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Abstract

3-D textural features are textural features that reveal some 3-D characteristics of the texture. In
this paper we study the reliability and stability of a set of 3-D features proposed earlier [22, 23].
We emphasize the performance of the 3-D features in response to two types of training data,
“labeling-based” and “chip-based.” FEzrperiments have been carried out to compare the 3-D
features with a set of 2-D co-occurrence features under different types of training data. The

results show that the 3-D features significantly and consistently outperform the 2-D features

in terms of classification accuracy.
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1 Introduction

Texture classification analysis is an important area in computer vision and has been extensively
studied (e.g. [8, 10, 19, 20]). Traditionally, texture has always been presumed as a kind of
spatial distributions of gray-level variations, or regular structural “patterns”, in the image. A
very large number of texture analysis algorithms have been proposed (see surveys in [8; 18, 20])
based on this presumption. The limitation of these algorithms is that the 3-D structures
existing in the textures on object surfaces cannot be used directly.

Recently, both Dana et al. [3] and Wang et al. [22, 23] have used the concept of 3-D
texture. 3-D textures are recurring patterns caused by physical coarseness, roughness, and
other characteristics on object surfaces in the real world. An important property of a 3-D
texture is that its 2-D appearance varies when viewed from different positions, if there exist
3-D structures in the texture. Based on this observation, Dana et al. [3] established a texture
database, in which images of object surfaces are taken from various angles to make a complete
view of the textures. However, their system did not support texture classification analysis.
Wang et al. [22, 23] proposed a set of 3-D features for terrain classification. In contrast to
traditional 2-D image features, which are extracted from a single image, these 3-D features are
obtained by a multi-view analysis of the texture, and reflect some 3-D structural characteristics

of the texture.

Some problems, however, exist in Wang et al.’s experiments. For example, they used a
very small amount of data to train the classifier. In the reported result, these data accounted
for only about 1% of the test data. In a large terrain that contains various types of ground
covers (forests, grass, bare ground, etc.), such a small amount of training data might not
reflect the reality of the entire test data. Generally, in classification problems, a classification
result is dependent not only on the classification algorithm and the selected features but also

on the data that are chosen to train the classifier. A classification result is reliable only if the



training data are sufficiently representative.

Training data selection is a practical issue in classification problems. Generally speaking,
a larger training data set has a better representativity than a smaller one. However, small
training data sets are often preferred since they involve less man-machine interaction. Good
textural features are those that perform well not only under a large training data set but also
in the case of small training data sets. This property is called “reliability” of the textural
features. Using a reliable textural feature set, the interactive operations in the training stage
can be minimized because only a small training data set is necessary.

In this paper we review the set of 3-D features (Section 2) and test its reliability under
two types of training data, “chip-based” and “labeling-based” (Section 3). The experimental
results, given in Section 4, show that the set of 3-D features outperforms a well-known 2-D
feature set consistently under a wide collection of training data. We discuss future work in

Section 5.

2 The Feature Space

In this section we review the 3-D features proposed by Wang et al. [22, 23]. They are MS
(match score), CSF (curvature of similarity function), NVMS (neighborhood variation of
match score), and NDC (neighborhood density of well-defined curvature). The 2-D features we
use for comparison are ASM (angular second-moment), CON (contrast), and ENT (entropy),

chosen from the co-occurrence feature set proposed by Haralick et al. [9].

2.1 The 3-D feature set

The 3-D features are derived from a two-view stereo algorithm [15], which has been used for

terrain modeling [16, 17]. These features have been used for terrain classification recently [14,

22, 23].



