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We derive guidelines for (almost) optimally scheduling data-parallel computations on
“borrowed” workstations, within the model developed in [3].
study in that paper builds on the following rather draconian version of cycle-stealing in
networks of workstations (NOWs)—the use by one workstation of idle computing cycles of
another. The owner of workstation A contracts to take control of workstation B whenever
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Abstract. We derive guidelines for nearly optimal scheduling of data-parallel com-
putations within a draconian mode of cycle-stealing in NOWSs. In this computing
regimen, workstation A takes control of workstation B’s processor whenever it is
idle, with the promise of relinquishing control immediately upon demand—thereby
losing work in progress. The typically high communication overhead for supplying
workstation B with work and receiving its results militates in favor of supplying
B with large amounts of work at a time; the risk of losing work in progress when
B is reclaimed militates in favor of supplying B with a succession of small bundles
of work. The challenge is to balance these two pressures in a way that maximizes
(some measure of) the amount of work accomplished. Our guidelines attempt to
maximize the expected work accomplished by workstation B in an episode of cycle-
stealing, assuming knowledge of the instantaneous probability of workstation B’s
being reclaimed. Our study is a step toward rendering prescriptive the descriptive
study of cycle-stealing in [3].

The Cycle-Stealing Problem
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its owner is absent. When the owner of B reclaims that workstation, workstation A
immediately relinquishes control of B, killing any active job(s)—thereby destroying all
work since the last checkpoint.

Such draconian “contracts” are inevitable, for instance, when a returning owner
unplugs a laptop from a network; one encounters such contracts also at several
institutions where cycle-stealing is supported.

Such a “contract” creates a tension between the following inherently conflicting aspects
of cycle-stealing. On the one hand, since any work in progress on workstation B when it
is reclaimed is lost, a cycle-stealer wants to break a cycle-stealing episode into many short
periods, supplying small amounts of work to the borrowed workstation each time. On
the other hand, since each of the inter-workstation communications that bracket every
period in a cycle-stealing episode—to supply work to workstation B and to reclaim the
results of that work—involves an expensive setup protocol, the cycle-stealer wants to
break each cycle-stealing episode into a few long periods, supplying large amounts of
work to workstation B each time. Clearly, the challenge in scheduling episodes of cycle-
stealing is to balance these conflicting factors in a way that maximizes the productive
output of the episode. The research we report on here resolves the preceding conflict
by deriving scheduling guidelines that (approximately) maximize the expected work!
accomplished within an episode of cycle-stealing, within the following setting. We focus
on computations that are data-parallel, in that they consist of a massive number of
independent repetitive tasks of known durations.

One encounters such computations in many scientific applications.

We develop our schedules under the assumption that we know the instantaneous proba-
bility of workstation B’s being reclaimed and that the function yielding this information
is “smooth.”

Although our results are stated as though we had exact knowledge of these prob-
abilities, they extend easily to situations wherein this knowledge is approximate,
garnered possibly from trace data that exposes B’s owner’s computer usage pat-
terns. Our assumption about “smoothness” is reasonable, since one would likely
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encapsulate even trace data by some “well-behaved” curve.

In a forthcoming sequel to this paper, we focus on (nearly) optimizing a worst-case, rather than
expected, measure of a cycle-stealing episode’s work output.



Our hope—and experience—is that the approximate specifications one obtains via the
guidelines derived here provide one with a manageably narrow search space for a truly
optimal schedule.

A roadmap. Section 2 presents the formal model under which we derive our scheduling
guidelines. In Section 3 we present the results about the structure of optimal schedules
that underlie the guidelines. In Section 4, we illustrate the application of the guidelines in
a variety of scenarios, and we compare the resulting schedules with the (ad hoc) provably
optimal ones from [3]. We present further results about the structure of optimal schedules
in Section 5, both to lend insight and perspective to our guidelines and to supply raw
material for certain ad hoc improvements to the schedules they prescribe. We end with
suggestions for further research in Section 6.

Related work. Other noteworthy studies of scheduling algorithms for NOWSs, which
differ from ours in focus or objectives, appear in [1, 2, 4, 5, 6]. Of these, only [2]
deals with the present adversarial scenario of stealing cycles; its main contribution is
a randomized strategy that, with high probability, steals cycles within a logarithmic
factor of optimally. We do not list the many empirical studies of computation on NOWs
whose main foci are on enabling systems or specific applications rather than on analyzed
scheduling algorithms.

Remark. The model we study here has applications to “real-life” problems other than
scheduling single episodes of cycle-stealing. One important example is scheduling saves
in a fault-prone computing system, as studied in [7]. This problem admits an abstract
formulation that is formally similar to our model for cycle-stealing. Our model differs
in many details from that of [7], and our research methodology differs dramatically from
that paper’s, but it is clear that our results can be adapted to apply in that setting also.

