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Abstract

In this paper we develop a simple analytic characterization of the steady state throughput as a func-
tion of loss rate and round trip time for a bulk transfer TCP flow, i.e., a flow with an unlimited amount
of data to send. Unlike the models in [5, 6, 9], our model captures not only the behavior of TCP’s fast
retransmit mechanism (which is also considered in [5, 6, 9]) but also the effect of TCP’s timeout mech-
anism on throughput. Our measurements suggest that this latter behavior is important from a modeling
perspective, as almost all of our TCP traces contained more timeout events than fast retransmit events.
Our measurements demonstrate that our model is able to more accurately predict TCP throughput and is
accurate over a wider range of loss rates.

1 Introduction

A significant amount of today’s Internet traffic, including WWW (http), file transfer(ftp), email (smtp), and
remote access (telnet) traffic, is carried by the TCP transport protocol [16]. TCP together with UDP form
the very core of today’s Internet transport layer. Traditionally, simulation and implementation/measurement
have been the tools of choice for examining the performance of various aspects of TCP. Recently, however,
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several efforts have been directed at analytically characterizing the throughput of TCP’s congestion control
mechanism, as a function of packet loss and round trip delay [5, 9, 6]. One reason for this recent interest
is that a simple quantitative characterization of TCP throughput under given operating conditions offers the
possibility of defining a “fair share” or “tcp-friendly” [5] throughput for a non-TCP flow that interacts with
a TCP connection. Indeed, this notion has already been adopted in the design and development of several
multicast congestion control protocols [17, 18].

In this paper we develop a simple analytic characterization of the steady state throughput of a bulk
transfer TCP flow (i.e., a flow with an unlimited amount of data to send) as a function of loss rate and
round trip time. Unlike the recent work of [5, 6, 9], our model captures not only the behavior of TCP’s fast
retransmit mechanism (which is also considered in [5, 6, 9]) but also the effect of TCP’s timeout mechanism
on throughput. The measurements we present in Section 3 indicate that this latter behavior is important from
a modeling perspective, as we observe more timeout events than fast retransmit events in almost all of our
TCP traces. Another important difference is the ability of our model to accurately predict throughput over a
significantly wider range of loss rates than before; measurements presented in [6] as well the measurements
presented in this paper, indicate that this too is important. We also explicitly model the effects of small
receiver-side windows. By comparing our model’s predictions with a number TCP measurements made
between various Internet hosts, we demonstrate that our model is able to more accurately predict TCP
throughput and is able to do so over a wider range of loss rates.

The remainder of the paper is organized as follows. In Section 2 we describe our model of TCP conges-
tion control in detail and derive a new analytic characterization of TCP throughput as a function of loss rate
and average round trip time. In Section 3 we compare the predictions of our model with a set of measured
TCP flows over the Internet, having as their endpoints sites in both United Sates and Europe. Section 4
discusses the assumptions underlying the model and a number of related issues in more detail. Section 5
concludes the paper.

2 A Model for TCP Congestion Control

a In this section we develop a stochastic model of TCP congestion control that yields a relatively simple
analytic expression for the throughput of a saturated TCP sender, i.e., a flow with an unlimited amount of
data to send, as a function of loss rate and average round trip time (RTT).

TCP is a protocol which can exhibit complex behavior, especially when considered in the context of the
current Internet, where the traffic conditions themselves can be quite complicated and subtle [12]. In this
paper, we focus our attention on the congestion avoidance behavior of TCP and its impact on throughput,
taking into account the dependence of congestion avoidance on ACK behavior, the manner in which packet
loss is inferred (e.g., whether by duplicate ACK detection and fast retransmit, or by timeout), limited receiver
window size, and average round trip time (RTT). Our model is based on the Reno flavor of TCP, as it is by
far the most popular implementation in the Internet today [11, 10]. We assume that the reader is familiar
with TCP Reno congestion control (see for example [4, 15, 14]) and we adopt most of our terminology from
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[4, 15, 14].

Our model focuses on TCP’s congestion avoidance mechanism, where TCP’s congestion control window
size, is increased by each time an ACK is received. Conversely, the window is decreased whenever
a lost packet is detected, with the amount of the decrease depending on whether packet loss is detected by
duplicate ACKs or by timeout, as discussed shortly.

