

Enhancing Design Methods to Support Real Design Processes

Barbara Staudt Lerner, Stanley M. Sutton Jr., and Leon J. Osterweil
Computer Science Department
University of Massachusetts
Amherst, Massachusetts 01003

lerner@cs.umass.edu, sutton@cs.umass.edu, ljo@cs.umass.edu

Preferred track: Traceability, Integrity, and Change

Abstract

Software design methods typically focus on the activities that individual designers should perform
under ideal circumstances. They rarely, if ever, address the activities that should be performed when
things do not go according to plan, such as when a customer requests changes to the specification, or
when early design decisions must be changed. They also rarely address issues involving coordination
of multiple designers in cooperative design tasks or in competition for limited resources. We are in-
vestigating fundamental concepts required for more complete definition of design methods, developing
linguistic mechanisms within a process programming language to support these concepts, and validating
these through the definition of a process program that incorporates the Booch method.

1 Motivation

In recent years, numerous software design methods (for example, [1, 4, 2, 6, 3]) have been proposed to
describe how successful software designers build systems so that others may learn from their experiences
and use the same techniques. These methods are useful in providing an outline of activities to follow, and
specifications of what well-formed finished software design products must look like. But they leave many
questions unanswered about how to actually execute the method, and go about crafting the final well-formed
product. As a result, we see that most tools purporting to support these methods actually only support the
creation and editing of graphs constructed in the notation propounded by the method.

We have been studying the general problem of providing support for the full range of software design
activities, paying special attention to such issues as the coordination of multiple designers, the handling of
unplanned activities, and support for the myriad details that design entails. While the thrust of this work
is quite broad, and often highly conceptual, we have found that it is quite beneficial to also reduce it to
operational practice. We have done this by developing a formal process definition for a specific software
design method, namely Booch Object Oriented Design [1], expressing the process definition in the JIL
process programming language [5]. This process definition work has had a number of significant benefits.
First, because defining a process by means of a programming language provides a precise semantics, we
are able to be quite rigorous in the definition of the method. This enables us to provide details of the
method that were lacking in the initial process description, and often to confirm conceptual content that may

Voice: 413-545-3787. Fax: 413-545-1249

1

have been unclear. Second, a formal definition gives us a means by which we can compare the definitions
of methods more precisely. This has enabled us to derive more firm and complete understandings of the
relationships between several of the currently proposed software design methods. Third, a definition in
terms of a process programming language offers the possibility of developing tools that provide sharp and
direct support for various of the several activities that comprise the design method, rather than for only the
creation and maintenance of the design notation.

On initial examination, one might feel that a programming language would be ill-suited for the defi-
nition of processes in which human creativity has an important role. Thus, our process definition project
also enabled us to experiment with our hypothesis that such programming of a design process can indeed be
effective provided that the programming language offers suitable features. We found that JIL offers various
features that do indeed make it very appropriate as a vehicle for the definition of processes in which human
creativity is essential. JIL offers a synergy between the user and program that is not typical of most pro-
gramming languages. In particular, JIL provides control constructs that allow the human to be the decision
maker and thereby use human intelligence to guide the program. Furthermore, JIL programs can be written
to an arbitrary level of detail. The program might provide only an outline of what should be accomplished,
and leave the hard work entirely to the user, as the Booch method does, or provide arbitrary amounts of
detail on how to accomplish the process.

With these two mechanisms, we found it to be quite feasible to capture the semantics embodied in
the Booch method. The result, however, is unsatisfactory from the point of view of providing a tool that
designers could actually use. The reason is that the Booch method does not accurately capture how designers
do their jobs. Fundamentally, the Booch method lacks sufficient detail to be considered an engineering
process. Lack of detail is evident in the weak definitions associated with most of the activities comprising the
method and also in its complete silence on some fundamental activities that are essential in software design,
two of which we discuss in this paper. First, the Booch method only describes the “nominal process”, what
designers should do when everything is going according to plan. Second, it does not describe how multiple
designers can effectively collaborate to produce a design.

2 Coping with Unpredictable Events

Our investigations have indicated that software design methods are primarily descriptions of the steps
that a designer should perform, and rough postconditions that characterize the acceptance criteria for those
steps. As any practicing software engineer can report, many design activities are not simply a matter of
marching through from one step to the next. Errors are introduced and must be fixed, customers request
changes to the requirements whose impact on the existing design must be analyzed, the design must be
modified to incorporate changes, people leave the project, new people join the project. In short, design does
not typically proceed in a smooth fashion, but instead has bursts, slowdowns, and even retreats on its path
to completion. Any system that can effectively help the designer through this process must be able to cope
with such irregular, unplanned, and possibly unpredictable events.

Modern programming languages use exception mechanisms so that normal code can be separated from
error-handling code. This simplifies the understanding of the normal code as well as explicitly identifies the
error handling code and the specific errors being handled. The same effect is desirable in describing design
processes. Such a mechanism allows the separation of the nominal process from error-handling activities
performed during the process. This type of mechanism would be beneficial to deal with describing errors
detected at specific points in the process. For example, the Booch method describes milestones that must
be satisfied before the designer should proceed to the next activity. Attempting to proceed when those

2

milestones are not satisfied would be considered an error in the process. Reacting to that error, which might
result in iterating the activity, could be specified in an exception handler.

