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This technical report presents techniques for environmental feature detection
end identification using sonar sensors. By detecting common features in indoor
environments and using them as landmarks, a robot can navigate reliably, recovering
its pose when necessary. Results using a multiple hypothesis testing procedure for
feature localization and identification show that accurate feature information can be
acquired with adequate sonar models and configurations. In addition, a method that
associates sonar configuration with the precision of feature extraction is discussed,
as well as its utility for guiding an active sonar sensor.

Future goals are to make the pose recovery procedure dependent upon navi-
gation constraints, and to study the use of the navigational knowledge acquired to
optimize the path generated by an incremental motion planner.
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CHAPTER 1
INTRODUCTION

Sound-based navigation has been shown to be effective, not only in man-
made systems, but primarily in nature. Bats master echolocation [22], suggesting
that sonars can extract high level information from the environment. This work
focuses on the extraction of specific information from the environment to reduce
pose uncertainty in robot navigation tasks. Our objective is to identify feature sets
which actively resolve localization errors.

This chapter gives an introduction to sonar sensors, sonar-based modeling,
and sonar configuration, followed by the description of the sensor system selected.
Chapter 2 together with Appendices A and B present the feature localization models,
the method used to estimate feature errors, and the multiple hypothesis testing meth-
ods employed in feature localization and identification. A number of experiments
are discussed in Chapter 3, and Chapter 4 presents conclusions and future work.
Finally, Appendix C describes the 2D sonar simulator developed to test different
sonar configurations, and Appendix D presents our mobile robot and active sonar
system.

1.1 Sonar Sensor

Sensors are usually described by their characteristics, such as range, accuracy,
precision, and response time. These characteristics are measured under specific
conditions in controlled environments that are, for some sensors, too restrictive and
normally violated in practice. The quality of the information extracted by a sensor
depends primarily on the accuracy of the model used to translate raw sensor readings
into measurements (perceptions). Accurate models are difficult to derive because the
physics of the transducers is usually complex and context dependent. A new and
alternative approach is to employ a model that accounts for a sufficient part of the
data, ignoring the contexts it cannot model. The selection of which data to ignore
can be achieved by exploring the correlation between multiple readings from the same
sensor, or from multiple sensors and sensor modalities. Examples of such methods
are presented in the following chapters.

In this work, sonar represents airborne ultrasonic range sensing based uniquely
in time-of-flight (TOF). The main advantages of using sonars as range sensors in a
mobile robot are their low price, range of actuation, simple interface, and typically
highly accurate readings over the entire range. However, sonars have a slow response
time (limited by the velocity of sound in air); multiple sonars firing at the same time
may generate cross-talk; their large beam angle makes the use of simple ray-trace
models impossible; and typically only some of the readings (in some cases less then
50%) are consistent with the model used. These limitations make the use of sonar a
challenge to sensor modeling, data fusion, and sensor management, creating a fertile
testbed for testing new methods that address these issues.



1.2 Sonar-Based Modeling

Two sonar-based modeling approaches have been described in the literature:
grid-based probabilistic models that avoid direct modeling of the environment [7,
4, 9], and feature-based models that exploit the interaction between sonar beam
and frequently encountered environmental features [6, 13, 14, 12]. Complementing
these methods, sensor fusion approaches and data pre-filtering algorithms are widely
used, not only to reduce uncertainty, but also to identify contexts consistent with
the model employed.

1.2.1 Chronology

One of the first sonar response models presented was a feature-based model
[6], where surface information was first extracted from the raw sonar data, creating
a logical sensor, and then applied to map building. Limitations of this approach led
to the use of grid-based probabilistic model approaches, such as occupancy grid and
vector field. The argument used in favor of a probabilistic approach to sonar modeling
is that raw sonar data is subject to several, difficult to model, environmentally
dependent effects such as specular reflections and sensor cross-talk, and therefore
geometrical reasoning purely on the basis of raw data is not appropriate.

Subsequent feature-based models disagreed on how the ultrasonic signal in-
teracts with the objects in the environment in general. Previous models assume
a specular reflection when the difference between wavefront incident angle and the
normal to a smooth surface is too large, causing no return signal. In this case,
objects are assumed to be detected mainly by the effect of diffusion [6, 7, 4]. Re-
cent feature-based approaches argue that indoor environments consist mainly of
specular surfaces or “mirror-like” reflectors. This assumption is based on the the
significantly different acoustic impedances of air and solids, and the wavelength of
ultrasonic frequencies compared to object surface roughness [14, 15, 12]. Specular
world assumptions have proven to be more general and at the same time enabled
a more detailed and fruitful geometric analysis of the interaction between sonar
beam and general office environment features. This fact gave a new spin to the use
of feature-based sonar models, showing that even very simple sonar devices could
produce better quality information with the use of an adequate model and sensor
configuration [14, 20, 15, 11].

1.2.2 Grid-based Probabilistic Models

Grid-based methods discretize the environment and update the occupancy
hypothesis at correspondent grid cells with each sonar reading based on sonar model
and the data fusion technique employed. Examples of this approach include: occu-
pancy grid [7, 8, 19], inference grids [9], and vector field histogram [4].

The vector field technique models the sonar as a ray-trace sensor, and employ
a histogram to accumulate occupancy statistics. It has been tested in specific ob-
stacle avoidance tasks with relative success, but robustness with respect to different
environments and tasks is low, partially due to the limitations of the sonar model
used.
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Occupancy grid techniques associate a probability of occupancy to each of the
cells in the sector swept out by the sonar beam. This information is fused into a map
by using Bayesian updates [7, 8] or Dempster-Shafer influence rules [19]. Inference
grid technique is a generalization of the occupancy grid approach that estimate other
properties in addition to occupancy, such as reachability, color, reflectance, etc. Both
approaches have been tested on robot perception and navigation tasks with relative
success, highlighting the superiority of such representations in multi-modal sensor
fusion tasks [16].

1.2.3 Feature-based Models

The feature-based models transform raw sonar data, sometimes only time-of-
flight (TOF), into information about the environmental geometry. The success of
these methods is highly dependent on how the interaction between sonar beam and
the environmental features were modeled, and how common these features are in the
environment. Examples of feature-based approaches are the composite local model
applied to a navigation task [6], the corner-edge-wall-transducer model (CEWT) used
on feature detection and identification tasks [13], regions of constant depth (RCDs)
used on map building and pose localization tasks [14], and the tri-aural approach
applied to the localization and identification of corners, edges, and planes in the
environment [20].

In the composite local model approach [6], line segments are extracted from
data acquired from a rotating sonar device. This work assumes diffuse reflections
in which sonar returns are considered to be the minimum beam distance to the
reflecting surface.

Most feature-based methods argue that office environments are in general
composed by specular surfaces to the sonar acoustic signal ( “mirror-like surfaces”)
[5]. By modeling the environment as mainly specular, several known techniques em-
ploying detailed models of the interaction between the sonar beam and the common
feature in the environment can be exploited.

The CEWT model presents closed-form solutions for the reflections from
corner, edges, and wall features by considering only specular surfaces and by em-
ploying two collaborating sonars. These solutions have been tested in simulation
and validated by comparing them with actual sonar maps of simple real world
environments, obtained with off-the-shelf ultrasonic transducers.

The method described above inspired the subsequent feature-based models.
In the RCD model, multiple adjacent returns with similar range were grouped
forming RCDs, reducing the uncertainty produced by the sonar large beam angle
since adjacent returns from a target restricts the target’s bearing. The RCDs were
subsequently matched to target models of common environmental features: corner,
edge, plane, and cylinder, to address the problem of pose localization given a map,
and map building given the robot’s pose.

The tri-aural approach uses an array of three ultrasonic transducers aligned
and evenly spaced with the middle transducer acting both as transmitter and receiver
and the others acting only as receivers. The use of a transmitter and multiple
receivers configuration facilitates feature localization and identification by increasing
the quality of information obtained per sonar firing and over different poses.



1.3 Sonar Configurations

Methods used to extract information from sonar are highly dependent on sonar
configuration. Sonar configuration encompasses not only the spatial configuration of
transducers over the robot, but also how their functionality is distributed — e.g. the
geometric relationship between transmitter, world, and receiver is important, and
the kind of signal processing utilized is also important (analysis in: time, amplitude,
frequency, and phase). Robots are usually equipped with fixed transducers evenly
distributed around their periphery on a plane parallel to the floor; on round robots,
rings with 8 to 24 transducers are common. This configuration facilitates obstacle
avoidance, since multiple sonars can be fired at the same time, quickly observing the
robot’s surroundings. Since the overlap between sonar beams is minimal in sonar ring
configurations (sparsely sampled data), tasks such as tracking and robot localization
are jeopardized. These tasks need densely sampled data obtained, for example, with
a rotating transducer, or array of of transducers [14, 15].

Only recently have different sonar configurations been explored to better
fulfill task requirements, with the introduction of sonar arrays and virtual sonar
sensors [2, 15, 11, 12]. A sonar array is a group of transducers that collaborate on a
measurement, organized in a certain configuration. A virtual sensor is an abstraction
where a set of observations, over space and time, is transformed into a measurement.

1.4 Our Sonar System

In this work, sonar-based modeling aims at the extraction of specific informa-
tion from the environment with the objective of reducing the uncertainty associated
with odometry errors, and subsequently with navigation. A feature-based model on
a sonar array configuration was selected for this task. The idea is to detect a set of
common features in the environment, and to use these features as landmarks (or soft
beacons), allowing the robot to navigate without loosing its pose, and thus, to keep
collecting consistent spatial information for navigation purpose. The generality and
applicability of this method depends not only on the accuracy of the sonar model, but
also on how frequently, how constant, and how easily detectable the features selected
are. In this respect, the environmental features selected are those produced by walls
— plane (line), convex edge (edge), concave edge (corner). These environmental
features have the characteristics required above, and closed-form solutions exist for
properly configured sonar arrays [20, 15, 11].

Feature detection is based on geometrical relations between two sonars; one of
which transmits and receives (T'), and the other only receives the return signal (R).
It is assumed that the world geometry is approximately plane-, edge-, or corner-like
and that it produces a reproducible pattern of responses on these feature detectors.
Figures 1.1, 1.2, and 1.3 depict the geometric analysis involved on the translation
from sonar ranging (r, from the transducer T and r, from the transducer R) to
feature coordinates: edges and corners are recovered as (z,y) (Cartesian coordinate
system), and lines are expressed using (r,0) (Polar coordinate system).

The sonar model procedure, as shown on Figure 1.4, receives as input a reading
pair (r; &+ Ary,mo &+ Ary) and outputs, when appropriate, the position evidence (z +
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Sonar-based Modeling Procedure:

1. Discard the reading if the reflections (ry,m2) have no evidence of coming
from the same feature;

2. Translate the sonar measurement (r1,r2) into 3 feature position evidence in
feature space, (z,y) for edge and corner features, and (r,0) for line feature;

3. Compute the error associated to each feature position evidence by translat-
ing the uncertainty from measurement space (Ari,Ars) to feature space -

(Az,Ay) and (Ar,A8).