The algorithm employs the epipolar geometry depicted in Fig. 1(a). For an arbitrary 2-D
point, P, in the left image, it is correlated along its epipolar line on the right image, under
the assumption that the terrain is a nearly Lambertian surface. Fig. 1(b) shows the similarity
function, p, which indicates how P is correlated with the points on its epipolar line. The
point () with the best match — the highest correlation on the epipolar line — tends to be the
true correspondence of P. The shape of the similarity function at () reveals some important

information of the 3-D texture at P, and thus is used to define the 3-D features.
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Figure 1: Epipolar geometry and correlation function
(a) epipolar geometry of an image pair

(b) similarity function of a 2-D point in the left image

The maximum value of similarity function at the best match is set to be the match score

(MS) feature:

MS(P) = p(@). (1)
MS tends to be high when the image patches being correlated are very similar. This happens
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in smooth areas, such as flat ground, where there is no occlusion due to change of viewpoint
between the two images.
The second feature, neighborhood variance of match score (NVMS), is defined in a local

window W (P), centered at P, on the MS image:

NVAS(P) = J% > MS(P) — B ()P, (2
P'ew (P)
in which N is the total number of pixels in the window and E(W (P)) is the average value of
MS in the window. NVMS measures the homogeneity of MS in a piece of texture. In forested
areas, for example, the occlusions caused by view point changes occur in a random way, and
the values of MS may have a larger variance than grass areas (for example).
The distinctiveness of the similarity function at the best match is described by the feature

curvature of similarity function (CSF), which is computed by fitting a parabola of the form

ax? + bx + c to the function p at the best match. The curvature of the parabola
CSF(P) = 2a, (3)

provides an estimate of the curvature at the peak of the similarity function. The absolute
value of CSF tends to be high when distinctive features or structures exist in the texture, i.e.
there is a unique match.

At some points, MS and CSF might not have a well-defined value because there may
not be a well-defined or unique local maximum over the certain search range in p. We fix
the MS and CSF at these points by setting the value of MS to the global maximum in the
search range and by filtering the CSF map using a median filter. A feature called neighborhood
density of well-defined curvature (NDC') is defined to measure how densely these points occur,

because missing a well-defined local maximum generally indicates a bad match and a (perhaps)



Figure 2: The orthographic intensity image and the locations of subimages used in the exper-
iments

(a) the 2k x 2k ortho-image from Ft. Hood Image Set

(b) Y: the displayed subimage whose classification results are shown in Fig. 5 and Fig. 6
X: the hand-labeled subimage — training data in the comparison experiment
{f1,g1,r1,s1}: hand picked-up chips — training data in the comparison experiment

{f2,82,r2,s2,f3,¢3,r3,s3}: additional chips — training data in the stability experiment

complicated 3-D structure on the ground. In a local window W (P) centered at P,
1
NDC(P)=— Y 0[CSF(P)], (4)
N péwip)

where N is the total number of pixels in W (P) and

1, if CSF is well-defined at P’
S[CSF(P)] = )

0, otherwise.



In Fig. 3 we illustrate the 3-D features extracted from a portion of an area of Ft. Hood,

TX. Fig. 2 shows the whole area and the location of the displayed portion Y.

]
F o

(d)

Figure 3: Subimage Y (560 x 430) and its 3-D feature maps
(a) the intensity ortho-image
(b) ground truth hand classification
(c) match score (MS)
(d) neighborhood variation of match score (NVMS)
(e) correlation curvature (CSF)

(f) neighborhood density of well-defined curvature (NDC)

2.2 The 2-D features for comparison

Co-occurrence features were introduced by Haralick et al. [9]. Previous theoretical and ex-
perimental studies [2, 5, 9, 13, 24] showed that co-occurrence features were more effective

in terrain classification problems than many other well-known 2-D textural features, such as



the Fourier power spectrum, the gray-level run-length, the gray-level difference, the power
spectrum, Markov Random Field parameters, multi-channel filtering features, and fractal
based features, among others. Most recently the co-occurrence features have been studied by
Valkealahti and Oja [21].

