete step specifications,
the fostering of simple sub-languages, and the ability to support visualizations. This
approach allows processes to be programmed in a variety of terms, and to a variety of
levels of detail, according to the needs of particular processes, projects, and program-
mers.

1 Introduction

Process language research was an early emphasis of software process studies.
It has remained vital for several reasons. First, no language has gained general
acceptance or widespread use. This is not just a linguistic problem, as the use
of languages depends also on organizational, methodological, and technologi-
cal support. Second, first-generation languages generally have obvious limita-
tions. This is in part because many of these languages were based on existing
paradigms that were not particularly well adapted to the domain of software
process [9, 22, 31, 24, 13, 4, 23]. Finally, research in other areas of software pro-
cess has affected our ideas about what can and should be done with process
languages. In this paper we report on the design of a “next-generation” process
language that is intended to capitalize on lessons learned from first-generation
languages, overcome limitations of those languages, and explore issues emerging
from ongoing process research.

Section 2 identifies our primary language design goals, which are based on
our experience with first-generation process languages. Section 3 describes the
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design of JIL, our next-generation process language, including examples based
on the Booch object-oriented design process. Section 4 discusses the multi-modal
interpretation of JIL programs. An assessment of the JIL approach is presented
in Section 5, and our status is discussed in Section 6.

2 Language Design Goals

Process programming proposes that it is feasible and valuable to represent soft-
ware processes using programs written in compilable, executable coding lan-
guages [26, 27]. Our experience with APPL/A [31] has validated this proposal.
We now take many properties of coding languages as fundamental to representing
software processes, including formal syntax, well-defined semantics, executabil-
ity, analyzability, object management, and consistency management. These is-
sues have been the focus of much previous work (e.g., [29, 21, 9, 22, 5, 10, 31]),
and they should continue to be addressed by second-generation process lan-
guages. Our focus here, however, is on the issues outlined below.

2.1 Semantic Richness

Software processes are multi-faceted and technically challenging applications.
To support this domain, a process programming language must provide many
kinds of interrelated semantics. This pressure for semantic richness is reflected
in first-generation process languages. Many of these are based on extensions
of conventional programming languages or paradigms, including functional lan-
guages ([9, 24]), rule-based or reactive languages ([22, 21, 10, 5]), imperative
languages ([31]), and Petri nets ([4, 13]). Conversely, where process languages
have neglected certain areas of semantics (e.g., reflexivity, resource modeling),
process programs have suffered. Process language semantics must be both rich
and rigorous. They must cover an adequate range of process semantics, and they
must do so with appropriate models that support reasoning about processes.

2.2 Ease of Use

Ease of use is an important requirement for process programming languages
because the individuals and organizations responsible for defining software pro-
cesses are often not experienced at programming. The semantic richness of pro-
cess languages means, however, that significant software engineering skills are
required to program in them effectively. This is an impediment to the widespread
adoption of process languages. A key issue for process languages is thus balancing
the need for technical rigor with this need for ease of use.

2.3 Appropriate Abstractions

The clear and concise representation of software processes requires appropri-
ate kinds and levels of abstraction. The development and maintenance of pro-
cess programs is complicated if the user must construct process-specific abstrac-
tions from lower-level abstractions, as with process languages that are based on



general-purpose programming languages (e.g., APPL/A). Process programming
languages should provide built-in concepts and constructs that map naturally
into the software process domain. (Languages that do this with varying degrees of
success include MVP-L [28], ProcessWeaver [16], LOTOS [29], and Oikos [25].)

2.4 Composability

Programming of software processes in general is difficult. Thus it is important
to be able to readily compose larger processes out of smaller components and to
support reuse-based process programming. Also, the ability to program processes
by composing elements having different language paradigms or representing dif-
ferent semantic aspects would introduce additional flexibility and incrementality
into process program development. Composition is also recognized as important
in the subject-oriented view of object-oriented programming [17].

