
The

Common Language Encoding Form
(Clef)

Design Document

Glen E. Weaver, Brendon D. Cahoon, J. Eliot B. Moss, Kathryn S. McKinley,
Eric J. Wright, James Burrill

Technical Report 97-58

Version 1.0

Department of Computer Science
University of Massachusetts
Amherst, MA 01003-4610
(413) 545-1249 (fax)

August 1997

2

Contents

1 Introduction 1

2 Generation Interface 3
2.1 Supporting Components . 5

2.1.1 Exception Handling . 5
2.1.2 The Implementation Stack . 5
2.1.3 The Operand Stack . 6
2.1.4 The Symbol and Type Tables . 10

2.1.4.1 The Symbol Table . 10
2.1.4.2 Type Table . 12

2.1.5 Identifiers . 14
2.1.6 Stable Storage . 14

2.2 Source Language Specific Comments . 16
2.2.1 Modula-3 . 16
2.2.2 Fortran 77 . 16
2.2.3 C++ . 17

2.3 Specifying Types . 18
2.3.1 Primitive Type Constructors . 19

2.3.1.1 Sized Primitive Types . 19
2.3.2 Type constructors . 22

2.3.2.1 Array Type Constructors . 22
2.3.2.2 Enumeration Type Constructors . 23
2.3.2.3 Incomplete Type Constructors . 23
2.3.2.4 Aggregate Type Constructors . 24
2.3.2.5 Pointer Type Constructors . 25
2.3.2.6 Procedure Type Constructors . 25

i

ii CONTENTS

2.3.2.7 Set Type Constructors . 27
2.3.2.8 Range Type Constructors . 27
2.3.2.9 Branded Type Constructors . 28
2.3.2.10 Packed Type Constructors . 28
2.3.2.11 Alias Type Constructors . 28

2.3.3 Type Attributes . 28
2.4 Generating Declarations . 30

2.4.1 Declaring Types . 30
2.4.1.1 Forward Declarations . 30
2.4.1.2 Opaque Types . 30

2.4.2 Declaring Values . 31
2.4.3 Declaring Procedures and Methods . 34
2.4.4 Declaring Exceptions . 37
2.4.5 Declaring Labels . 37
2.4.6 Code Units . 37

2.4.6.1 Namespace . 37
2.4.6.2 File . 38
2.4.6.3 Interface . 38
2.4.6.4 Module . 38

2.4.7 Setting Declaration Attributes . 39
2.5 Generating Statements . 42

2.5.1 Block Statements . 42
2.5.2 Labeled Statements . 42
2.5.3 Conditional Statements . 42

2.5.3.1 If statements . 42
2.5.3.2 Multi-way Branch Statements . 43
2.5.3.3 Case/Switch Statements . 44
2.5.3.4 Typecase . 45

2.5.4 Looping Statements . 46
2.5.5 Branch Statements . 47
2.5.6 Exception Handling Statements . 48
2.5.7 Miscellaneous Statements . 49

2.6 Generating Expressions . 51
2.6.1 Base Expressions . 55

2.6.1.1 Identifier Reference . 55

CONTENTS iii

2.6.1.2 Literals . 56
2.6.1.3 No Expression . 56

2.6.2 Expression Ordering Operators . 56
2.6.3 Assignment Operators . 57
2.6.4 Numeric Operators . 59

2.6.4.1 Arithmetic Operators . 59
2.6.4.2 Relational Operators . 60
2.6.4.3 Bitwise Operators . 61
2.6.4.4 Compound Assignment Operators . 61

2.6.5 Boolean Operators . 63
2.6.6 Pointer Operators . 63
2.6.7 Aggregate Operators . 64
2.6.8 Array Operators . 64

2.6.8.1 Subscripting . 65
2.6.8.2 String Array Operators . 65

2.6.9 Set Operators . 67
2.6.10 Call Operators . 68
2.6.11 Heap Operators . 68
2.6.12 Type Operators . 69

2.6.12.1 Type Query Operators . 69
2.6.12.2 Type Conversion Operators . 71

2.7 Compilation Units . 72
2.8 Annotations . 74

2.8.1 Point Annotations . 74
2.8.2 Range Annotations . 74

Bibliography 75

Index 76

iv CONTENTS

Chapter 1

Introduction

Scale is a compiler framework which simplifies the task of developing a compiler for new hardware. Scale
is not a compiler in the sense that its objective is not to translate a particular language or to generate object
code for a particular machine. Rather it is a flexible framework which provides all the components of a
compiler along with modules that facilitate the assembling of these components into a complete compiler
for a particular language and machine pair.

Scale accepts multiple source languages and generates code for multiple target architectures. Accepting
multiple source languages largely consists of supplying a common notation for expressing the semantices
of each language. Similarly, to generate object code for different machines, Scale must have a common
notation for expressing the capabilities of each target. This common notation for describing hardware also
permits Scale to generate object code for multiple machines simultaneously. This ability is the base features
required by a compiler for heterogeneous systems.

Firgure 1.1 shows the flow of a program through the initial phases of the Scale compiler. In its initial
design, Scale supports the translation of imperative and object-oriented programming languages (i.e., C,
C++, Modula-3, Fortran 77, and Ada-83). Scale uses the Edison Design Group (EDG) front ends for C and
C++ (EDGCPFE) and Fortran (EDGFFE) to handle parsing and semantic error checking. The EDG front ends
pass a proprietary AST to EDG2CLEF which uses the generation interface to translate it to the common
high-level representation form used by Scale. For Modula-3, Scale uses the Digital Equipment Corporation
(DEC) Systems Research Center (SRC) Modula-3 front end to generate an AST representation. M32CLEF
reads the Modula-3 AST and uses the generation interface to convert it to Scale’s high-level representation.

The generation interface is a set of routines for constructing high-level program representations such as
ASTs. The interface itself does not determine the structure of the generated interface; however, the Scale’s
initial design provides only one implementation of the interface: CLEFBULDER. CLEFBUILDER constructs
a Clef (Common Language Encoding Form) representation. Clef is a high-level AST representation which

1

2 CHAPTER 1. INTRODUCTION

Edg2Clef

M32Clef

Optimizer

C/C++
Source

F77
Source

Modula-3
Source SRCM3

EDG

Score

Scale

ClefBuilder
Clef

Composer

Figure 1.1: The Scale compiler framework.

provides representations for all the features found in source languages supported by Scale. Clef may be used
for certain program transformation and annotation. Clef also provides a common representation from which
the Composer module can build the Score representation. Score is a lower level representation than Clef and
is the form on which Scale performs most of its program transformations.

This book describes components of the Scale compiler framework that relate to the Clef representation.
Chapter 2 describes the generation interface and lists all of its routines. Chapter ?? presents the Clef repre-
sentation node set, and Chapter ?? documents the design of CLEFBUILDER. For information on the EDG
and SRC representations see their respective documentation. Score is discussed in more detail in [3].

Chapter 2

Generation Interface

This chapter describes the generation interface. The generation interface provides an Application Program-
ming Interface which supports the generation of an intermediate representation. The interface hides the
structure of the intermediate representation from the code which is calling the interface. This separation of
concerns allows user code (code which calls the interface) to handle source language dependent issues, and
client code (which uses the generated representation) to handle language independent or machine dependent
issues. We use the term language parser to refer to code that handles source language issues, and user code
to refer to code that directly calls the generation interface. For this interface to generate a particular repre-
sentation, programmers must supply an implementation which provides the bodies for the routines defined
in the interface. The code which uses the resulting representation is called a client.

We designed the generation interface with the following goals:

Souce language independent

Target architecture independent

Edg2Clef

M32Clef

Optimizer

C/C++
Source

F77
Source

Modula-3
Source SRCM3

EDG

Score

Scale

ClefBuilder
Clef

Composer

Figure 2.1: Generation interface’s role in Scale compiler framework.

3

4 CHAPTER 2. GENERATION INTERFACE

User code:

Syntactic and semantic error checking

Semantic resolution

Enumeration constant assignment

Insertion of explicit type conversions

Generation of unspecified brands

Implementation code:

Memory layout

Initialization code generation

Table 2.1: Division of responsibilities between user code and implementation code.

Extensible

Support generation of high-level representations

Fully describe original program

Prevent user errors where possible

Support C, C++, Modula-3, and Fortran 77, and consider Java, Ada, and parallel Fortran variants

Though our design permits the detection of many invalid sequences of routine calls, it cannot detect all such
sequences. In particular, the generation interface is not intended to support syntax or semantic error check-
ing. Source language issues must be handled before the generation interface may be used. The interface
provides some routines that allow the original program to be fully described, even though the information
provided by the routines is not strictly necessary.

To support our goal of source language independence, we have divided responsibility between the lan-
guage parser and the client as shown in Figure 2.1.

The generation interface derives its language independence by supersetting the capabilities of the lan-
guages which we wish to support. Hence, no one language is likely to need all the routines defined in the
interface. However, implementations should implement all the routines if possible. If not, they are required
to issue appropriate error messages.

Clef Implementation
Our implementation of the generation interface builds the Clef representation. Our implemenation realizes
the generation interface as a C++ class. The Clef class hierarchy does not include the interface’s class
hierarchy. This design point highlights the separation of the interface from the representation. Nevertheless,
many of the interface’s routines end up being a call to a single constructor in the Clef class hierarchy.

2.1. SUPPORTING COMPONENTS 5

2.1 Supporting Components

This section describes the support that the generation interface requires from an implementation.

2.1.1 Exception Handling

The generation interface requires that the implementation language provide an exception handling mech-
anism. Individual sections and routines specify exceptions that are unique to them. The exceptions listed
below may be returned by any interface routine:

Possible Exceptions:

InternalError The implementation has detected an error which should not be able to occur. This
indicates a error in the implementation itself.

InvalidParameters The top most elements on the stack do not match the types of elements required
by the current procedure.

InvalidSemantics The called routine is not valid within the context in which it is called. This error is
most likely to be generated by attempting to push an element on the stack (by calling the current
routine) that is not valid between the current begin/end pair.

OutOfMemory The implementation is not able to allocate sufficient memory to complete the routine.
Unimplemented The implementation has chosen to not implement the called routine.

Implementations may handle exceptions directly or rely on a default error handler to process all errors.
The interface provides a routine for setting the default error handler to a user defined procedure.

void SetErrorHandler (void (*er)())

This routine makes the procedure pointed to by er the default error handling procedure. The
procedure er has no arguments and returns void.

2.1.2 The Implementation Stack

We have modeled the generation interface after the stack IR used in the SRC Modula-3 compiler. The
two stacks in the stack IR serve very different purposes. The first stack, the implementation stack, allows

6 CHAPTER 2. GENERATION INTERFACE

different implementations of the stack IR to be connected together. Beginning at the top implementation
in the implementation stack, each called routine first executes its version of the routine, and then calls the
routine of the same name in the next lower implementation. This process allows user code to generate
several layers of representation (or perform several functions) with a single call.

In the generation interface, the implementation stack has a limited set of manipulation routines. Unlike
the other routines in the interface, the routines which operate on the implementation stack do not recursively
execute on lower representations. Moreover, user code can only directly call routines in the top most imple-
mentation. Therefore, the implementation stack must be built bottom-up. User code is unlikely to want to
change the implementation stack dynamically, so this capability is not supported.

Note for the implementation stack concept to work, the program must be able to distinguish between
different implementations of the same routine. Therfore, the generation interface is implemented as an ab-
stract base class, GenerationInterface. Implementations of this abstract base class inherit the routine
names and provide routine bodies. The implementation stack contains instances of these implementation
classes (generally one instance per implementation class).

void AppendImplementation (GenerationInterface gi)
This routine appends the implementation gi at the bottom of the stack.

2.1.3 The Operand Stack

Section 2.1 discusses one use of a stack data structure in the generation interface. This section discusses
the other, more important, use of a stack, the operand stack. User code uses the generation interface to
generate a high-level representation of a program by calling interface routines. Each routine builds a small
piece of the final representation. Between calls, the interface must store these pieces somewhere. The
generation interface’s solution is to use the operand stack to pass information between routines.

The generation interface uses a stack in order to allow a cleaner division between interface and imple-
mentation. The generation interface seeks to catch as many errors as possible, but this requires making some
assumptions about the represention being generated (e.g., the representation has an expression node). These
assumed nodes (see Figures 2.2–2.61) are the elements placed on the operand stack, according to the inter-
face definition. However, user code is not permitted to directly manipulate the stack (only implementation
code may do so), so implementations are free to use whatever nodes they want on the stack, as long as error

1These figures currently show more detail than the interface needs to know. This situation will be fixed when Chapter ?? is
written.

2.1. SUPPORTING COMPONENTS 7

checking is performed according to the type information used in this document. This frees implementations
to use a different class hierarchy than the one shown (or no hierarchy at all). Without a stack (or some similar
entity), the interface would have to return intermediate results to the user code, and so the an implementation
would have to create objects with the type name specified for each routine.

Therefore, the generation interface uses an abstract stack machine as its execution model. Before pro-
grammers invoke a routine, they must ensure that the top of the stack contains the necessary arguments. A
StackPop routine is provided for removing unwanted elements from the type of the stack. Adding elements
to the top of the stack requires calling appropriate interface routines.

void StackPop () Node
This routine removes an element from the top of stack. Since stack elements are not accessible to

user code, no value is returned and the stack element is simply no longer on the stack.

Each interface routine can accept input both from its argument list and from the operand stack. Routines
can return results through both their return value and the operand stack. Most Interface routines obtain
input from the operand stack and push a single return value on the stack. Only a few routines use a return
statement to return a value. Argument lists are used to pass leaf information to the interface. Throughout
this chapter, interface routines are shown in the following form:

return-type routine-name (routine-arguments) arguments-on-stack type-of-result-on-stack

In arguments-on-stack, the rightmost stack element is the top of stack. Though this chapter gives names
to the arguments, these names are only for clarity. The symbol, which is usually found in an end routine,
indicates that a routine removes an unknown number of elements from the stack. All the elements specified
in arguments-on-stack are replaced by an element of type type-of-result-on-stack. Currently, no routine
pushes more than one value on the operand stack, but this is permissible.

Not all invocations of a routine will need all the routine’s parameters. To handle the case when the
unnecessary parameters are expressions, the generation interface defines a special value, NoExpression, to
represent no value.