Figure 1.4. Sonar model, from raw sonar data to feature evidence.

Az,y+ Ay) and (r £ Ar,0 £ A) for the three features. Details about this procedure
are presented on Chapter 2 and Appendix A.

Several spatial configurations were considered and are shown on Figure 1.5:
(1) a sonar ring with 24 transducers that can execute 3 simultaneous transmissions
from equidistant transducers, and all transducers can listen for return signals. (2)
a two sonar array with one transducer transmitting and both receiving (Figure
1.5, middle and right frames). The impact of active sonar configuration in feature
detection and identification tasks are analyzed in Chapter 2.

24 sonar ring rotat}nﬁ sonar array active sonar
al

gned)

Figure 1.5. Sonar spatial configurations.



CHAPTER 2

FEATURE DETECTION AND IDENTIFICATION

The goal of extracting features from the environment is to use them as land-
marks, or beacons, in navigation tasks. Therefore, features should be selected
that are easy to detect and are abundant enough in the environment to permit
their utilization as navigational feedback. This work uses lines, corners, and edges
extracted from common indoor room features such as vertical planes (walls), corners
and convex corners (edges), respectively. These features are not only common in
an indoor environment, but they also allow closed-form estimates from time-of-flight
(TOF) sonar information.

To extract features using sonar, models of the interaction between the ultra-
sound signal and the environment are required. The physics of these interactions
are extremely complex and dependent on the environment, making the derivation of
a precise model impossible. The alternative is to create simpler models by relying
on some assumptions and introduce restrictions on the applicability of the model.
In particular, we assume that the environment is specular to ultrasound. This
assumption is imperative to the feature model derivation, and it was shown elsewhere
to be not restrictive in practice [13].

2.1 Feature Localization Models

All the feature models described here use only range information from a pair
of sonars. The range is easily obtained from TOF, since the velocity of sound in
air is approximately constant in indoor environments (=~ 343m/s). One of the sonar
pair operates as a transmitter and receiver (T'), returning the range r;, and the other
operates only as a receiver (R), producing r,. The range pair (r), 2) is then used
to compute a position estimate of each possible feature.

2.1.1 Line Feature

The line feature hypothesis uses the pair of ranges (r, r2) and the position
and orientation estimate of the transducer T (zr,yr,fr) to create a line position
estimate (r, §). This transformation is based on two assumptions: the line belongs
to a specular surface, thus the angle of incidence is equal to the angle of reflection;

and both signals received by the transducers T and R come from the same planar
surface.
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Figure 2.1. Line reflection

Figure 2.1 depicts the reflections generated by the ultrasonic signal on a planar
reflector where 7" and R’ are virtual images of T and R, respectively. Under these
circumstances, (r;, 72) must satisfy the following relations:

rs = y/(r1 — dsin(a))? + (d cos(e))?
= \/7'12 - 2r1dsin(a) + d?

d2 + T12 - 7‘22
2d7'1

o = arcsin ( (2.1)

d cos(c)
B = arctan (7‘1 — (a)) (2.2)
where d is the distance between transducers, « is the angle between the line that
connects the transducers and the line feature, § is the angle between sonar bearings
corresponding to r; and 7.

Given the angle a from Equation 2.1, the position and orientation of the
transducer T (zr,yr,¢1), and the angle () between the transducer T orientation
and the normal to the line that connects the transducers, it is possible to compute
the line parameters (r, 6), referring again to Figure 2.1:

r = z;cos(8) + yisin(0) (2.3)

0=dr+¢ (24)
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Figure 2.2. Corner reflection
where: r
T, =TT+ -21 cos(¢r + &) (2.5)
™ .
w=yr+ 31 sin(¢r + £) (2.6)
E=7+a (2.7)

2.1.2 Corner Feature

The corner feature uses the range pair and the current position and orientation
estimate of the transducer T to create the corner position estimate (z., y.). A corner
is composed of two intersecting, orthogonal planar surfaces. It is assumed that all
the reflections come from the same corner feature.

The reflections of the ultrasonic signal on two planar reflectors forming a right
angle corner are shown on Figure 2.2. The relations between sonars ranges are:

Ty = \/(rl — dsin(a))? + (d cos(a))?
= 'I'12 —_ 2r1dsin(a) + d2

_ . d2 + 7'12 - T22

a = arcsin (—Mﬁ—) (2.8)
_ d cos(a)

B = — arctan (—_—7‘1 —dsin (a)) (2.9)
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where d is the distance between transducers, « is the angle between the line that
connects the transducers and the corner feature, § is the angle between sonar
bearings corresponding to r; and 72, and 7’ and R’ are virtual images of T and
R, respectively. As shown, the corner feature ranges share the same relation as the
line feature, except by an inverse sign on the angle 5.

The corner parameters are calculated based on the angle a from Equation
2.8, the position and orientation of the transducer T (z7,yr,47), and the angle ()
between the transducer T orientation and the normal to the line connecting the
transducers. Notice that they are identical to the line feature parameters.

T =TT + %—cos(tbq- +§) (2.10)
Ye = yr + %sin(qﬁT +€) (2.11)
E=y+a (2.12)

Also notice that the orientation of the corner cannot be extracted since r; and
72 depend only on the corner position (z., ¥.) and the transducers’ relative position,
as shown by the shaded triangle on Figure 2.2.

2.1.3 Edge Feature

The edge feature model also uses the pair of sonar ranges and the current
position and orientation estimate of the transducer T' to create the edge position
estimate (., ¥.). The assumptions required for modeling an edge feature are distinct
from the previous assumptions. For edge feature modeling, the point of reflection is
assumed to be relatively independent of the sonars position, and the edge must be a
high curvature convex corner !. The physical phenomenon that causes the reflections
on a sharp edge is modeled as pure diffusion, and not specular reflection as on the
other features.

Figure 2.3 shows typical reflections on a high curvature edge surface, where
the following relations are extracted:

Ty = % + \/(7”2_1)2 + d? — ridsin(c)

. (2.13)
where d is the distance between transducers, « is the angle between the line that
connects the transducers and the edge feature, and 7' and R’ are virtual images of T
and R, respectively. Notice that 3, the angle between sonar bearings corresponding
to r; and 75, is zero.

The following derivation of the edge parameters, similarly to the previous
features, uses the angle o from Equation 2.13, the position and orientation of the

. d2 + T™Teo — T22
O = arcsin

1High curvature in this situation are curvatures with radius 1 smaller than the wavelength of
the ultrasonic signal transmitted, ¥ < Tmm.
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Figure 2.3. Edge reflection

transducer T (zr,yr,9T), and the angle (y) between the transducer T orientation
and the normal to the line that connects the transducers.

™1

Te =21 + 3 cos(¢r + §) (2.14)
Ye =yr+ % sin(¢r + €) (2.15)
E=7+a (2.16)

2.1.4 Feature Localization Error

To complete the derivation of the feature localization models, it is necessary to
estimate the uncertainty associated with each feature parameter; such uncertainty is
a function of the uncertainty in the sonar measurements r, and r,, given by Ar, and
Ar, respectively, the non-linear transformations from measurement space to feature
space, and the transducers spatial configuration together with beam angles.

Two different approaches were tested; an analytic approach and a geometric
approach. Given the error in sonar measurements, the analytic approach is based on
the computation of the maximum possible error generated by the transformations
from measurement to feature space. The geometric approach uses the configuration
of the transducers, their beam angles, and the uncertainty on their readings to
calculate the region in space that might contain the feature correct position. The
uncertainty in the feature localization can then be calculated indirectly from the
resulting estimate. A brief description of both methods used to estimate the feature
localization error follows; a more detailed description can be found in Appendix A.

Both approaches are conservative in their error estimate. The analytic method
is very conservative since it uses the maximum absolute error of the non-linear feature
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Feature Error Calculation (Analytic Method):

Compute the mazimum error of a feature parameter u : u € {r,0,Z¢, Ye, Tc, Ye, &} by:

1. Calculating the extrema of the feature parameter function f, within the range
r £ A'I‘l, and o X AT-z.

2. Returning the mazimum absolute error of the feature parameter (Au), if there was
no constraint violation on the measurement range tested; otherwise, ignore this
measurement.

Feature Error Calculation (Geometric Method):

1. Calculate the region where the sonar reflections could occur, given the sonar
measurements range (r1+Ar, ro:Ars), the sonar configuration, the beam angles,
and the type of feature under analysis.

2. Return the error in the feature localization (Ar,A0,Az.,Ay., Az, or Ay.) given
the above region, if such region exist; otherwise, ignore the measurement.

localization formulas. The geometric method is as accurate as the sonar beam angle
selected. The main advantage of the geometric over the analytic approach is the
direct association between sensor configuration and precision of the measurement.
In principle, this permits the process of computing the feature localization error to be
inverted, leading to techniques for selecting the sonar configuration for more precise
measurements.

2.2 Extracting Features from Sonar Information

As features are extracted from the environment, a filtering process is used
to overcome measurement noise. For normally distributed error processes, filtering
normally produces better feature hypotheses by fusing measurements over multiple
observations [17, 1, 10].

Figure 2.4 depicts the process of extracting feature localization hypotheses
from sonar ranging. The ranging information is filtered (Measurement Filter) creat-
ing consistent sonar measurement pairs — consistency in this case means that both
reflections come from the same feature. Then each pair can be transformed into
feature evidence using the feature models. Over time, feature localization evidence
from independent observations are fused in a recursive filter. The first method
(method #1 in Figure 2.4) uses Extended Kalman Filters based on the feature models
to convert from measurement space to feature-hypotheses automatically. The second
method (method #2) initially transforms a measurement into supporting evidence
for all three features (line, edge, and corner) using the feature models and then uses
Linear Kalman Filters to incorporate the feature evidence into the feature hypothesis
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Figure 2.4. Feature localization procedure.

pool. The derivation of the extended and Linear Kalman Filters used by the line,
edge, and corner features are the subject of Appendix B.

2.2.1 Measurement Space

A measurement in this space is composed of two sensor readings (r; and
T2) from the same sonar firing event, where the sonars are in a T/R functional
configuration. Moreover, these readings come from reflections on the same feature in
the environment. To avoid readings from multiple features, a filter based on a relation
derived from the feature models is employed. Equations 2.1, 2.8, and 2.13 express
the relation between the sonar reflections (r; and 73), and the distance between the
transducers (d) that cannot be violated by any of the features. The formulas below
show the constraints imposed on r; and r,.

d2+7‘12—7‘22
— <1 .
2dr, = (217)
d2+’l'17‘2—’l‘22
< .
i <1 (2.18)

These equations evaluate to the same relation since 71, 75, and d are positive numbers
and r; > d:

lra —m| < d (2.19)

Therefore, all readings that violate this relation are disregarded as measurements,
eliminating, to some extent, readings that are not consistent with the feature models.
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Figure 2.5. Feature-hypothesis update metric — one dimensional Gaussians were used
here for illustration purposes.