2.5 Clarity through Visualization

Many first-generation process languages are textual. A few process languages
support graphical representations of process control (e.g., Slang [3], Melmac [13],
Process Weaver [16], and Hakoniwa [20]). Visual process representations greatly
aid understanding and communication of some processes. Simple ideas are often
most simply represented visually, and this can aid greatly in process design and
verification. On the other hand, more complex and dynamic process structures
may be easier to express in textual languages, since visual representations can
become cluttered and unwieldy and often tolerate ambiguity in order to cultivate
simplicity of expression. Thus, strictly visual representations are likely to be un-
suitable for complex processes in general (especially if they are complex enough
to support process execution [15]). In light of these tradeoffs, our goals for a
second-generation process language give top priority to the expressive power af-
forded by textual languages, while supporting the use of visual representations
where they are workable.

2.6 Multiple Paradigms

In our opinion, one of the most useful features of APPL/A is its incorpora-
tion of triggers into a largely imperative language (Ada). We relied heavily on
this combination of proactive and reactive control in our process programming.
Some combination of these two types of control is also found in many other pro-
cess languages (e.g., Adele [5],AP5 [9], EPOS [11], HFSP [24, 34], Marvel [22],
Merlin [21], and ProcessWeaver [16]). ALF [8] is another process project that is
explicitly multi-paradigmatic in combining proactive and reactive control along
with preconditions and postconditions, and Pleiades demonstrates that multiple
paradigms are also important in software object management [35]. And multiple
paradigms have also been found useful in requirements specification [12]. In most
process languages, however, one control paradigm typically predominates while



the other is secondary. Thus, many languages primarily support one style of pro-
gramming (such as rule-based programming in Merlin or Marvel, or functional
programming in HFSP, among others). Our experience and observations suggest
that emphasizing one paradigm becomes problematic when another paradigm
is more natural for a particular process. Thus, one of our goals is to support
multiple paradigms without favoring any of them.

3 Design of JIL

In this section we discuss the design of JIL, emphasizing process steps, the control
paradigm, and exception handling. Examples are based on a process for software
design following the principles of Booch Object-Oriented Design [6].

3.1 Process Steps

The central construct in JIL is the step. A JIL step is intended to represent a step
in a software process. A JIL program is a composition of steps, each of which
may contain a set of subunits (representing different aspects of the step) and
supplementing units (such as separate procedures and packages). The elements
of a step specification represent kinds of semantics that are important to process
definition, analysis, understanding, and execution. Briefly, the elements include:

— Objects and declarations: The parameters and local declarations for software
artifacts used in the step

— Resource requirements: Specifications of resources needed by the step, in-
cluding people, software, and hardware

— Substep set: The substeps of a step (which are themselves steps)

— Step constraints: Restrictions or prescriptions on the relative execution order
of substeps

— Proactive control specification: An imperative specification of the order in
which substeps are to be executed (direct invocation)

— Reactive control specification: A reactive specification of the conditions or
events in response to which substeps are to be executed (indirect invocation)

— Preconditions, constraints, postconditions: Define artifact consistency condi-
tions that must be satisfied (respectively) prior to, during, and subsequent
to the execution of the step

— Ezception handlers: Handlers for local exceptions, including handlers for con-
sistency violations (e.g., precondition violations)

An example of a JIL step specification is shown in Figure 1. This specifi-
cation represents the first step in a (simplified) Booch Object-Oriented Design
process [6]. The step specification has a template-like syntax (i.e., it is composed
of various fields). The substeps are listed within the specification. The proactive
control specification (Section 3.2), reactive control specification (Section 3.2),
and exception handlers (Section 3.3) are all contained in separate, named sub-
units. The preconditions and postconditions are defined in separate units (see



STEP Identify_Classes_And_Object IS
OBJECTS: Reqts_Spec:
Requirements_Specification.Specification_Type;

DECLARATIONS: Class_Candidate_List, Object_Candidate_List:
Booch_Product_Definition.Name_List;

—-- Substeps

STEPS: Browse_Requirements,
Extract_Class_Candidates,
Identify_Classes,
Extract_0Object_Candidates,
Identify_Objects,
Edit_Class_0Object_Dictionary;

-- Proactive control specification [Separate subunit--see Figure 2]
ACTIVITY: Identify_Classes_And_0Objects_Activity;

-- Reactive control specification [Separate subunit--see Figure 3]
REACTIONS: Identify_Classes_And_0Objects_Reactions;

PRECONDITIONS: —-- [Separate packagel
FROM Requirements_Consistency_Conditions USE
Passed_Review(Reqts_Spec) ;

POSTCONDITIONS: -- [Separate packagel
FROM Booch_Product USE
Unique_Name_Per_Class (Booch_Product.Class_Diagram) ;
Every_Object_Has_A_Class(Booch_Product.Object_Diagram,
Booch_Product.Class_Diagram) ;

-- Exception handlers [Separate subunit--see Figure 5]
HANDLERS: Handle_Class_And_Object_Errors;
END Identify_Classes_And_0Objects;

Fig. 1. Example of a JIL step specification.

