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Abstract

We propose an elevation-based approach to parking lot structure analysis from aerial im-
agery. In contrast to image-based methods, the new approach treats parked vehicles as 3-D
microstructures and attempts to locate them in the elevation domain. The STME (Surface
Tezture and Microstructure Extraction) system is applied to the elevation map to extract
the 3-D microstructures. A hybrid application of this system to both intensity and eleva-
tion maps results in a complete extraction of individual vehicles. Based on a comparison
of texture exploitation techniques, a WCC (weighted combination criterion) algorithm is
presented to generate a clean parking lot ground model, which facilitates visualization and

stmulation of parking lot activities with a high degree of visual realism.
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1 Introduction

Parking lots are an important object class in many military and civilian applications.
Goals of parking lot surveillance include counting the number of parked motor vehicles,
monitoring the changes of the parked vehicles over the time, identifying the location, the
size, or even the type of each vehicle, simulating/visualizing the vehicle activities in the
parking lot, and providing a context for monitoring human activity [8, 10].

The most notable success in parking lot analysis from aerial imagery is reported
by Chellappa et al. [2]. In their work, a frequency domain computation is employed to
detect the vehicle configurations that exhibit a periodic behavior, and a series of image
processing algorithms are carried out to identify individual vehicles from optical intensity
images. A problem with this approach is that it only uses information from a single
image and is restricted to intensity domain analysis. Examining the parking lot in the
Lockheed/Martin site (Fig. 1), we can see that the vehicle appearances are very different
in brightness, texture, reflectance, etc. Shadows are not a reliable cue, either, since they
change over time. Because of these inherent variations, an algorithm which uses only a
single image can become complicated.

In this paper, we resort to a different domain — the elevation domain — to detect
vehicles. In a parking lot, all vehicles have the common property that they are higher
than the ground. Thus, if height information is available, we are able to abandon the
intensity appearance of vehicles completely when locating the vehicles. This strategy is
particularly useful when analyzing aerial imagery because multiple images are usually
available and elevation information can be obtained fairly easily. Section 2 describes a
stereo algorithm that generates an elevation map from a pair of images.

The problem with elevation data is that it is an unstructured approximation of the

surface height relative to a reference plane. For the many goals of parking lot analysis,



structured geometric information must be extracted. While much work has been done
on extracting man-made structures in urban sites from aerial images [4, 5, 6, 9, 11, 12],
these algorithms are more focused on large-scale structures such as buildings rather than
on small objects (which occupy fewer pixels and possess less structural cues). Wang and
Hanson [18] proposed a system for extracting microstructures that are attached to the
surfaces of large-scale structures in a regular pattern. An important property of their
system is the simplicity of its microstructure extraction algorithm due to the powerful
constraints provided by the large-scale structure models. The deficiency of the system is
that it only works on 2-D microstructures (e.g. windows).

In this paper we treat the motor vehicles in parking lots as 3-D microstructures. A
very simple extraction algorithm is applied to the elevation domain to extract the vehicles
as cuboids (Section 3). The entire structure of the parking lot is then recovered by a hybrid
use of the simple extraction algorithm in both the elevation and the intensity domains.
Once the parking lot structure is recovered, we are able to visualize and simulate vehicle
activities using visually realistic image textures. An algorithm for obtaining such textures

from the image domain is presented in Section 4.

2 The Elevation Domain

To extract the height features of objects on the ground, a stereo terrain reconstruction
algorithm [13, 14] is employed. Input to this algorithm are two aerial images, I” and I,
of the same region. With known camera parameters, the algorithm utilizes the epipolar
geometry (Fig. 2) to compute an elevation map, which approximates the relative height
above a reference plane at each pixel.