2 A Formal Model of Data-Parallel Cycle-Stealing

We review the basic structure of the cycle-stealing model of [3], focusing only on details
that are relevant to the current study. We refer the reader to that paper for additional
details and variations on the model presented here.

2.1 The Model

Overview. We schedule data-parallel cycle-stealing in an “architecture-independent”
fashion, in the sense of [9]: the cost of inter-workstation communications is characterized
by a single (overhead) parameter ¢, which is the (combined) cost of initiating both the



communication in which workstation A sends work to workstation B, and the communi-
cation in which B returns the results of the work. We assume that: tasks are indivisible;
task times may vary but are known perfectly; the time for a task includes the marginal
cost of transmitting its input and output data (so we may keep ¢ independent of the sizes
of data transmissions).

Cycle-stealing schedules. Workstation A schedules an episode of cycle-stealing by par-
titioning the time of B’s potential availability into a sequence of nonoverlapping periods.
For simplicity, we identify a cycle-stealing schedule § with its sequence of period-lengths:
S =tg,t1,..., where each t; > 0. A schedule can be finite, when there is a known upper
bound L on the length of the episode, or it can be infinite, when no such bound is known.
(Examples of both situations appear later.) The intended interpretation is that at time

w [0 if k=0
Tk = T ot to+t+-- 4ty ifk>0

the kth period begins: workstation A supplies workstation B with an amount of work
chosen so that ¢, time units are sufficient for A to send the work to B, for B to perform
the work, and for B to return the results of the work to A.

The work achieved by a schedule. The amount of work achievable in a period of
length ¢, is? t; © c. If workstation B is not reclaimed by time T}, = 73, + t;, then the
amount of work done so far during the episode is augmented by ¢, © ¢; if B is reclaimed
by time T}, then the episode ends, having accomplished work Y¢=1(t; © ¢).

The limits of the latter summation implicitly reflect both the loss of work from the
interrupted period and the termination of the episode.

Easily, the risk of having a period interrupted, thereby losing work, may make it desirable
to have the lengths of a bounded-lifespan schedule’s productive periods (those with t; > ¢)
sum to less than the potential duration L of the episode.

Cycle-stealing with known risk. One cannot derive provably productive scheduling
guidelines without some antidote for a malicious adversary who kills every episode of
cycle-stealing just at the end of the Oth period. Here (as in the first half of [3]), this
antidote resides in our assumed knowledge of the risk of being interrupted in the midst
of a period, in the form of the life function p of an episode: for each time ¢, p(t) is the
probability that workstation B has not been reclaimed by time t. In accord with the
motivating scenario: p(0) = 1; when an upper bound L to the duration of the episode

2The operator “©” denotes positive subtraction and is defined by: z Sy f max(0,z — y).



is known, then p decreases monotonically to 0 in the range® [0, L]; when no bound L is
known, then p decreases monotonically for all £, with the limit 0. In order to enable our
analytical results, we let period-lengths be arbitrary real numbers, and we consider only
life functions that are “well-behaved,” in the sense of being differentiable along the entire
real axis and of having no flex points. These idealizations make even our “definitive”
results just guidelines.

Our goal is to maximize the expected work in an episode of cycle-stealing. For any
schedule § = ty, 1, ... and life function p, this quantity is given by

E(S;p) = Y (ti©op(T). (2.1)

i>0

The summation here has upper limit m—1 for an m-period schedule and oo for an infinite
schedule (when no duration bound is known). The simple functional form of E(S) makes
it easy to cope with life functions that are known only approximately (say, via trace
data).

Cycle-stealing schedule 8* is optimal for life function p if it maximizes the expected
production of work, E(S;p), over all schedules S for p. The guidelines we derive emerge
from exposing the structure of optimal schedules.

2.2 A Useful Technical Result

The analysis that leads to our scheduling guidelines is simplified by the fact that we
lose no generality by focusing only on schedules that are productive, in the sense of
the schedule 8 of the following result from [3]. We state and use a slightly stronger
version of the result than one finds in [3]; the proof there actually supports this version.
Importantly, this result permits us henceforth to use ordinary subtraction rather than
positive subtraction in calculations involving expression (2.1).

Proposition 2.1 ([3]) Any schedule S for a life function p can be replaced by a schedule
S’ such that:

o E(S';p) > E(S;p);

e cach period of S'—save the last, if S’ is finite—has length > c.

3As usual, the assertion “a € [b, ¢]” (resp., “a € (b, ¢)”) is equivalent to “b < a < ¢” (resp.,
“b<a<c).