Section 3.2). Some parts of the step specification are unspecified. An example of
a possible step constraint is shown later (Section 3.2). Some general comments
on the language follow before specific features are discussed in more detail.

As the division of elements in a step specification may suggest, JIL is a fac-
tored language. That is, it provides independent representations for independent
semantics, insofar as possible. This has several consequences. First, the various
aspects of a step can be specified relatively independently of one another. For
example, the substeps for a step can be given without indicating any proactive



or reactive control flow, and control flow can be specified without regard to
resources or preconditions and postconditions. (The elements of a step are not
entirely independent, however. For example, consistency conditions will typically
reference objects used by the step, and control specifications must refer to the
substeps of the step.) Second, the relative independence of elements in the step
specification allows steps to be defined using just a subset of the elements (in
other words, many elements are optional). This promotes flexibility in process
specification, since just those elements that are relevant to a particular purpose
need be used. However, this imposes additional requirements on process inter-
pretation, since various kinds and combinations of elements may be present in a
step. Implications for interpretation are discussed in Section 4.

3.2 Control Paradigm

JIL affords a unique variety of control paradigms that enable alternative ap-
proaches to specifying process control flow. The JIL control paradigm is charac-
terized by three primary features:

— The combination of proactive and reactive control, the value of which was
demonstrated by first-generation process languages.

— The integration of preconditions and postconditions, which have also been
widely used.

— The ability to specify loosely organized processes without requiring detailed
programming.

Particularly important, though, is the flexibility that JIL affords in the use of
these control paradigms. Any or all may be used within a single program (each
step interpreted independently according to the elements it contains). Addition-
ally, elements may be combined in a single step (which is interpreted according
to the particular combination of elements). These different aspects, and the re-
sulting interpretation paradigm, are discussed below.

Proactive Control The proactive control specification of a JIL step provides
a context in which the execution of substeps can be imperatively programmed.
The step specification designates a separate subunit to represent the proactive
control specification for the step. This has two parts, a specification and body.
The specification lists the entry calls and signals that can be received by the
executing instance of the proactive part of the step. (These support interpro-
cess communication.) The body provides the imperative code that controls the
execution of substeps. The syntax of the imperative code is based on Ada, in-
cluding loop and conditional commands, entry-call accept statements, and a new
parallel command with mandatory and optional branches. (Space limitations
preclude presentation of an extensive example here, but see [33]).

An explicit “invoke” command is used to distinguish substep invocation from
ordinary procedure invocation. A substep can be invoked as a “subprocess” or
“process.” In the former case, the substep executes as a child process of the



calling step; in the latter case, the substep executes as an independent process
(i.e., as a separately invoked program). Subprocesses, in turn, can be invoked
synchronously, like a procedure call, or asynchronously, as a parallel thread of
control (like an Ada task).

Reactive Control The step specification also designates a separate subunit
for the specification of reactions to events. The JIL event model recognizes and
defines four types of events related to product state, process state, resource state,
and exceptions (Table 1). Most first-generation process languages focus on events
of one kind (e.g., product state events in APPL/A, AP5, and Marvel; process
events in Adele). The definition of an event kind corresponding to exceptions is
an important feature of JIL in that it allows for a generalization of the exception
handling model (described in Section 3.3). The reactions triggered in response
to these events can include commands of the same sorts as used in the proactive
control specification; in particular, substeps can be invoked reactively.

|| Event Category || Examples ||

Product state events ||Artifact updates
Artifact state transitions

Process state events ||Control events (e.g., step invocation)

Signals (explicitly generated)

Resource state events||Resource access

Resource access conflicts

Exceptions Runtime exceptions

Consistency violations (e.g., of preconditions)

Table 1. Categories of events in JIL.