We model TCP’s congestion avoidance behavior in terms of “rounds.” A round starts with packets
being sent back-to-back, where is the current size of the TCP congestion window. Once all packets
falling within the congestion window have been sent in this back-to-back manner, no other packets will be
sent until the first ACK is received for one of these packets. This ACK reception marks the end of the
current round and the beginning of the next round. In this model, the duration of a round is equal to the
round trip time and is assumed to be independent of the window size, an assumption also adopted (either
implicitly or explicitly) in [5, 6, 9]. Note that we have also assumed here that the time needed to send all the
packets in a window is smaller than the round trip time; this behavior can be seen in observations reported
in [2, 10].

At the beginning of the next round, a group of new packets will be sent, where is the new size
of the congestion control window. Let be the number of packets that are acknowledged by a received
ACK. In the ACK-every-other-packet behavior of many TCP implementations [14] (also known as “delayed
ACK” behavior), would typically be 2. If packets are sent in the first round and all are received
and acknowledged correctly, then acknowledgments will be received. Since each acknowledgment
increases the window size by the window size at the beginning of the second round is then

. That is, during congestion avoidance and in the absence of loss, the window size has a linear
increase in time, with a slope of packets per round trip time.

In the following subsections, we model TCP’s behavior in the case of packet loss. Packet loss can be
detected in one of two ways. First, packet loss can be detected by the reception at the TCP sender of “triple-
duplicate” acknowledgments, i.e., four ACKs with the same sequence number. We denote this event as a
“TD” (triple-duplicate) loss indication. The second possibility is that loss is detected via time-out, which
we will refer to as a “TO” loss indication.

We assume that a packet is lost in a round independently of any packets lost in other rounds, a modeling
assumption justified to some extent by past studies [1] that have shown that periodic UDP packets that are
separated by as little as 40 msec tend to get lost only in singleton bursts. On the other hand, we assume
that packet losses are correlated among the back-to-back transmissions within a round: if a packet is lost, all
remaining packets transmitted until the end of the round are also lost. This bursty loss behavior, which has
been shown to arise from the drop-tail queuing discipline (adopted in many Internet routers), is discussed in
[2, 3]. We discuss it further in Section 4.

We develop a stochastic model of TCP congestion control in several steps, corresponding to its operating
regimes: when loss indications are exclusively TD, when loss indications are both TD and TO, and when
the congestion window size is limited by the receiver’s advertised window. We note that we do not model
certain aspects of TCP’s behavior (e.g., fast recovery) but believe we have captured the essential elements
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of TCP behavior, as indicated by the generally very good fits between model predictions and measurements
made on numerous commercial TCP implementations, as discussed in Section 3. A more detailed discussion
of model assumptions and related issues is presented in Section 4.

2.1 Loss indications are exclusively “triple-duplicate” ACKs

In this section we consider a TCP flow where all loss indications are of type “triple-duplicate” ACK, and
we derive an expression for TCP throughput that reduces to the expression in [5] for small values of packet
loss probability. We later (Sections 2.2 and 2.3) extend this analysis to include important phenomena such
as timer-based window decreases and receiver-limited windows that are not captured in [5, 6, 9].

We consider a TCP flow starting at time , where the sender always has data to send. For any given
time , we define to be the number of packets transmitted in the interval , and , the
throughput in the same interval. Note that is the number of packets sent regardless of their eventual fate
(i.e., whether they are received or not). Thus, represents the throughput of the connection, rather than its
goodput. We define the long-term steady-state TCP throughput to be

We have assumed that if a packet is lost in a round, all remaining packets transmitted until the end of the
round are also lost. Therefore we define to be the probability that a packet is lost, given that either it is the
first packet in its round or the preceding packet in its round is not lost. We are interested in establishing a
relationship between the throughput of the TCP connection and , the loss probability defined above.

tA 1

W 1

A 2 A 3

W 2

W 3

W

TDP 1 TDP 2 TDP 3

Figure 1: Evolution of window size over time when loss indications are triple duplicate ACKs

In this section we assume that loss indications are exclusively of type “triple-duplicate” ACK (TD), and
that the window size is not limited by the receiver’s advertised flow control window. A sample path of the
evolution of congestion window size is given in Figure 1. Between two TD loss indications, the sender is in
congestion avoidance, and the window increases with slope packets per round, as discussed earlier. The
window has size when a loss indication occurs, and (as a result of congestion avoidance) a size of
immediately thereafter.

