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Abstract

The growth of a distributed processing system can increase both the number and likeli-
hood of attacks it may be subject to over its lifetime [14, 7]. This fact, in addition to the
complexity inherent in such an environment, makes the survivability of large heterogeneous
systems one of the most challenging research areas currently being investigated[1]. Our
goal is to create a distributed simulation system to test various coordination mechanisms
allowing the elements of the system to detect, react and adapt in the face of adverse work-
ing conditions. Our assumption is that the system is composed of a group of autonomous
agents. Each agent has its own local view of the world and its own goals, but is capable of
coordinating these goals with respect to remote agents. To simulate these complex systems,
an environment is needed which permits the simulation of an agent’s method execution. To
this end, we are developing a distributed event-based simulator capable of simulating the
effects directed attacks or a capricious environment have on agent method execution and
recovery.
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1 Challenge

With the advent of open computing environments, widely networked information resources,
and an equally widely networked client base, applications are evolving from highly centralized
structures to distributed decentralized structures. Distribution is required to cope with the
complexity of the tasks, to distribute the load, and to utilize the necessarily distributed resources
or expertise used by these applications. In this setting, application interactions are also evolving
and often a distributed application is actually a collection of separate applications, each possibly
having other tasks outside of the given application and possibly under the management or
ownership of different controlling entities. With increasing frequency, an agent computing
paradigm is used to control these application components where each contributing application
is an agent, having its own goals, functionality, and perhaps special computing resources. The
agents interact via higher-level interfaces, exchanging high-level information such as goals and
partial plans, rather than simply invoking each other’s low-level methods via remote-function-
call style interfaces. The agent-style control methodology lends itself to this integration task
because it enables designers to explicitly represent agent goals, where agents may have multiple
goals and goals for different client applications, and to reason about the benefits or relative
importance of these goals from a self-interested perspective [8, 9, 12], a wholly cooperative
perspective [6, 5], or a market-driven economic perspective [13].

While this highly networked and distributed environment is giving rise to the next genera-
tion of powerful applications, the same decentralized networked characteristics that serve as the
growth catalyst also create the greatest hazard to these applications, that is the vulnerability
of these applications to attack from outside sources [14, 7]. Applications that are open, or
built from individual components that are themselves open systems, are susceptible to virus
style attacks and to attacks that disable the network, block communication, or disable member
applications. Attacks may be deliberate, i.e., the action of an adversary, or they may simply
be system failures that affect the application like a deliberate attack by adversely affecting the
application. Attacks may also be more covert in nature, involving misinformation or the con-
fusion of communications or member applications. To address attacks, deliberate or otherwise,
the evolving heterogeneous distributed applications must also be flezible; they must be able to
cope with a component application going down or the loss of communications between various
components. The distributed system architecture must adapt dynamically, perhaps finding dif-
ferent routings for communications or other component applications to fulfill a particular set
of needs.

Our research focus is on building such survivable, dynamic, heterogeneous distributed sys-
tems. We use an agent coordination control scheme, called generalized-partial-global-planning
(GPGP) [2], to organize the agent members of a distributed application. In GPGP, agents
exchange their local views of the group problem solving context and negotiate to determine
which agent is to perform which task(s) at what time(s). Individual agents are comprised of
three primary modules: 1) the GPGP coordination module, which is responsible for interacting
with other agents and maintaining a cohesive distributed application; 2) the local real-time
scheduler [16, 15] that performs trade-off analysis of different possible courses of action and
decides, in conjunction with the GPGP module, which actions to perform and at what times;
3) the domain problem solver that performs the domain (application) actions. Thus agents
consist of two main control problem solving components, the scheduler and the coordination
module, and one main domain problem solving component. Agents represent and reason about



problem solving processes using the TAEMS task modeling framework [3, 4]. In TAEMS tasks
are hierarchically decomposed into subtasks and finally into primitive actions. TAMS differs
from most traditional modeling frameworks in that it represents both hard and soft interactions
between tasks, e.g., enabling or facilitating relationships, and alternative ways to perform tasks.
Part of the agent control scheme is to reason about inter-agent and intra-agent task interactions
and to reason about the different ways to perform tasks, and the different quality, cost, and
duration trade-offs of each alternative way. For example, for the task of gathering information
on a competitor cooperation, the agents may be able to achieve the task in short order and
little cost, but may sacrifice quality to do so. However, given more time and money, the agents
may be able to explore more information resources and produce a higher-quality report.