An example reactive control specification is shown in Figure 2. This figure
shows two types of reactions. The first is to a process event, the termination
of the substep Identify Objects. The reaction is to restart the step if the class
diagram is still being modified (since those modifications may outdate the object
diagram). The second is to an update of the requirements, upon which the work
of this step depends. The reaction is to terminate the current step.

Preconditions and Postconditions A step may have preconditions and post-
conditions. These are defined in separate packages that may be shared by multi-
ple steps. The conditions are intended to help control the execution of the step
according to varying aspects of product, process, and resource state.? (Con-

2 Process and resource states are also accessed implicitly in the step specification
through the step constraints and resource requirements, respectively.



REACTIONS Identify_Classes_And_Objects_Reactions IS
-- Reactions for Booch Process Step Identify_Classes_And_0Objects
BEGIN
REACT TO COMPLETION OF Identify_Objects BY
IF NOT Complete(Identify_Classes) THEN
INVOKE SUBPROCESS Identify_Objects;
END IF;
END REACT;

REACT TO UPDATE OF Reqts_Spec BY
TERMINATE Identify_Classes_And_0Objects;
END REACT;
END Identify_Classes_And_0bjects_Reactions;

Fig. 2. Example of a JIL reactive control specification.

straints can also be specified for a step. Constraints are syntactically like pre-
conditions and postconditions, but they are enforced during the execution of the
step. Constraints thus support intra-step consistency, while preconditions and
postconditions support inter-step consistency.)

As the default, a step should not execute unless its preconditions are satisfied,
and it should not terminate normally unless its postconditions are satisfied.
However, we believe that this model is too restrictive for software processes in
general; thus JIL includes several generalizations and extensions of it.

One generalization is that steps may be granted wvariances that allow them
to be initiated before their preconditions are verified or to terminate before their
postconditions are verified. Variances may be granted in cases where the condi-
tions cannot be evaluated (e.g., due to contention for objects or other resources)
or where there is good reason for overriding the programmed condition [30]. The
granting of variances is supported through a runtime service.

A second generalization is that alternative responses may be made when
violations occur. For example, when a step violates a postcondition the step may
be aborted and its inconsistent results discarded. Alternatively, the step may be
terminated abnormally but its results retained; this would interrupt the normal
flow of the process but avoid the loss of work. In other cases, it may be more
desirable to allow the step to terminate normally while leaving the product in an
inconsistent state. This would allow the process to continue normally but with
the product in need of some repair (this is somewhat analogous to the approach
to handling inconsistency described in [2]). The coding of such approaches is
done in the exception handlers (Section 3.3).

At present, we are using Pleiades [35] as our product definition language and
Pleiades constraints as our primary form of preconditions and postconditions.
Pleiades generates an Ada package specification and the constraints represent
arbitrary Ada functions. Other invokable functions (e.g., independently defined



functions in Ada) may also be used as preconditions or postconditions.

Loose Process Organization The proactive and reactive control specifica-
tions allow the flow of control within a step to be programmed in great detail.
The preconditions and postconditions allow for further fine-grained conditional
control. However, it is not always necessary in JIL to specify process control flow
in great detail; it is often only necessary to indicate the composition of steps from
substeps. This is important because it allows the execution agent (e.g., a human
developer) to determine the order in which to attempt to execute the substeps
(although preconditions and postconditions may restrict what the user can ac-
tually do). If appropriate, simple control relations among the substeps of a step
can be specified using the step constraint functions. These are comparable to
the control specifications of ALF [8], which represent path expressions [7].

An example of a step constraint specification is shown in Figure 3. This
constraint allows the extraction of class and object candidates to proceed in
parallel, followed by the identification of classes and objects in parallel. (Ad-
ditional step constraint functions include Unordered (arbitrary sequence), Any
(nondeterministic), and Alternate (choice).) If step constraints are given along
with an activity specification, then the step constraints are used to constrain the
programmed behavior of the activity (violation of a step constraint by the ac-
tivity leading to an exception). If step constraints are given without an activity
specification, they are used instead to drive the execution of substeps according
to the indicated control pattern.