2.2.2 Feature Space and Feature-hypothesis Space

In feature space the information is expressed as multiple evidence, composed
by line feature evidence (r + Ar, § + Af), edge evidence (z. + Az, ye £ Aye),
and corner evidence (z. + Az, y. + Ay.). Multiple hypotheses are generated by
transforming each sonar measurement pair (r;, 72) using the respective feature
models.

Each feature hypothesis represents a feature in the environment, and is ob-
tained by fusing evidence over time and from different robot poses. Each hypothesis
is interpreted by three Kalman Filters, one for each sonar feature type, creating a
feature-hypothesis triple.

2.2.3 Feature-hypothesis Update

In the process of updating the feature-hypothesis triple, the fusion process
must determine whether a new observation belongs to an existing feature-hypothesis
in the pool. The metric used computes the probability that samples drawn from both
distributions simultaneously lie in the overlapping volumes, expressing the similarity
between the hypothesis and the measurement. This probability is obtained by
calculating the product of the overlapping volumes of two 2D-Gaussian distributions
(N((z, ), ((5%)?, (5¥)?)) for edges and corners, or N((r,6), ((4%)?, (42)%)) for lines)
generated by the Kalman Filter estimate and the feature measurement evidence, as
shown in Figure 2.5. The metric assumes values between 0 and 1, and is equal to
1 when the distributions are identical, and zero when there is no overlap between
them?. A more detailed description on how to select the hypothesis to fuse the new
feature evidence follows.

2Both Gaussian distributions were truncated on the +30 points. And, in the case of one
distribution being contained in the other, a factor (thr = 0.3) is added to the metric, biasing
the system to avoid the creation of multiple similar hypotheses for the same feature.
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Selecting in which hypothesis to fuse the new observation:

1. Compute the similarity metric for each feature-hypothesis in the pool of
hypotheses, and for each feature type;

2. Search for the hypothesis that has the higher metric value;

3. Return the hypothesis’ id if its metric value ezceeded a threshold (thr = 0.3);
otherwise create a new hypothesis.

2.3 Feature Identification

The degree of belief in a feature hypothesis is determined by the diagonal
terms of the covariance matrix of the corresponding filter (0> < 0.001). When
the belief in a feature hypothesis is sufficiently high, the next step is to identify
the feature-type which best accounts for the data. This process is called feature
identification, and is the last step in feature extraction. The approach used calculates
a confidence measurement for each feature in a hypothesis, and selects the feature
with a higher relative confidence value. This confidence discrimination measure is
calculated as follows:

Feature confidence measurement:

1. On the last n measurements (n < 20) fused into the hypothesis, use their
corresponding sonar configurations to:

(a) Compute which sonar measurements the current filter feature estimate
generates;

(b) Compare the above measurements with the original measurements fused,
by using the same metric used to select in which hypothesis to fuse a new
evidence;

2. Compute each feature confidence by taking the average of all the metric values
over the n measurements;

3. Select the feature with the best confidence value, higher (0.2) than the second
best on this hypothesis.

The success of this approach depends on the quality of the information fused.
The feature identification process is computational expensive; it requires information
from multiple sonar configurations and sometimes even different robot poses to
correctly distinguish the three possible features. Therefore, any passive sensing
procedure is in principle inappropriate for this task and the acquisition of infor-
mation should be active based on previous knowledge of how and where the relevant
information can be acquired. This knowledge can be obtained in part by analyzing
the task requirements and can be augmented by reasoning on the basis of past
experiences.



CHAPTER 3

EXPERIMENTS

3.1 Experiments in Feature Localization and Identification

All the experiments reported here were obtained using a 2D simulator of sonar
reflections on a specular environment composed of lines, edges, and corners features.
The simulator uses the feature models, a simple model of the ultrasonic sensor that
considers range and beam angle, and a Gaussian noise process to corrupt the sonar
returns (Appendix C).

This simulator was developed for testing the feature localization approaches
based on linear and Extended Kalman Filters and also to characterize the importance
of sonar configuration in feature extraction.

The experiments are divided in three parts. The first part presents results of
feature extraction at different locations of the same environment using the Extended
Kalman Filter and the Linear Kalman Filter approach, followed by a comparison of
both methods. The second experiment explores the detection of features by fusing
information from multiple robot poses and possible active sensing strategies. And the
last experiment addresses the impact of sonar configuration on feature extraction.
All the experiments were done using the analytical method in the feature error
calculation.

3.2 Part 1: Experiments on Feature Extraction and Filtering Approaches

In this experimental part, we selected 3 robot poses in the same environment,
composed of 12 features (lines, corners, and an edge), approximately 6 by 3 m. All
simulator snapshots were taken after 3 full scans (=~ 300 firings — 4 firings every 15
degrees, interleaving TR and RT configurations) of a rotating 2-sonar array. In the
figures, the robot is represented by the “I” shaped bar, and the sonars, localized
in the ends of the bar (d = 0.6m), are aligned in the direction of the robot. The
absolute localization error of the features identified at the end of each full scan is
reported on the corresponding tables (a dash on the table represents a feature not
identified at that moment). No feature was misclassified on the following examples.

3.2.1 Extended Kalman Filter Approach

An Extended Kalman Filter (EKF) is employed when the system cannot be
adequately described by a linear model. In our case we used a first-order EKF
to directly estimate the position of a 2D feature (line, edge, or corner) in a static
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Figure 3.1. Simulator snapshots of a rotating 2-sonar array using the EKF method.

environment, using the discrete-time measurements obtained from the two sonar
sensors (1, 2), as described in Chapter 2 and Appendix B.

Figure 3.1 presents snapshots from 3 robot poses after 3 full scans as previously
described. The left column presents all the hypothesis gathered during the scans and
the right column shows the features identified. As shown, the system was able to
classify correctly several nearby features (< 2 m from the robot). The absolute
localization error of the features extracted on each sonar scan is reported on Table
3.1, where the localization error is on average one order of magnitude better than the
uncertainty of the raw data (1% of the readings). These tables directly correspond
to the previous snapshots.
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| Scan # EE 3 4
Total # of features identified 3 3 3 3
Total # of hypothesis created 9 9 9 9

Right-lower | = || < 0.001 | 0.001 | 0.002 | 0.003
Absolute edge Y 0.006 0.004 | 0.004 | 0.008
feature Bottom T 0.036 0.002 | 0.011 | 0.002
error wall 0 0.011 | < 0.001 | 0.004 | 0.001
7T,y inm Top T 0.008 0.010 | 0.010 | 0.007
0 in rad wall 0 0.003 0.003 | 0.004 | 0.003
Scan # I 1 | 2 3 4
Total # of features identified 3 3 3 3
Total # of hypothesis created 8 8 9 9
Bottom r 0.013 | 0.008 | 0.008 | 0.002
Absolute wall 0 0.007 | 0.003 { 0.003 [ 0.001
feature Left-side r 0.003 | 0.004 | 0.001 | 0.007
error wall 0 0.002 | 0.003 | 0.002 | 0.006
r,z,y in m Top T 0.004 | 0.003 | 0.003 | < 0.001
0 in rad wall [ 0.002 | 0.002 | 0.002 | < 0.001
Scan # 1 2 3 4
Total # of features identified 3 3 3 3
Total # of hypothesis created 10 10 10 10
Right-side | = | 0.006 | 0.005 | < 0.001 | < 0.001
Absolute wall @ | 0.005 | 0.004 | < 0.001 | 0.002
feature Bottom r | 0.013 | 0.027 | 0.033 0.032
error wall 6 | 0.003 | 0.006 | 0.008 0.008
r,z,y inm Top r || 0.005 | 0.009 | 0.006 0.009
0 in rad wall 6 | 0.001 | 0.002 [ 0.001 0.002

Table 3.1. Feature extraction results from 2-sonar array using the EKF method.
3.2.2 Linear Kalman Filter Approach

In this section, we present the same case examples as before, but with the
Linear Kalman Filter (KF) approach. As described in Chapter 2 and Appendix B, a
Linear Kalman Filter was employed after computing the feature position and error
associated with each pair of measurements (ry, r2), simplifying the data fusion by
executing directly in feature space (linear data fusion).

Figure 3.2 presents snapshots from the same 3 robot poses as before. The left
column presents all the hypothesis gathered during the scans and the right column
shows the features identified. Again, the system was able to classify correctly almost
all nearby features (< 2 m from the robot). Table 3.2 reports the absolute localization
error of the features extracted on each sonar scan, and the localization error is on
average in the order of millimeters.
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Figure 3.2. Simulator snapshots of a rotating 2-sonar array using the KF approach.

3.2.3 Comparison Between Filtering Approaches

Both filtering methods, the EKF and the KF, demonstrated to be effective
in localizing the features given the sonar readings. They were equally able to
localize line, edge, and corner features with an average absolute error in the order of
millimeters.

The only discrepancy was in the number of features identified, and in the
number of evidence required by the filtering process before an identification; more
features where identified using the KF approach, however, the EKF approach was
in some cases faster identifying the features.

The EKF method was better identifying line and edge features, but it iden-
tified less features by failing to identify the corner features. This happened because
the variance of the corner feature was higher than the threshold used in identification
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Scan # [ + | 2 | 3 | 4
Total # of features identified 0 2 4 4
Total # of hypothesis created 9 10 10 10
Right-lower | z - ] 0.002 | 0.002 | 0.003
edge y - | 0.006 | 0.006 | 0.010
Absolute | Right-lower | = - | 0.010 | 0.008 | 0.017
feature. corner Y - 10.019 | 0.017 | 0.027
error Bottom r - - 0.004 | 0.021
r,zZ,yinm wall [} - - 0.002 | 0.006
@ in rad Top r - - 0.023 | 0.013
wall [ - - 0.007 | 0.004
Scan # 1 2 3 4
Total # of features identified 2 4 5 5
Total # of hypothesis created 8 8 9 9
Left-side r | 0.001 | 0.002 | 0.002 0.007
wall 6 | 0.006 | 0.001 | < 0.001 | 0.010
Top r | 0.001 | 0.005 | 0.001 0.002
Absolute wall 6 | 0.001 | 0.002 | < 0.001 | < 0.001
feature Bottom T - 0.014 | 0.011 0.011
error wall [ - 0.006 | 0.004 0.005
r,z,y in m | Left-upper | z - 0.001 | 0.002 < 0.001
8 in rad corner Y - 0.005 | 0.004 0.006
8 in rad Left-lower | = - - 0.006 0.004
corner y - - 0.017 0.008
| Scan # | 1 2 3 4 |
Total # of features identified 1 2 3 3
Total # of hypothesis created 10 10 11 10
Right-side | = || 0.013 | 0.010 | 0.003 0.011
Absolute wall @ [ 0.011 | 0.009 | 0.001 0.008
feature Right-upper | z - 0.001 | 0.001 0.003
error corner Y - 0.006 | 0.005 0.005
T, T,y inm Top T — - 0.004 0.003
0 in rad wall 0 - - < 0.001 | < 0.001

Table 3.2. Feature extraction results from 2-sonar array using the KF approach.