3 Our Scheduling Guidelines

We derive our scheduling guidelines by characterizing the dependencies among the period-
lengths of optimal schedules for “smooth” (i.e., differentiable) life functions p. We first
state the results that underlie the guidelines, in Section 3.1, and then prove the results
in the Sections 3.2 and 3.3.

3.1 The Structure of Optimal Schedules

Our main results presuppose “nice” structure in the life function p; all require that p be
differentiable; some require additionally that p enjoy one of the following nice “shapes.”

The life function p is concave (resp., conver) if its derivative is everywhere
nonincreasing (resp., everywhere nondecreasing): for all positive real ¢ and

n > &, we have p'(§) > p'(n) (resp., p'(§) < p'(n)).

The three life functions studied in [3] illustrate these properties. (1) The geometrically
increasing risk life function with potential lifespan L, p(t) = (2F—2t) /(2" —1), is concave.
The risk of interruption doubles at every time unit in this scenario. (2) The geometrically
decreasing lifespan life function with risk factor a > 1, p(t) & 4t is convex. Each episode
in this scenario has a “half-life.” (3) The uniform-risk life function with potential lifespan
L, p(t) £ 1 —t/L, is both concave and convex. The risk of interruption in this scenario
is uniform across the potential lifespan. We shall revisit these scenarios in Section 4.

Our main results. Say that the schedule S = ty, 11, ... is optimal for the differentiable
life function p.

1. A characterization of the optimal sequence of ¢;’s:

The period-lengths of S are given implicitly by the inductive system of equa-
tions: for each period-index k > 0,

p(Te) = =2 (t; = (T)).

izk
In computationally more useful form: for each period-index k > 0,

p(Tk) = p(Ti1) + (e — )" (Th1).

2. Bounds on the optimal %:



If the life function p is convex, then

¢ cep(ty) | ¢ ¢t cplto)
— - Sty < 2= —
T ) T2 O S NT T ) ¢
If the life function p is concave, then
¢ cep(ty) | ¢ 2 cplto)
— - o<ty < 2= - .
I o) 2 S S AT Ty

The next two subsections are devoted to proving these results.

3.2 The Dependencies among the Optimal Period-Lengths

Theorem 3.1 If schedule § = ty,t1,... is optimal for the differentiable life function p,
then the period-lengths of S are given implicitly by the following system of equations. For
each period-index k > 0,*

p(Te) = =3 (t; = p(Ty). (3.1)

i>k

Proof. Theorem 3.1 follows from the fact that schedule S, being optimal, accomplishes
at least as much work as does any “shifted” version of §. This claim is formalized and
verified as follows.

The (k, —0)-shift, S0 of S and the (k,40)-shift, SHEH0) of S are the
schedules

S<k,75> = thtla"'atk—latk)_57tk:+17"'7
S<k,+6> = tUatla"‘atkflatk+6atk+1a"‘?

which have the same number of periods® as S and the same period-lengths,
save for period k.

4The upper limit of each summation in (3.1) is inherited from summation (2.1).
5That is, if S has finitely many periods, then S*+9 and S*~9 have the same number; if S has
infinitely many periods, then so also do S0 and S*-—=9)



(a) We first compare F(S;p) with E(S%*~%;p). By direct calculation and the assumed
optimality of schedule &, we find that

0 < E(S;p)— E(S™p) = 6p(Ti, = 6) + > (t: — ¢) [p(T3) — p(T; = )],

i>k

so that

p(Ty—0) > => (t; —¢) (3.2)

i>k

lp(m it - 5)1 |

Since an inequality of the form (3.2) holds for every period-index k and for arbitrarily
small §, the differentiability of p implies that®

p(Te) = = (ti—)p(Th). (3-3)

i>k

(b) We next compare E(S;p) with E(S**%;p). Mirroring the reasoning in part (a), we
derive the chain

0 > E(S™*:p)— E(S;p) = op(Ti+0)+ Y (t:— ) [p(Ti + 6) — p(T3)],

i>k

so that

p(Te +0) < => (ti—c)

i>k

lpm +4) —pm)] _

: (3.4)

As before, since p is differentiable, the fact that inequality (3.4) holds for every period-
index k and for arbitrarily small § implies that

P(T) < =3 (ti— o (To). (3:5)
ik
Inequalities (3.3) and (3.5) combine to yield the system (3.1). n

The implicit specifications (3.1) of the period-lengths of S are often computationally
difficult to instantiate for specific p, depending on the functional form of p. We therefore
present, in the following corollary, more easily instantiated specifications for all period-
lengths ¢, of & save the first. We shall have to deal with the first period-length, %y,
separately, in Section 3.3.

Corollary 3.1 If schedule S = ty,t1,... is optimal for the differentiable life function p,
then, for each period-index k > 1,

p(Ti) = p(Ti1) + (-1 — )P (Ti1)- (3.6)

6Note that we are implicitly letting & tend to O here.




