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Abstract

Learning complex dependencies from time series data is an important task; depen-
dencies can be used to make predictions and characterize a source of data. We have
developed Multi-Stream Dependency Detection (MSDD), a machine learning algorithm
that detects complex dependencies in categorical time-series data. DMSDD attempts to
balance the search for strong dependencies across a heterogeneous network of worksta-
tions. We develop a load balancing policy for DMsDD— first using only static techniques,
and then adding in dynamic measures — on canonical machine learning datasets.
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1 Introduction

Data mining is the process of revealing hidden structure in complex datasets by successive
transformation and analysis. Data mining, a more modern term for what has historically
been called exploratory data analysis [Tuk77], has come to comprise more than just mathe-
matical, statistical, and visualization operations. More sophisticated automated techniques
including pattern recognition, causal modeling, and decision tree induction have all been
added into the mix to generate deeper, more informative analyses.

We are concerned with a particular data mining application called time series analysis.
Time series are synchronized recordings of data sources as they change over time. Examples
of this kind of data include economic indicators, distributed network status reports, and
binned continuous streams such as flight recorder data. A successful data mining technique
might elicit many useful details from such data. Perhaps there is a strong correlation in
network logs between packet loss and a particular network route, or that your stock loses 2
points with unusual frequency following any type of press release from a competitor. These
findings we might call dependencies, or rules that express an unexpectedly frequent occur-
rence of one pattern (called the precursor) by another (the successor) in the data. In general,
dependencies take the form: “if pattern z is seen at time ¢, then at time ¢ 4 4, pattern y will
occur with probability p.”

We have developed an algorithm called Multi-Stream Dependency Detection (MSDD) that
searches for the strongest dependencies in multiple, synchronized streams of discrete time
series data. Consider the following three streams:
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The boldfaced tokens highlight a dependency between two patterns in these streams. The
rule (A * T7) 4 (* W 3) represents this dependency, which is observed three times in the
data above. Specifically, this rule says, “When you see A in Stream 1 and 7 in Stream 3, on
timestep ¢, then expect to see W in Stream 2 and 3 in Stream 3 on timestep ¢ + 3.” Note
that some token values are irrelevant for predictive purposes; these are wildcarded in the
rule. The number of timesteps between the onset of the precursor and successor patterns is
called the lag of the rule.

MSDD finds the k strongest dependencies in a dataset by conducting a systematic search in
the space of possible dependencies. Systematic search expands the children of search nodes in
a manner that ensures that no node can ever be generated more than once [OGC95a, RSE94,
Rym92, Sch93, Web96]|. Because non-redundant expansion is achieved without access to
large, rapidly changing data structures such as lists of open and closed nodes, the search
space can be divided into many computationally independent subsets, each of which may be
processed in parallel. Distributed MSDD (DMSDD) is an implementation of MSDD designed
to take advantage of this property by distributing the search among a network of computing
resources.

Distributing MSDD’s computational load across available computing resources could pro-
vide a clear saving in the time to completion by performing computations in parallel. MSDD



makes use of an aggressive pruning heuristic, though, making the effective and efficient bal-
ancing of computations among processors challenging. The problem of load balancing is that
of ensuring that the computational load is distributed such that all processing elements are
maximally utilized for the duration of the search.

The remainder of the text is structured as follows: In section 2, we describe the MSDD
algorithm in detail, along with some applications of the algorithm. Section 3 details the
development of a comprehensive load balancing policy, and reports on their empirical per-
formance. We finish with comments on the general applicability of MSDD and DMSDD , and
recommendations on load balancing for dynamic search problems.

2 The MSDD Algorithm

MSDD finds the k strongest dependencies by executing a search through the space of de-
pendencies defined by the training data. Training data is represented by m input streams,
denoted sy, ..., 8,, with each stream consisting of a series of categorical data points called
tokens. We denote the set of all streams as S, and the alphabet (set of possible tokens) for
stream s; as V;. For example, V, = {V, W, X, Y} in the data presented in section 1.