(62 < 0.001). And, since the data fused were similar in both approaches, the higher
variance may be explained by the first-order EKF been unable to cope with the
nonlinearities of the system. Therefore, the implementation of a second-order EKF
may be necessary for the identification of corner features.

The main advantage of using an extended Kalman Filter is to have a direct
implementation, where the transformation from measurement space to feature space
is automatically done by the filter (direct approach). However, the filter derivation is
usually difficult, especially when a high-order filter is necessary, and in several cases it
is preferable to separate the space transformation from the filtering process (indirect
approach). After testing both methods, we conclude that, in our application, the
direct approach was easier to implement than the indirect approach; however the
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analyze of the feature error associated with each measurement pair and sensors’

configuration gave us new insights on possible active sensing strategies to maximize
the information extracted from the measurements.

3.3 Part 2: Feature Extraction over Multiple Poses
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Figure 3.3. Simulator snapshots of a rotating 2-sonar array over multiple poses,
using the KF approach.

The objective of this experiment was to show how an active sensing strategy
could improve and accelerate the feature extraction process. The experiment is
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divided in 3 parts, corresponding to the line, edge, and corner feature extraction
procedures. The data were collected over 5 aligned, equally spaced robot poses, and
the sensors’ orientation was kept constant during the experiment. Figure 3.3 presents
3 simulator snapshots of each experimental part at the extrema and middle robot
poses. The rightmost snapshots corresponds to the first sonar firing, the middle
snapshots to third firing event, and the leftmost to the fifth one.

In this experiment, the line feature was identified after 3 sonar firings (or
evidence fused) with absolute feature error in the order of millimeters (Ar = 0.003,
A6 = 0.002). Notice that this feature was not identified in the previous experiments
from a single robot pose (see Figure 3.2 and Table 3.2, first experiment). Similarly,
the edge feature was identified after 4 evidence being fused with absolute feature
error of (Az < 0.001, Ay = 0.001); and, as before, the system was unable to identify
this feature from a single pose (see Figure 3.2 and Table 3.2, last experiment). The
corner feature required 6 evidence, contrasting with 17 evidence needed from a fixed,
near ideal robot pose, with absolute feature error of (Az = 0.001, Ay = 0.003).

3.4 Part 3: Comparison Between Sonar Array Configurations
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Figure 3.4. Simulator snapshots of a rotating 2-sonar array (first three snapshots)
and a 24 sonar ring (last snapshot).

Following the experimental procedure of the first experiment (Section 3.2),
Figure 3.4 compares the performance of a rotating 2-sonar array and a 24 sonar ring.
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The first snapshot shows all the features localized, and the second (left on the figure)
presents the features identified (all 5 correctly identified). In the bottom row, the
left snapshot presents the raw data used on the previous examples (dots). The last
snapshot (right on the picture) presents all the hypotheses created by a ring after
the same amount of firings, but, in this case, no feature was identified.

Both sonar configurations have advantages and drawbacks. As demonstrated,
the 2-sonar array not only detected more features than the ring, but also correctly
identified all the nearby features. On the other hand, the ring was able to localize 4
out of 5 features faster than the 2-sonar array, and it is an effective configuration for
obstacle avoidance. In a navigation task a synergetic relation can be created where
a sonar ring can contribute by directing a rotating sonar array to places with high
probability of finding a landmark, navigating reliably and avoiding obstacles.



CHAPTER 4
CONCLUSIONS AND FUTURE WORK

This technical report presented a procedure based on multiple hypothesis
testing for localizing and identifying indoor features using sonar data, demonstrating
that accurate feature information can be acquired with the use of an adequate
sonar model and configuration. The results presented shows a direct association
between sensor configuration and localization precision, suggesting the possibility
of creating sonar controllers capable of extracting better information by actively
exploiting sensor configuration.

4.1 Active Sonar System

An active sonar sensor is being developed to further validate the results pre-
sented in here. Figure 4.1 shows our mobile robot and Figure 4.2 shows the functional
diagram of the two-sonar array (left), where both transducers are mounted on an
axis that can pan and tilt, and each transducer has an extra pan degree of freedom.
The pan and tilt of the axis affords the localization of features at any direction, and
at any height respectively. In addition, the extra verge degree of freedom (DOF)
on each transducer allows the system to adjust the sonar configuration to feature
distance and feature type, thereby producing better quality measurements. In the
right side of Figure 4.2, a TRC stereo head system that will serve as testbed for
the 2-sonar active array system is presented. More details about our mobile robot
(Isaac) and the active sonar system can be found in Appendix D.

Figure 4.1. Mobile robot and proposed active sonar.
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sonar 0

Figure 4.2. Active sonar system

This work supports robot navigation, by allowing the identification of land-
marks even in presence of measurement noise. By detecting common features in
indoor environments and using these features as landmarks, a robot can navigate
reliably, recovering its pose when necessary.



APPENDIX A

FEATURE ERROR CALCULATION

A.1 Analytic Method

The analytic approach is based on the computation of the maximum error
on feature space, given the measurement pair (ry,r;), their correspondent error
(Ary, Ars), and the non-linear transformations from measurement to feature space.
The algorithm below summarizes the procedure used to transform errors in measure-
ment space to feature space.

Feature Error Calculation (Analytic Method):

Compute the mazimum error of a feature parameter u : u € {r,0, Te,Ye, Tc, Yo, §} by:

1. Calculating the extrema (er,i,eryi) : @ € E, where E is the set of all possible
mazima and minima of the feature parameter function f, within the range m £
Ary, and ro + Ars.

2. Returning the mazimum absolute error of the feature parameter (Au), if there was
no constraint violation on the measurement range tested; otherwise, ignore this
measurement.

Au= I‘?Eag,c |fu("'lv"'2) - fU(erli'leTzi)l

The non-linear transformations from measurement space to each feature (pre-
viously described in Chapter 2), their partial derivatives with respect to the measure-
ment, and the tests used to identify violation of constraints on the range of possible
measurements (u = Au) are presented in the following sections. Notice that r; and
r9 represent variables now and not a measurement.

Mathematical software packages were employed on the calculation of the
extrema. Mathematica' was the software package used, except for the extrema
calculation relative to the line feature (g’Tl = 0) that was solved using Maple?, because
Mathematica was unable to solve it.

The solutions obtained present zeros that are not zeros of the initial function;
the extra roots are introduced by the presence of square roots in the derivatives.
Therefore, an online check of the solutions to determine the true extrema of the

1Mathematica 2.2 - ©Wolfram Research, Inc.

2Maple V release 2 - (©Waterloo Maple, Inc.
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initial function is necessary. Moreover, there are physical factors that restrict the
extrema, such as 7, and r, being positive measurements limited by the sonar range, d
being limited by the diameter of the mobile robot, the origin frame being conveniently
selected to reside out of the robots space, and £ being limited to the transmitter cone
angle.

A.1.1 Edge Feature

e The feature parameter functions are:

_ . d2 + 7172 — 7‘22
& = arcsin ( p +7,
Te =TT + %cos(q’)T +£), (A.1)
Ye = yr + g—lsin(d)rp +6) (A.2)

where (zr,yr,¢r) are the position and orientation of the transducer T, v is
the angle between the transducer T orientation and the normal to the line
that connects the transducers, and d is the distance between transducers.

e The corresponding partial derivatives are:

BE —d2+r2 3§ _ 7‘1—27‘2
O s \/1 e LTS \/1—‘———L"2+7;2’:1;’2“ ’

(dz—rzz) (d2+r1 rz—rzz) cos(¢r+7) __ 12 sin(¢r+y)

T 22 212 dry
2.3 _! +ryra—ro i
3.’173 @ n \/1 dry +
67’1 2
! +7) r2—T7! )
\/ oz cos(ér + )
2 3

r _(n-2 7‘2) d2+1‘1 7‘2—1'22) COS(¢T+’Y) __ (r1=2r3) sin(¢7T+7)

d2+1‘l rz—rz dT]
oz, aTe T

(dz—rzz) (d2+r1 1'2—1'22) sin(¢T+7) 12 cos(ér+7)

Ty 7
d24r rotro? 2 ™
3ye 3 d2r13\/1—£—;2711LL N
67'1 2
$d2 — 2 .
\/ +7;112? = Sln(¢T +7)

2 ’
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r _(ri-2rp) (d2+r1 rz—rzz) sin(¢r+7) + (r1—212) cos(¢r+7)

a2 2 4 [1= (8241 ra—ra? )2 dr
aye _ d4ry

67’2 2

Extrema calculation:
The extrema of a bounded 2D function could be on the boundaries or on
the interior. On the boundaries, the extrema could be at the four corners,
or at the edges of the region defined by (ry £ Ar; and rp £ Ary). All the
possible extrema points within the measurement range are used to compute
the maximum absolute error of the feature parameter.

— Finding extrema on the borders:

x  Solving a%gf =0

The function £ is strictly monotonic with respect to r;.

*

Solving for aﬁé— =0

Te = —

*

Solving g—flﬂ =0

N V2d2rs? (=d? + 2152 — d? cos(2 (¢r + 1)) sin(dr +7)°
T2 d? — 2792 + d2 cos(2 (o7 + 7))

™ =

*x  Solving g—f; =0
r —_— ﬁ
2 = ) ’
™ :l:\/4d2+’l‘12:|:4\/d27'125in(¢7'+’)’)2
Ty =

2

*

Solving %TL: =0

+ \/2 d2 792 (—d? + 2752 + d2 cos(2 (ér +7))) cos(dr + 7)2
2 d2 — 2792 — d2 cos(2 (¢r + 7))

m=r

: Oye _
* Solving 3 =0
oo
2 = 9 ’
rl:l:\/4d2+r12:l:4\/d27~12cos(¢7~+7)2
Te =

2



29

— Find interior extrema:
Y
*  Solving 8—51- =0 and 8252‘ =0;
*  Solving g—ff =0 and % = 0;
3 [-J— 2 e —
* Solving 3% =0 and 3% =0.