Co-occurrence features describe the texture within a local image window based on gray-
tone spatial dependencies. Each feature type is associated with four separate features describ-
ing the gray-scale dependencies in four directions. As suggested by other researchers [2, 13, 23,
24] and by our preliminary experimental results, we use the following feature types: angular
second-moment (ASM), contrast (CON), and entropy (ENT). Thus a total of twelve features

were employed. The definition of these features can be found in the literature [9, 13, 22].

3 The Training Data Space

In classification problems, training data selection is an important, yet often ignored, practical
issue. Training data is the data, with known classification, used in the training stage to train
the classifier in order to determine the parameters of the classifier (which are used in the later
classification stage). The quality of a classification result is determined by the parameters of
the classifier, hence by the training data.

A classification of an object z (e.g. a pixel in an image) is an assignment I'(z) = ¢,
where z € X (the object set) and ¢; € C (the class set). For the same classifier, when different
feature sets and training data sets are used, it will output a different assignment. Let I'rp
denote the classification assignment produced by the classifier using F' as the feature set and
T C X as the training data set. The accuracy p of a classification can be computed based on

the comparison between I'r p and the ground truth classification I'y:

1

> Alrp(x), To(2)], (6)

zeX



in which

]_, if C; =G4
Alei, o] = { (7)

0, otherwise.

p is a function of both the features set F' and the training data set 7.

As stated in Section 2, our goal is to compare the performance of the 2-D co-occurrence
features and the new 3-D features. However, any experiment for comparing two feature sets,
F} and F,, must be conducted under a fixed training data set T'; that is, any conclusion
drawn from p(T, F}) and p(T, F3) is dependent on 7. If T is not a good representation of the
entire object set X, the result of the experiment is not reliable. Theoretically, a thorough
understanding of the performance of two feature sets F; and F, needs a complete examination
of all the subsets of X as training data. Measures can be defined to evaluate the results in

these experiments:
pr(F) = M{p(T, Fy)| for all T C X}, (8)

in which M is a measure to evaluate the p’s in all the experiments. Although py/(F}) thor-
oughly represents the performance of the feature set Fj, on the object set X, its computation
is practically impossible for it involves O(2/*1) experiments.

In practice, there are only limited ways to choose T' because of the limitation in interactive
operations. In the training stage, a human operator must define a training data set T" by
choosing some portions of the image dataset and labeling them with the correct categories
(i.e. specify I'g(x) for each x € T'). There are two methods commonly used for choosing such
a T. One method, labeling-based, is to select a subimage which contains pixels that cover all
the ¢; € C, and then label each pixel into a ¢; by hand (e.g. Fig. 4(a)). The other method,
chip-based, is to pick a set of small image chips, in which each chip contains only one ¢; (e.g.

Fig. 4(b)).
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Figure 4: Training data (positions shown in Fig. 2(b))
(a) manually labeled subimage X (400 x 400)
(b) f1 (99 x 99, foliage), g1 (75 x 75, grass covered ground), r1 (37 x 37, road/riverbed), sl

(11 x 11, shadow))

In order to reduce interactive operations, the chip-based method is preferred. For ex-
ample, consider the image in Fig. 2, which is to be classified into four classes: foliage(trees,
shrubs), grass covered ground, bare ground (road, riverbed), and shadow. The operator only
need to pick up minimally four small chips (e.g. the set {fl, g1, rl, s1}) as training data and
label each with four class labels. On the other hand, if the labeling-based method is used,
the operator has to label the whole subimage manually pixel by pixel (e.g. X in Fig. 2). The
labeling-based training data, however, have the advantage that their distribution in the fea-
ture space tends to resemble the distribution over the whole set X. For instance, sometimes
ambiguities exist around the boundary of two classes: it is hard to decide whether a pixel is
a “foliage pixel” or a “shadow pixel”. A subimage like X tends to include these pixels at the
same rate as in the whole image. Th human operator is “forced” to make a decision on these
pixels, and the decision is fed into the classifier as a part of the training data. In the case of
chip-based method, the operator can escape from this hardship by avoiding those boundary

pixels and choosing only those “easy” pixels with obvious texture types. As a result, the
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distribution of training data 7' in the feature space might be significantly different from that
of X.