Proof. The system of equations (3.6) is easily derived from (3.1), via the following easily
derived intermediate system of equations.

k—1
p(Ti) = p(To) + D_(t; — p'(Ty),
j=0
for each period-index k£ > 1 of S. [ ]

We end this subsection with a purely technical result that bolsters the observation in
[3] that not every life function admits an optimal schedule. Corollary 3.1 combines with
Proposition 2.1 to yield a simple test for such schedules.

Corollary 3.2 If the life function p admits an optimal schedule, then there exists t > ¢
such that p(t) > —(t —c)p'(t).

Using this result, one can show, for instance, that life functions of the form p(t) =
1/(t + 1)%, where d > 1, do not admit optimal schedules.

3.3 Nearly Tight Bounds on the Optimal Initial Period-Length

Whereas we were able to convert system (3.1) into the computationally friendly prescrip-
tion (3.6) for inductively optimally selecting all period-lengths t;, save the initial one, we
have been able only to derive upper and lower bounds on the optimal initial period-length
to. This section is devoted to establishing these bounds. Importantly, these bounds are
computationally more friendly than the (k = 0)-instance of system (3.1). Unfortunately,
though, our two upper bounds are established only for life functions that enjoy additional
structural uniformity (either convexity or concavity). As we indicate in Section 4, our
bounds on ¢, are often moderately tight, hence combine with system (3.1) to yield useful
guidelines for determining an optimal schedule for smooth life functions.

3.3.1 A Lower Bound on the Optimal ¢,

Our lower bound on the optimal first period-length ¢, actually holds for general differen-
tiable life functions.

Theorem 3.2 If the schedule S = ty,ty,... is optimal for life function p, then

2
b CZ_Cp(to)

(3.7)



Proof. If schedule S is optimal for p, then E(S;p) > E(S’;p), where schedule § %
to + t1,1o,... is obtained from S by combining the first two periods. We thus have

0 < E(S;p)— E(S;p) = (to — )p(te) — top(T}). (3.8)

If we now combine the rightmost expression in (3.8) with the (k = 0)-instance of system
(3.6), and we note the positivity of the result, then we find that

(to — ¢)p(to) — top(Ty) = —cp(to) — to(to — ¢)p'(te) > 0. (3.9)

“Solving” (3.9) for ty (by completing the square) now yields (3.7). n

3.3.2 Upper Bounds on the Optimal ¢,

Our first upper bound on %, is an implicit one which holds for general differentiable life
functions. Its main utility is in deriving explicit upper bounds for life functions having
special “shapes.”

Lemma 3.1 Let § = ty,t1,... be an optimal schedule for life function p. Fither the
initial period-length ty < 2c¢, or ty is small enough that

p(ty) > max (1—9> (). (3.10)

te(e, to—c) t

Proof. Assume, for contradiction, that ¢; > 2c¢ and that t, is so large that condition
(3.10) is violated; i.e., there is a t € (¢, t; — c) for which

p(to) < (1 —c/t)p(D). (3.11)

Define the schedule & t,to — t,t1,...; that is, schedule S agrees with schedule S,
except that it splits S’s initial period in two. By direct calculation, we have

E(8;p) — E(S;p) = (t—o)p(t) + (to — t — )p(to) — (to — c)p(to)
(3.12)

= ({ - o)p(t) — ip(to).

By (3.11), the difference (3.12) is strictly positive. This contradicts the assumed opti-
mality of S, hence establishes (3.10). n

Lemma 3.1 leads to the following explicit, computationally useful, upper bounds on
the optimal ¢;. These bounds, which require that the life function p be either convex
or concave, combine with the lower bound (3.7) to bracket ty for many “smooth” life
functions within a factor of 2.

10



Theorem 3.3 Say that schedule S = ty, 11, ... is optimal for the life function p and that
to > 2c. If p is convex, then

¢t cpl(ty)
to < 2,]— — ) 3.13
0 < T () +c (3.13)
If p is concave, then
¢z op(to)
ty < 2,|— — +c. 3.14
* S NT T Y 310

Proof. If we instantiate the system of inequalities that is implicit in (3.10) with the
value t = %to, then we find that

(1= ) tolto) — plt0/2)] 2 ~p(00)

to tO

Invoking the MVT on the lefthand side of this inequality, we find that there exists a
€ € (to/2, to) such that

to (%to — c> P'(&) > —2cp(to)- (3.15)

Note now that, if the life function p is convex, then p'(§) < p'(ty), while, if the life
function p is concave, then p'(§) < p'(to/2). Hence, when p is convex, inequality (3.15)

yields”
1 p(to)
to | =to — < =2 ; 1
0 (2 0 C> = Cp’(to)’ (3 6)

and, when p is concave, inequality (3.15) yields

1 p(to)
to <§t0 — c) < —QCW. (3.17)

If we now “solve” inequalities (3.16) and (3.17) for ¢y (by completing the square), then
we derive inequality (3.13) for the case of convex p and inequality (3.14) for the case of
concave p. n

"The inequality reverses as we go from (3.15) to (3.16) and (3.17) because p' is negative.