Every 2-D point Pp in I, is correlated with points within a prespecified window

along its epipolar line in I¢, under the assumption that the terrain is a nearly Lambertian



Figure 1: Generating the elevation map from a pair of Lockheed/Martin images

(a) the aerial images

(b) the elevation map
surface. For a point P on the epipolar line in 19, the correlation is computed as

oLl o) = vfr(fzvaf])f/;ﬁiy M

in which Var[z] is the intensity variance of the image patch around point z and Cov|z, y]
is the covariance of intensities in the image patches around z and y. The point P with
the highest correlation on the epipolar line in I¢ tends to be the true correspondence of

Pp; that is, Pr corresponds to Pg if

p(Pr; Pa) = max{p(Pr; Pg)}. (2)

Once these correspondences are obtained, the elevation map can be computed by solving
the stereo observation equations [15].

Fig. 1 shows the elevation map generated from a pair of Lockheed/Martin images.
Fig. 3(a) and (b) shows an orthographic version of the intensity and elevation maps. We
can see that all the “bumpy” areas in the elevation map correspond quite well with the

vehicles, while the ground areas appear to be flat and smooth. In this sense, we have
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Figure 2: Concepts of epipolar geometry and correlation function
(a) epipolar geometry of an image pair
(b) correlation function of a 2-D point in the left image
recovered an important feature — the difference in height — that distinguishes the vehicles
from the ground. Clearly, for the sake of correct elevation data, it is required that the
image pair share the same vehicle configuration. Although this is not always true (cars

may be in motion), statistically most part of a parking lot have a good chance to be static

during the instant when two images are taken from a flying airplane.

3 3-D Microstructure Extraction

3.1 The STME system

The elevation map reveals important information about the vehicles in a parking lot;

however, extracting the individual vehicles from the unstructured elevation data poses an



interesting problem. Fig. 3(c) shows a failed attempt to extract the vehicles by using a
global thresholding algorithm applied to the raw elevation map. That the vehicles are
higher than the ground is true only locally; in a global view, due to the natural incline of
the ground or due to errors in the elevation estimates, global thresholding would clearly
produce unacceptable results. Furthermore, when two (or more) vehicles are parked close
to one another and the view angle does not allow the ground plane between the cars to
be seen in both images, the elevation data for the two vehicles can be merged into one

region (four cars in lower center of Fig. 3(a), for example).

Figure 3: Orthographic versions of the intensity and elevation maps of the parking lot
(a) intensity image
(b) elevation map

(c) a failed attempt to extract vehicles by globally thresholding

These problems have been solved successfully by the Surface Texture and Microstruc-
ture Extraction (STME) system. We have distinguished microstructures from large-scale
structures (LSS) in model reconstruction problems [17, 18, 19]. LSS are structures such

as buildings that show sufficient structural cues (corners, edges, etc.) in aerial images



for their unambiguous recognition. Microstructures are small structures (windows, roof
vents, etc.) sized near the limit of resolution in the images. Because of the deficiency
of supporting data in the images, these small structures cannot be extracted using the
structural cues that many LSS extraction systems (e.g. [4, 5, 6, 9, 11, 12]) rely on.

The STME system was originally designed for symbolic extraction of 2-D surface mi-
crostructures. Its design philosophy is based on the fact that many man-made microstruc-
tures appear in rectilinear, repetitive patterns attached to regular, planar surfaces (e.g.
building roofs and walls). With these constraints, symbolic extraction of the microstrcu-
tures can be done in a very efficient way from noisy images, even if the small objects lack
sufficient supporting pixels. Fig. 4 shows an application of the STME system to a window
extraction problem in an extremely noisy environment. The presence of a window is at
best a local intensity “dip” with a couple of supporting pixels. Fig. 4(b) shows the result
of extracting windows using the algorithm described in [19]: windows are approximated at
local intensity dips as rectangles that form a rectilinear lattice globally. Missing windows

were filled in using the knowledge that the window lattice is regular (Fig. 4(c)).