Unbounded Input
When a construct allows a dynamic number of repeated items (e.g., fields in a record, statements in a block,
arguments in a list), the interface uses a begin/end pair to bracket the repeated elements. For example, calls
to FormalsBegin and FormalsEnd surround calls to DeclFormal. The begin routine does not have a visible
effect on the operand stack, but the end routine removes all the intervening stack elements, forms a list of
these elements, and pushes a new stack element on the top of the stack which represents this list. Unless
otherwise stated, user code may build an empty list by calling the end routine when the stack is identical to
when the begin routine was called.

8 CHAPTER 2. GENERATION INTERFACE

Figure 2.2: Top level of class hierarchy model used in design of generation interface.

Node

Type Declaration Statement Expression

Figure 2.3: Class hierarchy for Types.
Type

VoidType AtomicType BrandedType PackedType CompositeType ProcedureType IncompleteType

NumericType PointerType ArrayType AggregateType SetType

RealType ComplexType RangeType

FloatType FixedType IntegerType EnumerationType

CharacterType BooleanType

FixedArrayType UnconstrainedArrayType OpenArrayType ClassType RecordType

UnionType

The generation interface design requires unbounded lists to be completely pushed on the operand stack
before any of the list elements can be removed. For some lists (e.g., statements in a procedure or statements
in a file), this approach appears wasteful of space. However, implementations are most likely pushing the
actual program representation on the stack, and this representation must exist regardless of whether or not
it is on the stack. So, no extra space may be required. If space is still a concern, then implementations may
choose to devise a scheme by which appropriate lists are incrementally compressed on the operand stack, as
long as the semantics of the begin/end pair are preserved.

Implementation suggestion
Implementations may choose to use an auxillary stack, the list stack, for begin/end pairs. Each time a begin
occurs, an element is pushed on the list stack that records the top of stack when the begin routine was called.
Therefore, when the corresponding end routine is called, all the elements of the operand stack down to the
recorded location may be removed and formed into a list.

2.1. SUPPORTING COMPONENTS 9

Figure 2.4: Class hierarchy for Declarations.
Declaration

TypeName TypeDecl ValueDecl

RoutineDecl

LabelDecl ExceptionDecl

UnitDecl

OpaqueDecl VariableDecl FormalDecl FieldDecl ConstantDecl

ProcedureDecl MethodDecl FriendDecl

NamespaceDecl FileDecl InterfaceDecl ModuleDecl

EnumElementDecl

EntryDecl ConstructorDecl DestructorDecl ConversionDecl

Figure 2.5: Class hierarchy for Statements.
Statement

BlockStmt ConditionalStmt LoopStmt BranchStmt ExceptionStmt MiscStmt

Figure 2.6: Class hierarchy for Expressions.
Expression

Identifier Literal Operator NoExpression

AssignOp NumericOp LogicalOp PointerOp AggregateOp ArrayOp SetOp CallOp HeapOp TypeOp

ArithmeticOp RelationalOp BitwiseOp CompoundAssignmentOp

10 CHAPTER 2. GENERATION INTERFACE

Implementation Suggestion
We strongly recommend creating two global variables to aid in debugging. These variables are intended
to help catch errors with begin/end pairs. One variable, listType, holds an indication of the type of an
arbitrary element popped off the stack by an end routine. The other variable, listLength, holds a count
of how many elements were popped. These variables’ values are valid until the next end routine. The initial
values of these variables are NotAType and zero, respectively.

2.1.4 The Symbol and Type Tables

The generation interface assumes that implementations maintain two tables related to declarations: a
symbol table and a type table. A symbol table maintains correspondences between programmer introduced
names (and some language defined names) and their value. A type table maintains a representation of
each type’s structure. Since the language parser is responsible for semantic resolution, it already has all
the information contained in these two tables, and indeed most likely has its own version of these tables.
However, to maintain its independence from an particular language parser, the generation interface cannot
simply accept the parser’s tables directly. Instead, these two tables must be built by an implemenation by
repeated calls to type constructor (see Section 2.3) and declaration routines (see Section 2.4).

Since the interface does not know anything about the user code’s tables, any reference to an identifier
or type must refer to entries in the interface implementation’s tables. Hence, user code needs some way
of referring to an entry in an interface implementation’s tables. Appropriate interface routines pass back
an entry identifier. Whenever the implementation makes an entry in one of its tables, it passes back either
a NameID which refers to an entry in the symbol table, or a TypeID which refers to an entry in the type
table. User code must retain a mapping of NameIDs and TypeIDs to entries in its own tables. Whenever
an identifier is used, the user code can than translate from the entry in its symbol table to the NameID or
TypeID which identifies the entry in the implementation’s tables. Implementations should provide NoName
and NoType to represent that the corresponding item does not exist.
2.1.4.1 The Symbol Table

This section describes the function of the symbol table in more detail and lists the routines used to control
and access the symbol table. A symbol is a name. Most symbols are created by the programmer (e.g.,
variable names and procedure names). Some names are introduced by the compiler either for compiler
generated entities such as compiler generated labels or as compiler generated names for anonymous entities.

2.1. SUPPORTING COMPONENTS 11

User code also generates a few names with calles to the primitive type declaration routines2.
Many program elements have names: variables, procedures, exceptions (in some source languages), etc.

The generation interface refers to any nameable program element as an entity. Every entity in a program
must have a corresponding entry in the symbol table, which maps the name to its value (where a value can
have several parts). The value of an entity depends on what kind of entity it is. A value of a type entity is a
type; the value of a procedure entity is its signature and body. In order for user code to refer to a particular
entity (or equivalently, entry), interface routines return a NameID whenever a new entry is created in the
symbol table. Each implementation is free to define NameID’s structure, but it is conceptually an index into
the implementation’s symbol table.

After an entity is declared, user code always uses the NameID to refer to the entity. By not using
identifiers, the generation interface avoids having to understand the source language’s scoping and name
conflict resolution rules. In other words, the symbol table does not limit the number of times an identifier
may appear in a single scope. On the other hand, the generation interface cannot provide name lookup.

2.1.4.1.1 Specifying Scopes Client code needs to understand scoping, in order to transform code and
generate object code. Unfortunately, different source languages may have slightly different scoping rules.
The generation interface handles this issue by requiring user code to explicitly mark where a scope begins
and ends by using the ScopeBegin and ScopeEnd routines. These routines do not visibly affect the contents
of the stack.

Since user code is responsible for semantically resolving the program before using the generation in-
terface to build an new intermediate representation, the interface can use a generic block structured symbol
table. Declarations may appear anywhere within a scope, and the declared entity is useable anywhere from
the point of declaration to the end of the enclosing scope. In addition, entities in enclosing scopes are
accessible from an inner scope (note that visibility is a language parser issue).

Note that namespaces are essentially named scopes (see Section 2.4.6.1).

void ScopeBegin ()

void ScopeEnd ()

2.1.4.1.2 Entering Entities into the Symbol Table The generation interface specifies that all program-
mer defined entities (e.g., types, labels, procedures) are stored in the symbol table. Many entities have
names, but some may not. Entities are entered into the symbol table either by declarations or specifications.
A declaration defines an entities; whereas, a specification provides partial information about an entity.

2Primitive types would not have to be named in order to representat a program. However, it may be useful in debugging and
quite easy to provide.

12 CHAPTER 2. GENERATION INTERFACE

2.1.4.1.3 Entity References In addition to the notion of declarations, the generation interface maintains
the idea of an entity reference. An entity reference represents an entity independently of its name. Uses
of an entity in a program are represented by its reference node, rather than its declaration. In most cases,
a reference is indistinguishable from a declaration, but not always. For example consider two variables
which are declared to be aliases of each other. They have separate declarations but a single reference.
Because of the similarity between references and declarations, their class hierarchies are identical and only
the declaration hierarchy is shown (see Figure 2.4). NameIDmaps into declarations, but a routine is provided
for mapping from NameID to references.

2.1.4.1.4 Accessing the Symbol Table To avoid having to know the details of how a particular language
manages its symbol table, the generation interface relies on the requirement that user code semantically
resolves identifiers before using the generation interface. Hence, user code knows to which declaration each
use of an identifier refers (i.e., user code does its own name lookup). User code passes this knowledge to the
generation interface by using a NameID. It is a simple type which uniquely identifies a declaration. Every
declaration routine passes a NameID back. User code is responsible for maintaining a mapping between
entries in its symbol table and NameIDs.

User code is only permitted to lookup entities which it has already entered into the symbol table. Hence,
few errors should occur. Nevertheless, implementations ought to check the validity of NameIDs.

void LookupDecl (NameID name) Declaration

void LookupRef (NameID name) Reference

void LookupType (TypeID type) Type

void LookupTypeDecl (NameID type) Type

2.1.4.2 Type Table

The most complicated values in the symbol table are type descriptions. In fact, type information is main-
tained in a separate table. The type table has its own index, TypeID. If the only use of the type table were
to describe types, the design of the table would be straightforward. However, the generation interface must
also capture sufficient semantic information for client code to perform type equivalence checks. Determin-
ing type equivalence is difficult because each source language defines its own type equivalence rules. The
generation interface’s approach is to include as much information as possible in the type table, and then
define a general routine which traverses the type table using a subset of that information to compare two
types.

Adding Information

2.1. SUPPORTING COMPONENTS 13

Besides the normal information required by type constructors, the generation interface places two other
kinds of information in the type table. The first is type names, which are useful for type equivalence. To
simplify the specification of type names across the interface, the generation interface takes the name from
the type declaration routine and inserts it into the type table. The name is added via a nameBrand node,
which is distinct from a UserBrand node. Note that a NameBrand node may include multiple names to
handle types with multiple names. The other kind of information is language defined type matching rules.
These rules are captured at the compilation unit level and include such information as whether or not the
source language uses field order to distinguish record types.

Type Equivalence
A general routine is used to perform all type equivalence checks. This routine accepts as input an indication
of which of the possible features that distinguish types should be used for the current comparison.

Multiple Type Names
Source languages generally allow programmers to declare types, which is naming a type. Source languages
generally allow multiple names to be associated with the same type. For example in the following C code,
both gew and GEW are names for the same type:

typedef struct gew

int a; GEW;

The generation interface does not guarantee that two equivalent types will have the same TypeID. Hence,
user code cannot use TypeIDs to determine type equivalence, but user code should already have its own way
of finding type equivalence. Implementations may wish to provide a way for client code to compute type
equivalence.

Decorated Types
One reason for not guaranteeing a unique TypeID for each type is because types can be decorated with at-
tributes. Section 2.3.2.11 discusses the different type attributes in more detail. Type attributes are associated
with an individual type node, and any type node may be annotated though the generation interface does
not guarantee that all attributes make sense. Attributes do not affect the type of an object, but do represent
information about the object that must be maintained. Hence, the TypeID carries the attribute information
as well as the type.

Recursive Types
One of the hardest aspects of describing types is describing recursive types. To handle this situation, the gen-
eration interface provides Incomplete* routines for types which may refer to instances of themselves (i.e.,
aggregate types). Within the definition of the aggregate type, recursive references may refer to the incom-
plete type. After the definition of the aggregate type is complete, user code should call the CompleteType
routine to establish the relationship between the incomplete and complete types.

14 CHAPTER 2. GENERATION INTERFACE

Branding
The generation interface supports a branded type which is used to distinguish two types which are otherwise
type equivalent. Branding is a way to introduce a name into the type table, and thereby obtain name equiva-
lence in a structural equivalence framework. Branding is in fact the only way of introducing a name into the
type table.3

Separate Compilation
Separate compilation complicates type matching because not all type information is available for each com-
pilation. For separate compilation, C/C++ uses name equivalence between files. Hence, two types are
considered equivalent if they have the same name, regardless of their actual type declaration. This unfortu-
ante rule works fine if the two files never exchange data of this type, otherwise the programmer has made a
non-detectable error. To support this mis-feature of C/C++, only the brand (not the type structure) is used to
determine the equivalence of branded types.

2.1.5 Identifiers

All practical programming languages use identifiers, user selected strings, to represent program entities
such as variables, types, and labels. The generation interface does not use identifiers to reference these
entities, since many programming languages allow the same identifier to have different meanings in different
contexts. However, the generation interface does permit user code to pass identifiers through to client code.

The generation interface represents identifiers as strings. A null string is interpreted as representing that
the programmer did not specify an identifier. Among other possible uses, a null string can be used to indicate
anonymous declarations.

2.1.6 Stable Storage

Once the user has finished generating a representation with the generation interface, he or she is likely
to want to save the representation to some form of stable storage. The generation interface provides the
following routine for performing this function. The interpretation of key is implementation dependent, and

3A name is specified when primitive types are declared, and these are recorded in the type table. However, these names are
source language defined (e.g., int) rather than user or compiler defined, and they are not used to discriminate types. Indeed, their
only purpose is debugging support.

2.1. SUPPORTING COMPONENTS 15

the interface does not provide a mechanism for reading back in the representation. This functionality should
be provided by other code which manipulates the generated representation.

bool WriteRepresentation (String key)
This function writes the representation out to an implementation defined stable storage. The key

argument supplies an identifier, most likely a file name, for the written representation. When multi-
ple implementations are stacked, calling this routine will write out all the different representations.
Therefore, we suggest that each implementation modify the key somehow to uniquely identify its
output (e.g., a file name extension). The return value indicates success or failure, with the value from
multiple implementations combined with a logical or function.

16 CHAPTER 2. GENERATION INTERFACE

2.2 Source Language Specific Comments

This section records suggestions of how to translate specific source languages using the generation inter-
face. The generation interface directly reflects the syntax and semantics of C/C++ and Modula-3, so these
languages are likely to have fewer comments.

2.2.1 Modula-3

inc/dec

Modula-3’s inc and dec statements are not directly supported in the generation interface. User code
should represent them as evaled expressions.

assignment

In Modula-3 assignment is a statement, but the generation interface provides only an expression form
of assignment. User code should represent an assignment statement as an evaled assignment expres-
sion.

Refany and Address

Refany is represented as an unattributed pointer to void type. Address is represented as a pointer to
void type with the untraced attribute.

Safe modules

The language parser and user code is responsible for checking whether or not modules are safe. This
information is not passed through the generation interface.

2.2.2 Fortran 77

This section consists of a list of issues and our recommendations for handling them.
Generic functions

2.2. SOURCE LANGUAGE SPECIFIC COMMENTS 17

Fortran 77 allows a small amount of function overloading by permitting library writers to create
generic functions. The identification of generic functions is considered a front end issue, so the
generation interface only provides specific function names.

