

Efficient Schemes for Broadcasting Popular Videos

Lixin Gao Jim Kurose
Don Towsley

Department of Computer Science Department of Computer Science
Smith College University of Massachusetts

Northampton, Mass. 01060, USA Amherst, Mass. 01003, USA
gao@cs.smith.edu kurose, towsley @cs.umass.edu

Abstract.

We provide a formal framework for studying broadcasting schemes and design a family of schemes for
broadcasting popular videos, called Greedy Disk-conserving Broadcasting (GDB) scheme. We analyze the
resource requirements for GDB, i.e., the number of server broadcast channels, the client storage space, and
the client I/O bandwidth required by GDB. The analysis shows that GDB exhibits a tradeoff between any two
of the three resources. We compare our scheme with a recently proposed broadcasting scheme, Skyscraper
Broadcasting (SB). With GDB, we can reduce the client storage space by as much as 50% or the number
of server channels by as much as 30% at the cost of small additional client I/O bandwidth. If we require
the client I/O bandwidth of GDB to be identical to that of SB, GDB needs only 70% of the client storage
space required by SB or one less server channel than SB does. In addition, we show that with small client
I/O bandwidth, the resource requirement of GDB is close to the minimum achievable by any disk-conserving
broadcasting scheme.

1 Introduction

Video is one of the most important communication media in all aspects of our lives. On average, each house-
hold has 1.4 television sets in the U.S.[3, Page216]. We turn to televisions to be informed, entertained, edu-
cated, or even to do business (e.g. shopping or video conferencing in offices). We wish to be able to make
content available instantly at the touch of our fingertips. It was shown in [6, 7] that of our demand is for
a few (10 to 20) very popular videos. This drives future content providers to deliver popular videos to a large
number of subscribers with the smallest latency possible. These popular videos can be “hot” news (such as
the Oklahoma City bombing trial or Mars Pathfinder coverage), popular sport events (such as a U.S. Open fi-
nal), taped lectures (during final exam period), or recently released movies. Supplying affordable and timely
video-on-demand (VOD) services for popular video requests can boost the overall service tremendously.

Video differs from traditional media such as text and image both quantitatively and qualitatively. The
quantitative difference is that transmitting video data requires a much higher bit rate than transmitting text
files. The qualitative difference is that video is an isochronous medium. Even a small disruption or “hiccup”
of data delivery can annoy a user. In order to guarantee continuous playback of a client, a video server has
to reserve a sufficient amount of network bandwidth for the video stream before committing to the client’s
request. We refer to the resource required to deliver one video stream while guaranteeing a client’s continuous
playback as a server channel.

1

In light of the tremendous demand for server channels in VOD systems, two techniques for sharing a
channel by more than one client have been proposed. 1) Sharing by batching requests for the same video
together. When a channel becomes available, the server selects a batch according to some scheduling pol-
icy and satisfies the requests with the channel. However, batching reduces the demand of server channels
at the cost of introducing service latency, whose length depends on the number of requests. 2) Sharing by
broadcasting a video via multiple dedicated channels. Each client can receive data from different channels
and may save broadcast data for later playback so as to ensure the continuous playback of the whole video.
Broadcasting schemes take advantage of resources (e.g., disk) at the client end, and guarantee a service la-
tency independent of the number of requests.

In this paper, we provide a formal framework for studying broadcasting schemes and design a family of
schemes for broadcasting popular videos, called Greedy Disk-conserving Broadcasting (GDB) scheme. The
main idea of GDB is as follows. The video is partitioned into segments and each segment is broadcast peri-
odically. Since the service latency is the length of the first segment, the later segments are greedily selected
to be as large as possible so as to minimize the first segment. Furthermore, to conserve the client disk space,
a client receives data segment at the latest time that ensures continuous playback of the video.

We systematically analyze the resource requirements for GDB. In particular, we derive the number of
server broadcast channels, the client storage space, and the client I/O bandwidth required by GDB. Our anal-
ysis shows that GDB exhibits a tradeoff between any two of the three resources. Future service providers
might subsidize the cost of the set-top box at the subscriber’s end if it is proven to be cost-effective. There-
fore, it is crucial to understand the tradeoff between resources on both the server and the client side for de-
signing future VOD servers.

We compare our scheme with the latest proposed broadcasting scheme, Skyscraper Broadcasting (SB).
With GDB, we can reduce the client storage space by as much as 50% or the number of server channels by
as much as 30% at the cost of small additional client I/O bandwidth. If we require the client I/O bandwidth
of GDB to be identical to that of SB, GDB needs only 70% of the client storage space required by SB or one
less server channel than SB does. In addition, we show that with small client I/O bandwidth, the resource
requirement of GDB is close to the minimum achievable by any disk-conserving broadcasting scheme.

The rest of this paper is organized as follows. In the remaining of this section, we review related work.
Section 2 gives an overview of the problem. In section 3, we present and analyze disk-conserving broadcast-
ing schemes. Section 4, 5 and 6 propose and analyze GDB and compare it with SB. Finally, in Section 7, we
concludes with ending remarks. We omit the proof for all lemmas and theorems in this paper. See [10] for a
complete version of the paper.

1.1 Related Work

The simplest scheduling scheme of a video server is to allocate a channel for each client. However, this
scheme can quickly exhaust the most scarce resource in the server’s system: the server network bandwidth.
To avoid this, Dan et al. proposed to allocate on-demand channels for less popular videos and dedicated
channels for popular videos [6, 7, 8]. The server uses on-demand channels to satisfy requests for less popular
videos according to some batch scheduling policy, and dedicated channels to broadcast popular videos to

2

clients. Both broadcasting and batch scheduling schemes allow a channel shared by more than one client as
follows.