11



4 Optimal Schedules vs. Guideline-Generated Ones

We illustrate the utility of the guidelines derived in Section 3 by applying them to
some specific life functions, producing for each an approximation to the optimal schedule
S = tg,t1,.... We focus mostly on life functions for which we know absolutely optimal
schedules, via the study in [3]. Using system (3.6), we easily derive explicit expressions for
each non-initial period-length ¢;, where £ > 1, in terms of all preceding period-lengths.
Of course, these expressions are explicit only modulo our finding an explicit expression
for t;. We can only approximate this latter task, by using the lower bound (3.7), in
conjunction with whichever of the upper bounds (3.13) and (3.14) is appropriate for the
life function(s) in question.

4.1 The Family {p;r(t) =1 —t¥/L|d=1,2,...}

We begin studying a family of concave life functions for an episode of cycle-stealing with
potential lifespan L; the (d = 1)-member of the family is the life function for the uniform
risk scenario of [3], wherein the risk of interruption is stable across the opportunity.

The non-initial period-lengths. The kth period-length ¢, of an optimal schedule
S =ty,t1,... for pgr, can be determined as follows. By system (3.6), we have

LY — (Tpy + ) = LY =T | —d(tp_y — )T,

o\
te = (<1+M> _1) Ty_.
Tyt

When d = 1, this expression simplifies even further, to

which simplifies to

tk = tk—l —C, (41)

which is identical to the optimal period-length recurrence for p, ;, discovered in [3].

The initial period-length. We now invoke inequality (3.7) to obtain the following
lower bound on t,.

which simplifies to
1 LY
L (1 - —) > = (4.2)



Since each py 1, is concave, we now invoke inequality (3.14) to obtain the following upper
bound on t,.

2 ¢((20)? — t})
th < 2, — _— 7
0 = J 4 2dtT ! o

which simplifies to

1 p 2d+chd
) tO S .

e ™

Using simple estimates based on inequalities (4.2) and (4.3), we find finally that

d d
(§>1/( +1)Ld/(d+1) < < 2(5)1/( +1)Ld/(d+1)—|—1.

(4.3)

For the special case d = 1, these bounds specialize to
Vel < ty < 2Vel +1, (4.4)

which contrasts with the actual optimal value from [3] (stated imprecisely here, to simplify
comparison with (4.4)):

to = V2cL + (low-order terms). (4.5)

For specific values of d, we can use ad hoc techniques that emerge from the analysis
in Section 5 to get even tighter bounds. Most notably, when d = 1, we can revisit (3.1)
and the proof of Corollary 5.3, in the light of (4.1) and the fact that p} ;, = —1/L, to
match (4.5) up to low-order terms.

The ad hoc, but optimal, analysis in [3] builds on the fact that the aggregate overhead
from an optimal schedule forms an arithmetic sum.

4.2 The Family {p,(t) Za' |a=1,2,...}

The life functions in this family characterize the geometrically decreasing lifespan scenario
of [3], which models a cycle-stealing opportunity that has a “half-life.”

The non-initial period-lengths. Applying system (3.6) to p,, we find that the non-
initial period-lengths of an optimal schedule S = ty, ¢, ... satisfy the recurrence®

a Te-1tt) — = Th1 _ (th_1 — C)a*Tk—l Ina,

8Throughout, “Inz” (resp., “logz”) denotes the natural, base-e, (resp., the base-2) logarithm of z.

13



so that
a " +t,_1lna = 1+clna. (4.6)

(Of course, system (4.6) can be solved for ¢,t,,... only when each t; < ¢+ 1/Ina.)
System (4.6) contrasts with the actual optimal recurrence

a* +tilna=1+clna

from [3], wherein the derivation of the recurrence is preceded by a proof that all of the
optimal ¢, are equal. This proof emerges from the observation that the conditional risk
under p, looks the same at every time instant.

The initial period-length. Lemma 3.1 and inequality (3.7) combine to yield the
following bounds on .

L S < ey
—_ e 4 C—
4 Ing 2 — 0= Ina

which contrasts with the actual optimal value from [3]:

ato 1
to + = ¢+ —.
Ina Ina

Note how close our guidelines’ upper bound is to the optimal value.