Let us define a TD period (TDP) to be a period between two TD loss indications (see Figure 1). For the
-th TD period we define to be the number of packets sent in the period, the duration of the period,
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and the window size at the end of the period. Considering to be a Markov regenerative process
with rewards (see for example [13]), it can be shown that

(1)

In order to derive an expression for , the long-term steady-state TCP throughput, we must next derive
expressions for the mean of and .
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Figure 2: Packets sent during a TD period

Consider a TD period as in Figure 2. A TD period starts immediately after a TD loss indication, and thus
the current congestion window size is equal to – half the size of window before the TD occurred.
At each round the window is incremented by and the number of packets sent per round is incremented
by one every rounds. packets are sent before the first packet in the TD is lost, which occurs during
round . more packets are sent in an additional round before a TD loss indication occurs (and the
current TD period ends), as discussed in more detail in Section 2.2. Thus, a total of packets
are sent in rounds. It follows that:

(2)

To derive , consider the random process , where is the number of packets sent in a TD
period up to and including the first packet that is lost. Based on our assumption that packets are lost in a
round independently of any packets lost in other rounds, we have that are independent and identically
distributed (i.i.d.) random variables. Also, we have defined to be the probability that a packet is lost, given
that the packet is the first to be lost in its round. Then, the probability that is equal to the probability
that exactly packets are successfully acknowledged before a loss occurs

(3)

The mean of is thus
(4)
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To derive and , consider again . We define to be the duration (round trip time) of
the -th round of . Then, we have . We consider the round trip times to be random
variables, that we have assumed to be independent of the size of congestion window, and thus independent
of the round number, . It follows that

(5)

Henceforth, we denote by the average value of round trip time.
Finally, to derive an expression for , consider the evolution of as a function of number of rounds,

as in Figure 2. First observe that during the -th TD period, the window size increases between and
. Since the increase is linear with slope , we have:

(6)

The fact that packets are transmitted in is expressed by

(7)

(8)

using (6) (9)

where is the number of packets sent in the last round (see Figure 2). can be considered a Markov
process that can be solved numerically based on (6) and (9) and on the probability density function of
given in (3). We can also compute the probability distribution of and . However, a simpler
approximate solution can be obtained by assuming that and are i.i.d. random variables and that

are independent of With this assumption, it follows from (6), (9) and (2) that

(10)

(11)

We consider that , the number of packets in the last round, is uniformly distributed between and , and
thus . Then, from (10) and (11) it follows that

(12)

Observe that we have

(13)

i.e., for small values of . From (10), (5) and (12), it follows

(14)

(15)
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Observe that we have

(16)

From (1), (2) and (4) we have

(17)

(18)

Observe that we have

(19)

Thus, for small values of , (19) reduces to the throughput formula in [5] for .
We next extend our model to include TCP behaviors (such a timeouts and receiver-limited windows) not

considered in previous analytic studies of TCP congestion control.

2.2 Loss indications are triple-duplicate ACKs and time-outs
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Figure 3: Evolution of window size when loss indications are triple-duplicate ACKs and time-outs

So far, we have considered TCP flows where all loss indications are of type “triple-duplicate” ACKs.
Our measurements show (see Table 2) that in many cases the majority of window decreases are due to
time-outs, rather than fast retransmits. Therefore, a good model should capture time-out loss indications.

In this section we extend our model to include the case where the TCP sender times-out. This happens
when packets (or ACKs) are lost, and less than three duplicate ACKs are received. The sender waits for a
period of time denoted by , and then retransmits non-acknowledged packets. Following a time-out, the
congestion window is reduced to one and one packet is thus resent in the first round after a time out. In the
case that another time-out occurs before successfully retransmitting the packets lost during the first time out,
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the period of time out doubles to ; this doubling is repeated for each unsuccessful retransmission until
is reached, after which the time out period remains constant at .