STEP CONSTRAINTS Restrict_Identify_Classes_And_Objects IS BEGIN
Ordered(Parallel (Extract_Class_Candidates,
Extract_0bject_Candidates),
Parallel (Identify_Classes,
Identify_Objects));
END STEP CONSTRAINTS Restrict_Identify_Classes_And_0Objects;

Fig. 3. Example of step-ordering constraints.

3.3 Exception Handling

Two main models of exception handling have been used in first-generation pro-
cess programming languages (and in programming languages generally). These
may be characterized as block-oriented and rule-based. The block-oriented model
is represented by Ada and C++ and was used in APPL/A [31]. In this approach,
an exception handling block is attached to the scope in which the exception may
occur. This approach is especially appropriate for process-specific exception han-
dling, where different occurrences of the exception should be handled in context



sensitive ways. It is cumbersome, though, when the exception must be handled
in a uniform way, regardless of where it arises. The alternative model is rule-
based exception handling, in which exceptions trigger exception-handling rules.
The consistency rules of AP5 [9] and Marvel [22] are examples. This approach
is ideally suited to the case in which an exception can be handled uniformly re-
gardless of where it originates, but it is much more cumbersome when exceptions
must be handled according to the context in which they arise.

Exception handling in JIL combines these complementary approaches to ex-
ception handling. Global exception handling is provided through the reactive
control mechanism, in which exceptions are treated like “normal” events outside
the process in which they occur. This allows one process to react in a normal way
to an exception in another process. Local exception handling can be provided for
a step through exception handlers. An example is shown in Figure 4, in which
each handle statement represents an exception-handling block.

The exceptions shown in Figure 4 correspond to violations of preconditions
and postconditions. The handling takes a variety of forms showing some of the
possibilities for terminating or continuing the step. The ABORT command ter-
minates the step abnormally, either with or without raising an exception. The
TERMINATE command terminates the step normally. The REDO command termi-
nates the current execution of the step and begins another. The AWAIT REPAIR
command suspends the execution of the step pending the repair of the failed con-
dition. The repair must be effected by some other step, which may be invoked,
for example, as a reaction to the condition violation. Two compound forms of
the handle statement are the HANDLE UNLESS (not shown) and HANDLE UNTIL.
These allow for the specification of primary and secondary handling actions; the
primary action is taken, respectively, unless some given condition is met or until
some given deadline is reached, in which case the secondary action is performed.

As with the variety of control models, the combination of local and global ex-
ception handling contributes to semantic richness and availability of alternative
paradigms. It also allows flexibility that can contribute to ease of use.

3.4 Other Features

As noted, we are using the Pleiades [35] language to define our products and
product consistency conditions. Pleiades provides several high-level type con-
structors that are especially appropriate for software products, including graphs,
relations and relationships, and sequences.

A resource model and resource specification language are under development.
The model includes both project-oriented and system-oriented representations
of resources, including categories of human, software, and hardware resources.
We believe that this model will be more general than those typically used in
software systems and software processes to date.

Process state has been recognized as an important consideration in process
control, management, and evaluation [18, 3, 10]. We plan to have the JIL runtime
system maintain key components of the process state automatically. Addition-



HANDLER Handle_Class_And_0Object_Errors IS
BEGIN
HANDLE FAILURE OF Requirements_Specification_Not_Empty
AS PRECONDITION BY
ABORT RAISE Requirements_Error;
END HANDLE;

HANDLE FAILURE OF No_Duplicate_Class_Names
AS POSTCONDITION BY

REDO STEP;
END HANDLE;

HANDLE FAILURE OF Every_Object_Has_A_Class
AS POSTCONDITION BY
AWAIT REPAIR;
UNTIL Deadline(Identify_Classes_And_Objects) THEN
ABORT;
END HANDLE;
END Handle_Class_And_Object_Errors;

Fig. 4. Example of JIL exception handlers.

ally, the JIL event model defines events related to changes in process state; these
can be used to trigger reflexive reactions.