The functions &, z., and y. are strictly monotonic with respect to r; and
T9, thus presenting no solution.

e Measurements’ constraints:
Derived from the previous equations, the constraints imposed are:

d, rn#0 , |7‘2—1"1|<d, e >d

A.1.2 Corner Feature

e The feature parameter functions are:

2 _ .2
& = arcsin (%2—) + 7y (A.3)

The other parameters functions z. and y. are the same as in the case of an
edge feature (Equations A.1 and A.2).

e The corresponding partial derivatives are:
ﬁ_ —d2+7‘12+'f‘22 o€ T

or - Pir2org?)? or - 240 2_r2\2
24/1— =0 = 2 — (@ariort)
2dnr 1 ﬁWnTL dryy/1 4dZr,?

(d‘—n"—z 42 ,.22+,-24) cos(¢r+7) __ sin(¢T+7)

n
d
d24r2—rg2)2
dz. 4“2'13\/14#!,—1'2—L N
81’1 2
2+r12—rp2)2
T g
2 ?
r2 (@2+r12-r22) cos(dr+7) 4 T2 sin(ér)
1 24252 (d24r)2-rp2)? dry
0z, ENR Y Rt v
67'2 2 ’
, (ﬁ4—r14_2d2 r22+r24) sin(¢T+7) + cos(¢r+7)
1 d
dz+r12—r22 2
Oy 4d2”3\/1‘£TTrTFL N
87'1 2
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V1 - EAE= in(gr 4 )

4d2ry2
2 ?
7'1 T2 (dz+1‘12—1'22) sin(¢r+7) __ 12 cos(dr+7)
2 dry
2 _!d2+r12_r22!
ayc _ 2d21'1 \/l ryLrn
31"2 2

e Extrema calculation:

— Finding extrema on the borders:

*  Solving aﬁril =0
™= :!:Vd2 - T22

T2=0

. F)
*  Solving for a—fz- =0

: dxe __
* Solving 3= =0

Ty = :I:\/d2 + 7'22 +2 \/d2 ’l"22 sin(d)T + ’)’)2
* Solving g—f; =0
e = 0 ,
ry = :I:\/ d?+r2+2 \/ol2 ri2sin(¢r +7)°

1 ac i
* Solving 3% =0

r = :i:\/d2 +ry2+2 \/d2 ro2 cos(dr + )’
: Oye _
* Solving 3% =0

7‘2=0,

Ty = :I:\/d2 +7r2+2 \/d2'r12 cos(¢r + )’
— Find interior extrema:
*  Solving 8251' =0 and % =0;
*  Solving Z& = 0 and 2= = 0;
* Solving 3¥ =0 and gr-'% =0.

The functions €, z., and y, are strictly monotonic with respect to r; and
T9, thus presenting no solution.

e Measurements’ constraints:
Derived from the previous equations, the constraints imposed are:

d, 7‘1750 , |'r2—r1|<d
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A.1.3 Line Feature
e The feature parameter functions are:
0 = ¢r+¢,
r = zc08(0) + yisin(6)

The parameters functions z;, y;, and £ are the same as in the case of a corner
feature (Equations A.1, A.2, and A.3).

e The corresponding partial derivatives are:

The partial derivatives of z;, ¥, and £ are similar to the ones presented on the
corner feature (Section A.1.2), and the partial derivatives of 8 are also similar
to the ones for &, because the @ and £ functions only differ by a constant ¢r.

or 1 d2 — 7‘12 — 7'22 .
B—rl 3 + (W) (zp sin(¢r +7v) — yr COS(¢T + ’Y)) +

(@ — ri? —19%) (d® + 112 — 3?) (21 cos(dr + ) + yr sin(ér + 7))
Ad?r \/ ] — @driior?)

)

4d 1
ﬁ T2 (d% + 12 — 12%) (27 cos(¢r + 7) + yr sin(ér + 7)) "
87"2 9 d2 \/1 d2-‘z; r_l,.zz 2
T2 (zr sin(ér +7) — yr cos(ér + 7))
d’l‘l

e Extrema calculation:

— Finding extrema on the borders:
* Solving gT"l =0:
In this case, it is equivalent to solve the polynomial:
a1r18 +a2r16+a3r14+a4r12 +as=0 ’
where the coefficients are:
a1 = -2d(zr sin(¢r +7) — yr cos(dr + 7)) + d* + zp° + yr?,
a = —4d° (a:?p sin(¢r +7)% + v cos(¢r + 7)2) +
8 d*zr yr sin(¢r +7) cos(¢r +7) — 242 (d2 + r%) +
2d (3 d? + r%) (zT sin(¢r +v) — yr cos(ér +7)) ,
as = 2 (& —r3) (44* (hsin(gr +7)° + v} cos(gr +7)?) -

8 d*z7 yr sin(ér + ) cos(ér +v) — (d2 - 'r%) (:1:% +y2 — %) -
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d (3 d? + r%) (zr sin(¢r + ) — yr cos(ér + 'y))) ,

ag = (d— 1‘2)2 (d+7)2 (—4 d? (a:%- sin(ér + 7)% + v% cos(¢r + 7)2) +
8 d2xy yr sin(¢r + ) cos(¢r + ) +
2d (d? = r3) (a7 sin(gr +7) — yr cos(¢r +7)))

a5 = (d—ro)*(d+r2)* (2} +1})

The solution is:

— — 6, 4 3/4 2 3

rn = =+ ( 9 ay Jauz, Jauz, + auz, V3+ (27 a2’ Jauzx,/auzs—
72 a3 a, Yauz,/auz; — /auzs 54 Pauz,*3ay +
18 \/auz, almag a4 — 72 \/auzs a,2v54 a5 —
6 /auz, a; \3/5_41132 + 324 \/g\ /auz, ag oy a3 —

1/2

648 V/3/auz; a1%aq + 81 V3\/auz as’ )1/2 \/—) /
(6 Vay auz; V12 Yauz, ) ,

where the auxiliary variables are:

auz, = —9a3asas— 7205030, + 27 as2a; + 27 asax’ + 2032 +
33 (27 asa1? + 6 as2aq’as a1 + 192 ap a4 a5ar 2+
80 a2 a4 a5 a1 as> — 18 az ap as’a; — 18 az axaq as —
144 a5 a3 a12a4? — 144 a52a;3 a1 ax® + 4 a9%as® — 256 as’a,® +

2&32 —-16 as aq (1.34 +

27 as Cl.g — Qg a42a32 + 128 CLsZCLl
2. 3\1/2
4as%ay a3 + 4 a5 as a3) ,
auzs = 27a.2¥auz; — 72asa; JYauz; + 254 Pauz,?3a; —
36 a; v/54ap as + 144 a,2V/54as + 12 a; V/54a3?
*  Solving for a’ =0

ro = 0 ;
ry = :l:((d2 + 7‘12) (a:T2 + yTz) +2 (d2 7"12 (:BT2 + yTz)

(er sin(pr +7) ~vr costor +0)2) )"/ (Var? +ur?)

— Find interior extrema:
+ Solving X 3, = 0and —§- =0
* Solving g% a"‘ =0 and @ =0;
+ Solving 2 5 = 0 and gm 0;
*  Solving 5= 89 =0 and ‘90 =0
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contraint /

lb-nl<d

Figure A.1. Constraint on the Sonar Measurements

*  Solving 2 =0 and 2= =0.

The functions &, z;, y;, and @ are strictly monotonic with respect to
r1 and 7. The function 7 is also strictly monotonic with respect to r;
and 7, as determined by a geometrical analysis presented on Section
A.2.3.

— Measurements’ constraints:

Derived from the previous equations, the constraints imposed are:

33T1yT?1:0, d,Tl-_,éO, ITZ_T1|<d

A.1.4 Characteristics of the Analytic Approach

The three main characteristics of this method are: its simplicity (the ex-
trema for the error functions have closed-form solutions); the use of the
maximum absolute error, making it a conservative method; and the ease of
detecting measurements that violate model constraints. To illustrate the last
characteristic, Figure A.1 depicts the limitation imposed by the constraint
|ra — 71| < d. As shown, the distance between transducers (d) and the error
in the measurements (Ary, Ary) are related limiting factors. The larger the
distance between transducers, the more variance in the measurements can be

supported, thus, causing measurements from more distant features not to be
discarded.
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A.2 Geometric Method

This method computes the feature space error by means of geometric analysis.
It uses the configuration of the transducers, their beam angles, the sonar readings,
the uncertainty on the sonar readings, and the model of the feature under analysis
(line, edge, or corner) to estimate the region in space that might contain the feature
correct position. The uncertainty in the feature localization can then be calculated
indirectly from the resulting estimation.

The algorithm below summarizes the procedure used to transform errors in
measurement space to feature space.

Feature Error Calculation (Geometric Method):

Compute the mazimum error of a feature parameter u : u € {r,0, T¢,Ye, Tc, Ye} by:

1. Calculating the region where the sonar reflections could occur, using the sonar
measurements range (r1 + Ary, ro £ Ary), the transducers configuration, their
beam angles, and the type of feature under analysis.

2. Returning the mazimum absolute error in the feature parameter (Au) given the
above region, if such region exist; otherwise, ignore this measurement.

The region where the sonar reflection could occur, given a measurement pair
(r1 &= Ary,7mo £ Ary), changes depending on the type of feature under analysis.
The geometrical analysis used on the calculation of this region is described on the
following sections.

A.2.1 Edge Feature

In the case of an edge feature, as shown in Figure A.2, both r; and r; reflections
occur exactly on the edge. In this situation, the error region is limited by the
intersection of the transmitter cone with the receiver cone, and by the error region
imposed by the measurements (r,7;). Considering the measurement r;, the error
region is delimited by two circular arcs generated by

1
?4+yt=r?, r= §(T1:!:A7‘1) :
In the case of the measurement 73, the error region is bounded by two elliptical arcs
given by:
2 2

T 1 1

—+y—=1 R a,=—(T2:|:A7”2) ’ bz-\/("'2iAr2)2_d21

a b 2 2
where d is the distance between transducers.

The error in feature space (Aze, Ay,) is obtained by computing the maximum
absolute error in z and y directions, respectively. For an edge feature, the possible
extrema are on the intersection between circles, ellipses, and sonar cone boundaries,
or on the external circle or ellipse, as shown on the left diagram of Figure A.2.
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A.2.2 Corner Feature
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As shown in Figure A.3, only the r, reflection occurs on the corner. Therefore,

the z and y position of the corner is contained in the transmitter cone, on the region
limited by the uncertainty in the measurement r; (Ar;). Moreover, because the
corner feature is a right-angle corner, the 7, reflection has parallel segments, and the

above region can be further limited by the receiver’s cone boundaries.