More general events also arise during the design process, particularly in situations where multiple de-
signers are collaborating. One designer may require the results of another designer in order to proceed.
Thus designers may want to be notified when certain significant events that are beyond their control occur.
For example, a designer might want to be notified when a piece of the design on which he/she depends is
modified. Other events might have broader implications. For example, a change to the requirements should
be broadcast to all designers responsible for applicable sections of the design. Having a designer quit the
project will likely result in reallocation of responsibilities. A complete design process should specify these
general events and the appropriate reactions for them, again relying upon humans to fill in the details of the
reactions.

In our development of a JIL process program to define Booch Object Oriented design we made frequent
and effective use of JIL: proactive control constructs to support the specification of the nominal process,
preconditions and postconditions to assist in the identification of errors in the execution of a process, the
exception handling mechanism to deal with those errors, and the reaction mechanism to deal with general
events. We believe that this experience strongly suggests that our approach of using a sufficiently powerful
process programming language can be effective in successfully capturing the complex and elusive nature of
control flow in software design. Our research into this is continuing.

3 Coordination of Multiple Designers

The Booch method focuses on the activities of an individual designer. It is quite rare, however, for
designers to work alone on a project. Cooperation among designers is common; competition for limited
resources is not unusual. Any method that is precise enough for designers to use as to guide their activities
must address these issues.

3.1 Cooperative Concurrency Control

The design activity results in the creation of multiple design artifacts representing different pieces of the
system being designed as well as different aspects of those pieces. Some artifacts, such as class diagrams,
describe the static characteristics of the system; others, such as state transition diagrams, describe dynamic
characteristics. The artifacts are highly interdependent. All artifacts that present different aspects of the
same design element are obviously closely related. In addition, design elements depend on other elements
that describe classes/objects being used or inherited from.

The interconnections between the artifacts can be used to ensure consistency between the artifacts. If
one artifact is changed, consistency requirements are re-evaluated. If the change is found to be inconsistent,
this will throw an exception which can be handled either by retracting the change or updating other design
elements to become consistent with the change.

This process of consistency checking and change propagation becomes more complex when multiple
designers are involved. At any one time, each designer is responsible for a subset of the elements being
designed. Designers must interact to be sure that they are developing a consistent design. For example, if
class A uses class B, class A must provide the operations required by class B. If the design of either class
changes, it may affect the other. If the two classes are being designed by different designers, the designers
must collaborate to ensure this consistency. Typically, designers become aware of each other’s activities
through traditional communication channels: meetings, electronic mail, hallway encounters, etc.

3

We are investigating cooperative concurrency control mechanisms to allow designers to selectively share
artifacts with each other. The concurrency control mechanisms are weaker than the serializability require-
ments commonly found in database systems in that designers can share intermediate results, not just those
that have been made visible in some project database. The intent is to allow the sharing of the actual de-
sign artifacts at the same stage of development as the communication channels allow. The benefit of this is
that consistency checking across design artifacts can be done more accurately if it is based upon interme-
diate versions of the artifacts rather than against the previous released version which the designers know is
out-of-date.

3.2 Resource Management

Design relies on the availability of appropriate resources. These resources include hardware resources,
software tools, and personnel. The same design method applied to the same project can result in differ-
ent activities being selected, different assignment of tasks to designers, and different scheduling decisions,
particularly in the amount of concurrency that is achieved.

We are investigating mechanisms to allow us to define resource models describing general resource
classes and their characteristics, environments describing the specific resource instances available to the
process, resource needs of process steps, and scheduling algorithms that can intelligently assign resource
instances to process steps to minimize competition for resources.

We would like to be able to write a design process program that abstracts away from the specific envi-
ronment in which it is run so that it can be reused in multiple environments, can cope with insufficient or
inappropriate resources, and can react to changes in the resource environment.

3.3 Agenda Management

As a design unfolds, it is important for designers to know what their responsibilities are, for managers to
know who is responsible for what, and to allow responsibilities to be moved from one designer to another.
Design methods do not address these issues as they focus on individual designers and assume the designer
is responsible for keeping track of his/her own work.

We are developing an agenda management system that assists in these activities. Each step of a process
is assigned to an agent by placing it on the agent’s agenda. An agent can be human or software. An API is
provided to allow software agents to interact with their agendas, while a GUI is provided for human agents.
Agendas provide the ability to manage to-do lists, assess the workloads of individual designers, provide
traceability of a designer’s activities, find the designer responsible for a particular activity, and reallocate
activities between designers.

Again, we would like to describe design processes that are independent of specific designers, yet al-
low the designers to collaborate effectively by tracking the responsibilities of individual designers as those
assignments are made and completed.

4 Scenario

Assume that a “meeting planner” system is being developed and that the design of this system is un-
derway. Originally, the customer had not included any requirement calling for prioritization of meeting
participants. However, at some point into the design, the customer adds a requirement that participants to

4

STEP Booch_Process IS
ACTIVITY:
Nominal_Booch_Process; -- The nominal Booch process.