To test the reliability of the 3-D and 2-D textural features, we will test their performances
(Section 4.1) under both labeling-based and chip-based training data sets. Subimage X in
Fig. 2, randomly selected and manually labeled, is used as the labeling-based training data.
Image chips {f1, gl, rl, s1} are used as chip-based training data. Because the chip-based
method is more desirable in real applications, we increase the number of image chips by
including {f2, g2, r2, s2, 3, g3, r3, s3} (see Fig. 2(b)) in Section 4.2 to test the stability of

the 3-D and 2-D features under different combinations of training data.

4 Experiments

Experiments have been carried out to compare the proposed 3-D features and the 2-D co-
occurrence features under different training data. For each configuration of training data,
the performance of the following four feature sets are tested: Feature Set A contains the
twelve co-occurrence features only; Feature Set B includes the original image intensity as an
additional feature into Set A; Feature Set C consists of the four 3-D features plus the intensity
feature. Feature Set D includes all the features — the twelve co-occurrence features, the four
3-D features and the intensity. All the experiments employ the same classification algorithm
based on the Foley-Sammon Transform (FST) [7, 12, 22, 24] and minimum Mahalanobis
distance criterion. All the experiments are conducted on the 2k x 2k Ft. Hood image in
Fig. 2(a). Using formula (6), the classification result in each case is compared with a hand

produced 'y that was manually generated by a human operator.
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4.1 The comparison experiment

In the comparison experiment, we compare the performance of the feature sets under the
labeling-based training data X and under the chip-based {f1, g1, r1, s1}. A portion (subimage
Y) of the classification results are displayed in Fig. 5 and Fig. 6, respectively. Table 1 and
Table 2 shows the quantitative analysis of these results, each entry (i,7) of the table being

the number of pixels classified into ¢; when the ground truth was ¢;.

]
F o

Figure 5: Classification results on subimage Y (560 x 430) using subimage X as training data
(see Fig. 4 for legend)

(a) the intensity ortho-image

(b) ground truth hand classification

(c) Feature Set A: twelve co-occurrence features

(d) Feature Set B: twelve co-occurrence features and one intensity feature

(e) Feature Set C: four 3-D features and one intensity feature

(f) Feature Set D: twelve co-occurrence features, four 3-D features, and one intensity feature
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Figure 6: Classification results on subimage Y (560 x 430) using image chips {fl,gl,rl,s1} as

training data (see Fig. 4 for legend)

(a) the intensity ortho-image

(b) ground truth hand classification

(c) Feature Set A: twelve co-occurrence features

(d) Feature Set B: twelve co-occurrence features and one intensity feature
(e) Feature Set C: four 3-D features and one intensity feature

(f) Feature Set D: twelve co-occurrence features, four 3-D features, and one intensity feature

Some observations can be made from both the visual results and the quantitative analysis.
First, the feature set containing only the 2-D co-occurrence features (Fig. 5(c) and Fig. 6(c))
produces the worst classification result using either training data set. In particular, the ground
and foliage labels are confused in many places, because the 2-D features are not able to reflect
the 3-D structures in foliage areas, while the existence of grass and vehicle tracks intermingled

with ground patches makes the ground area have a mottled 2-D textural appearance. Second,
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the intensity feature provides some discriminability among the classes (Fig. 5(d) and Fig. 6(d)),
especially the road and shadow classes which have extreme intensities. However, the intensity
feature is not reliable in that the brightness of ground covers might change due to different
soil/grass types. (In the lower left part of Fig. 5(a) and Fig. 6(a), the ground region below
the road turns darker, and classification deteriorates in this area when the intensity feature
is added into Feature Set A.) Third, when the four 3-D features are used (in Feature Sets
C and D), the classification accuracy improves significantly (Fig. 5(e)(f) and Fig. 6(e)(f)).
Under either training data set, the use of 3-D features increases the overall accuracy about
10-15 percentage points. In summary, the involvement of 3-D features consistently improves
classification under the two types of training data.