Figure 4: Window extraction using the STME system
(a) wall image in the facet coordinate
(b) extraction of local intensity dips

(c) filling in the missing windows



3.2 Vehicle extraction

Although vehicles in parking lots significantly differ from windows on building walls,
they share the same basic characteristics of man-made structures: a repetitive rectilinear
alignment of objects. Once the parking lot surface is mapped to the elevation domain,
vehicles resemble windows: vehicles appear as “bumps” in an elevation map while windows
are “dips” in an intensity map. Applying the STME system to the elevation domain
enables the system to deal with 3-D microstructures.

Fig. 5(e) shows the extraction of the dips from the reversed version of the elevation
map in (d) using the same approach used to extract windows in Fig. 4. The rectangles that
signify possible vehicles are generated by an oriented region growing (ORG) algorithm.
The algorithm starts at a local minimum on the reversed elevation map and grows the
region from a small rectangle to a large one. The region is forced to grow as a rectangle,
and only along two orthogonal directions. In each direction, the elevations on the frontier
of the region are averaged, and the changes of the averaged elevation are inspected as the
frontier is grown outward. The frontier ceases to grow at the position where the averaged
elevation on the frontier reaches its maximal first order derivative. The rectangle thus
obtained is taken as a hypothesis of a vehicle in the parking lot. A detailed implementation
of the ORG algorithm, as well as other issues in the STME system such as finding the
initial seeds of the growing regions and adjusting the final rectangles using knowledge of
repetitive patterns, can be found in [17].

It is worth noting that the ORG algorithm is featured by its extreme simplicity of
computation. This is partly because the image of a wall or a parking lot is stored in a facet
coordinate system; that is, the edges of the rectangular objects are either perpendicular
or parallel to the z and y axes. This involves finding the orientation of the parking

lot. Chellappa et al.’s frequency domain analysis [1, 2] is one way to do it; in our work,



the facet coordinate is obtained by an LSS analysis of the parking lot as a precursor to
the STME analysis, because the boundary of the parking lot (Fig. 1) provides enough

structural cues to establish its orientation.

3.3 Individual vehicle identification

All the bumpy areas (dips in the reversed elevation map) have been extracted successfully
in Fig. 5(e). However, not all the rectangles are correct hypotheses of individual vehicles.
Typically, a vehicle hypothesis (e.g. the large rectangles in the middle columns) may
correspond to more than one vehicle parked in adjacent spots for several reasons. One
of these is noise in the elevation estimates and the second is a failure to see the ground
between two cars because of sensor viewpoint.

This problem is again solved by the STME system. The general idea is to utilize
the fact that normally a vehicle can occupy no more than one parking spot. If we can
determine the position and the width of each spot, then we can reason how many cars
there are in the rectangles. Recall that the STME system is capable of extracting mi-
crostructures in repetitive rectilinear patterns. The parking spot markers (white lines on
the ground that separate the spots) can be considered to be such a 2-D microstructure
pattern: they are small, but aligned regularly and repetitively. For the STME system
that searches for intensity dips, the reversed intensity image serves as the input image
from which the white markers are extracted (Fig. 5(b)). Among the 77 markers in the
parking lot, 58 of them are correctly identified as long, narrow rectangular boxes. Due to
the existence of image noise and occlusions caused by parked vehicles, some markers are
missing and some false alarms occur (see Table 1).

A scheme similar to the one used to fill in the missing windows in Fig. 4(c) is em-

ployed to fix these errors. First, a parking spot hypothesis is defined by two extracted