One major thrust of our current work is on studying and improving the flexibility and adapt-
ability aspects of our agent coordination mechanisms. Recent work in learning coordination
mechanisms [10, 11] has shown that it is more effective to learn situation specific coordination
strategies rather than using a single strategy for all situations. The work on flexibility and
adaptability is related in that a situation specific learning component is needed, perhaps in
conjunction with approximate expert knowledge, to learn when and how to adapt to attacks.
Accordingly, we must simulate these complex distributed agent-based heterogeneous systems
so that we can study the mechanisms in a controlled fashion. We are developing a distributed
event-based simulator to simulate agent action execution in the face of system attacks and re-
covery. The simulator is a single centralized artifact which handles the TAMS action execution
for all agents in the system. The agents are decoupled, running as external processes, as in a real
application; we will discuss the complexities of this decoupling in the next section. In addition
to action execution, all agent communication is also routed through the simulator. Thus, at-
tacks can change or modify action performance, e.g., causing failure, poor results, or changing
resource consumption characteristics, or attacks may change communication characteristics,
causing interference, blockages, delays, and lost or garbled messages. From an architectural
perspective, the simulator replaces the component of the agent responsible for actual method
execution and the coupling is transparent to the other agent control components. Similarly, the
communications component is modified so that the simulator controlled routing is transparent.
This action/communication coupling between the simulator and the agents enables the simu-
lator to affect system execution performance in a reactive sense. However, to experiment with
distributed application prototypes, or to study distributed applications for which the domain
problem solving component has yet to be implemented, the simulator must also be able to inter-
act with the agents in a proactive sense. The distinction lies in where the agent plans originate.
If the agent plans are generated by a fully implemented domain problem solver, then the simu-
lator’s role is limited to modulation of action execution and agent communications. However,
if the plans are generated by the simulator and seeded to the respective agents, the simulator
can not only control action execution and communications, but it can control the high-level
objectives of one or more agent’s in the system. This functionality is implemented by replacing
the agent’s domain problem solving component with a stub that receives TAMS task structures
from the simulator. Thus the agent /simulator coupling is at the action, communication, and,
optionally, plan-generation levels.

We will return to these issues in the subsequent sections. Section 2 describes the software
design of our simulator and the different attacks and the measures taken by the simulator.
Section 3 provides our current implementation status and describes the features of Java that
facilitate this work. Section 4 defines the development next phase and our planned future work.



2 Simulator Design

The simulator, Figure 1, is designed as a central process; all agents involved with the model are
connected to the simulator using sockets. The agents themselves are independent processes,
which could run on physically different machines. Time synchronization is controlled by the
simulator, which periodically sends a pulse to each of its remote agents. Each agent has a
local manager which converts the simulation pulse into real CPU time. The manager controls
process and records the time spent scheduling, planning, or executing methods. Note, the
simulator does not control the agents’ activities, it merely allocates time slices and records the
activities performed by the agent during the time slide via an instrumentation interface. Once
the alloted CPU time has been used, the manager halts the agent and sends an acknowledgment
message back to the simulator. The simulator waits for all acknowledgments to arrive before
sending a new pulse (so all process are synchronized). Using this method, any functions (even
computationally long ones) can be executed using whatever pulse-granularity is desired, i.e., if
we wish to simulate an agent environment where all planning actions complete in a single time
pulse, the pulse-granularity is defined by the longest running planning action. For example, a
planning phase may explore a very large space search, but the simulated time required may be
just one pulse. Since all remote processes are frozen until the planning is completed, this gives
the illusion that the planning was actually performed very quickly. Each agent therefore has its
own task-specific time transformation function, which it uses to convert each simulator pulse
into local CPU time. However, the clock mechanism works at the other end of the spectrum
too. If we wish to study actual planning times, where slower planners take longer, or agents
executing on slower machines take longer, then the pulse-granularity is smaller and a tick may
correspond to a second in real-time or cpu-time.