An example of the evolution of congestion window size is given in Figure 3. We denote by the
duration of a sequence of time-outs and by a time interval between two consecutive time-out sequences.
We define to be

Also, we define to be the number of packets sent during . Then, is an i.i.d. sequence of
random variables. Observing that is a renewal process, we have

We denote by the number of TD periods in interval . For the -th TD period of interval we
define: is the number of packets sent in the period, is the duration of the period, is the number
of rounds in the period, and is the window size at the end of the period. Also, we define to be
the number of packets sent during time-out sequence . Observe here that counts the total number of
packet transmissions in , and not just the number of different packets sent. This is because, as discussed
in Section 2.1, we are interested in the throughput of a TCP flow, rather than its goodput. We have

and thus

We consider , the number of TD loss indications occurring between two consecutive time-out se-
quences, to be a random variable. Assuming to be independent and identically distributed, and inde-
pendent of and , we have

Observe that , where is the probability that a loss indication is a TO. Consequently, we have

(20)

Since and do not depend on time-outs, their means are those derived in (4) and (15). To compute
TCP throughput using (20) we must still determine and

Let us first derive an expression for Consider the round of packets where a loss indication occurs;
we will refer to this round as the “penultimate” round (see Figure 4. 1). Let be the current congestion

1In Figure 4 each ACK acknowledges individual packets (i.e., ACKs are not delayed). We have chosen this for simplicity of
illustration. We will see that the analysis does not depend on whether ACKs are delayed or not.
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Figure 4: Packet and ACK transmissions preceding a loss indication

window size. Thus packets are sent in the penultimate round. Packets are acknowledged,
and packet is the first one to be lost (or not ACKed). We again assume that packet losses are correlated
within a round: if a packet is lost, so are all packets that follow, till the end of the round. Thus, all packets
following in the penultimate round are also lost. However, since packets .. are ACKed, another

packets, are sent in the next round, which we will refer to as the “last” round. This round
of packets may have another loss, say at packet . Again, our assumptions on packet loss correlation
mandates that packets are also lost in the last round. The packets successfully sent in the
last round are responded to by ACKs for packet , which are counted as duplicate ACKs. These ACKs
are not delayed ([14], p. 312), so the number of duplicate ACKs is equal to the number of successfully
received packets in the last round. If the number of such ACKs is higher than three, then a TD indication
occurs, otherwise, a TO occurs. In both cases the current period between losses, TDP, ends. We denote
by the probability that the first packets are ACKed in a round of packets, given there is a
sequence of one or more losses in the round. Then

Also, we define to be the probability that packets are ACKed in sequence in the last round, and
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the -th is lost. Then,

Then, we have that , the probability that a loss in a window of size is a TO, is given by

if
otherwise

(21)

since a TO occurs if the number of packets in the penultimate round, , is less than three, or otherwise
if the number of packets successfully transmitted in the last round, is less than three. Also, following
our assumption that packet is lost independently of packet (since they occur in different rounds), we
have that the probability that there is a loss at in the penultimate round and a loss at in the last round
is equal to , and (21) follows.

After algebraic manipulations, we have

(22)

Observe (for example, using L’Hopital’s rule) that

Numerically we find that a very good approximation of is

(23)

, the probability that a loss indication is a TO, is

We approximate
(24)

where is from (12).
We consider next the derivation of . From the TCP traces we have recorded, we have observed

that in most cases, one packet is transmitted between two time-outs in sequence. It follows that there are
rounds of retransmission during , and thus the total duration of retransmission is seconds.
Denoting by the total duration of time-outs during (excluding retransmission rounds), we have

and thus .
To derive and , we need the probability distribution of the number of timeouts in a TO

sequence, given that there is a TO. We have assumed that between two TOs there is a round of one packet
transmitted. Thus, a sequence of TOs occurs when there are consecutive losses (the first loss is given)
followed by a packet successfully transmitted. So, the number of TOs in a TO sequence has a geometric
distribution, and thus
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Then we can compute ’s mean

(25)

Next, we focus on , the average duration of a time-out sequence excluding retransmissions, which can
be computed in a similar way. We know that the first six time-outs in one sequence have length ,

, and all that follow. Then, the duration of a sequence with time-outs is

for
for

Then, the mean of is

Armed now with expressions for and we can now substitute these expressions into
equation (20) to obtain

(26)
where is given in (22), in (12) and in (15). Using (23), (13) and (16), we have that (26) can
be approximated by

(27)

2.3 The impact of window limitation

So far, we have not considered any limitation on the congestion window size. At the beginning of TCP
flow establishment, however, the receiver advertises a maximum buffer size which determines a maximum
congestion window size, . As a consequence, during a period without loss indications, the window
size can grow up to , but will not grow further beyond this value. An example of evolution of window
size is depicted in Figure 5.