Similarly to the edge feature, the corner error (Az., Ay.) is the maximum
absolute error in the z and y directions, respectively. In this case, the possible

extrema are on the intersection between the circles, the transmitter boundaries, and
the reflection boundary, or on the external circle, as depicted on Figure A.3.
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Ar = max ¢’ -r,r -r)
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receiver
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transmitter
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Figure A.4. Line error

A.2.3 Line Feature

On the line feature, the r; reflection occurs on the transmitter cone and the
ro reflection occurs on the intersection of the transmitter and receiver cones. Both
reflections are limited by the error region imposed by the measurements (ry,73), as
described before is Section A.2.1. The error region is delimited by the transmitter
and receiver limit lines, as presented in Figure A.4, corresponding to possible r; and
ro reflections, respectively.

As before, the line error (Ar, Af) is calculated based on the maximum absolute
error in r and 6, respectively. Given that a possible line has to be tangent to
the circles produced by the r, reflection, and also tangent to the ellipses produced
by the r; reflection, both errors (Ar, Af) can be obtained from the limit lines, as
demonstrated by the diagram on the left of Figure A.4 where the possible extreme
lines are line 1, line 2, line 1’, and line 2. Notice that depending on the position
of the referential, a combination of lines different than the pair (line 1,line 2) will
generate the maximum A7, but limit lines have always r; or r2 at an extreme value.

A.2.4 Error Minimization

In measurement space, the error associated with the measurements r, and
is directly proportional to the measurements’ value,

Ary=pri , Arp=pr, , p<0.01

Therefore, to obtain a more precise measurement, the sensors should be closer to the
object being measured.

As shown in the previous sections, in feature space, not only the sensor
distance to a feature but also the configuration of the sensors, and the feature type
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play an important role on feature error minimization and on feature characterization.
Some techniques used in radar systems that exploits the configuration of the antennas
to improve measurement quality can also be applied here to the sonar system.

In the case of an edge or line feature, a more precise measurement is obtained
when the overlap between the receiver and transmitter cones is minimized by rotating
the transducers, or by increasing their distance (d). This is also true for the corner
feature case, except that the receiver and transmitter cones do not necessarily need
to overlap, because the error region is produced by the reflection boundary, and not
by the receiver cone boundary. All these facts can be used on the design of active
sonar sensor controllers.

A.3 Comparison

Both approaches are conservative in their error estimate, since they use the
maximum absolute error. The analytic method uses the maximum absolute error
derived from the extrema values of the non-linear feature localization formulas, and
its application is limited to the constraints imposed to the measurements. The geo-
metric method, in the other hand, uses the sonar configuration and the sonar beam
angle estimate to calculate the maximum absolute error, thus being as conservative
and accurate as the sonar beam angle selected. The main advantage of the geometric
over the analytic approach is the direct association between sensor configuration and
precision of the measurement, allowing for the possibility of inverting the problem
and selecting the sonar configuration to obtain a more precise measurement.



APPENDIX B

STATE ESTIMATION - KALMAN FILTER

A Kalman filter is defined by Maybeck in [17] as an optimal recursive data
processing algorithm. It produces an optimal estimate of the state variables of the
system by recursively combining all available measurement data. Its applicability is
constrained to situations where the dynamics of the system and measurement devices,
together with the statistical description of the noises and uncertainties associated
with them, and the initial state of the system are known.

The Kalman filter’'s main importance as a data processing algorithm relies
on its optimality and recursive characteristic. A Kalman filter is optimal not only
because it uses all the information available, even the least precise measurements, but
because it produces the unique best estimate of the state variables when the system
dynamics can be described by a linear model, and the system and measurement
noises are white and Gaussian. The recursive characteristic of the filter has practical
importance, because it does not require all previous data to be saved and reprocessed
at each new measurement.

In practice, the Kalman filter can be used even when some of the constraints
presented above are violated. Extra filtering can be used to change a system with
time or frequency correlated noise into a linear system with white noise. Gaussian
noise is a physically plausible and practical assumption. And, in case of lack of
statistical information about the noise process, there is no better option than to
assume Gaussian noise [17]. The Kalman filter can be also compensated to overcome
inadequacies on the system and measurement devices models, and extended to
address systems that are better described by nonlinear models [18, 1].

The nomenclature used in this paper to describe both the Kalman filter (linear
system) and the Extended Kalman filter (nonlinear system) follows the one used by
Bar-Shalom in [1]. Figure B.1 presents the nomenclature used on a Kalman filter
state estimation cycle, where the system, the control, and the discrete-time Kalman
filter estimation algorithm (shaded area) are depicted. For a formal mathematical
description of Kalman filters see [17, 1, 10, 18], and, in special, as an introductory
reading refer to Maybeck [17].

In this paper, the Kalman filter was used to estimate the position of a 2D
feature (line, edge, or corner) in a static environment, using the discrete-time mea-
surements obtained from two sonar sensors, directly (nonlinear case), or indirectly
(linear case), as described in Chapter 2. In the following filter implementations, the
system has no dynamics and no controller, because the features are static and their
positions are computed in global coordinates, reducing the Kalman filter algorithm
to a recursive form of a least-square estimator [1].
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Figure B.1. Kalman filter - state estimation cycle

B.1 Extended Kalman Filter

The Extended Kalman filter (EKF) is used when the system cannot be ade-
quately described by a linear model. The idea behind the method is to better follow
the system’s reference state trajectory, allowing for the use of linear perturbation
techniques; therefore, the EKF linearizes about each new state estimate to produce

a new and better state trajectory for the estimation process [18, 1].

The following are the general equations of the first-order Extended Kalman
filter algorithm, and the simplified EKF version implemented:

e System:

x(k +1) = f[k, x(k)] + g[k, u(k)] + v(k)

Taking into account that the process under study is static (f[-] = x(k) ), does
not have a controller (g[]), and consequently does not present process noise
(v(k)), the equation above becomes:

x(k +1) = x(k)

e Measurement:

Ck+1)=hk+1,x(k+1)]+w(k+1)

The nonlinear function h transforms state space variables of a feature (line,
edge, or corner) to measurement space variables (sonar readings, (r;, 72)).
The measurement noise w represents an additive, zero-mean, and white noise.
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e State estimation and covariance computation:

— State prediction:
X (k + 1|k) = £k, X (k|k)] + [k, u(k)]

Similarly to the system’s state equation above, (f[] = x(k|k)), and
(g[] = 0), resulting in:
x(k +1|k) = x(k|k)

— State prediction covariance:
T
X=X (k|k)

where fy (k) is the Jacobian of the vector f, and Q(k) is the system noise
covariance matrix. As before, this equation can be simplified to:

P(k + 1[k) = P(k[k)

P (k-+1[k) = £ (k) P(klk) 5 (k)+Q(K) , fx (k) 2 [Vx £ (k, x)]

— Measurement prediction:
E(k +1)k) = hlk + 1, x(k + 1|k)]

— Innovation: A
vik+1)=¢(k+1)—¢(k+1lk)

— Innovation covariance:

S(k+1) =hy(k+1)P(k+1k) b3 (k+1) +R(k+1) ,
T
X=X (k+1]k)

where hy(k+1) is the Jacobian of the vector h, and R(k) is the covariance
matrix of the noise associated with the measurements.

hy (k+1) = [VxhT(k +1,%)]

Filter gain:
W(k+1) =P(k+1k) b3 (k+1)S7'(k + 1)

Updated state estimate:
xX(k+1k+1)=x(k+1|k)+ W(kE+1)v(k+1)

Updated state covariance:
Pk+1lk+1) =Pk +1]k) -~ W(k+1)S(k+1)WT(k+1)

Each feature type uses a different set of nonlinear equations and state vari-
ables. In the following sections, the derivation of each feature EKF function is
reported.
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Figure B.2. Line feature

B.1.1 Line Feature Localization Filter

In the case that the feature is a line, the process state variables and measure-

ment variables are:
=[] aw=[76)

where (71,72) are the sonar TOF measurements, and (r,8) are the line position in
global Cartesian coordinate with origin at O, as shown in Figure B.2. Furthermore,
the nonlinear functions h and its Jacobian hy are:

Ohry (k+11X)  Bhry (k+11X)
or a0

_ | bk, x(k)) _
Bk x(R) = lhrz(k7X(k))l, e Al PR Ohey (£+11X)

ar 98 X=X (k+1|k)

The following nonlinear equations were derived using the line feature local-
ization model in Section 2.1.1, and simple trigonometric relations depicted in Figure
B.3. The reference to time (k) was omitted in the following equations for the sake
of clarity.

h,-l = 2a = ﬁi = 2(T—UT),
hy, = b+ec = RT = \J4(r—ug) (r—ur)+d

where ur, vr, ug, and vg correspond to the sonars T and R localization, respectively,
in u X v coordinate.

ur = drcos(f—6r) , vp = —drsin(6 — 07)
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Figure B.3. Line feature derivation

ugp = dgrcos(d —6gr) , v = —dgrsin(f—06g)
Ohr,  _ 5 Ohr, _ (2r —up — ur)
or or \/4 (r —ugr) (r — ur) + d?
Oh,, _ 24 Oh,, _ (—rvp — T v + Vg UT + Ur UR)
99 o0 \/4 (r —ug) (r —ur) + d?

B.1.2 Edge Feature Localization Filter

For the edge feature, the process state variables and measurement variables
are:

ze(k) r1(k)
k) = , k) =
xy=[ @] cw=| 1
where (7,72 ) are the sonar TOF measurements, and ( z., y. ) is the edge Cartesian

position in global coordinate with origin at O, as shown in Figure B.4. Furthermore,
the nonlinear functions h and its Jacobian hy are:

Bhey (k+1]X)  Ohpy (K+11X)
Oze 3y¢

_ | Ak x(k)) -
h(k, x(k)) = [hm(k,x(k))] by (k+1) = Ohrp(k+1X) By (k+11X)

Dz, dye X=X (k+1]k)

The following nonlinear equations were derived using the edge feature local-
ization model in Section 2.1.3, and simple trigonometric relations depicted in Figure
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Figure B.4. Edge feature

B.4. The reference to time (k) was again omitted in the following equations for the
sake of clarity.

hr, = 2a = 2\/($e—$T)2+(ye_yT)2
hyy = a+c = \/(:ce—a:R)2+(ye—yR)2+\/(we—xT)2+(ye—yT)2

Oh,, 2 (ze — z7)

Oze \/ (ze — 27)° + (¥e — yr)°

Oh,, T.— TR + Te — IT

Oze V@e —2r) + We—9r)*  V(ze — o1)° + (ve — y1)°
% — 2 (ye — yr)

Oe  \f(ze—2r)* + (v — yr)’