The simulator is also a message router, in that all agent communications will pass through
it. This scheme permits explicit control over network and communication delays. In this way,
if we want to simulate a very fast communication path, the simulator may immediately re-send
a message to its destination, but if we want to simulate a compromised network, the simulator
may wait n pulses before sending the message. This method also allows an agent to broadcast
a message to all other agents without explicitly knowing the number of agents that will receive
the message.

The simulator behavior is directed by a queue containing a time-ordered list of events. Each
message it receives either adds or removes events from the queue. At each pulse the simulator
selects the correct events and realizes their effects (for example, a network may slow down).
Only after the effect of each event has been completely determined is the timing pulse sent
to each agent. Primitive actions in TAEMS called methods are characterized statistically via
discrete probably distributions in three dimensions, quality, cost, and duration. Agents reason
about these characteristics when deciding which actions to perform and at what time.

When a agent wants to execute a method, it sends a message to the simulator with the
method name. The simulator then retrieves the method from the objective TAEMS database.
Agents schedule, plan, and interact using a subjective view of the methods. The subjective
view differs from the objective view because agent’s may have an imperfect model of what will
actually happen, performance-wise, when the method is executed. For example, for a method
that involves retrieving data from a remote site via the WWW, the remote site’s performance
characteristics may have changed since the agent learned them and thus the agent’s view of
the execution behavior of that method, namely its duration, is imperfect. In a simulation
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Figure 1: Simulator and Agent Architectures

environment, both the subjective and the objective method views are created by the simulator
/ task generator and the objective, or true, views of the methods are stored in the simulator’s
TAEMS database. Thus when an execution message arrives, the simulator must obtain the
objective view of the method before any other steps may be taken. The first step of the
simulator is to calculate the value of the cost, duration and quality that will be “produced”
by this execution. The duration (in pulse time) is used to create an event that sends to the
agent the result in terms of cost and quality. Any event realized before the newly queued event
is performed may change the results of the newly queued event’s “execution.” For example, a
network breakdown event at the front of the queue may increase the time of all the simulated
executions, that follow it in the queue, by 100%. Thus subsequent method completion events
are delayed.

This interaction effect is also possible because of the interactions between the methods
themselves. For example, if one method enables another method, and the first method fails,
then the other method may no longer be executed or executing the method will produce no
result. If both methods are already “scheduled” in the event queue, and the first method fails,
then the event associated with the second method’s execution must be changed.

The random generator used to calculate the cost, duration and quality values is seeded by
a fixed parameter or by a random number (depending of the current time). The solution of
seeding by a fixed parameter is used to have a deterministic simulation. Our random generator



produces the same answer if the same seeding value is used. The goal is to compare different
agent coordination mechanisms on the same problem using the same simulation. To test a
particular coordination mechanism on several problems, we use a seeding based on the current
time which guarantees that two simulations do not produce the same solution.

The next section will describe our preliminary implementation in Java, and will describe in
details the synchronization problem.

3 Preliminary Implementation

As noted above, the simulation environment was designed to be both distributed and platform
independent, in order to provide the most amount of ability and flexibility when modeling
complex interactions among heterogeneous agents. Java was therefore the language of choice
for its implementation, as it offers robust communication primitives and bytecode interpreters
on a wide range of platforms, among other benefits. The 1.1 API was used to create the
environment, which consists of a single “server” process, called the simulator, and one or more
“client” processes, which serve as managers to the agents executing within the system.