To simplify the analysis of the model, we make the following assumption. Let us denote by the
unconstrained window size, the mean of which is given in (12)

(28)

We assume that if is smaller than the maximum window size, then we approximate .
That is, we assume that the receiver-window limitation has negligible effect on the long term average of the
bandwidth and use equation (26).
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Figure 6: Fast retransmit with window limitation

On the other hand, if , we approximate . In this case, consider an
interval between two time-out sequences consisting of a series of TD periods as in Figure 6. During
the first TDP, the window grows linearly up to for rounds, then remains constant for rounds,
and then a TD indication occurs. Then the window drops to , and the process is repeated. Thus, we
can write,

Then

Also, considering the number of packets sent in the -th TD period, we have

and then

Since , the number of packets in the -th TD period, does not depend on window limitation, then its mean
is the same as in (4), , and thus
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Finally, since , we have

By substituting this result in (26), we obtain the TCP throughput when the window is limited

In conclusion, the complete characterization of TCP congestion control is

if

otherwise

(29)
where is given in (22), in (12) and in (15). In the following sections we will refer to (29) as
the “full model”.

Using (27), an approximation of the full model, having a simple and easily computable form, is

(30)

In Section 3 we verify that equation 30 is indeed a very good approximation of equation 29. Henceforth we
will refer to (30) as the “approximate model”.

3 Measurements and Trace Analysis

Equations 29 and 30 provide an analytic characterization of TCP as a function of packet loss indication rate,
RTT, and maximum window size. In this section we empirically validate these formulae, using measurement
data from 37 TCP connections established between 17 hosts scattered across United Sates and Europe.

Table 1 lists the domains and operating systems of the 17 hosts2. All data sets are for unidirectional
bulk data transfers. The measurement data was gathered by running tcpdump at the sender, and analyzing
its output with a set of analysis programs that we have developed. These programs account for various
measurement and implementation related problems discussed in [11, 10]. For example, when we analyze
traces from a Linux sender, we account for the fact that TD events occur after getting only two duplicate acks
instead of three. Our trace analysis programs were further verified by checking them against tcptrace[8]
and the [7].

Table 2 summarizes data from 24 data sets, each of which corresponds to a 1 hour long TCP connection
in which the sender behaves as an “infinite source” – it always has data to send and thus TCP throughput
is only limited by the TCP congestion control. The experiments were performed at randomly selected
times during 1997 and beginning of 1998. The third and forth column of Table 2 indicate the number of

2Certain domain names have been withheld to allow blind review.
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Receiver Domain Operating System
ada hofstra.edu Irix 6.2
afer cs.umn.edu Linux
al cs.wm.edu Linux 2.0.31

alps cc.gatech.edu SunOS 4.1.3
babel US site SunOS 5.5.1

baskerville cs.arizona.edu SunOS 5.5.1
ganef cs.ucla.edu SunOS 5.5.1

imagine cs.umass.edu win95
manic US site Irix 6.2

mafalda inria.fr SunOS 5.5.1
maria wustl.edu SunOS 4.1.3
modi4 ncsa.uiuc.edu Irix 6.2

pif inria.fr Solaris 2.5
pong usc.edu HP-UX
spiff sics.se SunOS 4.1.4

sutton cs.columbia.edu SunOS 5.5.1
tove cs.umd.edu SunOS 4.1.3
void US site Linux 2.0.30

Table 1: Domains and Operating Systems of Hosts
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packets sent and the number of loss indications respectively (triple duplicate ack or timeout). Dividing
the total number of loss indications by the total number of packets sent gives us an approximate value of
p. This approximation is similar to the one used in [6]. The next six columns show a breakdown of the
loss indications by type: the number of TD events, the number of “single” timeouts, having duration ,
the number of “double” timeouts, , etc. Note that depends only on the number of loss
indications, and not on their type. The last two columns report the average value of round trip time, and
average duration of a “single” timeout . These values have been averaged over the entire trace. When
calculating round trip time values, we follow Karn’s algorithm, in an attempt to minimize the impact of
timeouts and retransmissions on the RTT estimates.