Recall the basic form of an MSDD dependency: “If an instance of pattern z occurs at
time ¢, then an instance of pattern y will occur at time ¢ + §.” We shall denote these rules
by = LY y, where z is the precursor, and y is the successor. The patterns z and y are called
multitokens, and are represented as parenthesized lists, where item 7 in the list representation
of z represents the value of stream s; for . Alternatively, patterns may include wildcard
tokens, denoted as *, to indicate that any stream value will match the wildcard. We denote
the successor pattern for the sample rule in section 1 (x W 3).

(***)1>(***)
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Figure 1: A sample MSDD search space. The highlighted node is redundant and will not be
generated in the systematic expansion scheme.

The search space of MSDD is defined as the set of all dependencies possible given S, V,
and 4. MSDD performs its search in a general-to-specific manner. That is, the search space is
rooted at the rule where both precursor and successor consist completely of wildcards. The
children of a rule 7 is the set of all dependencies generated by replacing a single wildcard in »
with an actual token. The process of replacing a wildcard with a token value is called token
instantiation, and is performed in a systematic fashion — a token may only be instantiated
if there are only wildcards to the right of it in both the precursor and successor patterns.
This simple rule of generation prevents rules from appearing redundantly in the search space.
Consider the example space of figure 1. The rule (A A %) = (% * %) highlighted at the lower-



right portion of the tree is redundant with its sibling pictured to the left. The systematic
expansion rule will not allow the highlighted child to be generated, though, because it would
require instantiating to the left of the rightmost instantiated token in its parent.

The search proceeds, starting at the root, in breadth first fashion. The root node is
systematically expanded, and each child rule is rated according to some evaluation function
f- The current implementation of MSDD uses the G statistic, a measure of nonindependence,
as f. The computation of G begins by counting negative and positive instances in the training
data of the rule being rated. For a dependency z = y, MSDD generates the following 2x2
contingency table:
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The cells of this table indicate the frequency with which occurrences and non-occurrences
of the precursor are followed 4§ time steps later by occurrences and non-occurrences of the
successor. The G test is computed on this table as follows:

4
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n; is the expected value of n; under the assumption of independence, and is computed from
the margin and table totals [Wic89]. Using the G test, MSDD can compare the apparent
strength of dependencies found in the data, and consequently maintaining a heap of the &
strongest dependencies is a simple task.

The G statistic has another property, though, that makes it a good choice for MSDD’s
evaluation function. Tim Oates has shown that an optimistic upper bound on G score for
the descendents of a dependency can be established. The proof is omitted here for the sake
of brevity, but can be found in [OC96b]. The upper bound on G is computed as follows:

Gmaz(ny, ny, n3,ng) =

(1)
ifn1 S Ny + N3z + Ny
G(nl,O, 0,1’1,2 +’I’L3 +’I’L4)

else
G(n1+nz-5ns+n4 , 0’ 0’ ﬂ1+ﬂ2;ﬂs+ﬂ4 )

maz | (2)
if ny > abs(ng — ng)
G0, netnpins nitnpins )

else if ny > ng
G(0,n2,n1 +n3,nq)
else
G(0,n1 + na,n3, ng)

This optimistic lower bound on @ is the basis of a simple, but powerful pruning heuristic.
The value Gmax is computed for node under current consideration and compared against
the last entry in the k best heap. If Gmaz is less than the G score of the last entry in the



k best list, then there is no point in continuing with the current node. The search tree can
then be pruned at that point. Experiments with real and artificial data show that the use
of this G-based pruning heuristic results in very focused exploration, often exploring only
tiny fractions of the complete space of dependencies [0SJC97]. The k-best MSDD algorithm
is outlined in algorithm 2.1.