Declarations

Declarations in Fortran 77 are distributed across several statements rather than collected together as
expected by the generation interface. Basically, user code is responsible for collecting the distributed
information together and making the appropriate generation interface call. The following lists some
of the declaration statements that must be transformed:

– Implicit

Strings

User code should transform Fortran 77 strings into character arrays.

Intrinsic Functions

Some intrinsic functions are mapped to primitive operators, while others will have to be implemented
in a library. See Tables 2.3–2.4. [¡

At least once do loops.

Some older version of Fortran have at least once semantics for their do loops. The generation interface
does not directly provide these semantics, so user code will have to build equivalent code from the
available routines.

2.2.3 C++

Declarations in conditions and for loop initialization

C++ allows programmers to declare variables in conditions (i.e., the test in loops and in conditional
statements). The value of the variable comes from its initialization.

18 CHAPTER 2. GENERATION INTERFACE

2.3 Specifying Types

This section describes the routines which user code can use to pass type information to clients (see Table 2.2.
The routines for declaring type names can be found in Section 2.4. Type information is stored in the type
table (see Section 2.1).

Type Constructor Correspondences
Method Name C++ Modula-3 Fortran 77
TypePrimitiveCharacter char char character
TypePrimitiveInteger int integer integer
TypePrimitiveFixedPoint N/A N/A N/A
TypePrimitiveReal float/double real/longreal/extended real
TypePrimitiveVoid void null N/A
TypePrimitiveBoolean bool boolean logical
TypeArrayFixed [] array-of (),
TypeArrayOpen N/A array-of N/A
TypeArrayUnconstrained N/A N/A N/A
TypeEnum begin/end enum N/A
TypeRecord begin/end struct record N/A
TypeIncompleteRecord struct N/A N/A
TypeUnion begin/end union N/A equivalence
TypeIncompleteUnion union N/A N/A
TypeClass begin/end class object N/A
TypeIncompleteClass class N/A N/A
TypePointer N/A N/A
TypeIndirect & ref N/A
TypeOffset ::* N/A N/A
TypeProcedureType () procedure N/A
TypeSet N/A set-of N/A
TypeRange N/A [..] N/A
TypeBrand N/A branded N/A
TypePacked : bits-for N/A

Table 2.2: Correspondence between generation interface routine names and language type constructors.

2.3. SPECIFYING TYPES 19

Different languages employ slightly different versions of derived types and subtypes. A derived type
has all the associated operators of the parent type, but is not type compatible with other types derived from
the same parent. A subtype is much like a derived type, except that a subtype may have additional fields
and operators to those of the parent type. The generation interface provides type attributes and branding for
representing derived types. Subtyping is only available for classes.

2.3.1 Primitive Type Constructors

This section describes routines for declaring primitive language types. In term of type representation,
these routines specify the leaves of type DAGs. Different languages use different names for the same prim-
itive type, and some languages do not completely specify what their primitive types mean. The generation
interface requires user code to indicate what name and format their source code needs. The type name is
only useful for debugging.4 These routines may be called multiple times with different values to create
different primitive types (e.g., C’s short, int, and long are all integers).

The generation interface offers two mechanisms for defining primitive types. User code may either
specify the type with constraints on the number of bits used in the representation, or the user code may
use purely symbolic names for the size of the types. Symbolic names will be mapped to the natural size
supported by the target architecture. For symbolic types, their size is specified with a symbolic value from
the following enumerated list:

enum SymbolicSize cVeryShort, cShort, cNormal, cLong, cVeryLong ;

2.3.1.1 Sized Primitive Types

TypeID TypePrimitiveCharacter (Identifier name, CharacterFormat cf) Type

Ideally, the language should not specify a particular character format. However, many C programs
rely on the ANSI character set, and Java prescribes the use of Unicode. Hence, user code may use this
routine to specify the format (and implicitly the size) of the character set. If the language does not
require a particular format it may specify Any. The generation interface assumes a default of Any.

The generation interface provides the following enumeration:

enum CharacterFormat cAny, cAnsi, cEbcdic, cUnicode ;

4The name does not distinguish primitive types. Hence, implementations should be able to handle having the same primitive
type with two different names. Without a name, a debugger could not identify (to the user) the primitive types.

20 CHAPTER 2. GENERATION INTERFACE

TypeID TypePrimitiveInteger (Identifier name, int minBitSize, IntegerRepresentation rep) Type

This routine creates a primitive integer type in the symbol table.

Parameters:

name The name of the type.
minBitSize The minimum number of bits required to represent this type.
rep Machine representation for this integer type. Its value comes from the following enumer-

ated type.
enum IntegerRepresentation cUnsigned, cTwosComplement ;

TypeID TypePrimitiveSymbolicInteger (Identifier name, SymbolicSize size, IntegerRepresentation rep)
Type

This routine creates a primitive integer type in the symbol table.

Parameters:

name The name of the type.
size The symbolic size of the integer type. Our expectation is that for current machines,

cVeryShort equals eight bits, cShort equals sixteen bits, cNormal equals 32 bits,
cLong equals 64 bits, and cVeryLong equals 128 bits.

rep Machine representation for this integer type. Its value comes from the following enumer-
ated type.

enum IntegerRepresentation cUnsigned, cTwosComplement ;

TypeID TypePrimitiveFixedPoint (Identifier name, int minBitSize, int minScaleBits) Type

This routine creates a primitive fixed point type in the symbol table.

Parameters:

name The name of the type.
minBitSize The minimum number of bits required to represent this type.

minScaleBits Minimum number of bits by which to scale the representation. This parame-
ter may be negative. minBitSize includes minScaleBits.

TypeID TypePrimitiveReal (Identifier name, int minBitSize) Type

2.3. SPECIFYING TYPES 21

Parameters:

name The name of the type.
minBitSize The minimum number of bits required to represent this type.

Note that the format of real numbers is considered a back end issue.

TypeID TypePrimitiveSymbolicReal (Identifier name, SymbolicSize size) Type

Parameters:

name The name of the type.
size The symbolic size of the real type.

Note that the format of real numbers is considered a back end issue.

TypeID TypePrimitiveComplex (Identifier name, int realMinBitSize, int imaginaryMinBitSize)
Type

Parameters:

name The name of the type.
realMinBitSize The minimum number of bits required to represent the real part of this

type.
imaginaryMinBitSize The minimum number of bits required to represent the imaginary

part of this type.

Note that the format of real numbers is considered a back end issue.

TypeID TypePrimitiveVoid (Identifier name) Type

Void is the null type.

TypeID TypePrimitiveBoolean (Identifier name) Type

Boolean values are defined in Section 2.6.5.

22 CHAPTER 2. GENERATION INTERFACE

2.3.2 Type constructors

Languages such as C and C++ which provide weak type naming capabilities encourage programmers to
use type constructors when describing the type of non-type entities (e.g., variables) instead of type names.
Implementations may choose to handle such circumstances by internally creating an anonymous type for
the entity.
2.3.2.1 Array Type Constructors

These routines support the construction of arrays. In some languages, arrays carry knowledge of their length,
and in other languages (e.g., C and C++) they do not. Though knowing their length does impact data layout,
it does not affect type equivalence. Hence, we mark each array as to whether or not it must carry a length:

TypeID TypeArrayFixed (bool lengthField) RangeTypes indexType, Type elementType Type

This routine constructs a fixed length array.

Parameters:

indexType Indicates the type of the index expression (a list of ranges - for a single dimension
array it will be a list containing one range).

elementType Indicates the type of the array elements.

TypeID TypeArrayUnconstrained (bool lengthField) RangeTypes indexType, Type elementType
Type

This routine represents an unconstrained array type, as found in Ada. An unconstrained array
is an incomplete type, because it lacks an index range. Therefore, the type of indexType should not
include range information (i.e., the bounds should be NoBounds).

TypeID TypeArrayOpen (bool lengthField) Type elementType Type

This routine constructs an open array. The size of an open array is determined at runtime but
cannot change once set. An open array acts like an unconstrained array, where the only unknown
entity is the maximum index value.

2.3. SPECIFYING TYPES 23

2.3.2.2 Enumeration Type Constructors

The generation interface assumes that the front end has assigned a value to each enumeration item. This
approach frees implemenations of the interface from concern about source language specific vagaries in
enumeration element assigment.

NameID DeclEnumElement (Identifier id) Expression e EnumElementDecl

void TypeEnumBegin ()

TypeID TypeEnumEnd (Identifier id) Type

At the point that the TypeEnumEnd routine is called, the top of the stack (i.e., the portion added
since the TypeEnumBegin call) should contain only EnumElementDecl nodes.

2.3.2.3 Incomplete Type Constructors

The generation interface requires that all entities be defined before being used. This restriction keeps the
interface free of language specific name resolution rules. Unfortunately for recursive types, this restric-
tion implies that user code needs a mechanism for specifying a type before definining it completely. The
generation interface uses a mechanism similar to forward declarations found in many languages.

The generation interface allows the creation of incomplete types. An incomplete type does not carry any
additional type information, and therefore may be used anywhere a type is valid. User code should build
recursive type structures with recursive references pointing to the incomplete type. After the recursive type
is completely built, user code should use CompleteType to allow implementations of the interface to patch
up its representation to reflect the true recursive structure. Incomplete types are only to aid in conveying
the actual type structure through the interface. Hence, user code must associate complete type with each
incomplete type.

For languages such as Modula-3 which do not require forward declarations for mutually recursive types,
user code must generate incomplete types.

Incomplete types can be created at any time. Hence, user code can begin building an aggregate structure
and generate an incomplete type only if the aggregate type turns out to be recursive. However, the user code
must be careful to clean up the Type node on the stack.

TypeID TypeIncompleteType (Identifier name) Type

TypeID TypeCompleteType (TypeID tic, TypeID tc) Type

This routine completes the declaration of an incomplete type. It informs the implementation that
incomplete type tic is really the completed type tc. The Type node left on the stack corresponds to
tc.

24 CHAPTER 2. GENERATION INTERFACE

Parameters:

tic TypeID identifying incomplete type.
tc TypeID identifying complete type.

2.3.2.4 Aggregate Type Constructors

void TypeRecordBegin ()

TypeID TypeRecordEnd () Type

At the point that the TypeRecordEnd routine is called, the top of the stack (i.e., the portion
added since the TypeRecordBegin call) should contain only FieldDecl nodes. In C++, a class struct
is represented as a ClassType.

void TypeUnionBegin ()

TypeID TypeUnionEnd () Type

At the point that the TypeUnionEnd routine is called, the top of the stack (i.e., the portion added
since the TypeUnionBegin call) should contain only FieldDecl nodes. In C++, a class union is
represented as a ClassType

void Superclass (NameID class, AccessSpecifier as) SuperClass

Parameters:

class Indicates the super class.
as Indicates the access specifier (as defined by C++). For other languages, a suitable value for

as should be selected. The value for as comes from the following:
enum AccessSpecifier cPrivateAccess, cProtectedAccess,

cPublicAccess ;

void SuperclassBegin ()

void SuperclassEnd () SuperClasses

At the point that the SuperclassEnd routine is called, the top of the stack (i.e., the portion added
since the SuperclassBegin call) should contain only SuperClass nodes.

2.3. SPECIFYING TYPES 25

void SingleSuperclass (NameID class, AccessSpecifier as) SuperClasses

This routine is a shortcut for cases when only a single super class exists (as with single inheri-
tance).

void TypeClassBegin ()

TypeID TypeClassEnd () SuperClasses, Type

The generation interface uses its own variation of C++ and Modula-3 terminology when dis-
cussing objects. An object is an instance of a class datatype. The components of a class are called
members, which may be either data fields, routines, conversion functions, constructors, and destruc-
tors.

At the point that the TypeClassEnd routine is called, the top of the stack (i.e., the portion added
since the TypeClassBegin call) should contain only Declaration nodes.

2.3.2.5 Pointer Type Constructors

The routines in this section allow the construction of pointer types.

TypeID TypePointer () Type t Type

This routine constructs a pointer type which must be explicitly dereferenced.

TypeID TypeIndirect () Type t Type

This routine describes automatically dereferenced pointers. In Modula-3 these pointers are used
in implementing with aliases, var formals, etc.

TypeID TypeOffset (NameID aggregate) Type t Type

This routine represents a pointer-to-member as found in C++. A pointer-to-member is an offset
to a member of aggregate.

2.3.2.6 Procedure Type Constructors

A method is a procedure who is a member.

Parameters

26 CHAPTER 2. GENERATION INTERFACE

void FormalsBegin ()

void FormalsEnd () Formals

At the point that the FormalsEnd routine is called, the top of the stack (i.e., the portion added
since the FormalsBegin call) should contain only FormalDecl nodes.

Exceptions

void RaiseException (NameID exception) Raise

This routine represents a Modula-3 style exception, when specifying a procedure’s throw list.

void RaiseType (TypeID type) Raise

This routine represents a C++ style exception, when specifying a procedure’s throw list.

void RaisesAny () Raise

This routine indicates that the associated procedure can raise any exception. By default, C++
functions may raise any exception; Modula-3 procedures must explicitly indicate that they can gener-
ate any exception.

void RaisesNone () Raises

This routine indicates that the associated procedure cannot raise any exceptions. By default,
Modula-3 procedures cannot raise any exceptions; C++ procedures must explicitly indicate that they
cannot raise exceptions. Using this routine is equivalent to specifying RaisesBegin/RaisesEnd with-
out any Raise nodes in between.

void RaisesBegin ()

void RaisesEnd () Raises

At the point that the RaisesEnd routine is called, the top of the stack (i.e., the portion added
since the RaisesBegin call) should contain only Raise nodes.

void Signature () Formals f, Type ret, Raises r Signature

This function defines a routine signature. All signatures must indicate what exceptions it can
raise. For those languages which do not support exceptions, they should simply call RaiseNone.

TypeID TypeProcedure () Signature s Type

2.3. SPECIFYING TYPES 27

2.3.2.7 Set Type Constructors

The routines in this section permit the construction of set types.

TypeID TypeSet () Type type Type

2.3.2.8 Range Type Constructors

Bounds

Bounds specify a minimum and maximum value. Bounds are primarily used for specifying the minimum
and maximum for range types. Support for defining bounds varies between languages, so the minimum and
maximum values are arbitrary expressions. We also use ranges to represent array indicies. For languages
(such as Ada) that support true multi-dimensional arrays, ranges may be chained together since a range type
contains a single bound. However, the common case for C/C++ and Modula-3 is to use a single range.

void Bound () Expression min, Expression max Bound

This routine creates a single bounds which can be chained together with a begin/end pair.

void BoundsBegin ()

void BoundsEnd () Bounds

At the point that the BoundsEnd routine is called, the top of the stack (i.e., the portion added
since the BoundsBegin call) should contain only Bound nodes.

void Bounds (Expression min, Expression max) Bounds

This routine is a short cut for specifying a single dimensional bounds specification.

void Nobounds () Bound

This routine pushes onto the stack a special Bounds that connotes that no bounds have been
specified. This value may be used to construct arrays without bounds.