Table 3 reports summary results form additional 13 data sets. In these cases, each data set represents
100 serially-initiated TCP connections between a given sender-receiver pair. Each connection lasted for 100
seconds, and was followed by a 50 second gap before the next connection was initiated. These experiments
were performed at randomly selected times during 1998. The data in columns 3-10 of Table 3 are cumulative
over the set of 100 traces for the given source-destination pair. The last two columns report the average value
of round trip time and “single” timeout. These values have been averaged over all hundred traces for the
given source-destination pair.

An important observation to be drawn from the data in these tables is that in all traces, timeouts constitute
the majority or a significant fraction of the total number of loss indications. This underscores the importance
of including the effects of timeouts in the model of TCP congestion control. In addition to “single” timeout
events (column ), it can be seen that exponential backoff (multiple timeouts) occurs with significant
frequency.

Next, we use the measurement data described above to validate our model proposed in Section 2. Figures
7-12 plot the measured throughput in our trace data, the model of [6], as well as the predicted throughput
from our proposed model given in (29) as described below. The title of the trace indicates the the average
value of round trip time, the average of “single” timeout duration and the maximum window size
advertised by the receiver (in number of packets). The -axis represents the frequency of loss indications
(p) while -axis represents the number of packets sent.

For each of the 1 hour traces we broke up the trace into 36 consecutive 100 second intervals, and each
plotted point value on a graph represents the number of packets sent versus the number of loss indications
during a 100s interval. While dividing a continuous trace into fixed sized intervals can lead to some inaccu-
racies in measuring (e.g., the interval boundaries may cross timeout intervals, thus perhaps not attributing
a loss event to the interval where most of its impact is felt) we believe that by using interval sizes of 100s,
which are longer than most timeouts, we have minimized the impact of such inaccuracies. Each 100 second
interval is classified into one of four categories: intervals of type “TD” did not suffer any timeout (only
triple duplicate acks), intervals of type “ ” suffered at least one “single” timeout but no exponential back-
off, “ ” represents intervals that suffered a single exponential backoff at least once (i.e a “double” timeout)
etc. The line labeled “TD Only” (stands for Triple-Duplicate acks Only) plots the predictions made by the
model described in [6], which is essentially the same model as described in [5], while accounting for de-
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Sender Receiver Packets Loss TD RTT Time
Sent Indic. or more Out

manic alps 54402 722 19 611 67 15 6 2 2 0.207 2.505
manic baskerville 58120 735 306 411 17 1 0 0 0 0.243 2.495
manic ganef 58924 743 272 444 22 4 1 0 0 0.226 2.405
manic mafalda 56283 494 2 474 17 1 0 0 0 0.233 2.146
manic maria 68752 649 1 604 35 8 1 0 0 0.180 2.416
manic spiff 117992 784 47 702 34 1 0 0 0 0.211 2.274
manic sutton 81123 1638 988 597 41 7 3 1 1 0.204 2.459
manic tove 7938 264 1 190 37 18 8 3 7 0.275 3.597
void alps 37137 838 7 588 164 56 17 4 2 0.162 0.489
void baskerville 32042 853 339 430 67 12 5 0 0 0.482 1.094
void ganef 60770 1112 414 582 79 20 9 4 2 0.254 0.637
void maria 93005 1651 33 1344 197 54 15 5 3 0.152 0.417
void spiff 65536 671 72 539 56 4 0 0 0 0.415 0.749
void sutton 78246 1928 840 863 152 45 18 9 1 0.211 0.601
void tove 8265 856 5 444 209 100 51 27 12 0.272 1.356
babel alps 13460 1466 0 1068 247 87 33 18 8 0.194 1.359
babel baskerville 62237 1753 197 1467 76 10 3 0 0 0.253 0.429
babel ganef 86675 2125 398 1686 38 2 1 0 0 0.201 0.306
babel spiff 57687 1120 0 939 137 36 7 1 0 0.331 0.953
babel sutton 83486 2320 685 1448 142 31 9 4 1 0.210 0.705
babel tove 83944 1516 1 1364 118 17 7 5 3 0.194 0.520

pif alps 83971 762 0 577 111 46 16 8 2 0.168 7.278
pif imagine 44891 1346 15 1044 186 63 21 10 5 0.229 0.700
pif manic 34251 1422 43 944 272 105 36 14 6 0.257 1.454