Algorithm 2.1 MsDD

MsDD(S, 6, k)
1. best = MAKE-HEAP (k)
2. nodes = ROOT-NODE(S)
3. while not EMPTY(nodes) do

a. node = NEXT-NODE (nodes)

b. children = SYSTEMATICALLY-EXPAND (node)
c. children = REMOVE-PRUNABLE(children, best)
d. add children to open

e. for child in children do

i. if LENGTH(best) < k or In € best s.t. G(child, S,6) > G(n,S,§) then
add child to best

i. if LENGTH(best) > k then
remove from best the node with the lowest f value

4. return best

2.1 Applications of MSDD

The MSDD algorithm has been applied to a number of domains, including pathology detection
in a simulated shipping network [OGC95b]| and learning the effects of planning operators
for a simulated robot in a simple block painting task [OC96a]. These application serve
as motivating examples of why dependency detection (and data mining in general) is a
worthwhile process to engage in.

In the aforementioned applications, the goal is to find complex temporal dependencies
in multiple streams of time series data. MSDD’s approach to dependency detection is quite
general, though, and is not limited to time series applications. MSDD learns dependencies
among arbitrary pairs of multitokens; any problem that can be phrased in these terms can
be tackled by MSDD. One class of problems that do not involve time series data, but can
be represented as pairs of multitokens for the purpose of learning dependencies, is machine
classification.

Machine classification is the process of assigning class labels to objects based their de-
scriptive features. Examples of machine classification problems are predicting whether mush-
rooms are poisonous or edible based on their physical characteristics, predicting the party
affiliation (democrat or republican) of a U.S. Representative based on their voting records,
and predicting the class and number of solar flares given a window of previous activity. A
machine classification algorithm is given a training set of tuples (A, ¢), where A is a vector
of attribute values, and c is the class label of the tuple. Attributes in the mushroom dataset
might include the diameter or color of the mushroom, and class label might be 0 if the object
is edible and 1 if it is poisonous. Given the training set, the machine classification algorithm



must build structures that will allow it to predict a class label ¢/, given only a set of attribute
values A’.

MSDD can be used as a tool for machine classification with good results [Oat94]. Each
training instance is presented using A as the vector of precursor streams and ¢ as the lone
successor stream. MSDD then carries out its search using the training set to find the maxi-
mally predictive set of classification rules. MSDD might learn that the rule “if the mushroom
is red and shiny, then it is poisonous” is accurate for 93% of the mushrooms it has seen. The
generality of the MSDD approach allows machine classification to go one step further by being
able to learn multiple class labels simultaneously. MSDD, for example, could learn that not
only are red, shiny mushrooms poisonous, but that they cause nausea and hallucinations.
A third extension of the machine classification task would be to learn attribute values that
frequently occur together. If a mushroom is red, for example, it may almost always be shiny
as well. In this task, the attribute vector A is presented as both the precursor and successor
pattern for MSDD to learn on. We return to the task of detecting correlated attribute values
as our primary means of evaluation in section 3.

3 Distributed Search

The systematic expansion of nodes performed by MSDD ensures that any two frontier nodes at
a given time will be computationally independent. Further, the evaluation and expansion of a
dependency only requires access to two data structures: the dataset, and the list of the k best
dependencies. As a result, performing the search for dependencies in a distributed setting
is a simple extension MSDD . Because computations are independent, no synchronization of
calculations is necessary. Because access to the training data is read-only, it can simply be
replicated at each of the hosts involved in the search. And finally, because an out-of-date k
best list will only result in underestimates of the pruning threshold, the algorithm will not
suffer a loss of admissibility if k-best lists are updated lazily.

The properties of the MSDD algorithm make a distributed implementation straightfor-
ward, and allows the more important problem of load balancing to be the focus of attention.
After a short description of DMSDD’s implementation details, we examine the problem of
load balancing as it applies to DMSDD, and describe and evaluate some possible approaches.

3.1 DMSDD

DMSDD uses a centralized model of communication to coordinate its distributed search. The
server acts as a hub for communication and user control, with one or more clients connecting
via TCP/IP to offer their computational resources to the search. Simplified pseudocode of
the DMSDD server is shown in algorithm 3.1.

n

The search begins and ends with the server, and all user controls over the search are
mediated through the server. As shown in the pseudocode listing, the server is responsible
for distributing the dataset to the client as well as performing the initial partitioning of the
work to be distributed among the clients.