Table 1: Statistics of the marker extraction

actual | extracted
markers boxes
total 7 59
correctly identified o8 58
false neg. (missing markers) 19
false pos. (incorrect boxes) 1

neighboring markers, and the width of the spot is calculated by the distance between the
two centerlines of the two boxes delineating the parking spot. A clustering algorithm is
used to cluster the spot hypotheses according to their widths, resulting in the four classes
shown in Table 2. Because most markers have been extracted correctly, the largest class
correctly reflects the majority of the parking spots and the average width of this class
best reflects the actual spot width in this parking lot. For hypotheses in any of the other
classes, they either represent unusual parking spots (with a width considerably different
from the average) or areas where lane markers are missing or incorrectly identified. We
use a merge/split scheme to deal with these spot hypotheses. A large spot hypothesis is

split into m spots where m minimizes

, (3)

in which w is the width of the spot hypothesis and w, is the actual spot width. For
example, a spot hypothesis of width 50.0 (in Class 3) would be split into 3 spots, each
with width 16.7. Similarly, the spot hypotheses in Class 4 and 5 are split into 4 and 6
spots, respectively. The two spot hypotheses of average width 9.0 (in Class 1) are merged
into one spot of width 18.0.

Fig. 5(c) shows the final parking spots after splitting and merging incorrect spot
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Table 2: Using width to cluster the spot hypotheses

total number of | average width

spot hypotheses (pixels)
Class 1 2 9.0
Class 2 49 17.2
Class 3 1 50.0
Class 4 2 69.5
Class 5 2 102.5

hypotheses. A total of 73 spots have been obtained. It can be seen that the spots
correctly reflect the 2-D structure of the parking lot; in particular, individual cars fall
correctly into separate spots although some lane markers are absent due to occlusions.
Once the 2-D structure of the parking lot is known, separation of the connected
vehicles becomes a simple reasoning process. Rectangular areas in Fig. 5(e) that cover
more than one parking spot are segmented into separate vehicles. Of the 12 parked
vehicles in the parking lot, 9 rectangular areas are extracted by the bump extraction
algorithm from the elevation map, including 3 areas that contain more than one vehicle.
With the information of the parking spots, the separation algorithm reorganizes these 3
areas, separating them into small areas in accordance with the spots. The 12 vehicles are
finally identified in Fig. 5(f). A visualization of the parking lot with a bounding box for
each vehicle is shown in Fig. 6. The height of each bounding box is the average of the

elevation data within the box.

In summary, we provide a hybrid method for extracting the repetitive rectilinear
structures in the parking lot using the same STME system: 2-D parking spot structures
from the intensity map and 3-D vehicle structures from the elevation map. The combi-
nation of the results enables us to find the individual vehicle placement in the parking

lot.
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Figure 6: Visualization of the parking lot with individual vehicles extracted

4 Parking Lot Activity Simulation

4.1 Visualization with real textures

Simulation of parking lot activities includes placing new vehicles into the parking lot,
animating them and visualizing their activities. These functions are useful in studies of
parking lot management and traffic control.

In order to achieve visual realism in these functions, textures from real images are
necessary components of the visualization subsystem. Coorg and Teller [7] proposed
a technique based on median statistics to extract real textures of object surfaces from
multiple images. The median texture algorithm works best in the circumstances that a
large number of images are available. Since occlusions are not modeled in this technique,
the removel of occlusions is not reliable when only a small number of images are provided.
Wang and Hanson [18] proposed another architecture, called Orthographic Facet Image
Library (OFIL). The OFIL makes use of multiple images to extract a combined texture
map that is the composite of the “best” components of all images. In the process, the

system handles occlusions (including self-occlusions) caused by modeled objects (such as
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modeled vehicles) in the scene. This technique, however, still requires that every piece
of the texture must have been seen from at least one view in the multiple images. The
OFIL system cannot be used in the case of images in Fig. 1, because the two images were
acquired simultaneously, and hence the parking lot textures occluded by the vehicles are

not available.

Our goal is to provide a clean image of an empty parking lot to facilitate visualization
and simulation tasks. The method is once again based on the fact that the parking spots
present a repetitive pattern in the facet coordinate. It is also reasonable to assume that
a parking spot has a similar intensity texture to its neighboring spots. Therefore, after
extracting the parked vehicles we can replace the textures of the spots occupied by the
vehicles by textures drawn from neighboring empty spots. In practice, a parked vehicle,
together with its shadow, often corrupts its adjacent spots as well. Hence, the spots
needing a texture replacement actually include both the occupied spots and their direct

neighbors.