Some differences in the classification can be observed between the two types of training
data. Table 1 and Table 2 shows that label-based training data (subimage X) leads to a better
classification result in the categories of shadow and bare ground than the chip-based method
does (using {fl,gl,r1,s1}), although the overall accuracy remains the same. This phenomenon
can be explained by the difference of the feature space distribution of the two types of training
data. As stated in Section 3, the distribution of chip-based training data in the feature space
may be different from that of the test data, because the “boundary pixels” are usually not
included. Therefore, the classifier may have a different “understanding” of these boundary
pixels than the human operator does. Fig. 5(e)(f) and Fig. 6(e)(f) shows that the major
differences between the two types of training data happen at those boundary shadow and
bare ground pixels. Since these pixels are ambiguous pixels in nature, a mis-classification

does not deteriorate the visual effect too much in Fig. 5(e)(f) and Fig. 6(e)(f).
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4.2 The stability experiment

Since chip-based method for choosing training data is more desirable in real applications,
a stability experiment has been carried out to test the stability of the 2-D and 3-D features
using various combinations of image chips as training data. For each texture class, we included
two more image chips randomly sampled from the ortho-image (Fig. 2), with sizes similar to
those used in the comparison experiment. Twelve combinations (subsets of training chips) are
tested in the experiments, and the results are shown in Table 3. Each Training Set 1, 2, and 3
contains all the training chips for the bare ground, grass covered ground, and shadow classes,
but only one (different) chip for the class of foliage. Each Training Set 4, 5, and 6 contains
one chip for the bare ground class and all the chips for other classes. Similarly, Training Set
7, 8, and 9 each contains one chip for grass covered ground and all the chips for the others,
and Training Set 10, 11, and 12 each has one for shadow and all for the others.

For each combination of training data, the four feature sets, A, B, C, and D, are tested.
From Table 3 we can see that, under any combination, the classifier using the 3-D features
always performs better than Feature Set A and B, where no 3-D feature was involved. On
average, Feature Set C and D outperforms Feature Set A and B by nearly 10-15 percentage
points.

From the standard deviation we can see that the set with co-occurrence features plus
the intensity is most sensitive to different training sets. Hence the quality of its classification
is most unreliable. The sets with 3-D features have a good stability against various training
data. This fact indicates that the proposed 3-D features represent some consistent physical
characteristics of textures with 3-D structures, and can be considered as candidate features

in real applications where a large amount of training data are not easily available.
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5 Discussions

In order to evaluate the quality of a set of textural features, the performance of the features
under different configurations of training data must be investigated. In this paper we have
experimentally compared a set of proposed 3-D features with the set of 2-D co-occurrence
features, which has been claimed to be one of the best traditional textural feature sets. Two
most frequently used training data selection methods, labeling-based and chip-based, have
been investigated. Experimental results have shown that the proposed 3-D features signifi-
cantly and consistently outperform the co-occurrence features in response to the two types
of training data. It is also shown that the 3-D features have a good stability over different
pieces of training data, suggesting that they can be used in circumstances where only a small
amount of training data is available.

A further inspection of Table 1 and Table 2 shows that a large portion of mis-classifications
made by the 3-D features involves mistaking grass pixels for foliage pixels. Because of this
confusion, the edges of forests almost always include some grass covered ground, as can be
seen in Fig. 5(e)(f) and Fig. 6(e)(f). This is because the 3-D features are based on multi-view
analysis, and various parts of grass covered ground may be occluded by the foliage when the
viewpoint changes. As a result, a forest tends to have a larger area than it actually has when
this juxtaposition of the two classes occurs in the image. This problem could be solved by
using the knowledge of the height of the trees, and thus the 3-D feature based classification
could be further improved.