TypeID TypeRange () Type basetype, Bound b Type

This routine creates a range type with a single bound.

28 CHAPTER 2. GENERATION INTERFACE

void RangeBegin ()

void RangeEnd () RangeTypes

At the point that the RangeTypeEnd routine is called, the top of the stack (i.e., the portion added
since the RangeTypeBegin call) should contain only RangeType nodes.

2.3.2.9 Branded Type Constructors

Branded type constructors are unique in that though they do indeed introduce a new type, they do not change
the structure of the type. Branding is useful in languages with structural equivalence (e.g., Modula-3).

TypeID TypeBrand () Type t, Expression b Type

This routine creates a new type which is structurally identical to type t.

2.3.2.10 Packed Type Constructors

The generation interface treats packed types a unique types. For C/C++ this distinction between types would
not be necessary. However, other languages such as Modula-3 clearly distinguish between a base type and
its packed version. This distinction implies that user code must insert explicit conversions between the base
type and packed type.

TypeID TypePacked () Type basetype, Expression bitSize Type

This routine builds a new type which compresses type basetype into bitSize bits.

2.3.2.11 Alias Type Constructors

C++ provides a type constructor for defining alias. C++ calls these aliases references. An alias does not
have memory space of its own, but rather refers to another entity’s memory.

I’ve considered representing references as an alias declaration which looks better, but return types can
be references. I’ve also considered treating references as indirect pointers. However, this approach might
hurt alias analysis.

TypeID TypeAlias () Type type Type

2.3.3 Type Attributes

This section describes how to associate an attribute with a type. Attributes are non-type information that

2.3. SPECIFYING TYPES 29

is associated with a type. Attributes are associated with a type rather than a TypeDecl because they can be
associated with just a part of a type declaration. Attributes should generally not affect type equivalence (ex-
cept perhaps in some minor cases). The notion of associating an attribute with a type has strong implications
for the implemenation. Ideally, equivalent types would share the same physical representation. However,
types that differ only in attributes should be equivalent, yet cannot share attributes.

The possible attributes are provided by the following enumeration:
enum TypeAttribute cTraced, cUntraced, cConstantType, cVolatile,

cOrdered, cUnordered ;

where:

cTraced Supports Modula-3’s traced data types.

cUntraced Supports Modula-3’s untraced data types. This is the default attribute for all types.

cConstantType Indicates that instances of this type have a constant value. By default, instances of a
type are mutable.
One could reasonably argue that the immutability of a value is not a property (or attribute) of a
type. However, C++’s typedef construct permits immutability to be included with the type.

cVolatile Marks a value which may be changed by something which a compiler cannot detect.

cOrdered For types with substructures, this attribute indicates if the source language requires the
data layout to preserve the order of substructures (declaration order is assumed).

cUnordered For types with substructures, this attribute indicates if the type may be layed out in an
arbitrary order.

void SetTypeAttribute (TypeAttributes ta) Type t Type

This routine associates an attribute with a type.

30 CHAPTER 2. GENERATION INTERFACE

2.4 Generating Declarations

This section covers how declarations are handled by the generation interface. Declarations are one way
of binding attributes (or values) to an identifier (or name). The generation interface divides a declaration
into three parts: a name, a value, and miscellaneous attributes. Anonymous declarations exist, but they
behave as though the system creates a unique identifier for the declaration. The generation interface supports
the declaration of types, values (e.g., variables and record fields), labels, procedures, and exceptions (for
Modula-3). The interface also supports a variety of additional attributes.

2.4.1 Declaring Types

NameID DeclType (Identifier name) Type t TypeDecl
This routine creates a new type by making an entry for it in the symbol table.

Implementation Note: To support our type matching scheme, this routine should perform an extra
step. It should first brand t with aNameBrandType, and then use the updated type for the declaration.

NameID NameType (Identifier name, TypeID type) TypeDecl

This routine creates an alias for a type which may already have an entry in the symbol table. This
routine implements the semantics of C++’s typedef construct. Notice the use of TypeID rather than
Type.

Implementation Note: If the type already has a name brand, then this name should simply be
added to the existing name brand. Otherwise, a name brand should be created for it.

2.4.1.1 Forward Declarations

NameID ForwardDeclProcedure (Identifier name) Signature RoutineDecl

In Java terms, this routine has been deprecated. Use SpcfyProcedure instead.

2.4.1.2 Opaque Types

Opaque types are type names for which the full type structure is unknown. Instead, we know that the type
is a subtype of the specified type.

2.4. GENERATING DECLARATIONS 31

Modula-3 distinguishes between an opaque declaration and a partial revelation. This distinction is not
important to the generation interface, so a single routine exists. From the generation interface’s point of
view, an opaque declaration creates a name for a partially specified type.

Fully revealed opaque types are really just a type declaration, and should be represented as such.
Note that implementations will most likely wish to create a special type constructor that marks an opaque

type as representing the super type.

NameID DeclOpaque (Identifier name, TypeID superType) TypeDecl

This routine handles the declaration of opaque types and partial revelations. An opaque type is a
Modula-3 construct whereby a type is only specified as being a subtype of another type. Additional
information may be provided by partial revelations, which merely provide a more specific super type.

We considered associating partial revelations with the original opaque declaration. However, the
interface does not need to do error checking, so this associationg is not necessary.

A complete revelation provides the full type definition, and is therefore represented as a normal
type declaration.

Implementation suggestion: An opaque declaration associates a name with a type. However, the
name is not an instance of the type, but rather an instance of a subtype of that type. Hence, we
recommend creating a subtype type constructor. The symbol table entry for an opaque type may then
point to a subtype node in the type table. Note that the generation interface does not provide any
routines to directly generate a subtype type node.

2.4.2 Declaring Values

Many source languages optionally allow programmers to give a default value (default value for formal
parameters and initial value for variables) to a named values in its declaration. Since the generation interface
requires an expression corresponding to the default value to be on the stack, user code should use the
noExpression routine to push a special expression onto the stack.

Implementation note: Implementations may choose to represent initial values for variables and formals
as a simple assignment following the declaration. Since the generation interface is intended to support a
variety of intermediate representations, it provides as much support for the original syntax as possible and
allows implementations to choose how best to represent initial values. Moreover, an initialization of a C++
reference type is different from an assignment to it.

32 CHAPTER 2. GENERATION INTERFACE

NameID DeclVariable (Identifier name) Type t, Expression initialValue ValueDecl
This routine declares a variable.

Parameters:

name The variable’s name.
t The variable’s type.
initialValue The variable’s initial value.

NameID DeclTemporary (Identifier name) Type t, Expression initialValue ValueDecl

This routine declares a temporary variable. We provide this routine to distinguish programmer
declared variables and compiler created variables.

Parameters:

name The variable’s name.
t The variable’s type.
initialValue The variable’s initial value.

NameID DeclFormal (Identifier name, Mode m) Type t, Expression defaultValue ValueDecl

This document uses the term argument to refer to an actual parameter and formal to refer to a
formal parameter.

Parameters:

name The formal’s name.
m The formal’s parameter mode.
t The formal’s type.
defaultValue The formal’s default value.

Implementations of the generation interface must provide an enumerated list of parameter mode
options, such as the following:

enum Mode cInValue, cValue, cReference, cValueResult, cResult ;

where:

cInValue Pass-by-value but the formal’s value may not be altered. This mode is used for Ada.

2.4. GENERATING DECLARATIONS 33

cValue Pass-by-value but the formal’s value may be altered. This mode is the default for
Modula-3 and the only one for C/C++.

cReference Formal parameter is an alias for the argument. Therefore, an update to the formal
parameter is a direct update the argument (actual parameter) as well. This mode is the only
parameter mode for Fortran and represents the var mode for Modula-3.

cReadOnly Pass-by-reference, but the value cannot be updated. This mode supports Modula-
3’s readonly mode, and is efficient for large data structures.

cValueResult Represents copy-in and copy-out semantics. This mode is used for Ada’s inout
mode.

cInOut Represents Ada’s inout keyword, which allows implementations to choose between
Reference and ValueResult.

cResult Represents Ada’s out mode, which allows implementations to choose between Refer-
ence and ValueResult.

Handling C++’s parameter modes is awkward. In C++, programmers may declare a formal to be
constant (i.e., pass-by-inValue) or to be a reference (i.e., pass-by-reference). Unfortunately, this dec-
laration may be buried in the type declaration used in the definition of the formal. These unfortunate
declaration semantics requires searching through the symbol table to determine the parameter passing
mode, and would require that clients recognize the duplication and ignore it. Hence, the generation
interface dictates that for C++, all calls to declFormal should use pass-by-value.

void UnknownFormals () ValueDecl

This routine indicates that the remainder of a routine’s signature has an unknown number of
formal parameters. Hence, this routine implements C++’s “...” construct.

void AlternateReturnFormal () ValueDecl

Fortran provides an unusual version of a return statement called an alternate return. An alternate
return returns to one of possibly many line numbers, where the possible return locations are provided
in special procedure parameters. The Fortran syntax for these special parameters is an asterik (),
which this routine represents.

Alternate return parameters may occur anywhere in the parameter list; however, the alternate
return construct views these special parameters as forming a simple linear list from 1 to n.

NameID DeclField (Identifier name) Type t, Expression initialValue FieldDecl

34 CHAPTER 2. GENERATION INTERFACE

This routine declares a field, which is a component of an aggregate data structure.

Parameters:

name The field’s name.
t The field’s type.
initialValue The field’s initial value.

NameID DeclConstant (Identifier name) Type td, Expression value ConstantDecl

This routine declares a constant value. A constant value does not require storage to be allocated,
which is different from other declarations with a constant attribute.

Parameters:

name The constant’s name.
t The contant’s type.
value The contant’s value.

2.4.3 Declaring Procedures and Methods

Unlike most other declared entities, procedures are generally not fully declared at the point of their
declaration. The generation interface refers to a function declaration without a body (i.e., a C/C++ prototype
or aModula-3 procedure interface) as a specification, and a function declaration with a body as a declaration.

Hence, the compiler or linker must ultimately resolve all function specifications back to their correspond-
ing declarations. For Modula-3 this process is straightforward because of the well-structured import/export
mechanism. For C/C++, this process is a little more work.

C++ ([2], p. 138) and Modula-3 ([1], p. 27) define slightly different type matching rules for proce-
dures. Since the generation interface currently supports only statically typed languages and then only when
semantic resolution has already been done, we ignore these differences.

Initializers
C++ allows a list of initializers to be provided along with constructors. These routines handle the represen-
tations of initializers.

2.4. GENERATING DECLARATIONS 35

void Initializer (NameID initializedEntity) ArgumentList al Initializer

void InitializersBegin ()

void InitializersEnd () Initializers
At the point that the InitializersEnd routine is called, the top of the stack (i.e., the portion added

since the InitializersBegin call) should contain only ArgumentList nodes.

void NoInitializers () Initializers

This routine creates an empty initializer list.

Routine Specification
A specification indicates the name and type of a procedure but does not provide its body.

NameID SpcfyProcedure (Identifier name) Signature s RoutineDecl

NameID SpcfyNestedProcedure (Identifier name, int level, NameID parentRoutine) Signature s
RoutineDecl

NameID SpcfyMethod (Identifier name) Signature s RoutineDecl

NameID SpcfyFriend (Identifier name) Signature s RoutineDecl

NameID SpcfyTypeConversion (Identifier name) Signature s RoutineDecl

NameID SpcfyConstructor (Identifier name) Signature s, Initializers i RoutineDecl

NameID SpcfyDestructor (Identifier name) Signature s RoutineDecl

Routine Declaration
A routine declaration includes the routine’s body.

NameID DeclProcedure (Identifier name, int level, NameID parentRoutine) Signature s, Statement
body RoutineDecl

NameID DeclMethod (Identifier name, TypeID class) Signature s, Statement body RoutineDecl

The class type is specified if the method is defined outside the class. Otherwise, use NoType.

NameID DeclMethodReference (Identifier name, NameID proc) Signature s RoutineDecl

This routine supports Modula-3 style method definition in which a method is defined by a top
level procedure.

36 CHAPTER 2. GENERATION INTERFACE

NameID DeclOverride (Identifier name, NameID proc) Signature s RoutineDecl

A Modula-3 override looks a lot like a method definition; however, its affects the method table
differently.

NameID DeclTypeConversion (Identifier name, TypeID class) Signature s, Statement body
RoutineDecl

The class type is specified if the method is defined outside the class. Otherwise, use NoType.

NameID DeclConstructor (Identifier name, TypeID class) Signature s, Initializers, Statement
body RoutineDecl

The class type is specified if the method is defined outside the class. Otherwise, use NoType.

NameID DeclDestructor (Identifier name, TypeID class) Signature s, Statement body RoutineDecl

The class type is specified if the method is defined outside the class. Otherwise, use NoType.

NameID DeclEntry (Identifier name, NameID enclosingProcedure) Signature s, Statement s1
Statement

Fortran 77 allows procedures to have multiple entry points. The handling of variables for multiple
entry points is messy at best. The generation interface uses Fortran 77 semantics. Since each entry
can have its own argument list, the location (on the stack) of a parameter depends upon which entry
point into the procedure was called. Moreover, parameters for one entry point may not be defined by
another in which case the latter entry point cannot execute code which refers to such parameters.

The operation of this routine is different from most routines in the generation interface. In order
to mark where the entry point begins, the generation interface requires that the first statement in the
body of the entry be passed in s1. Instead of returning a RoutineDecl like the other routines in
this section, it returns a statement, which is in fact s1. The RoutineDecl created by this routine is
accessible through the NameID returned by this routine.

Parameters:

name Name of the entry point.
s Signature of the entry point.
enclosingProcedure The procedure which encloses this entry point.

2.4. GENERATING DECLARATIONS 37

s1 The first statement in entry. Note that s1 is only the first statement executed, not the entire
body of the routine as used in other routine declarations.

2.4.4 Declaring Exceptions

The routines in this section are for declaring exceptions. Modula-3 has entities of Exception type; C++
never actually creates an exception entity. Rather than pass an entity of type Exception, when a C++ program
throws an exception, it passes the arguments to an exception handler.