The investigation of transaction modeling, including consistency manage-
ment, was a major theme of APPL/A. In JIL, for simplicity and naturalness,
steps provide a framework for defining units of concurrency control, atomicity,
and consistency. However, for flexibility, as in the APPL/A model, these proper-
ties can be relaxed for a given step. Thus, for example, a step may be serializable
without being atomic. Additionally, artifacts can be accessed in shared modes to
allow collaborative work. Collaboration is further supported through an agenda
management system, which allows group agendas and shared agenda items.

4 The Interpretation of JIL Programs

The interpretation of JIL programs is itself a process, for which the Julia envi-
ronment provides an execution engine. Since JIL interpretation is a process, the
JIL interpreter is itself a process program. This program provides an operational
specification of JIL semantics. To bootstrap our execution capabilities, we are
programming a preliminary “level 0” JIL interpreter in Ada. Using that, we plan
to program more sophisticated and flexible interpreters in JIL. This will provide
us with a basis for experimentation with alternative interpretation strategies and
also with alternative language semantics.

A full treatment of Julia is beyond the scope of this paper (but see [32]). To
illustrate the Julia philosophy and approach, we elaborate here on one key issue



in the interpretation of JIL, namely multi-modal interpretation.

JIL offers great flexibility in specifying process control flow, particularly for
substep invocation. Such flexibility imposes a corresponding requirement for flex-
ibility on the JIL interpreter. Depending on the elements present in a step spec-
ification, the step is interpreted in one of several modes. The choice of mode is
determined primarily by three elements in the step specification:

— Commands: These include both proactive commands (activity specifications)
and reactive commands (reactions). Substeps can be invoked by both.

— Ezecution constraints: These constrain the execution of substeps invoked by
other means (e.g., commands), but they can also be interpreted directly to
drive substep invocation.

— Substep preconditions and postconditions: These guard the execution of in-
dividual substeps invoked by other means, but they can also provide a basis
for inferring when substeps may be automatically invoked.

The presence or absence of these elements in various combinations dictate various
modes of interpretation. Table 2 summarizes the combinations that determine
particular modes; the modes are described briefly below.

Programmed A step that has any command elements (activity specification or re-
actions) is interpreted in the programmed mode. In this mode it is assumed that
substeps of the step are invoked by commands in the proactive or reactive parts
of the step. (The programmed mode thus supports any combination of proac-
tive and reactive styles of programming, without any preference for either.) If
substeps have preconditions or postconditions, these guard the substeps invoked
via commands. If execution constraints are also present, then the programmed
substep invocations must conform to the constraints at runtime or an exception
is raised. In both cases, programmed control flow is locally constrained.

Guided A step with execution constraints but no commands or substep condi-
tions is interpreted in the guided mode. In this mode, the execution constraints
are interpreted as a specification of an order for automatic invocation of substeps.

Step Features
Commands Step Substep || Interpretation Mode
Constraints | Conditions
Present (Secondary) |(Secondary)||Programmed
Absent Present Absent Guided
Absent Absent Present Inferred
Absent Present Secondary |/ Guided/Guarded
Absent Secondary |Present Inferred/Constrained
Absent Absent Absent Unconstrained

Table 2. Summary of applicability of JIL interpretation modes.



Inferred A step with substep pre- and postconditions but no commands or ex-
ecution constraints is interpreted by inference. In this mode, the conditions are
used to infer an order for the automatic invocation of substeps.

Guided/Guarded and Inferred/Constrained A step may lack commands but have
both execution constraints and substep conditions. For such cases, there are two
possible modes of interpretation. In the guided/guarded mode, the execution
constraints are given priority and used to determine which substeps to invoke;
the substep conditions are used to guard the invocations as in the programmed
mode. In the inferred/constrained mode, the substep conditions are given priority
and used to infer which substeps to invoke; inferences are subject to runtime
checking of the execution constraints, as in the programmed mode. The choice
between the guided/guarded and inferred/constrained modes cannot be based
just on the presence or absence of elements in a step specification. A default mode
may be stipulated, but the alternative can be allowed via interpreter directives.

Unconstrained The simplest mode of interpretation is the unconstrained, in
which a step has substeps but lacks commands, execution constraints, or substep
conditions. In this case the steps are invoked automatically in some nondeter-
ministic order, possibly in parallel.