Future studies include an investigation of the distributions of the terrain data in the
space of the 3-D features. All the experiments conducted in this paper are based on the FST
classifier, which performs the best when each class has a Gaussian distribution in the feature
space. Since the distributions in the feature space are unknown, how the 3-D features would

perform in other kinds of classifiers is an open question. We are currently seeking to test the
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reliability and stability of the 3-D features using a decision tree classifier [1, 4, 14]. Classifiers

based on neural networks (e.g [11]) are good choices as well.

References

1]

7]

C. Brodley and P. Utgoff, “Multivariate Decision Trees,” Machine Learning, 19, pp. 45-77,

1995.

R. Conners and C. Harlow, “A Theoretical Comparison of Texture Algorithms,” IEEFE

Trans. on Pattern Analysis and Machine Intelligence, Vol. 2, No. 3, pp. 204-222, 1980.

K. Dana, S. Nayar, B. van Ginneken, and J. Koenderink, “Reflectance and Texture
of Real-World Surfaces,” IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, Puerto Rico, pp. 151-157, June 1997.

B. Draper, C. Brodley, and P. Utgoff, “Goal-Directed Classification using Linear Machine
Decision Trees,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 16,

No. 9, pp. 888-893, 1994.

J. du Buf, M. Kardan, and M. Spann, “Texture Feature Performance for Image Segmen-

tation,” Pattern Recognition, Vol. 23, pp. 291-309, 1990.

D. Dunn, W. Higgins, and J. Wakeley, “Texture Segmentation Using 2-D Gabor Elemen-

tary Functions,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 16,

No. 2, pp. 130-149, 1994.

D. Foley and J. Sammon, Jr., “An Optimal Set of Discriminant Vectors,” IEEE Trans.

on Computers, Vol. 24, No. 3, pp. 281-289, 1975.

17



8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

L. Van Gool, P. Dewaele, and A. Oosterlinck, “Texture Analysis Anno 1983,” Computer

Vision, Graphics, and Image Processing, Vol. 29, pp. 336-357, 1985.

R. Haralick, K. Shanmugam, and [. Dinstein, “Textural Features for Image Classifica-

tion,” IEEE Trans. on Systems, Man, and Cybernetics, Vol. 3, No. 6, pp. 610-621, 1973.

R. Haralick, “Statistical and Structural Approaches to Texture,” Proc. IEFE, Vol. 67,

No. 5, pp. 786-804, May 1979.

A. Jain and K. Karu, “Learning Texture Discrimination Masks,” IEEFE Trans. on Pattern

Analysis and Machine Intelligence, Vol. 18, No. 2, pp. 195-205, 1996.

K. Liu, Y. Cheng, and J. Yang, “Algebraic Feature Extraction for Image Recognition

Based on an Optimal Discriminant Criterion,” Pattern Recognition, Vol. 26, No. 6,

pp.- 903-911, 1993.

P. Ohanian and R. Dubes, “Performance Evaluation for Four Classes of Textural Fea-

tures,” Pattern Recognition, Vol. 25, No. 8, pp. 819-833, 1992.

J. Piater, E. Riseman, and P. Utgoff, “Interactively Training Pixel Classifiers,” to appear

in Proc. FLAIRS’98, AAAI Press, 1998.

H. Schultz, “Terrain reconstruction from widely separated images,” Integrating Pho-

togrammetric Techniques with Scene Analysis and Machine Vision II, SPIE Proceedings

Vol. 2486, pp. 113-123, Orlando, FL, April 1995.

H. Schultz, C. Jaynes, M. Marengoni, A. Schwickerath, F. Stolle, X. Wang, A. Hanson,
and E. Riseman, “3D Reconstruction of Topographic Objects at the University of Mas-

sachusetts,” Joint ISPRS Commission II1/IV Workshop: 3D Reconstruction and Mod-

18



[17]

[18]

[19]

[20]

[21]

22]

23]

elling of Topographic Objects, E. Baltsavias et al. (Ed.), pp. 77-87, Stuttgart, Germany,

September 1997.