Algorithm 3.1 DMSDD SERVER
DMSDD-SERVER(S)

1. SEND-DATA(clients)

open = SYSTEMATICALLY-EXPAND (root — node)
partitions = PARTITION (open, clients)
SEND-PARTITIONS (partitions, clients)

while open do

Gk LN

a. HANDLE-MESSAGES()
b. node = NEXT-NODE (open)
c. children = SYSTEMATICALLY-EXPAND (node)
d. children = REMOVE-PRUNABLE (children, best)
e. add children to open
f. for child in children do
i. if LENGTH(best) < k or In € best s.t. G(child, S,6) > G(n,S, ) then
add child to best
BROADCAST (best, clients)
ii. if LENGTH(best) > k then
remove from best the node with the lowest f value

6. wait for clients to finish
7. return best

A sketch of the client system is shown in algorithm 3.2. As with the server, the client
algorithm is very similar to basic MSDD with some additional code for handling and sending
messages. Indeed, both server and clients are essentially the basic MSDD algorithm operating
on different partitions of the same search space. The messages passed between client and
server come in four basic types:

e DATA messages contain portions of the dataset and are sent from the server to the
client before the search begins.

e NODE messages are used to pass a node from one machine’s agenda to another’s. The
function SEND-PARTITIONS in algorithm 3.1 generates messages of this type.

e BEST messages are used to indicate that a searcher has added a node to it’s best list.
These are sent to the server and broadcasted to all clients if the centralized k best list
is updated.

o WAITING messages tell the server that a client’s open list has become empty. If all
clients have indicated that they are waiting, and the server’s agenda is empty, the
server declares that the search is finished.

3.2 Load Balancing

The major advantage to distributing the search for dependencies across multiple computing
resources is obvious: ideally, a computation requiring 4 milliseconds of computing time would
take 1 milliseconds to complete on n machines. Due to message passing and other overhead,



Algorithm 3.2 DMSDD CLIENT
DMSDD-CLIENT()

1. while connected do
2. HANDLE-MESSAGES()
3. if open

a. node = NEXT-NODE (open)
b. children = SYSTEMATICALLY-EXPAND (node)
c. children = REMOVE-PRUNABLE(children, best)
d. add children to open
e. for child in children do
i. if LENGTH(best) < k or In € best s.t. G(child, S,6) > G(n,S, ) then
add child to best
SEND-TO-SERVER(“best”, child)
ii. if LENGTH(best) > k then
remove from best the node with the lowest f value
f. if EMPTY(open)
i. SEND-TO-SERVER(“waiting”)

this idealized speedup is simply not possible, but it is the goal of parallel and distributed
computation to come as close to it as possible.

The most important factor behind the ultimate speedup of a distributed algorithm is
ensuring that all available processors are doing work until the computation is complete.
Ideal load balancing ensures this property in a distributed system. Our goal with DMSDD is
to design such a load balancing scheme.

Some studies have been made of provably optimal load-balancing policies. Most, if not
all such studies, such as [GRS95|, require a priori knowledge about the structure of the
search space. The MSDD search space can indeed be enumerated and reasoned about, but
due to pruning, the effective search space (that space which is actually searched) cannot be
determined a priori. For this reason, optimality results based on tree sweep procedures do
not directly apply to DMSDD.

Many solutions to the load balancing problem have been proposed for problems for which
optimality results do not apply, such as IDA* search [Coo96] and plasma reactor simula-
tion [WRT96]. In general, these load balancing algorithms can be distinguished in two ways.
The first distinction can be made based on what is partitioned (and subsequently distributed):
the computational space, or the data. In functional decomposition, distinct computations
are distributed among processing elements. In data decomposition, partitions of the data are
distributed. With MSDD, the systematic nature of the search space allows disjoint sets of
nodes to be evaluated independently. The same process if the data were partitioned would
not allow the searchers to operate independently; every result generated by a host would
need to be synchronized with every other host. As such, the logical approach to partitioning
(and the one we take) with DMSDD is functional decomposition.