NameID DeclException (Identifier name, TypeID type) ExceptionDecl
For exceptions without an argument, use NoType as the type argument.

2.4.5 Declaring Labels

C and C++ treat case alternatives as labels. This bizarre notion stems from their excessively low-level
view of the switch statement. The generation interface handles case alternatives differently from general
labels.

NameID DeclLabel (Identifier i) LabelDecl

2.4.6 Code Units

A code unit groups related code. Code units include modules and namespaces.
2.4.6.1 Namespace

A C++ namespace can be thought of as a named scope.

void DeclNamespaceUnitBegin ()

NameID DeclNamespaceUnitEnd (Identifier name) NamespaceDecl nd

At the point that the DeclNamespaceUnitEnd routine is called, the top of the stack (i.e., the
portion added since the DeclNamespaceUnitBegin call) should contain only Declaration nodes.

38 CHAPTER 2. GENERATION INTERFACE

2.4.6.2 File

These routines are meant for demarcating a C/C++ file scope. These routines are not meant for annotating a
graph with which source file a particular piece of code originates from.

void FileUnitBegin ()

void FileUnitEnd (String name) Unit

At the point that the FileUnitEnd routine is called, the top of the stack (i.e., the portion added
since the FileUnitBegin call) should contain only Declaration nodes.

2.4.6.3 Interface

void DeclInterfaceUnitBegin ()

NameID DeclInterfaceUnitEnd (Identifier name) InterfaceDecl

At the point that the DeclInterfaceUnitEnd routine is called, the top of the stack (i.e., the portion
added since the DeclInterfaceUnitBegin call) should contain only Declaration nodes.

2.4.6.4 Module

void ImportUnit (NameID interface, Identifier name) Import

This routine imports interface i as name. If name is NoName, then the interface is not renamed.

void ImportMember (NameID interface, NameID declaration) Import

This routine imports a single member (declaration) of interface. Note that this routine
accepts more information (i.e., interface) than it strictly needs.

void ImportsBegin ()

void ImportsEnd () Imports

At the point that the ImportsEnd routine is called, the top of the stack (i.e., the portion added
since the ImportsBegin call) should contain only Import nodes.

void ExportsBegin ()

void ExportsEnd () Exports

2.4. GENERATING DECLARATIONS 39

At the point that the ExportsEnd routine is called, the top of the stack (i.e., the portion added
since the ExportsBegin call) should contain only Identifier nodes.

void DeclModuleUnitBegin ()

NameID DeclModuleUnitEnd (Identifier name) Unit

At the point that the DeclModuleUnitEnd routine is called, the top of the stack (i.e., the portion
added since the DeclModuleUnitBegin call) should contain only Declaration nodes.

2.4.7 Setting Declaration Attributes

Declarations may have attributes associated with them. The current design specifies the attributes in an
enumerated type.

An alternate design would use a separate routine for each attribute, so that a compiler/linker could
catch non-compliance to the interface. However, it seems unnecessarily verbose when compared to a single
function with an enumerated type

The attributes break down into roughly five categories. The first group of attributes define which entities
have values that can change. The second group of attributes indicate in what part of memory an entity should
be located. The most important aspect of the location decision is whether or not the entity’s value is saved
across procedure calls. The third group of attributes determine the visibility of the entity. These attributes
correspond to C/C++’s notion of linkage. The remaining two groups of attributes control method visibility
and overloading.

The DeclAttributes enumerated type is defined as follows:
enum DeclAttributes cConstantDecl, cMutable, cLocationStack,

cLocationRegister, cLocationStatic, cLocationInline, cLinkageLocal,

cLinkageFile, cLinkageGlobal, cLinkageForeign, cPublic, cProtected,

cPrivate, cAbstract, cNonvirtual, cVirtual, cNoConstructorCalls,

cNoDestructorCalls, cDestructorCalls ;

where:

Entity mutability
The mutability attributes only apply to variables, fields, and routines.

40 CHAPTER 2. GENERATION INTERFACE

cConstantDecl Indicates that an entity is a constant. This attribute is equivalent to the type attribute
of the same name, but this one is preferred.

cMutable Indicates than an entity is not a constant. This is the default value for mutability. It only
needs to be explicitly specified to indicate that a component of a constant aggregate entity is not
constant (as in C++).

Entity location
The location attributes only apply to variables and fields.

cLocationStack Marks a data value as being locally allocated (i.e., on the stack). Local allocation
is the default form of allocation and so seldom (if ever) needs to be explicitly specified. This
attribute represents C/C++’s auto construct.

cLocationRegister Recommends that a value be assigned to a register. If the value cannot be as-
signed to a register, it should be allocated on the stack.

cLocationStatic Indicates that an entity is assigned to permanently allocated space.

cLocationInline Recommends that a procedure be inlined. This attribute applies only to procedures
and methods.

Entity visibility
The entity visibility attributes apply to all declarations.

cLinkageLocal Indicates that an entity is visible only within its current scope. This is the default
linkage.

cLinkageFile Indicates that the entity is visible only within its file scope. This attribute is intended
to represent one meaning of the C/C++ static construct. Admittedly, this attribute should be
redundant with linkageLocalwhen at the file scope level. However, this captures the notion
of C/C++’s static construct; whereas, linkageLocal should never be used.

cLinkageGlobal Indicates that an entity has globally visible in the program. This attribute imple-
ments the common case of C/C++’s extern construct.

cLinkageForeign Indicates that an entity is visible to a different source language. This attribute
eliminates C++’s overloading of the extern keyword.

Method visibility
The method visibility attributes potentially apply to all declarations, but for currently support
languages, the attributes only affect fields and methods.

cPublic Specifies that an identifier is visible outside of its namespace. This value is the default.

2.4. GENERATING DECLARATIONS 41

cProtected Specifies than an identifier is visible only within its namespace. This attribute may only
be used for class members, in which case it denotes the semantics of C++’s protected construct.

cPrivate Specifies that an identifier is visible only within its namespace.

Method overloading
The method overloading attributes apply only to methods.

cAbstract Marks a method as undefined for the current class, and therefore requiring definition in
derived classes. By default, the generation interface assumes that all methods are fully defined.

cNonvirtual Indicates that a method may not be overloaded.

cVirtual Indicates that a method may be overloaded. This value is the default.

Automatic methods
The automatic method attributes apply only to class declarations.

cNoConstructorCalls Marks a class as not requiring automatic invocation of its constructor. This is
the default value.

cConstructorCalls Marks a class as requiring automatic invocation of its constructor.

cNoDestructorCalls Marks a class as requiring automatic invocation of its destructor. This is the
default value.

cDestructorCalls Marks a class as requiring automatic invocation of its destructor. Note that auto-
matic constructor and destructor are indicated separately in order to support Java which does not
have destructors.

cMainProcedure Marks the procedure as the main procedure in the program.

void SetDeclarationAttribute (DeclAttributes da) Declaration d Declaration

This routine assigns attribute da to declaration d. For those attributes which do not require a
value, use NoExpression.

42 CHAPTER 2. GENERATION INTERFACE

2.5 Generating Statements

This section describes the routines available for representing statements.

2.5.1 Block Statements

Different programming languages have different rules about when a block opens a scope. The generation
interface separates the issues of grouping statements from that of declaring scopes (see Section 2.1.4.1.
Hence, none of the routines in this section imply the creation of a new scope. A block of statements may
have an associated scope (e.g., a procedure with local variables). Client code is responsible for associating
a scope with a block of statements.

void StmtBlockBegin ()

void StmtBlockEnd () Statement

At the point that the StmtBlockEnd routine is called, the top of the stack (i.e., the portion added
since the StmtBlockBegin call) should contain only Statement nodes.

2.5.2 Labeled Statements

This section describes routines for representing labeled statements.

void StmtLabel () LabelDecl, Statement LabelStmt

2.5.3 Conditional Statements

This section describes routines for representing decision statements. This section also defines routines
for specifying conditions.
2.5.3.1 If statements

The routines in this section handle if statements. The interface does not provide direct support for else-if
clauses, so these clauses will have to be transformed to nested if statements. The design of these routines

2.5. GENERATING STATEMENTS 43

require that for nested if statements, outer if statements remain on the stack until inner if statements have
been processed.

void StmtIfThenElse () Expression e, Statement s1, Statement s2 Statement

The expression representing the test must be of boolean type. If the statement does not have an
else clause, then a null statement should be used for s2.

void StmtArithmeticIf (NameID lessLabel, NameID equalLabel, NameID moreLabel) Expression
e Statement

This routine implements the semantics of Fortran 77’s arithmetic if statement. The expression
representing the test must be of boolean type.

2.5.3.2 Multi-way Branch Statements

These routines perform a single test and jump to one of potentially many points in the program.

void LabelsBegin ()

void LabelsEnd () Labels

At the point that the LabelsEnd routine is called, the top of the stack (i.e., the portion added
since the LabelsBegin call) should contain only LabelRef nodes.

void StmtComputedGoto () Labels l, Expression e Statement

This routine implements the semantics of Fortran 77’s computed goto construct. It is similar to
a switch statement, except that the target labels are not limited to a single statement of code.

void StmtAssignLabel (NameID value, NameID label) Statement

This routine implements the semantics of Fortran 77’s assign construct.

Note that the semantics of this operation could be represented with a type conversion from integer
to label. However, this would require creating variables of type label. Since labels are deprecated, this
more direct representation has been chosen.

void StmtAssignedGoto () Expression e, Labels l Statement

This routine implements the semantics of Fortran 77’s assigned goto construct.

44 CHAPTER 2. GENERATION INTERFACE

2.5.3.3 Case/Switch Statements

The generation interface supports two types of multiple test conditional statement. The first form is a well
structured statement, as found in Modula-3. We refer to this form as a case statement. The body of a
case statement consists of blocks of code, each of which when paired with their case keys is called a case
alternatives. Each time a program passes through a case statement, it will execute zero or one of the case
alternatives. A case alternative is executed when the value of the conditional expression matches one of its
case keys. The other form matches the unstructured form of C/C++’s switch statement. This form still uses
case keys, but does not separate the switch statement body into case alternatives.

The generation interface follows Modula-3’s terminology of case statement. Each unique body of code
within a case statement is termed a case alternative, and each case alternative may have more than one case
key. A case key is the value which is compared against the expression at the top of the case statement.

void CaseKeyBegin ()

void CaseKeyEnd () CaseKeys

At the point that the CaseKeyEnd routine is called, the top of the stack (i.e., the portion added
since the CaseKeyBegin call) should contain only Expression nodes.

void CaseKey () Expression e CaseKeys

The routines CaseKeyBegin and CaseKeyEnd build a list of case keys. The CaseKey routine is
a short cut for building a list with one member.

void CaseAlt () CaseKeys ck, Statement s CaseAlt

void CaseOthersAlt () StatementList CaseAlt

This routine represents the default case alternative.

void CaseBodyBegin ()

void CaseBodyEnd () CaseAlts

The routines CaseBodyBegin and CaseBodyEnd build the body of a case statement.

At the point that the CaseBodyEnd routine is called, the top of the stack (i.e., the portion added
since the CaseBodyBegin call) should contain only CaseAlt nodes.

void StmtCase () Expression e, CaseAlts Statement

2.5. GENERATING STATEMENTS 45

This routine implements the semantics of Modula-3’s case statement, in which the order of the
case alternatives does not matter. The expression representing the test must be of boolean type.

void StmtSwitch () Expression e, Statement s Statement

This routine implements the semantics of C/C++’s switch construct. The expression representing
the test must be of boolean type.

2.5.3.4 Typecase

Modula-3’s typecase statement allows a conditional expression based on an expressions type. The routines
provided for handling a typecase mirror those provided for the case statement.

void TypecaseKey (TypeID type, NameID variable) TypecaseKey

If variable is NoName, then no variable has been specified.

void TypecaseKeyBegin ()

void TypecaseKeyEnd () TypecaseKeys

At the point that the TypecaseKeyEnd routine is called, the top of the stack (i.e., the portion
added since the TypecaseKeyBegin call) should contain only TypecaseKeys nodes.

void TypecaseAlt () TypecaseKeys tck, Statement s TypecaseAlt

void TypecaseBodyBegin ()

void TypecaseBodyEnd () TypecaseAlts

At the point that the TypecaseBodyEnd routine is called, the top of the stack (i.e., the portion
added since the TypecaseBodyBegin call) should contain only TypecaseAlt nodes.

void StmtTypecase () Expression e, TypeCaseAlts Statement

This routine implements the semantics of Modula-3’s case statement. In a typecase the order of
the case alternatives does matter. The expression representing the test must be of boolean type.

46 CHAPTER 2. GENERATION INTERFACE

2.5.4 Looping Statements

void StmtWhileLoop () Expression e, Statement s Statement
The expression representing the test must be of boolean type.

void StmtRepeatWhileLoop () Statement s, Expression e Statement

The expression representing the test must be of boolean type.

void StmtRepeatUntilLoop () Statement s, Expression e Statement

The expression representing the test must be of boolean type.

void StmtLoop () Statement s Statement

void StmtDoLoop (NameID index) Expression first, Expression last, Expression step, Statement
s Statement

This routine represents an iterating loop. When step is negative, the loop terminates when index
becomes lower than last. Otherwise, the loop terminates when index exceeds last. The first, last,
and step expressions are evaluated once, at entry to the loop.

Parameters:

index Variable (or other assignable name) being incremented.
first Initial value of index.
last Maximum value of index.
step Amount by which to increment index each time through the loop.

This routine follows Fortran 77 semantics, which requires that the index be updated. However,
some source languages do not guarantee that the value of the index is meaningful after the loop
finishes, which provides additional opportunities for optimizations. For such source languages, user
code may create a local (i.e., temporary) variable for the loop index. In this case, the index will have
no uses beyond the loop, so client code may optimize more aggressively.

void StmtForLoop () Expression d, Expression e, Expression e, Statement s Statement

2.5. GENERATING STATEMENTS 47

The expression representing the test must be of boolean type.

2.5.5 Branch Statements

This section lists branching statements. The statements included here are simple branches, Fortran 77
has several elaborate branch statements which may be found in Section 2.5.

void StmtBreak () Statement

void StmtContinue () Statement

void StmtGoto (NameID label) Statement

void StmtReturn () Expression e Statement
If the return statement does not have an expression, then NoExpression should be used.

void StmtExit () Expression e Statement

This routine terminates a program. If no expression is specified, NoExpression should be used.

void StmtThrow (NameID value) Statement

This routine throws a C++ style exception and branches to an appropriate exception handler.

void StmtRaise (NameID exception) Expression e Statement

This routine raises a Modula-3 style exception and branches to an appropriate exception handler.
If no expression is available, NoExpression should be used.

void StmtAlternateReturn () Expression e Statement

This routine implements the semantics of Fortran 77’s alternate return construct. The expression
indexes the special alternate return parameters.