Ohr, _ Ye — YR + Ye — YT

0ye V@e = 2r) + (¥ —98)  V(%e — 70)° + (v — yr)°

B.1.3 Corner Feature Localization Filter

In the case that the feature is a corner, the process state variables and
measurement variables are:

w=[30] - ww=[1]
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Figure B.5. Corner feature

where (71,72 ) are the sonar TOF measurements, and (., y. ) is the corner Cartesian
position in global coordinate with origin at O, as shown in Figure B.5. Moreover,
the nonlinear functions h and its Jacobian hy are:

Bhey (E+1[X)  Ohr (k+1]X)
8zc 8yc

_ | Ak x(K)) _
h(k, x(k)) = [ hm(k,x(lc))] » By (k+1) = Bhyy (k+1]X)  Bhry(k+1[X)

8z, Byc X=X (k+1k)

The following nonlinear equations were derived using the corner feature local-
ization model in Section 2.1.2, and simple trigonometric relations depicted in Figure
B.6. In particular, h,, was derived using the sum of the equations of the two triangles
shown, where 73 = 2f = RR’. The reference to time (k) was again omitted.

hn = 2a = W =
h,, = b+c+e = TR

= /2 (e = 2R) + (e~ vr)?) +2 (5 — 22)" + (e — 1)) —

2 \/(zc - xT)2 + (yc - yT)2 )

Ohyy 2 (z —2z7)

2 Vi@ —2r)’ + (y - yr)?

oh,, _ 2 (z—zg)+2 (x —z7)

O 2 (w-onl+ w-w)) +2 (@ -2’ + v -u0)’) - &
Ohr, 2 (y—yr)

O  \Jlz—zr)+(y—ur)
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Figure B.6. Corner feature derivation

Oh, _ 2(y—yr)+2 (y—yr)
We 2 (-2’ + w-vr)) +2 (- 20) + (y - pr)?) -

B.2 Kalman Filter

A linear Kalman filter was also tested. The idea employed was to compute the
feature position and error associated with each pair of measurements, as described
in Chapter 2 and Appendix A, simplifying the data fusion by doing it directly in
feature space (linear data fusion).

The following are the equations of the Kalman filter algorithm (linear case):

e System:
x(k +1) = F(k) x(k) + G(k) u(k) + v(k)

By the same reasons presented before (static state space with no control), F
becomes the identity matrix I, and the two last terms are dropped. Thus, the
state variables do not change value:

x(k +1) = x(k)
e Measurement:
Ck+1)=H(k+1)x(k+1)+w(k+1)

Transformations from sonar measurement space to feature space are done
before the fusing process, as presented in Appendix A. The measurements
in this case are already in feature space, and consequently H is the identity
matrix, and w(k+1) is a sequence of zero-mean, white, Gaussian measurement
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noise in feature space corresponding to the noise of the respective sonar
measurements.
Ck+1)=x(k+1)+w(k+1)

e State estimation and covariance computation:
— State prediction:
X (k + 1|k) = F(k) x(klk) + G(k) u(k)
Consequently, by the reasons explained before:
X(k + 1|k) = x(k|k)
— State prediction covariance:
P(k + 1|k) = F(k) P(k|k) FT (k) + Q(k)

where Q(k) is the covariance matrix associated to v(k), and therefore
null, resulting in the following expression:

P(k + 1|k) = P(k|k)
— Measurement prediction:
C(k+1Jk) = H(k + 1) X(k + 1]k)

In this implementation, the measurement prediction is identical to the
state prediction, )
C(k+1]k) = x(k + 1]k)

— Innovation: A
v(ik+1)=¢(k+1) - C(k+1]k)

— Innovation covariance:
S(k+1)=H(k+1)P(k+1k)H (k+1)+R(k + 1)

where R(k) is the covariance matrix associated to w(k), resulting in the
following expression:

S(k+1)=P(k+1|k) + R(k+ 1)
— Filter gain:
W(k+1)=Pk+1k)H (k+1)S™ (k + 1)

Consequently:
W(k+1)=Pk+1|k)S™ (k+1)

— Updated state estimate:
x(k+1k+1)=xk+1k)+W(k+1)vk+1)
— Updated state covariance:

Pk+1k+1) =Pk +1|k) - W(k+1)S(k+1) WT(k +1)
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B.3 Filter Initialization and Uncertainties Associated

Both filter approaches were initialized with the following state and measure-
ment covariances:

100.0 0.0 [ o (k) 00
P(Ow):[ 0.0 100.0]’ R('“)”[ 0.0 o,,z(k)2]

For lack of information, the initial state covariance P(0|0) was simply initialized with
a high constant. Also, the states were assumed independent causing the matrix to be
diagonal. The covariance matrix of the noise associated with the measurements R(k)
was calculated using the variance on the measurements (o,(k)®). Again, the matrix
is diagonal because it was assumed that the measurements were not cross-correlated.
The variances were calculated considering that the maximum error on a measurement
is equivalent to 3 0.

In the EKF case, the maximum error on a measurement is given by the
precision of the sonar sensor. The sonar sensors used have an error equivalent to 1%
of the distance measured, therefore,

2
_[ar o0 Ary=001ry o _| (%) 00
- 0.0 ATz AT2 =0.017, ’ - 0.0 (A_gz)z

where the discrete time reference ¥ was omitted.

In the linear case, the same precision of the sonar sensor is used to compute the
maximum error on a measurement in feature space by applying one of the approaches
presented in Appendix A.



APPENDIX C
SONAR SIMULATOR

The 2D simulator developed tests sonar configurations in specular environ-
ments composed of lines, edges, and corners. The information and processes used
by the simulator to calculate the sonar measurements r; and r, are: the sonar
configuration (position and heading of transmitters and receivers); the location of
the visible features and the features’ reflectance models; a sonar model that considers
range and beam angle; a Gaussian process noise to corrupt the sonar returns.

Some simplifying assumptions, commonly used in sonar-based modeling, were
employed to reduce the simulator’s complexity: the sonar is modeled as a 2D sensor,
and all the reflections occur on the transducers’ plane; valid sonar returns are
limited to one-point or two-point reflections and a single return (single echo); the
transducer’s beam pattern is considered strong and constant on the sonar beam
angle (40°) and zero otherwise; the intensity of the ultrasonic signal does not decay
with distance traveled, type of reflection, and number of reflections on the signal
path, if the signal is in range it is detected (0.3 to 10 m), otherwise it is ignored;
the only error in the measurements is given by an additive Gaussian noise where 3o
corresponds to a 1% error in measurement.

This simulator was created not to test the robustness of the method with
respect to uncertainty in the feature and sonar models, but to identify configurations
that facilitate the extraction of features to be used as navigational landmarks.

C.1 Sonar Returns

Figures C.1, C.2, and C.3 exemplifies the geometrical relations involved on
the calculation of the sonar returns (r; and r3). As shown in Figure C.1, r; is derived
from c, the distance between the transducer T and the line feature; § is obtained by
computing « from ¢ and 7 and applying Equation 2.2; then, to compute b, a, r3, and
the point (z1,¥;) is straightforward. The derivation of 7; and r; in the edge feature
case is clear from Figure C.2. In the case of the corner feature, Figure C.3, the
derivation of the variables are extremely simplified by considering only right-angle
corners, causing the line segment a to be parallel to the line segment b.

C.2 Simulator Procedure

The simulator calculates the sonar measurements r; and 7, as described in
the following procedure:

As previously mentioned, legal reflections are those that do not intersect other
features or the robot on their way from the transmitter to the receiver, and do not
violate the transmitter and receiver beam angle cones. In addition, the reflections
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Figure C.1. Readings generated by a line feature

l Edge (xeYe)

r,=2¢
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Figure C.2. Readings generated by an edge feature

X Corner (xcyc)
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Figure C.3. Readings generated by a corner feature
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Simulator Procedure:

1. For each sonar transmitting (mode T) at time t, check which features are
captured by the transmitter’s cone, saving these features for analysis.

(a) For all edge and line features inside the transmitter’s cone, check for a
one-point reflection to all the receivers;

(b) For all corner features inside the transmitter’s cone, check for a two-
point reflection to all the receivers;

(c) For all virtual corner features with at least one of its line segments
inside the transmitter’s cone, check for a two-point refection to all the
receivers.

2. For all legal one-, two-point reflections, save the minimum distance corre-
spondent to time of flight (D-TOF) for each receiver as a measurement (r
for a transducer in T mode, or T2 for a transducer in R mode), and draw
those reflections.

3. Add Gaussien noise to each measurement ry and ro and plot a marker at
the corresponding half distance from each receiver’s heading.

T
environment
Legend:
R —  line
[y © edge
S~ -1 & B comer
/ a virtual corner

virtual corner reflection

Figure C.4. Example of virtual corner

must be in range (from 0.6 to 20 m), and the reflection points must belong to the
part of the feature inside the beam angle cones. Virtual corners are phantom corners
originated by two-point reflections on two line segments that do not compose a real
corner. An example of virtual corner reflection is depicted in Figure C.4.



APPENDIX D
MOoBILE RoBoT: ISAAC

Isaac is a fully autonomous three wheeled robot. Its chassis is a MRV-3 model
from Denning Mobile Robotics, Inc.!, upgraded at our laboratory to support all the
processing on-board. The MRV-3 is a synchro-drive chassis with a drive motor
and a steer motor. All three wheels are driven in forward and reverse, and steer
by maintaining parallel axis through a turn angle, allowing a zero turning radius
without rotating the chassis on axis (omnidirectional design).

Several modifications were made on the original MRV-3 model to allow all
the processing to be executed on-board. Primarily, it was changed to a VME
architecture, causing all previous computational systems to be discarded, and the
low-level controllers to be reimplemented on VME processor boards. The VME
architecture was selected because of its distributed processing capability, and its
widespread use in robotics. Isaac is depicted in Figure D.1 on its tethered configu-
ration (physically connected to power and Ethernet), and a detailed description of
the VME architecture is presented on Section D.1.

Figure D.1. Mobile Robot - Isaac

The introduction of a VME cage required extra power causing the number of
batteries to double (from 3 to 6, 12VDC batteries), and the addition of two UPS
power supplies. Space constraints limited the number of batteries to 6, and the
vehicle motors that initially operated on 36VDC had to be changed to 24VDC to

!Currently Denning Branch International Robotics (DBI).
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Chassis Specifications ]

[ Size 0.69m diameter, 1 to 1.3 m height
Weight ~ 180 kg
Payload ~ 70 kg
Ground Clearance 0.06 m
Max. Speed ~ 15m/s
Climbing Ability ~ 0.02 m threshold
10% Ramp Speed ~ 0.3 m/s
Untethered Max. Oper. = 2 hours
Drive Amplifier 600W Continuous, 1200 Peak
Steer Amplifier 200W Continuous, 300 Peak
DC-DC Converters Auto Power-down Dual Supply, DC-DC converters
Power Cage for the DC-DC converter and Motor Servo Amplifiers
Power Supply (UPS) 2 330W JRS(N+1) Modules, Joule Power Inc.
Battery Power (Motor) 24 VDC, 2 gel type rechargeable 12VDC - 40 Ah
Battery Power (System) 48 VDC, 4 gel type rechargeable 12VDC - 40 Ah

Table D.1. Isaac’s chassis specifications

accommodate the power needs of the VME cage (48VDC). Table D.1 presents the
specifications of our mobile; part of this information was taken from the Denning
MRV-3 manual, and some are only approximations given the modifications made to
the original vehicle.