The second distinction among distributed algorithms is made between static load balanc-
ing and dynamic load balancing. Static load balancing attempts to divide the data prior to
the beginning of the distributed computation. For DMSDD, static load balancing equates to
dividing the first ply of the search space among the distributed processing elements in line



Number of | Training Size of Nodes

Streams | Instances | First Ply | Expanded | CPU Time
Solar 13 1066 47 9,085 912,858msec
Chess 17 500 38 24,168 | 2,090,196msec

Table 1: Properties of the machine learning datasets used for evaluation.

3 of 3.1. Dynamic load balancing takes place while the search is in progress. An example
of dynamic load balancing in DMSDD would be a processing element with a large agenda
offloading some of its work to an element with few nodes on its agenda. Good static anal-
ysis can make dynamic load balancing unnecessary, reducing communication overhead and
idle CPU cycles. The remainder of this section is devoted to developing and evaluating an
effective approach to load balancing for MSDD.

3.2.1 Evaluation Criteria

The basic MSDD algorithm has been shown to be effective in terms of the quality of the rules it
discovers [Oat94, OC96a, OSGCI6| and efficient in its search of very large spaces [0SJC97].
Our goal in evaluating DMSDD is to ensure that effectiveness is not compromised and efhi-
ciency increases proportionally to the computing resources as they are added to the search.

Effectiveness is not compromised; the systematicity of the algorithm ensures that ex-
actly the same set of dependencies is generated regardless of where the nodes are evaluated.
Further, the expansion of extraneous nodes are generated as a result of propagation delays
on the BEST messages will never effect admissibility of the search. Our evaluation efforts
are primarily concerned, then, with efficiency gains bought by distributing the search and
effective load balancing.

We measure performance gain (or loss) through four variables: the total number of nodes
expanded, CPU time, real time, and CPU utilization. The number of nodes considered in the
search is a raw measure computational expense. CPU time is measured in milliseconds as the
sum of system and user time spent on behalf of MSDD, and is a measure of processing time
independent of system load. Real time takes the system load into account; it is the real time
duration of the search in milliseconds. Finally, CPU utilization measures the percentage of
real time that the open list of a machine is non-empty. In our experiments, we record the
mean CPU utilization across the nodes in a search as well as the minimum utilization.

The data used for evaluation can be found at the UCI machine learning repository.
We chose two datasets: solar flare data, and chess endgame results. In each case, the
attribute vectors were duplicated and presented as pairs to detect correlated attribute values
as described in section 2.1. The value of k was set to 20 for all experiments reported here.

Table 1 shows some properties of the datasets along with results from applying basic
MSDD to them. The column “size of first ply” reflects the number of children of the root
node, and is the size of the work load that is used for static load balancing. The number of
nodes expanded and CPU time are results for basic MSDD.



Machine | Processor | Capacity
goddard | Alpha 257722
lindy Alpha 1251752
earhart | Alpha 1249752
gagarin | Alpha 137072
hinden | SPARC 1550 Msee

Figure 2: An excerpt from DMSDD’s capacity lookup table.

3.2.2 Static Load Balancing

Static load balancing is an approach to load balancing that attempts to evenly distribute
work up front, by static analysis of the initial problem space. In the prior discussion of load
balancing, the remark was made that optimality results do not directly apply to DMSDD.
This is not to say that devoting effort to static load balancing is not a worthwhile task;
however, one cannot expect optimal static load balancing for tasks that involve dynamic
changes to the problem space.

The initial problem space DMSDD works with are the direct children of the root depen-
dency. Lines 2 through 4 of algorithm 3.1 show this initial expansion, its partitioning, and
delivery of initial workloads to the client searchers. The third step, a call to PARTITION, is
where static analysis may take place and static load balancing begins.

A naive static load balancing policy makes no effort to balance the load in a disciplined
way. This policy, which we will call the naive condition simply takes the set of dependencies,
splits it into n equal sized chunks (where there are n—1 clients and one server), and distributes
them. Essentially, the naive load balancing condition represents the minimum requirements
of a load balancing policy, and we will consider it to be a baseline result.