4.3 The Life Function p(t) = (21 — 2%) /(2 — 1)

This life function characterizes the geometrically increasing risk scenario of [3], which
models a cycle-stealing opportunity such as a coffee break, wherein the risk of interruption
doubles at every step.

The non-initial period-lengths. Applying system (3.6) to p, we find that the non-

initial period-lengths of an optimal schedule S = ¢y, %, ... satisfy the recurrence
of — oTk—1tte — ol 9Tkt (3, | — ¢)2Tk-11n2,
so that
" = log((t{" — ¢)In2 + 1). (4.7)

System (4.7) contrasts with the actual optimal recurrence from [3]:

H = log(ty” —c+2),

14



which emerges from comparing each § with its kth-period perturbations (cf. Section 5.1):

ST to,ty, byt £ Lty F Ltryo, s et

The initial period-length. Since the function p is concave, we invoke inequalities (3.7)
and (3.14) to yield, respectively, lower and upper bounds on t,. Without writing out
the long expressions that these inequalities yield, we note only that they show that, to
within low-order additive terms (which involve ¢, ¢, and L),

/22 < ol < olog2,
It follows that, to within low-order additive terms,

L
log? L’

t():

No explicit value for ¢, is derived in [3].

5 Further Insights into Optimal Schedules

This section is devoted to establishing a number of properties of optimal schedules, which,
particularly for concave life functions: lend insight into the nature of optimal schedules;
sometimes help one evaluate the “formulas” (3.1) for optimal period-lengths; sometimes
help one sharpen the bounds on t; from Theorems 3.2 and 3.3.

5.1 The “Local” Sufficiency of the Inter-Period Dependencies

Theorem 3.1 fails to characterize optimal schedules because its system of dependencies
is shown only to be necessary for optimality. We do not presently have a proof of
the sufficiency of system (3.1), but we can take a small step in the direction of such a
proof. Specifically, we prove now that system (3.6) guarantees the “local” optimality of
a schedule, at least for concave life functions.

Our informal notion of the “local” optimality of schedule & builds on the formal
notion of a “perturbation” of S (which supplements the earlier notion of a “shift” of S).

The [k, —6]-perturbation, S™ =%, of S and the [k, +0]-perturbation, S* 1 of
S are the schedules

S[k7—6] def to, tla ce ,tkfl, by — 6, tk+1 + 6’ tk+2’ o
S[k’+5] def to, t1y oy bp_1, Tk + 57 tk+1 - 6’ tk+2’ T

15



which have the same number of periods as S and the same period-lengths,
save for periods k£ and k£ + 1.

Theorem 5.1 Let § = ty,t1,... be a schedule for a concave life function p. If the
period-lengths of S satisfy system (3.6), then schedule S is more productive than any of
its 0-perturbations; i.e., for all period-indices i and real § > 0, E(S;p) > FE(S™ % p),
and E(S;p) > E(SH; p).

Proof. (a) Note first that, if S satisfies system (3.6), then, for each period-index i,

1)) —zg(Ti—é)l

P(Ts) < p(Ti—8) + (i — ) [”( 6.1)
for all § > 0. This follows from the (j = ¢) instance of system (3.6), coupled with the
following two facts. First, p(T;) < p(T; — 0) because p is a decreasing function. Second,
by the Mean-Value Theorem of the Differential Calculus (henceforth, “the MVT” for
short), the fraction in (5.1) equals p'(&) for some & € (T; — 0, T;). Since & < T; and since
p is concave, we have p'(T;) < p'(€).

Now, for each 7 and d, we can manipulate the relevant instance of system (5.1) to obtain:

[(ti =6 — )p(Li — 6) + (i1 + 6 — )p(Tiv1)] — [(ti — )p(T3) + (tixs — )p(Tita)] < 0.
. (5.2)
Since the lefthand side of (5.2) equals E(S[l”‘ﬂ;p) — E(S;p), and since 7 and § were
arbitrary, we conclude that F(S;p) > E(S[l’_é];p) for all 7 and 0.

(b) We now mimic the reasoning in part (a), using positive perturbations and concave
life functions. To wit, if schedule S satisfies system (3.6), then, for each period-index i,

p(Ti +9) - p(Ti)]
o

P(Tin) > p(n+6>+(ti—c>[ (5.3)

for all 6 > 0. In parallel with part (a), this follows from the (j = ¢) instance of system
(3.6) in the presence of: the fact that p is a decreasing function; an invocation of the
MVT, coupled with an invocation of p’s concavity. Now, as before, we manipulate the
relevant instance of system (5.3) to obtain

[t = )p(T3) + (tiva = )p(Tiga)] = [t + 0 = )p(Ti +0) + (tiva — 6 = )p(Tis1)] > 0.