4.2 Texture replacement criteria

Given a spot S, which is a subimage containing the parking spot whose texture needs to
be replaced, how to appropriately choose an uncorrupted, empty spot texture to replace
S is an issue that determines the quality of the resulting visual realism. Let Qg denote
the set of all the spots qualified to replace S, i.e. the set of the spots that are neither
occupied by a vehicle nor adjacent to an occupied spot. (For the experiments presented
in this paper, Qg is restricted to the qualified spots that are in the same column as S.)
The problem is formulated as how to find out a spot texture, f(S), to replace S using the
information of Q.

The simplest way is to use a least distance criterion (LDC), i.e. to replace S by the

13



texture of the closest qualified spot. That is, f(S) = Qg, in which Qg € Qg and

dist(Qs, 5) = min{dist(Q, 5) | @ € Qs}, (4)

where dist(Q, S) is the distance between two spots. Fig. 7(b) shows an application of
LDC to a portion of the Lockheed/Martin parking lot, shown in (a). For example, all the
parking spots on the lower part of the left column are corrupted spots, and are replaced
by the fifth spot counting from the top. The advantage of LDC is that it retains intensity
similarity, because neighboring spots tend to have similar intensities. However, the spot
chosen by LDC might not have a good image quality. Using the example of the left
column in Fig. 7(b), since the fifth spot was corrupted by a piece of a shadow of a pole,
this corruption is inherited by all the spots replaced and this injects an unrealistic artifact
into the image.

Because the texture inside a parking spot usually has a homogeneous intensity dis-
tribution, the intensity variance in the texture is a good measure to judge the quality of
a spot. This leads to the least intensity variance criterion (LVC), that is, f(S) = Qs, in

which Qs € Qg and

var(Qgs) = min{var(Q) | @ € Qq}, (5)

where var(Q)) is the intensity variance of the texture ). Fig. 7(c) shows an application
of LVC. While LVC provides much cleaner textures than LDC, it sometimes causes un-
satisfactory results in that the selected texture ()5 might be so distant from S that their
intensities differ significantly. On the right column in Fig. 7(c), the spots being replaced
look very unrealistic for this reason. (In this example, the replacing texture Qg is taken
from a spot beyond Fig. 7(a); it is a spot on the top part of Fig. 3(a).)

We propose a weighted combination criterion (WCC) to take into account the factors

of both the spot distance and the intensity variance. The texture f(S) that replaces S is
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(b) (@

Figure 7: Repairing the textures of corrupted parking spots
(a) a portion of the orthographic intensity image of the parking lot
(b) repairing the occluded spots using the least distance criterion (LDC)
(c) repairing the occluded spots using the lease variance criterion (LVC)

(d) repairing the occluded spots using the weighted combination criterion (WCC)

a weighted linear combination of all the qualified textures in Qg:

[(8) =Y GuQ,
QeQ,

in which

G
0 = @@, P var @)

is a weight defined heuristically, and G is a constant satisfying

> Go=1
QeQq

(8)

The value of Gy, is affected by both dist(Q, S) and var(Q). According to WCC, the weight

of a qualified spot @ tends to be high when it is geographically close to S and when it

has a low intensity variance. In this way, f(S) takes advantage of both neighboring spots
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and high quality spots. The experimental result (Fig. 7(d)) shows that WCC makes
satisfactory replacements of corrupted parking spots. In (8) § and v are constants that
can be determined empirically to balance the effects of dist(Q,S) and var(Q). In the
experiment, they have been set to § = 1.0 and v = 4.0.

Having obtained a clean, empty parking lot, we can easily conduct visualization and
simulation of parking lot activities. Fig. 8 is one such scene in which the user places the
vehicles randomly onto the parking lot. The textures of the cuboid vehicles are taken
from the real image using the OFIL system [18]. It is now possible to view the parking
lot from any user selected position since the occlusions of the original vehicles have been

removed.