The naive policy fails to take into account all but one piece of information, the size of
the initial search space (the children of the root node), and even then does a poor job of
using that information. Dividing the search space into even chunks assumes a homogeneous
(in terms of processing capacity) group of workstations. For a distributed architecture, this
is assumption can be costly. Our local network, for example, has machines running at three
different speeds, including a SPARC10, three Alphas running at 2 to 3 times as fast, and
one Alpha running 5 to 9 times faster than the others. To address this concern, we must
revise the naive policy to take capacity into account. We will call this revision the capacity
sensitive policy.

The capacity sensitive policy uses a database of known clients and architectures to access
rough estimates of processing capacity. The capacity estimates in the database reflect the
mean time in milliseconds to expand the root node of a known dataset. Example entries in
the capacity database for the machines used in the experiments reported here are shown in
table 2. Using these baseline estimates of processing speed, the capacity sensitive policy no
longer needs to make the homogeneous architecture assumption, and can send workloads of
sizes more appropriate to the recipient architecture.

The graphs in figures 3 and 4 show the effects of adding processors to the search of the
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Figure 3: The effects of adding more workstations to the search of the solar flare dataset
with the capacity sensitive and rank-capacity sensitive load balancing policies. Each data
point is based on 5 samples and is shown with 90% confidence intervals. (a) the effect on
the total number of nodes expanded (b) the effect on the time to completion for unloaded
machines.

solar flare dataset. The plots labeled “capacity” correspond to DMSDD operating using only
the capacity sensitive load balancing policy. Each data point represents the mean of five
trials with 90% confidence intervals. In all cases, the machines were unloaded, and selected
from the Alpha machines listed in figure 2.

The number of nodes expanded increases a small amount as a result of distributing the
search. The effects are very small, and most likely due to the fact that the k-best list is
subject to latency in updating. Because a BEST message may experience propagation delay,
a small number of nodes may temporarily escape pruning. Time to completion, shown in
figure 3b, behaves somewhat differently than expected, though. The time to completion
actually increases as processors are added to the search!

One need only look to the graphs of figure 4 to get an indication of how the search could
actually take longer when additional resources are available. As the nodes are added, overall
CPU utilization declines, indicating that mistakes are being made in the static partitioning
phase. The effect is most dramatic in graph 4b, which shows the minimum CPU utilization.
In the case with 4 workstations, the capacity sensitive policy performs quite poorly, creating
a partition that in the average case results in at least one machine operating for only 30%
of the total search time. The result is that the total time to completion will be equal to the
time taken by the worst assignment of nodes to processor. In the results shown here, the
machine goddard was used in the single processor case, and is 4 or 5 times faster than any
of the other alphas we used. By adding slower processors to the search, we allow DMSDD the
opportunity to overallocate nodes to them. As figure 4b shows, as more processors are added
to the search, the capacity sensitive load balancer is more probable to create an assignment
of nodes that will be slower than goddard alone. Intuitively, there should be a saddle point
at which the addition of processors overpowers this “slow as the slowest” effect, although
it appears that that point is greater than four processors for the capacity sensitive load
balancer.

10
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Figure 4: The effects of adding processors on CPU utilization for the solar flares dataset.
(a) the effect on mean CPU utilization (b) the effect on the minimum CPU utilization
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Figure 5: The effects of adding processors to the search of the chess endgame dataset. (a)
the effect on the total number of nodes expanded (b) the effect on the time to completion
for unloaded machines.

The graphs of figures 5 and 6 show similar effects for the chess endgame dataset, which
has an effective search space roughly 2.5 times the size of the solar flares dataset. In these
graphs, however, the “saddle point” is visible with only four processors. In the graphs of
nodes expanded and real time, there is an increase from 1 to 2 processors, and then each
appears to begin a decline. In both cases, this represents an effect of diminishing penalties;
for nodes expanded, the latency effect as described for the solar flares data is overtaken by
a different effect. Because there are additional searchers, greater breadth of search can be
achieved in less time, making BEST messages available earlier than in the 1 and two node
cases, allowing for more aggressive pruning earlier. As the graphs in figures 4 and 6 show
the same effect, it seems likely that the saddle point in real time is reflection of what is going
on with the number of nodes expanded.