. (5.4)
Since the lefthand side of (5.4) is just E(S;p) — E(S"*: p), and since both i and § were
arbitrary, we conclude that E(S;p) > E(S"*%;p) for all i and é. [ |
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5.2 The Growth Rate of Optimal Period-Lengths

We now present a result that establishes rather weak bounds on the growth rate of the
period-lengths of optimal schedules. Specifically, when the life function p is concave
(resp., convex), then each “internal” period—i.e., excepting the last one—should be at
least (resp., at most) ¢ time units longer than its successor. Despite their weakness, these
bounds have analytically useful consequences, most particularly proving that optimal
schedules for concave life functions must be finite and providing upper bounds on their
numbers of periods.

Theorem 5.2 Let S = ty,ty,... be an optimal schedule for a cycle-stealing episode with
life function p. If p is concave, then each t;yy < t; — c. If p is convex, then each
liy1 2 t; — c.

Proof. We actually exploit the optimality of & only to infer that it is at least as pro-
ductive as any of its d-perturbations. Our arguments for concave and convex p are very
similar, but they differ in essential technicalities.

(a) Consider first the case of concave p. Since schedule S is optimal for p, we know that
E(S;p) > E(S[”J"ﬂ;p) for every period-index i and every real § > 0. Focusing on fixed
but arbitrary ¢ and ¢, we find that

E(S;p) — E(S"*p) = (t; —¢) [p(T}) — p(T; + 8)] + 6 [p(Ty41) — p(T; + 6)] > 0.

We infer that

(5.5)

tipr = 0\ p(Lip1) = p(Li +6) _ p(Ti+0) = p(T))
ti — C ti-l—l —0 - ) '

By the MVT, there exist real numbers & € (7;,T; 4+ 6) and n € (T; + 0, T;41) such that

Ti +6) — p(T3) p(Ti+1) — p(T; +0)
) tiy1 — 0

p
p(e =" and p/(n) = . (5.6
Now, the concavity of p implies that p'(£) > p'(n), because £ < n. Since p’ is negative,
this inequality can coexist with (5.5) and (5.6) only if t;;1 — ¢ < t; — ¢. Since this last

inequality holds for each ¢ and for arbitrarily small §, we conclude that each t;,; <t; —c.

(b) Consider next the case of convex p. Since schedule § is optimal for p, we know that
E(S;p) > E(S" % p) for every period-index i and every real § > 0. Focusing on fixed
but arbitrary ¢ and ¢, we find that

E(S;p) — E(S"hp) = (t; — o) [p(T;) — p(T; — 8)] — 6 [p(Tis1) — (T — )] > 0.
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We now infer (after some manipulation) that

p(T;) —p(T;i = 9) ( tisa ) p(Tiy1) — p(Th)
) - tz' —d—c '

5.7
Liv1 (51
The remainder of the proof mimics part (a). After two invocations of the MVT and one
of the convexity of p, we end up with the inequality

t.
/ >( i+1 ) /
PO 2 () ),
where p'(§) < p'(n) < 0. Clearly, this inequality on p' can coexist with (5.7) only if
tiz1 4+ 0 > t; — c. We now conclude, as in part (a), that each t;11 > t; —c. ]

The analysis in [3] of uniform-risk life functions shows that Theorem 5.2 cannot be
improved in general: each such function is both concave and convex, and the period-
lengths of its unique optimal schedule satisfy ¢;.; = ¢; — ¢ for all 7 (see Section 4.1).

Theorem 5.2 tells us quite a bit about optimal schedules for concave life functions.
Firstly, it tells us that we should select period-lengths that are strictly decreasing. This
strengthens an analogous result in [3], which is proved there only with weak inequalities
and only for the uniform-risk scenario.

Corollary 5.1 If the schedule S = ty, t1,... is optimal for a concave life function, then,
for each period-index i, t; > t;11.

Next, Theorem 5.2 tells us that optimal schedules for concave life functions are finite,
and it yields bounds on their numbers of periods.

Corollary 5.2 An optimal schedule S = tg,t1,... for a concave life function is finite,
having no more than ty/c periods.

Proof. By Theorem 5.2, §’s period-lengths decrease at the rate of at least ¢ per period;
by Proposition 2.1, all of §’s periods, save the last, have length > c. [ ]

Neither Corollary 5.1 nor 5.2 is true in general. Specifically, the unique optimal
schedule for the geometrically decreasing lifespan scenario is infinite and has all period-
lengths equal [3] (see Section 4.2).