48 CHAPTER 2. GENERATION INTERFACE

2.5.6 Exception Handling Statements

Though exception handling is similar in Modula-3 and C++, The generation interface provides separate
routines for these languages. The primary difference is that a Modula-3 exception passes an entity of type
Exception, whereas a C++ exception passes an argument list for an exception handler. The syntax of their
respective try blocks is also slightly different.

Modula-3 style exceptions

void ExceptionKey (NameID e) ExceptionKey

void ExceptionKeyBegin ()

void ExceptionKeyEnd () ExceptionKeys
At the point that the ExceptionKeyEnd routine is called, the top of the stack (i.e., the portion

added since the ExceptionKeyBegin call) should contain only ExceptionKey nodes.

void ExceptionHandler () ExceptionKeys eks, Statement s Handler

NameID ExceptionHandlerWithArgument (NameID exception, Identifier i) Statement s Handler

This routine represents an exception with an argument. Generation interface implementations are
responsible for generating the declaration for i.

void ElseHandler () Statement s Handler

This routine implements Modula-3’s else handler, which is called for any exception that reaches
it.

void HandlerBegin ()

void HandlerEnd () Handlers

Each try block has a list of elements of type Handler associated with it.

At the point that the HandlerEnd routine is called, the top of the stack (i.e., the portion added
since the HandlerBegin call) should contain only Handler nodes.

2.5. GENERATING STATEMENTS 49

void StmtTryExcept () Statement s, Handlers hs Statement

This routine implements Modula-3’s tryExcept construct.

void StmtTryFinally () Statement s1, Statement s2 Statement

This routine implements Modula-3’s tryFinally construct.

C++ style exceptions

void CatchException () FormalDecl vd, Statement stmt Catch

void CatchAll () Statement stmt Catch

This routine represents a catch clause that can handle any exception. This routine represents
C++’s “...” notation.

void CatchBegin ()

void CatchEnd () Catchers

Each try block has a list of elements of type Catch associated with it.

At the point that the CatchEnd routine is called, the top of the stack (i.e., the portion added since
the CatchBegin call) should contain only Catch nodes.

void StmtTry () Statement s, Catchers cs Statement

This routine implements C++’s try construct.

2.5.7 Miscellaneous Statements

void StmtSpcfyUsing (NameID id) Statement

void StmtUsingDirective (NameID namespace) Statement

50 CHAPTER 2. GENERATION INTERFACE

NameID StmtWithAlias (Identifier id) Expression e, Statement s Statement

void StmtEval () Expression e Statement
This routine converts an expression to a statement. It executes an expression and then discards

the result. Hence, the expression is being executed only for its side effect. This routine implements
Modula-3’s eval construct and is used to represent C/C++’s implicit conversion from an expression to
a statement.

void StmtDeclStmt () Declaration d Statement

This routine converts a declaration to a statement, which allows a statement block to consist of
all statements.

void StmtNull () Statement

This routine represents a null statement.

2.6. GENERATING EXPRESSIONS 51

2.6 Generating Expressions

This section shows the interface routines used to specify expressions. Note that the interface implementation
is responsible for identifying type specific versions of the operators.

Operators can represent user-defined functions in languages which allow operators to be overloaded
(e.g., C++). In the generation interface, operators represent only language defined operators, not overloaded
operators. Users should translate overloaded operators to function calls.

Tables 2.3, 2.4, and 2.5 show the correspondences between the interface’s routines and operators of a
few languages. This table shows correspondences between operators which programmers may use and the
routines of the generation interface. However, user code may use operators which the programmer cannot
directly use (e.g., C/C++ implicitly truncate real numbers but users of this interface must explicitly call a
conversion routine).

52 CHAPTER 2. GENERATION INTERFACE

Operator Correspondences– Part I
Routine Name C++ Modula-3 Fortran 77

Assignment Operators
ExpAssignment = := =

Arithmetic Operators
ExpPositive + + N/A
ExpNegative
ExpAbsoluteValue N/A abs abs, ?abs
ExpMinimum N/A min min, ?min
ExpMaximum N/A max max, ?max
ExpAddition + + +
ExpSubtraction
ExpMultiplication
ExpDivision / / /
ExpModulus N/A N/A N/A
ExpRemainder % mod mod, ?mod
ExpExponentiation N/A N/A
ExpPreDecrement N/A N/A
ExpPreIncrement ++ N/A N/A
ExpPostDecrement N/A N/A
ExpPostIncrement ++ N/A N/A

Relational Operators
ExpEquality == = .EQ.
ExpNotEqual != # .NE.
ExpGreater .GT.
ExpGreaterEqual .GE.
ExpLess .LT.
ExpLessEqual .LE.

Bitwise Operators
ExpBitComplement N/A N/A
ExpBitAnd & N/A N/A
ExpBitXor N/A N/A
ExpBitOr N/A N/A
ExpBitShiftLeft N/A N/A
ExpBitShiftRight N/A N/A

Table 2.3: Correspondence between generation interface ExpRoutine names and language operators. Exp-
Continued in Table 2.4.

2.6. GENERATING EXPRESSIONS 53

Operator Correspondences– Part II
Routine Name C++ Modula-3 Fortran 77

Compound Assignment Operators
ExpMultiplicationAssignment N/A N/A
ExpDivisionAssignment /= N/A N/A
ExpRemainderAssignment %= N/A N/A
ExpAdditionAssignment += N/A N/A
ExpSubtractionAssignment N/A N/A
ExpBitShiftRightAssignment = N/A N/A
ExpBitShiftLeftAssignment = N/A N/A
ExpBitAndAssignment &= N/A N/A
ExpBitXorAssignment N/A N/A
ExpBitOrAssignment N/A N/A

Logical Operators
ExpNot ! not .NOT.
ExpAnd N/A N/A .AND.
ExpOr N/A N/A .OR.
ExpAndConditional && and N/A
ExpOrConditional or N/A
ExpArithmeticIf ?: N/A N/A

Set Operators
ExpSetEquality N/A = N/A
ExpUnion N/A + N/A
ExpDifference N/A N/A
ExpIntersection N/A N/A
ExpSymmetricDifference N/A / N/A
ExpSubset N/A N/A
ExpSuperset N/A N/A
ExpElement N/A in N/A

Pointer Operators
ExpAddress & adr N/A
ExpDereference N/A
ExpNil N/A nil N/A

Aggregate Operators
ExpThis this N/A N/A
ExpSelect . . N/A
ExpSelectIndirect . N/A
ExpSelectRelative N/A N/A
ExpSelectRelativeIndirect N/A N/A

Table 2.4: Correspondence between generation interface ExpRoutine names and language operators. Exp-
Continued from Table 2.3. ExpContinued in Table 2.5.

54 CHAPTER 2. GENERATION INTERFACE

Operator Correspondences– Part III
Routine Name C++ Modula-3 Fortran 77

Array Operators
ExpSubscript ()
ExpArrayEquality N/A = .EQ.
ExpArrayInequality N/A # .NE.
ExpArrayGreater N/A N/A .GT.
ExpArrayGreaterEqual N/A N/A .GE.
ExpArrayLess N/A N/A .LT.
ExpArrayLessEqual N/A N/A .LE.
ExpSlice N/A subarray :
ExpRemainingSlide N/A N/A :
ExpConcatenation N/A N/A //

Invocation Operators
ExpCallProcedure () () ()
ExpCallMethod () () N/A

Heap Operators
ExpAllocate new new N/A
ExpDelete delete dispose N/A
ExpDeleteArray delete[] dispose N/A

Type Operators
ExpBytesizeVariable sizeof bytesize N/A
ExpBytesizeType sizeof bytesize N/A
ExpBitsizeVariable N/A bitsize N/A
ExpBitsizeType N/A bitsize N/A
ExpAdrsizeVariable N/A adrsize N/A
ExpAdrsizeType N/A adrsize N/A
ExpIstype N/A istype N/A
ExpNarrow N/A narrow N/A
ExpTypecode N/A typecode N/A
ExpNumber N/A number N/A
ExpFirst N/A first N/A
ExpLast N/A last N/A

Type Conversion Operators
ExpTypeConversion () N/A N/A

Miscellaneous Operators
ExpSeries , N/A N/A
ExpParentheses () () ()
ExpSelectScope :: . N/A
ExpAggregation pair N/A

Table 2.5: Correspondence between generation interface routine names and language operators. Continued
from Table 2.4.

2.6. GENERATING EXPRESSIONS 55

Operators are first divided by the types of their arguments and then by their type of function. Calls to
overloaded operators are represented as routine calls, since user-defined operators may not fit neatly in our
categories.

The generation interface does not have any rules for type conversion. Therefore, user code is responsible
for inserting explicit type conversions. Unless otherwise stated, binary operators require both operands to
be of the same type, and operators return an entity of the same type as their operands.

2.6.1 Base Expressions

A base expression is an expression without subexpressions. Some base expressions are listed in follow-
ing sections with related operators.
2.6.1.1 Identifier Reference

void ExpIdReference (NameID entity) Expression

This routine represents the use of a declared entity.

Scope operators
The scope operator allows programmers to access entities which are hidden by other uses of the same identi-
fier. Resolving which declared entity is intended by a particular reference is part of semantic resolution, and
therefore handled by the language parser. Hence, these routines are superfluous and only exist for providing
additional information to client code. Note that ultimately user code must call the ExpIdReference routine
to gain access the entity’s value.

NameID SelectScope (NameID entity1, NameID entity2) Reference

This operator searches the scope named by entity1 for entity2. Note that if entity2 is a
type, this returns a reference to the type’s declaration, not the actual type.

NameID SelectGlobalScope (NameID entity) Reference

This operator searches the global scope named for identifier entity. Note that if entity2 is
a type, this returns a reference to the type’s declaration, not the actual type.

56 CHAPTER 2. GENERATION INTERFACE

2.6.1.2 Literals

This section describes routines for expressing literals.

void ExpLiteral (TypeID type, String value) Expression

Literals are difficult to handle since we may be cross compiling. Hence, all literals are transfered
across the interface as a String constant. Implementations of the interface must be able to convert
numeric constants from strings to a numeric value. Equality of literals should be determined by
comparing numeric values, rather than string values.

2.6.1.3 No Expression

This section describes the special value, NoExpression. This node represents that an optional expression
has not been specified. This node may only replace a genuine expression node in those cases where it is
explicitly permitted. This node does not correspond to any source language construct.

void ExpNoexpression () Expression

This routine pushes a special expression node onto the stack. The implementation is capable of
distinguishing this special expression node as not representing a valid expression.

2.6.2 Expression Ordering Operators

The operators represented by routines in this section serve only order and structure other expressions.
The functions of these operators are independent of they type of their arguments.

void ExpSeries () Expression e1, Expression e2 Expression
This routine implementes C/C++’s comma operator.

void ExpParentheses () Expression e Expression

This routine indicates that the programmer enclosed the associated expression in parentheses. The
generation interface does not need parentheses to override precendence rules. However also specify
the order in which computations are performed. This information may be useful to optimizations
which affect expression ordering.

2.6. GENERATING EXPRESSIONS 57

Aggregation
Some languages allow instances of aggregate and array types to be assigned to by aggrregate values. These
routines allow the structuring of expressions into aggregate expressions. Every aggregate element has a
position associated with it. The generation interface only supports positional specification of aggregate
elements. User code must convert keyword specifications to positional specifications.

void ExpPositionSingle () Expression e Position

This routine builds a Position node that represents a single position.

void ExpPositionRange () Bounds b Position

This routine builds a Position node that represents a range of positions.

void ExpPositionAny () Bounds b Position

This routine builds a Position node that represents any position. This value corresponds to Ada’s
others construct in an aggregate. Any has lower priority than other positions; it fills in those positions
that no other aggregation element does.

void ExpAggregationElement () Position p, Expression e AggregationElement

This routine builds an element of an aggregation. Each aggregation element must specify its
position in the final data type, but its position may be a range or any.

void ExpAggregationBegin () Type t Type t

void ExpAggregationEnd () Type t, Expression

At the point that the ExpAggregationEnd routine is called, the top of the stack (i.e., the portion
added since the ExpAggregationBegin call) should contain only AggregationElement nodes. The
resulting expression is of type t. Note that the type can be restricted to nodes of CompositeType
type.

2.6.3 Assignment Operators

void ExpAssignSimple () Expression e1, Expression e2 Expression

58 CHAPTER 2. GENERATION INTERFACE

This routine works for all datatypes. It performs a simple bit copy of e1 (rvalue) into e2 (lvalue)
for bitsize(e2) bits. This routine is best used for singleton values, and the other assignment routines
for aggregates and arrays. Note that for all assignment operators, we push the rvalue before lvalue.

void ExpAssignComponents () Expression e1, Expression e2 Expression

This routine does a component-wise copy for aggregates and arrays. Hence, this routine is sen-
sitive to the types of its arguments. This routine requires array arguments to be of the same shape
and size and will insert code to ensure run-time compliance, which is to say that it follows Modula-3
semantics.

void ExpAssignFixedString (LengthFunction l) Expression e1, Expression e2, Expression padding
Expression

This routine provides string-like assignment for fixed sized arrays (e.g., static and open arrays).
This function allows assignment of arrays of unequal lengths. If the source expression is longer than
the target, only enough elements are copied to fill the target. If the target expression is longer than the
source expression, then the target expression is padded.

Parameters:

l Indicates how to determine the the dynamic length of a string. The value is an element of an
enumerated type:

enum LengthFunction cFixedLength, cTerminated ;

cFixedLength Use the fixed length of e1. This option is for use with arrays with a
fixed size at the point of assignment. For example, Modula-3 open arrays always
have their length fixed before any assignments may be done to the array.

cTerminated The array size is determined by an embedded termination value, which
is assumed to be zero. This value would be appropriate for C/C++, if they had this
type of assignment.

e1 Target of the assignment.
e2 Source value for the assignment.
padding Value with which to pad e1 if e1 is longer than e2.

2.6. GENERATING EXPRESSIONS 59

2.6.4 Numeric Operators

Operands for Numeric operators must be of type integer, float, or fixed point. To provide support for
C/C++, the generation interface allows numeric operators to be applied to pointers as well, in which case
their bit patterns are interpreted as integers.