JIL programs can be composed of steps with heterogeneous interpretation
modes. The availability of multiple interpretation modes addresses the needs
for semantic richness and alternative paradigms. The ability to specify process
control flow in greater or lesser detail facilitates flexibility and ease of use.

5 Discussion

Fundamental Requirements JIL is a formally defined, executable programming
language with semantics are based on Ada, APPL/A, and Pleiades. This directly
supports the fundamental goals described in the introduction to Section 2. The
language will support a variety of kinds of analyses related to control and data
flow, concurrency control, exception propagation, resource usage, etc.

Semantic Richness JIL addresses an unusually wide variety of semantic domains,
including process control, product artifacts, and project resources. Maintenance
of process state will also be supported through the language runtime system.
The JIL semantic model builds on important lessons learned from first genera-
tion process languages (e.g., in integrating product and process representations,
and in combining proactive and reactive control). However, JIL goes beyond first
generation languages in several important respects such as the availability of al-
ternative control paradigms, the degree of flexibility in consistency management,
and the generality of the exception handling mechanism.

Ease of Use JIL facilitates ease of use in several ways. The allowance for loosely
specified process control means that process programs can be constructed and



organized simply, without requiring detailed programming. The factoring of step
representations into relatively independent elements allows these to be treated
more or less individually. Thus specialists in particular domains (e.g., product
definition or resource modeling) can work in their areas of expertise without
needing a detailed understanding of the whole language. The availability of al-
ternative control models means that programmers can program in styles with
which they are most comfortable or that are most appropriate to their process
application. Support for visualization of processes and process programs should
also facilitate process understanding and definition by technical specialists and
non-specialists alike. We are committed to supplying templates, visual icons, and
other high-level representations to facilitate the “coding” of JIL programs.

Appropriate Abstractions JIL is at a level of abstraction that is directed to the
programming of important aspects of software processes. The central construct
in the language is the step abstraction. Specialized step attributes address es-
sential semantics of the process, product, and resource models. Additionally, the
variety of control paradigms allows process control flow to be expressed in terms
that are appropriate to a specific process or project. Although the language con-
structs are intended to be especially appropriate for software processes, they are
still general purpose. The control model offers high-level control constructs, but
imposes no particular control model. The Pleiades type model offers high-level
type constructors, but imposes no required product model. This preserves the
flexibility to program process-specific semantics in particular process programs.

Composability Composability of JIL programs is provided by the ability to cre-
ate a process step from existing substeps. It is further supported by the flexible
interpretation model, which allows composed substeps to be interpreted in a way
appropriate to their individual programming. It is also supported by the ability
to attach resource specifications to steps, which enables analysis of their com-
bined resource requirements and allows planning for their integrated execution.

Clarity through Visualization The JIL language is textual, but we hope to pro-
vide several sorts of visual windows into JIL programs and processes. We fore-
see the development of several kinds of adjunct visual programming languages,
for example, for composing process steps, organizing control flow of substeps
within a step, specifying step execution constraints, associating software objects
to steps, associating resources to steps, and so on. Additionally we expect to
support visualizations of process execution state (such as those provided by the
ProcessWall [19]), resource usage, and other runtime concerns.

Multiple Paradigms JIL is especially rich in alternative control paradigms. It ac-
commodates both simple and completely programmed representations of process
control. It combines proactive and reactive mechanisms, and incorporates condi-
tional control. Step execution constraints can be used to guide process execution
directly or to constrain execution that is programmed using other mechanisms.
JIL also takes advantage of Pleiades support for multiple paradigms for software



object management, for example, the alternative views of data structures, and
the provision of navigational and associative access to data.

6 Status

We have been experimenting with preliminary versions of the JIL, writing pro-
cess programs and refining the syntax and semantics. The JIL definition has
progressed to a stable initial version with which we are continuing development
of process programs, language support technology, and environment infrastruc-
ture. We have defined the BNF for the JIL grammar and generated a parser
that translates JIL source code into an IRIS [1] internal representation. We are
developing an interpreter and a JIL-to-Ada command translator. We are also de-
veloping visual language (implemented in Java) for a subset of JIL. Our primary
process programming efforts are directed at a design process based on Booch
Object Oriented Design [6] and a dataflow-analysis process based on iterative,
incremental improvement of analytic accuracy [14].
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