Since optimal schedules for concave life functions are finite, and since each period of
any schedule has finite duration, it follows that every cycle-stealing episode that is char-
acterized by a concave life function has a bounded potential lifespan L. The knowledge
that such an L exists enables us to fine-tune Corollary 5.2.
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Corollary 5.3 Let S be an optimal schedule for a concave life function with potential
lifespan L. The number m of periods of S satisfies

2L11l

<
m c+4+2

(5.8)

Proof. When one looks at Theorem 5.2 “from the vantage point of ¢, ;,” one finds that

L = to+t1+ - +tmo+tm
> mt +<m>
Z Mipm—1 c
2 (5.9)
> mn [ |
9 C.

The analysis in [3] of the uniform-risk scenario shows that the bound of Corollary
5.3 cannot be improved in general. Specifically, number of periods of the unique optimal
schedule for p;, =1 —t/L is given by (5.8) with floors replacing ceilings.

Finally, Theorem 5.2 supplements Theorems 3.3 and 3.2 with additional bounds on
the optimal value of .

Corollary 5.4 Let S = ty,t1,... be an optimal schedule for life function p. If p s
concave, and the cycle-stealing episode has potential lifespan L, and schedule S has m

periods, then
L m-1
ty > =+

. 5.10
> 2l (5.10)

Proof. The bound (5.10) follows from looking at Theorem 5.2 “from the vantage point
of tg” .
L = to4+ti+-+tmo+tm

m
< mt0—<2>c .

Corollary 5.5 If the life function p is concave and has potential lifespan L, then the
optimal ty satisfies:

[eL 3 1 o\ 2
ty > 74—10 and p(to) > —g (L— g) p,(to)

Proof. The lefthand inequality is immediate from (5.10) in the presence of Corollary
5.3. The implicit bound of the righthand inequality follows by composing (3.13) with the
lefthand inequality. [ ]
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6 Conclusions

Our experience with specific life functions, as illustrated in Section 4, suggests that,
despite its implicit nature, system (3.6) easily determines each non-initial period-length of
an optimal schedule in terms of all earlier period-lengths. Significantly, this “progressive”
feature of the system allows one to determine ¢;,; only after period i has ended. This
means that, in principle, one could use conditional, rather than absolute, probabilities
to determine schedule & progressively, period by period. Determining the initial period-
length ¢, remains an art. System (3.6) does not help in this determination, and the
(k = 0)-instance of system (3.1) is usually hard to apply, except in very special cases,
such as the uniform risk scenario. The bounds on the optimal value of ¢4 that we derive
in Theorems 3.2 and 3.3 substantially narrow one’s search space for the optimal %y,
at least for “smooth” life functions, but they usually still leave one with a factor-of-
2 uncertainly in determining this value. Indeed, we view the primary open problem
within the framework we have studied here to be the identification of broad classes of life
functions for which one can determine the optimal initial period-length t,. Although we
succeeded in [3] to make this determination for three specific scenarios, the techniques
used there were very specific to the particular life functions being studied.

Even aside from determining ¢, definitively, many basic questions remain within the
framework of our study. Most obviously, our results expose only necessary dependencies
among optimal period-lengths; they do not demonstrate that using such period-lengths
guarantees the (near) optimality of the resulting schedule. (Of course, Theorem 5.1 is
a step toward filling this gap.) While avenues toward global optimality guarantees have
eluded us, one possible approach would involve answering the following question.

Are optimal cycle-stealing schedules unique?

Significantly, Theorem 3.1 gives a handle on this basic question, since it implies that
distinct optimal schedules must have different initial period-lengths. Notably, each of
the life functions studied in [3] admits a unique optimal schedule—but the techniques
for verifying uniqueness there were specific to the individual life function. Yet another
approach to guaranteeing optimality—at least for specific classes of life functions—would
be to determine when specific scheduling recipes work. Omne natural such recipe is to
choose period-lengths “greedily:” one would choose t; by maximizing the function py(t) oo

(t — ¢)p(t), then choose #; by maximizing the function p;(t) & (t — ¢)p(t +t;), and so on.

For what class of life functions is a “greedy” cycle-stealing schedule optimal?
In general, how good are “greedy” schedules?
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Easily, the “greedy” strategy yields the optimal schedule for the geometrically decreas-
ing lifespan scenario—but it does not for the uniform-risk scenario. In quite another
direction, we do not yet have an answer to even the following basic question, whose
nontriviality is attested to by Corollary 3.2.

For what class of life functions do there exist optimal cycle-stealing schedules?

A final set of open questions involve more technical issues. Our current results demand
smoothness and/or a nice “shape” in our life functions. Can these assumptions be weak-
ened? In another direction: we have had to translate what is ideally a discrete problem
into a continuous framework in order to derive our guidelines; this was true even in the
case study of [3]. Can one show that our continuous guidelines yield valuable discrete
analogues?

It is clear from this brief list of questions that many challenges remain in this impor-
tant area of research.
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