Some routines which operate on numeric types behave differently depending on its arguments’ types.
The generation interface has several options in how to discriminate between these behaviors. One solution
is to provide provide a separate version of the routine for each possible argument type, but this approach
creates needless additional routines. Another solution is to give appropriate routines a type parameter, but
this approach provides redundant information to the implementation, since it needs type information to
handle expressions (e.g., declare temporaries). A third solution is to require implementations to extract
type information from an operator’s arguments. Though this approach requires implementations to extract
information user code already has, it is unlikely to create additional work and greatly simplifies the interface.
Note, that the interface requires user code to do complete type conversion; therefore, unless otherwise stated
both arguments must be of the same type.

Different languages have different semantics for overflow, underflow, and divide-by-zero error condi-
tions. Both C/C++ and Modula-3 leave error handling for these conditions implementation dependent, but
Ada requires them to be caught. The routines representing operators with possible error conditions accept
an extra argument which indicates the desired semantics. Its value comes the following enumerated type:

enum ErrorHandling cImplementationDefined, cCatchError ;

cImplementationDefined This value indicates that the implementation is free to do as it chooses.

cCatchError This value indicates that these errors should be caught.

2.6.4.1 Arithmetic Operators

void ExpPositive () Expression e Expression

void ExpNegative () Expression e Expression

void ExpAbsoluteValue () Expression e Expression

void ExpMinimum () Expression e1, Expression e2 Expression

void ExpMaximum () Expression e1, Expression e2 Expression

void ExpAddition (ErrorHandling eh) Expression e1, Expression e2 Expression

60 CHAPTER 2. GENERATION INTERFACE

void ExpSubtraction (ErrorHandling eh) Expression e1, Expression e2 Expression

void ExpMultiplication (ErrorHandling eh) Expression e1, Expression e2 Expression

void ExpDivision (ErrorHandling eh) Expression e1, Expression e2 Expression

void ExpModulus (ErrorHandling eh) Expression e1, Expression e2 Expression

void ExpRemainder (ErrorHandling eh) Expression e1, Expression e2 Expression

The generation interface defines remainder and modulus as follows:

Remainder truncates towards zero, and the sign of its result equals the sign of its right operand.

Modulus truncates towards negative infinity, and the sign of its result equals the sign of its left
operand.

C/C++ (%) and Modula-3’s (MOD) modulus operators actually implement the interface’s remainder
function. The generation interface’s modulus supports Ada semantics.

void ExpExponentiation (ErrorHandling eh) Expression e1, Expression e2 Expression

void ExpPreDecrement (ErrorHandling eh) Expression e Expression

void ExpPreIncrement (ErrorHandling eh) Expression e Expression

void ExpPostDecrement (ErrorHandling eh) Expression e Expression

void ExpPostIncrement (ErrorHandling eh) Expression e Expression

2.6.4.2 Relational Operators

The operands to these operators are of Numeric type, but the resulting value is of Boolean type.

void ExpEquality () Expression e1, Expression e2 Expression

void ExpNotEqual () Expression e1, Expression e2 Expression

void ExpGreater () Expression e1, Expression e2 Expression

void ExpGreaterEqual () Expression e1, Expression e2 Expression

void ExpLess () Expression e1, Expression e2 Expression

void ExpLessEqual () Expression e1, Expression e2 Expression

2.6. GENERATING EXPRESSIONS 61

2.6.4.3 Bitwise Operators

Bit operators (see also Section 2.6.4.4) interpret their arguments as a bit pattern. Hence, no special handling
exists for real types.

void ExpBitComplement () Expression e Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

void ExpBitAnd () Expression e1, Expression e2 Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

void ExpBitXor () Expression e1, Expression e2 Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

void ExpBitOr () Expression e1, Expression e2 Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

void ExpBitShiftLeft () Expression e1, Expression e2 Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

void ExpBitShiftRight () Expression e1, Expression e2 Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

2.6.4.4 Compound Assignment Operators

These operators perform two simpler operations in a single step. The second operation is a simple assign-
ment.

void ExpMultiplicationAssignment (ErrorHandling eh) Expression e1, Expression e2 Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

void ExpDivisionAssignment (ErrorHandling eh) Expression e1, Expression e2 Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

62 CHAPTER 2. GENERATION INTERFACE

void ExpRemainderAssignment (ErrorHandling eh) Expression e1, Expression e2 Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

void ExpAdditionAssignment (ErrorHandling eh) Expression e1, Expression e2 Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

void ExpSubtractionAssignment (ErrorHandling eh) Expression e1, Expression e2 Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

void ExpBitShiftRightAssignment () Expression e1, Expression e2 Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

void ExpBitShiftLeftAssignment () Expression e1, Expression e2 Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

void ExpBitAndAssignment () Expression e1, Expression e2 Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

void ExpBitXorAssignment () Expression e1, Expression e2 Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

void ExpBitOrAssignment () Expression e1, Expression e2 Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

2.6. GENERATING EXPRESSIONS 63

2.6.5 Boolean Operators

Operands for Boolean operators must be of type boolean. C/C++ specify that logical operators can accept
arguments of integral type but still return arguments of logical type. Since the generation interface does not
permit logical operators to have integral operands, user code must type convert integral operands to boolean
type.

Nevertheless, boolean values are considered to be an integer subrange, so that Numeric equality and
inequality apply to boolean types.

void ExpTrue () Expression

void ExpFalse () Expression

True and false act as through they are an enumerated type with false equal to zero and true equal
to one. Hence, the type conversion routines for enumerated types may be used on these values.

void ExpNot () Expression e Expression

void ExpAnd () Expression e1, Expression e2 Expression

void ExpOr () Expression e1, Expression e2 Expression

void ExpAndConditional () Expression e1, Expression e2 Expression

void ExpOrConditional () Expression e1, Expression e2 Expression

The *Conditional forms implement short circuit semantics. Hence, C and C++ should use these
forms.

void ExpExpressionIf () Expression e1, Expression e2, Expression e3 Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

2.6.6 Pointer Operators

Operands for Pointer operators must be of type pointer. For equality and inequality, pointers are treated
as bit patterns (i.e., a Numeric type).

void ExpAddress () Expression e Expression

64 CHAPTER 2. GENERATION INTERFACE

void ExpDereference () Expression e Expression

void ExpNil () Expression
This routine generates a nil pointer value. Modula-3 has an explicit nil value. C++ specifies that

when the integer value zero is converted to a pointer it becomes the nil pointer value (regardless of bit
representation).

2.6.7 Aggregate Operators

In each of the routines with parameters, the first argument is of aggregate type, and the second argument
is of field or routine type.

void ExpThis () Expression
This routine returns a pointer to the current object. It is only valid inside of a method.

void ExpSelect () Expression e1, Expression e2 Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

void ExpSelectIndirect () Expression e1, Expression e2 Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

void ExpSelectRelative () Expression e1, Expression e2 Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

void ExpSelectRelativeIndirect () Expression e1, Expression e2 Expression

This routine implements the corresponding C++ operator (see Table 2.3, 2.4, or 2.5).

2.6.8 Array Operators

This section describes the operators available for manipulating arrays. Some array operators (e.g., as-
signment and deleteArray) may be found in other sections.

2.6. GENERATING EXPRESSIONS 65

2.6.8.1 Subscripting

Some source languages supply multiple dimension subscripts, while others, such as C++, require repeated
application of a one-dimensional subscript operator. The generation interface supports both approaches.
Multiple dimension subscripts may be composed using the index routines. For single dimensional sub-
scripts, either of the subscript routines may be used.

void ExpIndexBegin ()

void ExpIndexEnd () Indicies

At the point that the ExpIndexEnd routine is called, the top of the stack (i.e., the portion added
since the ExpIndexBegin call) should contain only Expression nodes.

void ExpSubscript (bool boundsChecking) Expression e, Indicies i Expression

This routine represents a subscript operation. Some languages require subscript bound checks
while other languages do not. The boundsChecking parameter allows user code to select between
these two choices.

void ExpSubscript1d (bool boundsChecking) Expression e1, Expression e2 Expression

This routine is a short-cut for when only one dimension is specified. Some languages require
subscript bound checks while other languages do not. The boundsChecking parameter allows
user code to select between these two choices.

2.6.8.2 String Array Operators

void ExpArrayEquality () Expression e1, Expression e2 Expression

This routine returns true if the two arrays (e1 and e2) have the same size and their elements are
equal.

void ExpArrayInequality () Expression e1, Expression e2 Expression

This routine is the complement of arrayEquality.

void ExpArrayGreater () Expression e1, Expression e2 Expression

This routine implements the corresponding Fortran 77 operator (see Table 2.3).

66 CHAPTER 2. GENERATION INTERFACE

void ExpArrayGreaterEqual () Expression e1, Expression e2 Expression

This routine implements the corresponding Fortran 77 operator (see Table 2.3).

void ExpArrayLess () Expression e1, Expression e2 Expression

This routine implements the corresponding Fortran 77 operator (see Table 2.3).

void ExpArrayLessEqual () Expression e1, Expression e2 Expression

This routine implements the corresponding Fortran 77 operator (see Table 2.3).

void ExpSlice () Expression s, Expression b, Expression e Expression

This routine extracts a contiguous section (i.e., substring) of a one dimensional array.

Parameters:

s The array to be operated on.
l The beginning position of the substring.
e The ending position of the substring.

void ExpRemainingSlice () Expression s, Expression l Expression

This routine extracts the substring of elements from position l to the end of the one dimensional
array.

Parameters:

s The array to be operated on.

l The beginning position of the substring.

void ExpConcatenation () Expression s1, Expression s2 Expression

This routine implements the corresponding Fortran 77 operator (see Table 2.3). Concatentation
is performed into a temporary variable.

2.6. GENERATING EXPRESSIONS 67

2.6.9 Set Operators

void ExpSetEquality () Expression se Expression
This routine implements the corresponding Modula-3 operator (see Table 2.3).

void ExpUnion () Expression se1, Expression se2 Expression

This routine implements the corresponding Modula-3 operator (see Table 2.3).

void ExpDifference () Expression se1, Expression se2 Expression

This routine implements the corresponding Modula-3 operator (see Table 2.3).

void ExpIntersection () Expression se1, Expression se1 Expression

This routine implements the corresponding Modula-3 operator (see Table 2.3).

void ExpSymmetricDifference () Expression se1, Expression se2 Expression

This routine implements the corresponding Modula-3 operator (see Table 2.3).

void ExpSubset () Expression se1, Expression se2 Expression

This routine implements the corresponding Modula-3 operator (see Table 2.3).

void ExpSuperset () Expression se1, Expression se2 Expression

This routine implements the corresponding Modula-3 operator (see Table 2.3).

void ExpElement () Expression e, Expression se Expression

This routine implements the corresponding Modula-3 operator (see Table 2.3).

68 CHAPTER 2. GENERATION INTERFACE

2.6.10 Call Operators

Call operators represent calls to routines. These calls may be either function calls or method calls.

void ExpPositionalArgument () Expression e Argument

void ExpNamedArgument (Identifier name) Expression e Argument
Arguments may be either positional or named. C++ uses only positional arguments, but Modula-

3 and Ada use both. Note that positionalArgument really only type converts from Expression to
Argument.

void ArgumentsBegin ()

void ArgumentsEnd () ArgumentList

At the point that the ExpArgumentsEnd routine is called, the top of the stack (i.e., the portion
added since the ExpArgumentsBegin call) should contain only Argument nodes.

void ExpCallFunction () Expression function, ArgumentList al Expression

void ExpCallMethod () Expression object, Expression method, ArgumentList al Expression

This routine generates the representation for a method invocation. The object parameter rep-
resents the object associate with the method. The method formal is the name of the method being
called (It should be an IdReference node).

2.6.11 Heap Operators

The behavior of heap operators are affected by several compilation unit attributes (see Section 2.7). The
allocation operators call constructors, if appropriate. The delete operators call destructors, if appropriate. In
addition, implementations of the interface must be aware of whether or not garbage collection is being used.

void ExpAllocate (TypeID type) Expression

void ExpAllocateDefault (TypeID type) Expression e Expression

2.6. GENERATING EXPRESSIONS 69

This routine is used when the allocation has a default value. For a class object with an initializer,
the expression e is a function call to the class’ initializer.

void ExpAllocatePlacement (TypeID type) Expression e, Expression p Expression

This routine allows both a default and a placement parameter (for C++). The argument p is a
placement list parameter.

void ExpAllocateOpenArray (TypeID type) Indicies i Expression

This routine allocates an open array (as found in Modula-3), and sets the size of the array in each
dimension.

void ExpAllocateSettingFields (TypeID type) ArgumentList al Expression

This routine allocates an aggregate entity and then uses the positional arguments specified in al
to initialize the entity.

void ExpDelete () Expression e

void ExpDeleteArray () Expression e

This routine implements the semantics of C++’s delete array operator. Note that we do not support
C++’s archaic number of elements parameter to the delete array operator.

2.6.12 Type Operators

2.6.12.1 Type Query Operators

void ExpBytesizeVariable () Expression variable Expression

This routine implements the Modula-3 bytesize operator as well as the C/C++ sizeof operator.

void ExpBytesizeType (TypeID type) Expression

This routine implements the Modula-3 bytesize operator as well as the C/C++ sizeof operator.

70 CHAPTER 2. GENERATION INTERFACE

void ExpBitsizeVariable () Expression variable Expression

This routine implements the corresponding Modula-3 operator (see Table 2.3).

void ExpBitsizeType (TypeID type) Expression

This routine implements the corresponding Modula-3 operator (see Table 2.3).

void ExpAdrsizeVariable () Expression variable Expression

This routine implements the corresponding Modula-3 operator (see Table 2.3).

void ExpAdrsizeType (TypeID type) Expression

This routine implements the corresponding Modula-3 operator (see Table 2.3).

void ExpIstype (TypeID type) Type t Expression

This routine implements the corresponding Modula-3 operator (see Table 2.3).

void ExpNarrow (TypeID type) Type t Expression

This routine implements the corresponding Modula-3 operator (see Table 2.3).

void ExpTypecode () Expression e Expression

This routine implements the corresponding Modula-3 operator (see Table 2.3).

void ExpNumber () Expression e Expression

This routine implements the corresponding Modula-3 operator (see Table 2.3).

void ExpFirst () Expression e Expression

This routine implements the corresponding Modula-3 operator (see Table 2.3).

void ExpLast () Expression e Expression

This routine implements the corresponding Modula-3 operator (see Table 2.3).