The capacity sensitive policy seems far from ideal. Our main goal of maximizing mean
CPU utilization has not been accomplished. One reason for this is likely that the capacity

11
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Figure 6: The effects of adding processors on CPU utilization for the chess endgame dataset.
(a) the effect on mean CPU utilization (b) the effect on the minimum CPU utilization

sensitive policy does not exploit any knowledge about the structure of the state space. Of
particular interest is the fact that MSDD’s systematic expansion algorithm, in which children
are generated by instantiating a token to the right of the righmost instantiated token, results
in a heavily skewed search tree. Consider the following two rules:

(* X %) = (* * *)
(* * x) = (x * 6)

Both rules reside one level deep into the search space, but the first rule can be parent to
% 2 |Vi| children, while the second rule will parent none at all. We will call the number of
uninstantiated tokens to the right of the righmost instantiated token for a rule its rank. The
rank of the above two rules are 4 and 0, respectively.

Rank can be used to compute the size of the unpruned search space starting at rule ».
The calculation is a recursive summation, and is a function of the rule r’s rank, which is z,
and the number of streams m, in the following formula:

spacesize(z) = Y0 (|Vi] + (|Vi| X spacesize(z + 1)))

Spacesize computes the maximum amount of work a searcher would have to as a result of
being assigned rule r to expand as part of its workload. Certainly, the maximum amount of
work a searcher could have to do is much different than the work a search will do on most
datasets. Rank and spacesize, however, are statistics that can be computed a prior:, while
effective spacesize is not.

DMSDD’s static load balancing policy might attempt to balance the total rank or spacesize
it allocates to different searchers. Such policies we will call rank-based. Our implementation
of rank-based load balancing uses a fast estimate of spacesize by estimating each V; to be 2.
As a result, estimated spacesize is equal to 2™7* — 1.

The plots labeled “rank” of figures 3- 6 show the effects of adding processors to the search
with rank-based load balancing. The performance of rank-based load balancing appears to
scale slightly better than the capacity-only policy for the solar flares set. In the case of four
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processors, the rank based scheme shows an improvement in CPU utilization of roughly 15%
over capacity-only load balancing, and has less variance in the results. Results for CPU
utilization trials are not so convincing, as rank based load balancing appears to increase the
minimum utilization, but perform worse or similarly to capacity based balancing in all other
measures. The problem here appears to be related to the location of the k best rules in the
unpruned search space. The working assumption of the rank-based policy is that rules are
uniformly distributed across the working search space, and it appears that the chess dataset
violates that assumption.

Overall, static load balancing does not appear to be feasible as a stand alone load bal-
ancing policy. Both policies fail to use one last available piece of data, the G-max estimate
of the initial search space. This requires further investigation, but as heuristics are added to
the static load balancing policy, it becomes less a priori than dynamic. To be sure, neither
capacity nor capacity-rank based balancing alone are sufficient to do an effective job.

3.2.3 Dynamic Load Balancing

The major fault of static load balancing is that with DMSDD, the information useful in load
balancing appears as the search progresses. Before any nodes are rated and the k-best list
starts filling out, DMSDD has little information to base its work assignments on. Mistakes
appear to be imminent, and static load balancing offers no advice on what to do once mistakes
have been made. One solution to this problem is to allow processors to correct the mistakes
of the static policy by dynamically rebalancing their workloads.

Dynamic load balancing schemes are a class of algorithms that perform load balancing
after the work has already begun. For DMSDD, dynamic load balancing begins when a client
detects that its agenda is about to become empty. In such a situation, the client sends a new
type of message to the server to indicate that it can take on more work. This is referred to
as recewer initiated load balancing, as the eventual recipient initiates the transfer of work.

o A WAITING message indicates that a client’s agenda is empty, and it is able to take on
more work.