H. Schultz, F. Stolle, X. Wang, E. Riseman, and A. Hanson, “Recent Advances in 3D Re-
construction techniques Using Aerial Images,” Image Understanding Workshop, pp. 977-

982, New Orleans, LA, 1997.

J. Strand and T. Taxt, “Local Frequency Features for Texture Classification,” Pattern

Recognition, Vol. 27, No. 10, pp. 1397-1406, 1994.

H. Tamura, S. Mori, and T. Yamawaki, “Textural Features Corresponding to Visual

Perception,” IEEE Trans. on Systems, Man, and Cybernetics, Vol. 8, pp. 460-473, 1978.

M. Tuceryan and A. Jain, “Texture Analysis,” In The Handbook of Pattern Recognition
and Computer Vision, C. Chen, L. Pau, and P. Wang, eds. World Scientific Publishing

Co., pp. 235-276, 1993.

K. Valkealahti and E. Oja, “Reduced Multidimensional Co-Occurrence Histograms in
Texture Classification,” IEEE Trans. on Pattern Analysis and Machine Intelligence,

Vol. 20, No. 1, pp. 90-94, 1998.

X. Wang, F. Stolle, H. Schultz, E. Riseman, and A. Hanson, “A New Approach to Terrain
Classification Using Three-Dimensional Features,” Technical Report #97-021, Dept. of

Computer Science, Univ. of Massachusetts at Amherst, April 1997.

X. Wang, F. Stolle, H. Schultz, E. Riseman, and A. Hanson, “Using Three-Dimensional
Features to Improve Terrain Classification,” IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition, Puerto Rico, pp. 915-920, June 1997.

19



[24] J. Weszka, C. Dyer, and A. Rosenfeld, “A Comparative Study of Texture Measures for

Terrain Classification,” IEEE Trans. on Systems, Man, and Cybernetics, Vol. 6, No. 4,

pp. 269-285, 1976.

20



Table 1: Contingency analysis of classification results using subimage X as training data (unit:

1000 pixels)

classification using Feature Set A

grs. cvd. bare

ground truth  (total) || shadow | ground | foliage | ground
shadow  (41.8) 1.8 76| 04| 321

grass covered ground  (683.0) 0.9 391.5 | 219.7 71.0
foliage (1018.6) 0.2 274.3 | 688.8 55.3

bare ground  (193.4) 3.5 20.6 9.7 | 159.6

total (1936.8) 6.4 693.8 | 918.5 318.0

correctly classified pixel total: 1241.7 (64.11%)
classification using Feature Set B

grs. cvd. bare

ground truth  (total) || shadow | ground | foliage | ground
shadow  (4L.8) 28.5 85| 2.3 2.5

grass covered ground  (683.0) 37.9 381.9 | 199.5 63.7
foliage (1018.6) 29.2 95.5 | 850.2 43.7

bare ground  (193.4) 10.6 10.1 3.2 169.5

total (1936.8) | 106.2 |  496.0 | 1055.2 | 279.3

correctly classified pixel total: 1430.2 (73.84%)
classification using Feature Set C

grs. cvd. bare

ground truth (total) || shadow | ground | foliage | ground
shadow (41.8) 32.1 0.0 9.7 0.0

grs. cvd. ground  (683.0) 0.5 546.7 77.0 58.8
foliage (1018.6) 55.7 75.5 | 861.7 25.7

bare ground  (193.4) 0.0 10.1 1.6 181.7
total (1936.8) 88.4 632.4 | 949.9 | 266.1

correctly classified pixel total: 1622.2 (83.76%)
classification using Feature Set D

grs. cvd. bare

ground truth  (total) || shadow | ground | foliage | ground
shadow (41.8) 37.1 0.4 3.7 0.6