2.6. GENERATING EXPRESSIONS 71

2.6.12.2 Type Conversion Operators

Type conversion rules vary substantially between languages. Hence, user code is responsible for ensuring
that all implicit conversions are made explicit.

Some languages provide a fixed set of type conversions, but C++ allows users to define conversion rou-
tines for classes. Hence in the generation interface, a type conversion is a triple consisting of the expression
to be converted, the type to which it is to be converted, and a routine for performing the conversion. For lan-
guage defined conversions, the generation interface provides an enumerated list of recognized conversions.
The elements of the following enumeration follow Modula-3 semantics:

enum ConversionRoutines cReal, cFloor, cCeiling, cRound, cTruncate,

cOrdinal, cEnumerationValue, cLoophole, cCast, cComplex ;

void ExpTypeConversion (TypeID type, NameID routine) Expression e Expression

void ExpTypeConversion (TypeID type, ConversionRoutines cr) Expression e Expression

72 CHAPTER 2. GENERATION INTERFACE

2.7 Compilation Units

All compilations begin with a compilation unit. In terms of an abstract syntax tree, a compilation unit is
the root of the tree. Compilation units collect together information from outside the source program, which
generally means source language information.

The generation interface requires that user code specify the source language of each compilation unit.
Implementations may use this information to define language specific constants, types, routines, etc. More-
over, the source language information is used to preset attributes of the compilation unit. Programmers use
the following enumeration to specify source languages:

enum LanguageId cLangC, cLangCxx, cLangModula3, cLangFortran77 ;

void CompilationUnitBegin (LanguageId l) CompilationUnit

void CompilationUnitEnd () CompilationUnit

At the point that the CompilationUnitEnd routine is called, the top of the stack (i.e., the portion
added since the CompilationUnitBegin call) should contain only UnitDecl nodes. Note that both
begin and end routines return a CompilationUnit node, and this node is the same. The begin routine
returns the partially complete node so that attributes may be associated with the node.

void SetIdentifierCase (IdentifierCase ic) CompilationUnit cu CompilationUnit

Implemenations of the generation interface are required to handle both case sensitive and insen-
sitive identifiers. The default is case sensitive. We could have required the front end to homogenize
case for case insensitive languages; however, this information may prove vital to debuggers.

enum IdentifierCase cSensitive, cInsensitive ;

void SetMemoryManagement (MemoryManagement mm) CompilationUnit cu CompilationUnit

This routine specifies how dynamic memory is managed by the source language.

enum MemoryManagement cUserManaged, cGarbageCollected ;

void SetRecordFieldOrderRule (bool orderMatters) CompilationUnit cu CompilationUnit

This routine specifies whether or not the source language uses the order of fields to distinguish
record types. The default value is true, order does matter.

2.7. COMPILATION UNITS 73

void SetClassFieldOrderRule (bool orderMatters) CompilationUnit cu CompilationUnit

This routine specifies whether or not the source language uses the order of fields to distinguish
class types. The default value is true, order does matter.

void SetMethodsRule (bool methodsMatter) CompilationUnit cu CompilationUnit

This routine specifies whether or not methods are used to distinguish class types. The default
value is true, methods do matter.

74 CHAPTER 2. GENERATION INTERFACE

2.8 Annotations

The generation interface allows user code to pass information that does not directly correspond to the struc-
ture of the program. We refer to this information as annotations. The interface currently provides two kinds
of annotations: point annotations and range annotations. A point annotation applies to a specific piece of the
program (e.g., an expression or function). A range annotation may apply to several pieces of the program
and is marked with a begin/end pair.

2.8.1 Point Annotations

A point annotation applies to the top element of the stack. A point annotation may modify the top element
of the stack but does not (permanently) remove it.

void SetSourceLine (int line) Node

2.8.2 Range Annotations

A range annotation applies to all elements pushed onto the stack after the begin routine and before the
corresponding end routine.

void SourceFileBegin (String filename)

void SourceFileEnd (String filename)
Strictly speaking, the file name would not have to be specified at both the beginning and end, but

doing so may help in debugging.

Bibliography

[1] Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill Kalsow, and Greg Nelson. The
Modula-3 Language Definition. Digital Equipment Corporation, Maynard, MA, 1995.

[2] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-Wesley
Publishing Company, Reading, MA, 1990.

[3] G.Weaver, K.S.McKinley, and C.Weems. Score: A compiler representation for heterogeneous systems.
In Heterogeneous Computing Workshop, Honolulu, HI, April 1996.

75

Index

AggregationElement, 57
AlternateReturnFormal, 33
AppendImplementation, 6
Argument, 68
ArgumentList, 68
ArgumentsBegin, 68
ArgumentsEnd, 68

Bound, 27
Bounds, 27
BoundsBegin, 27
BoundsEnd, 27

CaseAlt, 44
CaseAlts, 44
CaseBodyBegin, 44
CaseBodyEnd, 44
CaseKey, 44
CaseKeyBegin, 44
CaseKeyEnd, 44
CaseKeys, 44
CaseOthersAlt, 44
Catch, 49
CatchAll, 49
CatchBegin, 49
CatchEnd, 49
Catchers, 49
CatchException, 49
CompilationUnit, 72, 73
CompilationUnitBegin, 72
CompilationUnitEnd, 72
ConstantDecl, 34

Declaration, 12, 41
DeclConstant, 34
DeclConstructor, 36
DeclDestructor, 36
DeclEntry, 36
DeclEnumElement, 23
DeclException, 37
DeclField, 33
DeclFormal, 32
DeclInterfaceUnitBegin, 38

DeclInterfaceUnitEnd, 38
DeclLabel, 37
DeclMethod, 35
DeclMethodReference, 35
DeclModuleUnitBegin, 39
DeclModuleUnitEnd, 39
DeclNamespaceUnitBegin, 37
DeclNamespaceUnitEnd, 37
DeclOpaque, 31
DeclOverride, 36
DeclProcedure, 35
DeclTemporary, 32
DeclType, 30
DeclTypeConversion, 36
DeclVariable, 32

ElseHandler, 48
EnumElementDecl, 23
ExceptionDecl, 37
ExceptionHandler, 48
ExceptionHandlerWithArgument, 48
ExceptionKey, 48
ExceptionKeyBegin, 48
ExceptionKeyEnd, 48
ExceptionKeys, 48
ExpAbsoluteValue, 59
ExpAddition, 59
ExpAdditionAssignment, 62
ExpAddress, 63
ExpAdrsizeType, 70
ExpAdrsizeVariable, 70
ExpAggregationBegin, 57
ExpAggregationElement, 57
ExpAggregationEnd, 57
ExpAllocate, 68
ExpAllocateDefault, 68
ExpAllocateOpenArray, 69
ExpAllocatePlacement, 69
ExpAllocateSettingFields, 69
ExpAnd, 63
ExpAndConditional, 63
ExpArrayEquality, 65
ExpArrayGreater, 65

76

INDEX 77

ExpArrayGreaterEqual, 66
ExpArrayInequality, 65
ExpArrayLess, 66
ExpArrayLessEqual, 66
ExpAssignComponents, 58
ExpAssignFixedString, 58
ExpAssignSimple, 57
ExpBitAnd, 61
ExpBitAndAssignment, 62
ExpBitComplement, 61
ExpBitOr, 61
ExpBitOrAssignment, 62
ExpBitShiftLeft, 61
ExpBitShiftLeftAssignment, 62
ExpBitShiftRight, 61
ExpBitShiftRightAssignment, 62
ExpBitsizeType, 70
ExpBitsizeVariable, 70
ExpBitXor, 61
ExpBitXorAssignment, 62
ExpBytesizeType, 69
ExpBytesizeVariable, 69
ExpCallFunction, 68
ExpCallMethod, 68
ExpConcatenation, 66
ExpDelete, 69
ExpDeleteArray, 69
ExpDereference, 64
ExpDifference, 67
ExpDivision, 60
ExpDivisionAssignment, 61
ExpElement, 67
ExpEquality, 60
ExpExponentiation, 60
ExpExpressionIf, 63
ExpFalse, 63
ExpFirst, 70
ExpGreater, 60
ExpGreaterEqual, 60
ExpIdReference, 55
ExpIndexBegin, 65
ExpIndexEnd, 65
ExpIntersection, 67
ExpIstype, 70
ExpLast, 70
ExpLess, 60
ExpLessEqual, 60
ExpLiteral, 56
ExpMaximum, 59
ExpMinimum, 59
ExpModulus, 60
ExpMultiplication, 60

ExpMultiplicationAssignment, 61
ExpNamedArgument, 68
ExpNarrow, 70
ExpNegative, 59
ExpNil, 64
ExpNoexpression, 56
ExpNot, 63
ExpNotEqual, 60
ExpNumber, 70
ExpOr, 63
ExpOrConditional, 63
Exports, 38
ExportsBegin, 38
ExportsEnd, 38
ExpParentheses, 56
ExpPositionalArgument, 68
ExpPositionAny, 57
ExpPositionRange, 57
ExpPositionSingle, 57
ExpPositive, 59
ExpPostDecrement, 60
ExpPostIncrement, 60
ExpPreDecrement, 60
ExpPreIncrement, 60
ExpRemainder, 60
ExpRemainderAssignment, 62
ExpRemainingSlice, 66
Expression, 55–71
Expression e, 69
ExpSelect, 64
ExpSelectIndirect, 64
ExpSelectRelative, 64
ExpSelectRelativeIndirect, 64
ExpSeries, 56
ExpSetEquality, 67
ExpSlice, 66
ExpSubscript, 65
ExpSubscript1d, 65
ExpSubset, 67
ExpSubtraction, 60
ExpSubtractionAssignment, 62
ExpSuperset, 67
ExpSymmetricDifference, 67
ExpThis, 64
ExpTrue, 63
ExpTypecode, 70
ExpTypeConversion, 71
ExpUnion, 67

FieldDecl, 33
FileUnitBegin, 38
FileUnitEnd, 38

78 INDEX

Formals, 26
FormalsBegin, 26
FormalsEnd, 26
ForwardDeclProcedure, 30

Handler, 48
HandlerBegin, 48
HandlerEnd, 48
Handlers, 48

Import, 38
ImportMember, 38
Imports, 38
ImportsBegin, 38
ImportsEnd, 38
ImportUnit, 38
Indicies, 65
Initializer, 35
Initializers, 35
InitializersBegin, 35
InitializersEnd, 35
InterfaceDecl, 38

LabelDecl, 37
Labels, 43
LabelsBegin, 43
LabelsEnd, 43
LabelStmt, 42
LookupDecl, 12
LookupRef, 12
LookupType, 12
LookupTypeDecl, 12

NamespaceDecl nd, 37
NameType, 30
Nobounds, 27
Node, 74
NoInitializers, 35

Position, 57

Raise, 26
RaiseException, 26
Raises, 26
RaisesAny, 26
RaisesBegin, 26
RaisesEnd, 26
RaisesNone, 26
RaiseType, 26
RangeBegin, 28
RangeEnd, 28
RangeTypes, 28
Reference, 12, 55

routine-name, 7
RoutineDecl, 30, 35, 36

ScopeBegin, 11
ScopeEnd, 11
SelectGlobalScope, 55
SelectScope, 55
SetClassFieldOrderRule, 73
SetDeclarationAttribute, 41
SetErrorHandler, 5
SetIdentifierCase, 72
SetMemoryManagement, 72
SetMethodsRule, 73
SetRecordFieldOrderRule, 72
SetSourceLine, 74
SetTypeAttribute, 29
Signature, 26
SingleSuperclass, 25
SourceFileBegin, 74
SourceFileEnd, 74
SpcfyConstructor, 35
SpcfyDestructor, 35
SpcfyFriend, 35
SpcfyMethod, 35
SpcfyNestedProcedure, 35
SpcfyProcedure, 35
SpcfyTypeConversion, 35
StackPop, 7
Statement, 36, 42–47, 49, 50
StmtAlternateReturn, 47
StmtArithmeticIf, 43
StmtAssignedGoto, 43
StmtAssignLabel, 43
StmtBlockBegin, 42
StmtBlockEnd, 42
StmtBreak, 47
StmtCase, 44
StmtComputedGoto, 43
StmtContinue, 47
StmtDeclStmt, 50
StmtDoLoop, 46
StmtEval, 50
StmtExit, 47
StmtForLoop, 46
StmtGoto, 47
StmtIfThenElse, 43
StmtLabel, 42
StmtLoop, 46
StmtNull, 50
StmtRaise, 47
StmtRepeatUntilLoop, 46
StmtRepeatWhileLoop, 46

INDEX 79

StmtReturn, 47
StmtSpcfyUsing, 49
StmtSwitch, 45
StmtThrow, 47
StmtTry, 49
StmtTryExcept, 49
StmtTryFinally, 49
StmtTypecase, 45
StmtUsingDirective, 49
StmtWhileLoop, 46
StmtWithAlias, 50
SuperClass, 24
Superclass, 24
SuperclassBegin, 24
SuperclassEnd, 24
SuperClasses, 24, 25

Type, 12, 19–29
Type t, 57
type-of-result-on-stack, 7
TypeAlias, 28
TypeArrayFixed, 22
TypeArrayOpen, 22
TypeArrayUnconstrained, 22
TypeBrand, 28
TypecaseAlt, 45
TypecaseAlts, 45
TypecaseBodyBegin, 45
TypecaseBodyEnd, 45
TypecaseKey, 45
TypecaseKeyBegin, 45
TypecaseKeyEnd, 45
TypecaseKeys, 45
TypeClassBegin, 25
TypeClassEnd, 25
TypeCompleteType, 23
TypeDecl, 30, 31
TypeEnumBegin, 23
TypeEnumEnd, 23
TypeIncompleteType, 23
TypeIndirect, 25
TypeOffset, 25
TypePacked, 28
TypePointer, 25
TypePrimitiveBoolean, 21
TypePrimitiveCharacter, 19
TypePrimitiveComplex, 21
TypePrimitiveFixedPoint, 20
TypePrimitiveInteger, 20
TypePrimitiveReal, 20
TypePrimitiveSymbolicInteger, 20
TypePrimitiveSymbolicReal, 21

TypePrimitiveVoid, 21
TypeProcedure, 26
TypeRange, 27
TypeRecordBegin, 24
TypeRecordEnd, 24
TypeSet, 27
TypeUnionBegin, 24
TypeUnionEnd, 24

Unit, 38, 39
UnknownFormals, 33

ValueDecl, 32, 33

WriteRepresentation, 15