When the server receives a WAITING message, it first checks its own agenda to see if there
is enough work there to offload some nodes. If there is, the server invokes its static load
balancing policy to rebalance its load with respect to the client. If the server does not have
enough nodes to offload to a waiting client, or its own agenda becomes empty, it broadcasts
a RECALL message to all working clients.

o A RECALL message advertises to the clients that the server is willing to recall some
work. Any client with more than some threshold of nodes on its agenda can respond
by rebalancing its load with respect to the waiting client (or server). Offloaded nodes
are sent to the server, who either keeps them or supplies them to a waiting client.

The message passing associated with dynamic rebalancing also provides an opportunity
to obtain more up-to-date information for use in load balancing. In particular, by the time a
searcher has expended its agenda, it will have new estimates of its own processing capacity.
We introduce the CAPACITY message as a way for clients to update the server’s capacity
estimates dynamically.
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Figure 7: Results for the solar flares data after adding dynamic load balancing to DMSDD.
Each data point is based on 5 trials and is shown with 90% confidence intervals. (a) the
effect on the total number of nodes expanded (b) the effect on the time to completion for
unloaded machines.

e The CAPACITY message communicates the effective number of nodes per second a client
is processing during the current search.

Performance results with dynamic load balancing enabled are shown in figures 7- 10. Not
surprisingly, the number of nodes expanded continue to show small, but noticeable increases
as a result of adding processors. The graphs of CPU utilization, though, show the effect
that we had hoped for. For both the solar flares and chess datasets, mean CPU utilization
increased dramatically to the 90-95% range. The minimum CPU utilization, not shown,
showed similar improvements, in most cases hovering around 80-95%. As a result, the mean
completion time decreases in an apparently linear fashion as processors are added to the
search. Recall that the machine goddard, an alpha 4 to 5 times faster than the others, was
used in the single processor case. In the ideal case, then, the performance increase would
be somewhere between 160 and 175 percent. With the rank based load policy, the mean
speedup in our trials was 162% for the solar flares and 143% on the chess data. Thus,
the dynamic load balancing scheme seems to be working as advertised: it is achieving high
levels of utilization despite the relatively poor processor scheduling being done by the static
policies.

The poor performance of the static load balancing policies does have downstream ef-
fects, however, that are most apparent in figures 8b and 10b. As the number of processors
increase, the number of network messages increases proportionally. On our local network,
latency is low, and this caused only minor degradation in system utilization. In a heavily
loaded medium, though, where latencies can be large, the relationship between the num-
ber of searchers and the number of messages sent could result in longer idle periods and a
reduction in scalability.
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More results for the solar flares set with dynamic load balancing turned on. (a)
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Figure 9: Results for the chess data after adding dynamic load balancing to DMSDD. (a) the
effect on the total number of nodes expanded (b) the effect on the time to completion for
unloaded machines.
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Figure 10: CPU utilization and message passing results for the chess set with dynamic load
balancing turned on. (a) the effect on mean CPU utilization (b) the effect on the total
number of messages sent.

4 Conclusions

We presented MSDD, an algorithm that searches for strong dependencies in multivariate,
categorical data. By limiting the scope of the search to a set of k best dependencies, and
evaluating nodes with G statistic, a measure with a provable upper bound for the children
of a rule, MSDD can perform substantial pruning that makes the search tractable in very
large spaces. MSDD’s systematic expansion procedure also ensures that fringe nodes are
computationally independent of one another. As a result, a distributed implementation of
MSDD is a straightforward extension of the algorithm.

The dynamic nature of MSDD’s search presents a challenge to effective load balancing.
A priori analysis of the search space can give little indication of what parts will actually
need to be searched and which will be pruned. As a result, our efforts to produce static
load balancing policies were quite ineffective as standalone components. In fact, if slower
processors were added to the search, the total time to completion was observed to actually
increase in some cases even though the total processing capacity increased. As a result, it
was determined that dynamic load balancing was necessary to recover from the misalloca-
tions that the static policies were invariably making. The dynamic policy was a significant
improvement, exhibiting high levels of CPU utilization and linear speedups as processors
were added. The dynamic policy also generated a number of messages that increased at a
linear rate with respect to the number of processing elements, though. This result indicates
that speedup and scalability could be reduced significantly for large numbers of processors
or loaded networks. These conditions will be the topic of future consideration.
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