Figure 8: Simulation of parking lot activities using a cleaned ground surface and randomly

placed, texture-mapped vehicles

5 Discussion

In this paper we have proposed some new approaches to parking lot analysis from aerial

images: (1) the elevation domain provides features that distinguish the vehicles from
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the ground; (2) parked vehicles are treated as microstructures rather than modeled as
large-scale structures; and (3) textures of corrupted parking spots are repaired by using
their repetitive appearance. A stereo algorithm is employed, bringing parking lot analysis
into the elevation domain. An STME system is designed to extract a wide variety of
microstructures, from 2-D window patterns and parking spot markers to 3-D motor vehi-
cles. A hybrid application of the system to the elevation map and to the intensity map
results in a complete extraction of individual vehicles. Finally, a new texture exploitation
technique is proposed to generate a clean image of the parking lot without the vehicles.
A combination of all the subsystems provides an ability to simulate/visualize parking lot
activities with a high quality of visual realism.

The system is particularly useful in parking lot traffic studies. Cohen-Or et al. [3] have
proposed a visualization method in which the objects on the ground are represented by
voxels. In our system, because the vehicles are structured entities symbolically represented
by cuboids instead of by unstructured voxels, the user has a higher degree of flexibility to
handle the positions and movements of the vehicles.

The current system works most reliably on sparsely occupied parking lots for the
following reasons. First, the stereo algorithm is good at detecting isolated vehicles. Due
to the existence of noise and perspective distortion in the original image pair, adjacent
cars may lead to a connected bump in the elevation map, which increases the possibility of
mistakes in the vehicle extraction process. Second, the presence of more vehicles means
a possibility of more occlusions on the ground and fewer visible parking spot markers.
Generally, the extraction result is unreliable if too many spot markers are missing. Third,
if the parking lot is nearly full then recovery of the ground texture is problematic.

This limitation can be reduced if the current system is combined with Chellappa et

al.’s system [1, 2]. While the elevation based approach ignores features of vehicles in the
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intensity domain, Chellappa et al.’s system relies on these features. For example, they
use shadow as a cue to separate individual cars. In fact, their system would perform
better in the case of densely parked area, for these intensity features are more significant
in these areas. Therefore, a combination of the two systems would potentially improve
the performance over either system in many situations.

The current system correctly identifies “spot-based” vehicles, i.e. cars, trucks, mo-
torcycles, etc., that are parked in accordance with the parking lanes. This represents the
majority situation in a parking lot. In real applications, improperly parked vehicles (e.g.
a long truck occupying several spots) may take place in some occasions. The elevation of
these vehicles can be obtained corretly in the system. However, some other information
must be used to decide whether the bumpy area should be divided into individual vehicles.
Again, the periodic information used in [2] may be useful in such situations.

Further studies include more aggressive use of multi-image resources. For the same
parking lot, some spots might be occupied at one time, while being empty at another
time. Consequently, the analysis of repetitive spot patterns could be an off-line process
separated from the on-line elevation analysis on vehicles. Once the ground structure is
completely known, it is an easy process to separate connected bumps into individual
vehicles no matter how densely they are parked. The textures of parking spots can also
be collected from different images wherever they are empty, instead of borrowing from
neighbors in the same image. This could be done by combining our system with Wang

and Hanson’s OFIL system [16, 20|, which collects textures from multiple images sources.
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Figure 5: Parking lot analysis using the STME system

(a) orthographic intensity image of the parking lot

(b) extraction of spot markers as 2-D microstructures from the reversed intensity image
(c) the hypothesized parking lot structure based on extracted spot markers

(d) elevation map of the parking lot

(e) extraction of vehicles as 3-D microstructures from the reversed elevation map

(f) individual car identification by symbolic reasoning from (c) and (e)
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