Table 2: Summary data from 1hr traces
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Figure 7: manic to baskerville
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Figure 8: pif to imagine
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Figure 9: pif to manic
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Figure 10: void to alps
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Figure 11: void to tove
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Figure 12: babel to alps
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Sender Receiver Packets Loss TD RTT Time
Sent Indic. or larger Out

manic ada 531533 6432 4320 2010 93 7 2 0 0 0.1419 2.2231
manic afer 255674 4577 2584 1898 83 10 1 1 0 0.1804 2.3009
manic al 264002 4720 2841 1804 70 5 0 0 0 0.1885 2.3542
manic alps 667296 3797 841 2866 85 5 0 0 0 0.1125 1.9151
manic baskerville 89244 1638 627 955 42 11 2 1 0 0.4735 3.2269
manic ganef 160152 2470 1048 1308 89 18 6 1 0 0.2150 2.6078
manic mafalda 171308 1332 9 1269 48 5 1 0 0 0.2501 2.5127
manic maria 316498 2476 5 2362 99 8 2 0 0 0.1166 1.8798
manic modi4 282547 6072 3976 1988 99 8 1 0 0 0.1749 2.2604
manic pong 358535 4239 2328 1830 74 7 0 0 0 0.1769 2.1371
manic spiff 298465 2035 159 1781 75 14 4 2 0 0.2539 2.4545
manic sutton 348926 6024 3694 2238 87 5 0 0 0 0.1683 2.1852
manic tove 262365 2603 6 2422 135 30 8 2 0 0.1153 1.9551

Table 3: Summary data from 100 second traces

layed acks. The line labeled “Proposed (Full)” represents the model described by Equation (30). It has been
pointed out in [5] that the “TD Only” model may not be accurate when the frequency of loss indications
is higher than 5%. We observe that in many traces the frequency of loss indications is higher than 5% and
that indeed the “TD Only” model highly overestimates the measurements. Also, in several traces (see for
example, Figure 7) we observe that TCP throughput is limited by the receiver’s advertised window size.
This is not accounted for in the “TD Only” model, and thus “TD Only” overestimates the measurements at
low values.

Figures 13-17 show similar graphs, where each point represents an individual 100 second TCP connec-
tion. To plot the model predictions, we used round trip and timeout durations that were averaged over all
100 traces (these values also appear in Table 3). In Section 2, equation (30), we have presented a simple, but
approximate form of the full model given in (29). In Figure 18, we plot the predictions of the approximate
model along with the full model. The results for other data sets are similar.

To evaluate the models accurately, we compute the average error as follows:

For the hour-long traces, we break each trace into 100 second intervals, and compute the number of
packets sent during that interval (here denoted as ) as well as the value of loss frequency
(here ). We also calculate the average value of round trip time and timeout for the entire trace
(these values are available in Table 2). Then, for each 100 second interval we calculate the number of
packets predicted by our proposed model ( , where is from (29)).
The average error is given by:

number of observations
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Figure 13: manic to ganef
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Figure 14: manic to mafalda
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Figure 15: manic to spiff
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Figure 16: manic to baskerville
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Figure 17: manic to sutton
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Figure 18: manic to spiff, with approximate
model

The average error of our approximate model (using from (30)) and of “TD Only” are calculated
in a similar manner. A smaller average error indicates a better model accuracy. In Figure 19 we plot
these error values to allow visual comparison. On the -axis, the traces are identified by sender and
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receiver names. For example, for the trace from manic to maria, the average error for the “TD Only”
model is greatest, (2889.72). For the same trace, the error for the proposed (full) model is 793.53,
while the error for the approximate model is 1658.19. The order in which the traces appear is such
that, from left to right, the average error for the “TD Only” model is increasing. The points are joined
from one trace to the next only for better visual presentation.

For the 100 second traces, we used, for each observation (which was a complete trace), the value of
round trip time and timeout calculated for that particular 100-second trace, instead of using the values
reported in 3, which report averages over all 100 observations. Figure 20 shows a plot of these error
values.

It can be seen from Figures 19 and 20 that our proposed model is a better estimator of the observed
values than the “TD Only” model in most cases. Our approximate model also generally provides more
accurate predictions than the “TD Only” model, and is quite close to our full model. As one would expect,
our model does not match all the observations. We show an example of this in Figure 17. This is probably
due to a large number of triple duplicate acks observed for this trace set.

4 A Discussion of the Model and the Experimental Results

In this section, we discuss various simplifying assumptions made while constructing the model in Section
2, and their impact on the results described in Section 3.