D.1 Computational System

The system consists of a VME cage with 5 CPU boards, a 2 Mbytes global
memory board, a 100 Mbytes hard drive, and a custom made IO board. Commu-
nication with a outside host computer is done via a wireless Ethernet connection.
Figure D.2 depicts the main components of the robot’s computational architecture,
as well as the final assignment of control processes to processors.

D.1.1 Low-level Controllers

The low-level controllers are responsible for driving the motors (drive and
steer) and for the interface with the sensors (encoders, sonars, bumpers). In our
case the control was divided in two procedures, each one running on a processor
board.

In one procedure, a model-based PD position controller is used to control

the drive and steer motors using feedback from the sensors. At each control loop,
odometry is computed using encoder information. Bumpers and emergency stop
buttons are checked in each servo loop — bringing the robot to a full stop if any of
them is activated, and the presence of a joystick is tested — if detected, the system
changes to a velocity mode controlled by joystick commands. Moreover, a routine
that uses the Hall effect index switch to home the robot to its initial steering angle
configuration is provided.
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I Hardware |
Standard VME Card Cage, 12 slots, 6U x 160mm card cage - Zero Corp.

1 VME Sparc board - SPARC CPU-2CE, Force Computers, Inc.

1 68030 board - HK68/V30XE, Heurikon Corp.

3 68030s boards - HK68/V3E, Heurikon Corp.

Global Memory board - MVME 204-2F, Motorola, Inc.

100 Mbytes Hard drive, Digital Inc.

I0 board - Multi-function Interface, custom made

Wireless Ethernet - 2 RangeLan2/Access Point, Proxim, Inc. (one on-board)
[ Operating Systems |
Real-time OS - VxWorks v5.0, Wind River Systems, Inc.
Unix - SunOS v4.1.4

Table D.2. VME Computational System

on-board Isaac

VME - cage

(Wireless) Ethernet

)

e

I Hard drive |

L

Processor 0: (68030) /
- X Window System
user interface 1O Boards
Processor 1: (68030)
- Robot driving and
steering control;
- Bumpers, joystick,
l \ and emergence Global Memory: (2Mbytes)
stop control
1
SPARC Station I Processor 2: (68030 Processor 4: (Sparc 2)
1
1

- Sonar firing control - Navigation control

Processor 3: (68030)
— High-level control

Figure D.2. Isaac’s control processes architecture

The other procedure controls the 24 sonar sensors by interfacing with their
sonar ranging modules. Currently this routine selects which sensors to activate based
on the mode selected, and computes the distance to obstacles using time-of-flight
(TOF) computed on the processor board. In future, the sonar ranging modules will
be modified to accept two modes of operation (transmit-receive, or only receive) and
to compute the TOF in hardware, with a better precision, in the order of millimeters.

D.2 Sensors

Table D.3 presents the sensors previously installed in Isaac. Currently, a
two-sensor active sonar array is being designed to test the feature extraction methods
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presented here. And, in the near future, the upgrade of the sonar ring and the
bumpers, in addition to the introduction of CCD cameras and a compass is being
considered.

Sensors and Accessories
100 line shaft encoders on steer and drive motors
3 Directional Bumper Switches
Ultrasonic ring with 24 transducers (Polaroid 600 Series),
each controlled by a Polaroid 6500 Series Sonar Ranging Module
Hall Effect index switch on steer axis
3 Emergency Stop Buttons
Velocity mode joystick for manually moving the robot

Table D.3. Isaac’s sensors and accessories

D.2.1 Encoders

The encoders at the drive and steer motors allow the computation of the
robot’s position. The precision of the measurement given by the encoders is around
tenths of a millimeter for the drive encoder, and tenths of a radian for the steer
encoder. However, the accuracy of the odometry measurements decreases over time
because of the accumulative characteristic of the error on an open-loop procedure.
The error in odometry is normally caused by slightly different wheel diameters,
misalignment of the wheels, and irregularities of the terrain.

D.2.2 Bumpers

The current bumpers in Isaac are from the MRV-3 chassis model. The
bumpers are 3 directional switches that take the robot to an emergency stop when
a certain pressure is exerted against it. This bumper system is only appropriate to
avoid further damage after a collision. Another system will be needed for short range
detection to facilitate navigation through narrow regions, such as doors.

D.2.3 Sonar Ring

The sonar ring mounting and transducers are from the MRV-3 chassis. Each
one of the sonar sensors has its own sonar ranging module, allowing for the inde-
pendent activation of any subset of the 24 sonars [21]. All the sonars operate at the
same frequency (49.4 kHz), causing some activation procedures to produce better
results than others because of sonar cross-talk. Moreover, the number of sensors
activated simultaneously is limited by the power supply peak current capacity, since
each sonar ranging module requires a peak-current of 2 amperes at the moment of
firing.
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D.3 Odometry Error

The method used here to calculate the odometry error is based on the proce-
dure created by Borenstein and Feng to measure and correct dead-reckoning errors
[3]. Our main interest is to show the dynamics of Isaac’s odometry error on a
common path. The first experiment, in Figure D.3, depicts the desired paths (a
counter-clockwise and clockwise rectangular path on the same flat floor), the odom-
etry estimate of the executed paths, and the executed paths, always starting at
position (0, 0), showing its tendency to deviate to the right on forward movements,
and to undo this error in backward movements.

-3 Y T Y T \ T T T T T T -2 T T T T Y T T T y T T
- =% desired path 3 3 =@ desired path
P13 8---8 odometry ak 8--8 odometry
3 & path executed ; ] 5° path executed
~1F E ~0F 3
g El
h 0 - 3 h 1 - -
1 E 2F 3
2y TS N N

x(m)

Figure D.3. Isaac’s performance on a counter-clockwise path (ccw) - left, and on a
clockwise path (cw) - right
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7 &
&= -0.1F 9
022 0.1 0 0.1 0.2

Error in x (m)

Figure D.4. Isaac’s odometry error at the end of path

Figure D.4 presents the final error after five clockwise and five counter-clock-
wise executions of the same path in the same environment. As shown, the accumu-
lated odometry error is significantly larger in the clockwise path.
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Figure D.5. Odometry error in x direction for ccw (left) and cw (right) paths
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Figure D.6. Odometry error in y direction for ccw (left) and cw (right) paths
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Figure D.7. Error in body rotation for ccw (left) and cw (right) paths
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The dynamics of the odometry error is depicted in Figures D.5, D.6, and D.7.
These experiments show that Isaac has a small error in the direction of the movement
but a consistently larger deviation in the direction orthogonal to the movement,
suggesting that it has a systematic error related to a difference in wheels radii or
misalignment of the wheels. It is also important to notice that on some paths,
for example closed-loop paths, the odometry error does not necessarily increase
monotonically. And thus, a correct analysis of the contribution of other sensors,
such as sonar and laser, to pose localization should take this fact into account.

D.4 Simultaneous Sonar Firings

: b

Firing Patterns |

Sequential || Interleaved
(sonar #) || (sonar #)
0 816 0 816
1917 41220
21018 71523
31119 31119
41220 614 22
51321 21018
614 22 51321
71523 1917

Figure D.8. Simultaneous sonar firings, three sequential, all, and three interleaved,
respectively

Simultaneous firings are of interest because of the low bandwidth of sonars
(12 Hz). Figure D.8 depicts experiments with different activation patterns, where
each sensor was activated 10 times from the same position on a rectangular room
of dimensions 3 by 6 meters, approximately. The distances to obstacles obtained
from the sensors are represented by dark points, assuming a ray-trace model, and
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the robot is represented by a circle. Notice that, when all sensors are activated at
the same time (top right figure), cross-talk and probably problems with the power
supply corrupted completely the data. Figure D.8 also shows that it is not sufficient
to activate equidistant sensors (top left figure, with 38% consistently correct results),
but from one firing set to the next, the sensors selected should also be equidistant
(interleaving - bottom figure, with 54% consistently correct results), as reported in
the table.

D.5 Active Sonar System

As previously discussed in Chapter 1, the sonar configuration is an important
factor on the precision of the measurement obtained. Here we present a sonar
apparatus that allows the system to change the sonar configuration to improve
feature detection and identification.

Figure D.9 shows the functional diagram of the two-sonar array. The pan
and tilt of the axis affords the localization of features at any direction, and at
any height respectively. In addition, the extra pan on each transducer allows the
system to adjust the sonar configuration to feature distance and feature type, thereby
producing better quality measurements.

sonar 0

Figure D.9. Active sonar system

The sonar ranging modules from Polaroid have to be modified to accept
the two modes of operation (transmit-receive, and only receive) [21]. Figure D.10
presents a way of modifying the sonar ranging module to permit only reception
by bypassing the transmission signal. In this circuit, currently under development,
the shaded circuit parts belong to the original Polaroid 6500 Series module, the
transducer device connects to NEW E1 and NEW E2, and the switch SW1 selects
hardware control timing (1), or software control timing (2).

Timing diagrams depicting how the circuit works in reception mode are pre-
sented in Figure D.11; in transmission-receive mode the circuit behaves like the
original sonar ranging module. The timing diagram on the right depicts the hardware
control timing (SW1-1). Notice that the original transmission pulses on XMIT are
suppressed, and a single pulse is used to energize the transducer (output of 123-1),
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Figure D.10. Additional circuit to allow reception without transmission

100K 0 L = 20K
74LS123 =
RCext I

=

VyY
A
VY

o
]
Al
%
1AL
A

O
NEW E2

xwrT (1]

~0.32ms
Internal l |
Blanking 238 ms
owur _ [ L e il
123-2 ~-0.32ms
|'I Internal |
Qutput of Blanking 2.38ms '
12341 —10us i
1
| 1
Output of _I—!—_ TRMDDE >1.32ms .
555 ! I

_— i

>1ms >1ms

Figure D.11. Circuit timing in reception mode for both switch configurations

followed by the switching to the original reception configuration (output of the 555
turning off) at the end of the internal blanking period. The software control timing
(SW1-2) is presented in the diagram on the left of Figure D.11. The main difference
between the software and hardware timing procedure is that the former uses the
TRMODE signal to time the circuit, reducing the extra hardware needed. On the
other hand, the software timing procedure requires a processor board capable of
producing pulses on the order of milliseconds.
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