REACTIONS:
REACT TO Change_Request (request r) BY
Collect_Estimates_of_Impact (r);
Reestimate_Schedule_and_Budget;
Notify_Customer_of_Impact_on_Schedule_and_Budget;
if (Decide_to_Proceed) {
Send_Event (Change_Order (r));

}
else if (Decide_to_Modify_Request) {
modified_r = Negotiate_Modifications_with_Customer (r);
Send_Event (Change_Request (modified_r));

}
END REACT;

END Booch_Process

Figure 1: A Reaction Handler for the Booch Process

meetings be given different statuses: essential, desirable, and optional. The algorithm to decide what is the
preferred time for a meeting must be changed to accommodate this prioritization of the participants.

At this point, it is no longer desirable to continue with the design. The first thing that must happen is
that the designers must analyze their portion of the design to determine if they would be impacted by it and
estimate the amount of effort that would be required. This analysis of the impact of a change is shown in the
reaction handler presented in Figure 1.

Note that the reaction is described in very high level terms. These terms could represent steps or proce-
dures and be further specified in JIL or they could simply represent activities requiring a human to perform
them. Most likely, they would be implemented as some combination where the program would provide the
data management functionality required to assist the user, such as actually sending the notification to all the
designers and collecting all the results. Analysis of the design and the impact reports would most likely be
done by a manager or management team.

As another example of unpredictable activities, consider how errors in the process itself are identified.
Each step of a process has preconditions and postconditions associated with it. Failure of any of these throws
an exception. Steps also have resources (tools, hardware, humans) required for their completion. Failure
to acquire necessary resources also throws an exception. Errors in the design are often recognized when
trying to evaluate postconditions of a step that define successful completion of the step. For example, Figure
2 shows a postcondition and corresponding exception handler that requires classes to provide the methods
that other classes depend upon.

Again, we see separation of event handling from the nominal process, allowing each to be reasoned
about and understood separately. We also see here a situation in which the designer chooses how to resolve

5

STEP Identify_Relationships_Among_Classes_and_Objects IS
ACTIVITY:
Nominal_Relationship_Identification_Process;

POSTCONDITIONS:
Needed_Methods_Provided (classes);

HANDLERS
HANDLE FAILURE OF Needed_Methods_Provided (classes) BY
ALTERNATE (Add_Method,

Modify_Method,
Modify_Dependency,
Remove_Dependency,
Abort);

END HANDLE;
END Identify_Relationships_Among_Classes_and_Objects

Figure 2: An Exception Handler

the problem encountered. The alternate operator indicates that the designer can choose from among the
listed alternatives to solve the problem. Note further that the postcondition protects the process from an
integrity violation regardless of how that violation occurred. The violation may have resulted from an error
in the definition of the object or the relationships, or from some other cause. The combined effect of the
postcondition and exception handler is to take some unanticipated integrity-violating event, the effect of
which is detected when the postcondition is evaluated, and to turn it into an anticipated event, the exception
thrown by the postcondition failure, which can then be handled by propagating appropriate changes to the
design so as to repair the violation.

5 Conclusions

We find the problems described here to be quite common in any complicated process. It is important to
be able to separate the nominal process and the exceptional processes cleanly from each other in order that
they be better understood. It is inevitable that any process that requires an extended period of time, such as
a design process does, has a need for mechanisms to describe these events that are often expected, yet never
predictable. We believe that a design process is not fully defined unless these unpredictable cases are also
planned for.

We also believe that any complex process, including design processes, typically require more than one
person to be involved. It is therefore necessary to define how those people should coordinate their activities
to achieve the best results in the least amount of time. Our mechanisms for selectively sharing objects under
development, of reasoning about resource requirements and their impact on scheduling, and tracking what
individuals are doing provides us with abilities to extend process definitions with information to coordinate
multiple people while leaving the underlying nominal process unchanged.

6

Acknowledgments

Rodion Podorozhny is responsible for design and development of the resource management system. Eric
McCall is responsible for the design and development of the agenda management system.

References

[1] G. Booch. Object-Oriented Analysis and Design with Applications. Benjamin Cummings, Redwood
City, CA, second edition edition, 1994.

[2] D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremaes. Object-Oriented
Development: The FUSION Method. Prentice-Hall, Englewood Cliffs, NJ, 1994.

[3] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Software Engineering: A
Use Case Driven Approach. ACM Press, New York, 1992.

[4] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling and
Design. Prentice-Hall, Englewood Cliffs, NJ, 1991.

[5] Stanley M. Sutton, Jr. and Leon J. Osterweil. The design of a next-generation process language. In
Proceedings of the Joint 6th European Software Engineering Conference and the 5th ACM SIGSOFT
Symposium on the Foundations of Software Engineering. Springer-Verlag, 1997. To appear.

[6] R. Wirfs-Brock, B. Wilkerson, and L. Weiner. Designing Object-Oriented Software. Prentice-Hall,
Englewood Cliffs, NJ, 1990.

7