Our model does not capture the subtleties of fast recovery algorithm. We believe that the impact of this
omission is quite small, and the results presented in Section 3 validate this assumption indirectly. We have
also assumed that the time spent in slow start is negligible compared to the length of our traces. Both these
assumptions have also been made in [5, 6, 9].

We have assumed that packet losses within a round are correlated. Justification for this assumption
comes from the fact that the vast majority of the routers in Internet today use the drop-tail policy for packet
discard. Under this policy, all packets that arrive at a full buffer are dropped. As packets in a round are
sent back-to-back, if a packet arrives at a full buffer, it is likely that the same happens with the rest of the
packets in the round. Packet loss correlation at drop-tail routers was also pointed out in [2, 3]. In addition,
we assume that losses in one round are independent of losses in other rounds. This is justified by the fact
that packets in different rounds are separated by one RTT or more, and thus they are likely to encounter
buffer states that are independent of each other. This is also confirmed by findings in [1].

Another assumption implicit in [5, 6, 9] is that the round trip time is independent of the window size.
We have measured the coefficient of correlation between the duration of round samples and the number of
packets in transit during each sample. For most traces summarized in Table 2, the correlation coefficient is in
the range of -0.1 to +0.1, thus confirming the statistical independence between round trip time and window
size. However, when we conducted similar experiments with receivers at the end of a modem line, we found
the coefficient of correlation to be as high as 0.97. We speculate that this is a combined effect of a slow
link and a buffer devoted exclusively to this connection (probably at the ISP, just before the modem). As a
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Figure 19: Comparison of the models for 1hr traces

Figure 20: Comparison of the models for 100s traces
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Figure 21: manic to p5

result, our model, as well as the models described in [5, 9, 6] fail to match the observed data in the case of
a receiver at the end of a modem. In Figure 21, we plot results from one such experiment. The receiver was
a Pentium PC, running Linux 2.0.27 and was connected to the Internet via a commercial service provider
using a 28.8Kbps modem. The results are for a 1 hour connection divided into 100 second intervals.

We have also assumed that all our senders implement TCP-Reno as described in [4, 15, 14]. In [11, 10],
the author points out the implementation of the protocol stack in each operating system is slightly different.
While we have tried to account for the significant differences (such as Linux triple-dup bug), we have not
tried to customize our model for the nuances of each operating system. For example, we have observed
that the Linux exponential backoff does not exactly follow the algorithm described in [4, 15, 14]. Our
observations also seem to indicate that in the Irix implementation, the exponential backoff is limited to ,
instead of . We are aware that [11] has shown that the SunOS implementation is derived from Tahoe and
not Reno. We have not customized our model for these cases.

5 Conclusions

In this paper we have presented a simple model of the TCP-Reno protocol. The model captures the essence
of TCP’s congestion avoidance behavior and expresses throughput as a function of loss rate. The model
takes into account the behavior of the protocol in the presence of timeouts, and is valid over the entire range
of loss probabilities.

We have compared our model with the behavior of several real-world TCP connections. We observed
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that most of these connections suffered from a significant number of timeouts. We found that our model
provides a very good match to the observed behavior in most cases, while models proposed in [5, 6, 9]
overestimate the throughput by a large amount. Thus, we conclude that timeouts have a significant impact
on the performance of the TCP protocol, and that our model is able to account for this impact.

We have also presented a simplified expression for TCP bandwidth in Equation 30. We found that this
model is a good approximation for the proposed model in most cases. This simple approximation can be
used in protocols such as those described in [17, 18] to ensure “TCP-friendliness’.

A number of avenues for future work remain. First, our model can be enhanced to account for the effects
of fast recovery and fast retransmit. Second, a more precise calculation of throughput can be obtained if the
congestion window size is modeled as a Markov chain. Third, we have assumed that, once a packet in a
given round is lost, all remaining packets in that round are lost as well. This assumption can be relaxed, and
the model can be modified to incorporate a loss distribution function. Estimating this distribution function
for a given path in the Internet is a significant research effort in itself. Fourth, it is interesting to further
investigate the behavior of TCP over slow links with dedicated buffers (such as modem lines). We are
currently investigating more closely the data sets for which our model is not a good estimator. We are also
working on a TCP-friendly protocol to control transmission of continuous media. This protocol will use our
model to modulate its throughput to ensure TCP friendliness.
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