grs. cvd. ground  (683.0) 0.4 517.2 91.2 74.3
foliage (1018.6) 50.5 79.0 | 849.1 40.0

bare ground  (193.4) 0.1 12.0 2.2 179.1
total (1936.8) 88.1 608.5 | 946.2 294.0

correctly classified pixel total: 1582.5 (81.71%)
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Table 2: Contingency analysis of classification results using image chips {fl,gl,rl,s1} as train-

ing data (unit: 1000 pixels)

classification using Feature Set A

grs. cvd. bare

ground truth  (total) || shadow | ground | foliage | ground
shadow  (41.8) 21.2 71| 119 17

grass covered ground  (683.0) 17.7 259.9 | 405.2 0.3
foliage (1018.6) |  10.8| 121.2| 886.6 0.0

bare ground  (193.4) 77.5 19.3 50.5 46.1

total (1936.8) | 127.2 | 4075 | 1354.1 | 48.1

correctly classified pixel total: 1213.8 (62.67%)
classification using Feature Set B

grs. cvd. bare

ground truth  (total) || shadow | ground | foliage | ground
shadow  (4L.8) 23.7 70| 111 0.0

grass covered ground  (683.0) 40.8 332.6 | 308.1 1.6
foliage (1018.6) 11.7 55.0 | 950.7 1.2

bare ground  (193.4) 52.2 12.9 31.2 97.2

total (1936.8) 128.2 407.5 | 1301.1 100.0

correctly classified pixel total: 1404.1 (72.50%)
classification using Feature Set C

grs. cvd. bare

ground truth (total) || shadow | ground | foliage | ground
shadow (41.8) 3.0 0.0 38.8 0.0

grs. cvd. ground  (683.0) 0.0 439.5 | 231.4 12.2
foliage (1018.6) 0.4 20.0 | 995.3 2.9

bare ground  (193.4) 0.0 17.3 25.1 | 150.9
total (1936.8) 3.3 476.8 | 1290.6 | 166.0

correctly classified pixel total: 1588.7 (82.03%)
classification using Feature Set D

grs. cvd. bare

ground truth  (total) || shadow | ground | foliage | ground
shadow  (41.8) 13.8 00| 27.8 0.2

grs. cvd. ground  (683.0) 0.0 468.6 | 202.7 11.8
foliage  (1018.6) 2.0 18.0 | 995.7 2.8

bare ground  (193.4) 0.0 33.9 21.4 | 138.1
total (1936.8) 15.8 | 520.6 | 12475 | 152.9

correctly classified pixel total: 1616.1 (83.44%)
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Table 3: Classification accuracy in percentage on the 2kx2k ortho-image using 12 different

training data sets

Feature Set A | Feature Set B | Feature Set C | Feature Set D
Training Set 1 63.3 65.6 77.6 83.0
Training Set 2 63.2 66.3 75.8 80.8
Training Set 3 63.6 64.7 78.8 79.5
Training Set 4 63.6 65.4 77.5 80.6
Training Set 5 63.8 65.3 74.3 79.0
Training Set 6 63.4 66.0 75.8 82.4
Training Set 7 63.6 65.5 70.9 79.8
Training Set 8 63.9 74.6 78.0 80.1
Training Set 9 63.1 66.6 73.9 78.6
Training Set 10 63.5 65.7 80.1 83.3
Training Set 11 64.7 76.5 81.1 83.0
Training Set 12 64.2 68.7 81.7 83.1
mean 63.67 67.59 77.12 81.09
standard deviation 0.19 13.81 9.25 2.82

Feature Set A: twelve co-occurrence features

Feature Set B: twelve co-occurrence features and one intensity feature
Feature Set C: four 3-D features and one intensity feature
Feature Set D: twelve co-occurrence features, four 3-D features, and one intensity feature

Training Set 1-12: see Section 4.2
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