Each manager has under its control an external agent process, which at this time is a black
box written in an arbitrary language. The manager serves as an interface between the agent
and the simulation environment; it is responsible for process control, message passing and event
delivery. When a manager is started, it is given both the address of the simulation server and
the name of the agent which is to be under its control. The manager then spawns a child
process (which will become the agent process) and attempts to contact the simulation server,
after which it idles until the actual simulation process is initiated. During simulation, the
manager waits for a clock pulse to be delivered by the simulator, which indicates the start of a
time slot. Upon receipt of the pulse, the manager converts it into its own local time scale by
waking the agent process and permitting it to run for a locally specified amount of time. In
this way, various processor or code optimizations can be modeled by simply letting the agent
run for a different lengths of time. When the manager has determined that the agent’s time
slot has been used up, the agent process is halted and a pulse acknowledgment is returned to
the simulator. Any events or messages generated by the agent are sent to the simulator before
acknowledging the pulse, so that they will be recognized as originating during that particular
time slot.

For our implementation, native methods were needed to both execute and control the agent,
as the process paradigm offered in the Java API does not offer the low level controls required to
manage an external process. While this affects the portability of the code, the relatively small
number of native methods provide the important ability to make use of previously written
agents and also permit a much more diverse agent pool. A simple Java-based threaded agent
stub has also been written, which can be used on platforms where process control is not easily
available. A second artifact of this approach is that the process monitoring is performed in user
space and thus is dependent on the exact preemption time of the agent and manager processes.
Because of this, fine grained timing control is not possible, although for our purposes, this is
an acceptable tradeoff of complexity, since pulse conversions are typically measured in seconds.

The simulator functions as the central hub of the simulation environment, being respon-
sible for agent synchronization, event simulation and modification, message routing and time
management. When the simulator starts up, it initializes an event queue, a local clock, and a
communications server which waits for manager initiated connections. As each agent joins, it



is represented locally at the simulator by both agent specification and communications objects.
It is through these instances that the simulator communicates with and controls the remote
agents. All communications at this time are done with TCP based character streams. During
the simulation, agents can join or leave at any time, but typically the server will wait for some
number of agents to connect and then begin the simulation process, after which the agent pool
remains constant. The simulation time line is discrete, in that all events and agent execution
periods fall completely within a specified time slot. Activity during each of these slots begins
with the simulator first waiting for all remote agents to complete their activity (as indicated by
the pulse acknowledgment), then incrementing the clock and sending a new pulse to each agent.
This synchronization step is crucial to the validation of the distributed nature of the simulation
environment. Without it, there would be no clear notion of when events take place, leading
to race conditions amongst the agents and the simulated or actual events. Once the agents
have been notified, all events scheduled to terminate during that time period are retrieved and
realized, after which the time slot is considered completed. At this time, events elsewhere in
the queue may be modified to simulate resource or behavior changes. For instance, a message
delivery may be delayed to mimic a faulty network, or the results of a simulated computation
may be altered by a theoretical adversary. The simulation time line then progresses in this
manner, with the agent and simulator functioning essentially in lockstep, until the simulator is
paused or terminated.

4 Future Directions

As we have just completed a prototype of the simulation environment, much work remains to be
done. We anticipate the following features to be integrated into the system in the near future:

e Problem and attack generators to create, direct and modify the agents’ goals. A related
feature is the ability to quantify the survivability test-level and the degree of adaptation
required of the agent coordination mechanisms.

e “Real” agents, capable of working on a given task structure and communication with
other peer agents.

e Agent communication interception and routing.

e Communication implementation using serialization, CORBA or Java RMI.
The main advantage of our simulator will be:

e Platform independent distributed implementation.

e Domain independent architecture.

e Deterministic behavior on the part of the simulation environment. If the agents themselves
are deterministic, two executions will produce the same event stream and results.

e Attacks are clearly defined as events, permitting the modeling of complex coordinated
attacks.

Our goal is to construct a multi-agent simulator based on an object-oriented model in Java.
The simulator is currently in an early stage of development. Our design’s main advantage
in using Java are robust network capabilities and platform independent implementation. We
expect that a preliminary version will be available by January 1998.
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