In a batch scheduling scheme, a group of requests that arrive close in time are batched together and when
a channel becomes available, the server selects a batch according to some scheduling policy and satisfies the
requests with the channel. Some efficient batch scheduling policies are studied in [6, 7, 2, 14].

In a broadcasting scheme, the server broadcasts a video via multiple dedicated channels and each client
follows a reception schedule to receive data from appropriate channels so as to continuously playback the
whole video. The simplest broadcasting scheme is the EB scheme that divides the video into equal-length
segments[6]. The EB scheme guarantees a service latency of the length of one segment, independent of the
number of of requests, since a client waits at most the length of one segment for the playback to start. Fur-
thermore, the number of dedicated channels required for a video is inversely proportional with the guaranteed
service latency.

To decrease the number of required channels, Viswanathan and Imielinski proposed an ingenious broad-
casting scheme, called Pyramid Broadcasting (PB) [15]. The main idea of the PB scheme is to divide a video
into segments of geometrically increasing size. Each segment is broadcast periodically via a dedicated chan-
nel that have a bandwidth greater than the playback rate. Each client saves the next segment data while play-
ing the current segment video data. Since the service latency is proportional to the length of the first segment,
the PB scheme ensures an exponentially decreasing latency with an increase in the number of dedicated chan-
nels. The drawback of this scheme is that a client needs to have sufficient disk space to store more than
of one video file.

To address the problem of the disk space requirement, Aggarwal, Wolf and Yu devised a scheme called
Permutation-Based Pyramid Broadcasting (PPB) [1]. The PPB scheme divides a video object the same way
as the PB scheme and multiplexes several channels among one segment of video data. The similar partition
strategy limits the disk space reduction and typically requires a client disk capable of storing at least of
a video data.

Recently, Kua and Sheu proposed a broadcasting scheme [11], called Skyscraper Broadcasting (SB), that
further reduces the client disk space requirement. The SB scheme uses a novel data partition strategy and ex-
hibits a tradeoff between the client storage space and the server network bandwidth. However, these schemes
have been proposed in an ad hoc manner, and there is no study on the tradeoff between the client I/O band-
width and the server network bandwidth.

2 Overview of the Problem

For simplicity of exposition, we consider the problem of broadcasting a single video since we can easily ex-
tend the scheme to multiple videos with proportional increase of the number of the server channels. Consider
Figure 1, which depicts a video server broadcasting architecture. The server broadcasts videos via dedicated
network channels according to some broadcast schedule. The number of server channels is the total num-
ber of channels required for the dedicated network channels. The network uses a multicast communication
facility to transmit the video streams to clients so that a client can select which channels it wishes to receive
from [5, 9].

3

Server

Client

Client

Client

DISK

DISPLAY

Client

Network
CHANNEL1

CHANNEL2

CHANNEL3

Figure 1: Overview of the problem setting

Each client contains a set-top box, a disk, and a display monitor. A client is connected to the network
with a set-top box. The set-top box selects several network channels to receive video data from according to
a reception schedule. The reception schedule indicates which channels to select and when, so as to ensure
the continuous playback of the video. In this paper, we consider only non-workahead reception schedules,
those which constraint a client to receive data from the requested video only after the client requests it. The
received video data are either stored on the disk or sent to the display monitor for immediate playback. The
display monitor can either retrieve stored data from the disk or receive data from a channel directly. The
client storage space is the maximum disk space required throughout the client playback period. The client
I/O bandwidth is the maximum bandwidth required to store and retrieve data from the disk at any time. The
service latency is the maximum amount of time that a client has to wait to start the playback since it requests
a video. We use the following notations throughout the paper.

: the server bandwidth dedicated to the video
: the video display rate at the client
: the number of dedicated server channels
: the length of the video in seconds

: the service latency requirement

We focus here on the continuous playback starting from the beginning of the video, deferring issues intro-
duced by providing interactivity service (such as fast-forward, rewind, and pause) to a future study. Our goal
is to design broadcasting schemes that guarantee a service latency and effectively utilize all three resources:
the number of dedicated server channels, the client disk space and the client I/O bandwidth.

3 Disk-Conserving Broadcasting Schemes

All proposed schemes in this paper falls into the class of disk-conserving broadcasting schemes. The main
idea of the disk-conserving broadcasting scheme is to conserve the client disk space by letting a client re-
ceive data as late as possible. The three components of a broadcasting scheme are 1) data partition strategy,

4

2) broadcast schedule, and 3) reception schedule. We formally describe each of these in turn for the disk-
conserving broadcasting scheme.

Partition strategy: The dedicated bandwidth is divided into logical channels of Mb/s each.
A -second video is partitioned into segments according to a partition function . The
partition function is an integer function (i.e., is an integer) that defines segment as follows. We
let one time unit be throughout this paper for ease of the discussion. Segment contains

time units of the video data, and its data starts at the th time unit of the video and ends at
the th time unit of the video. As we will see later, a partition function uniquely defines a disk-
conserving broadcasting scheme. Therefore, the selection of the partition function is crucial for the resource
requirements of the scheme.

Broadcast schedule: The server broadcasts each segment periodically via a channel of bandwidth starting
at time . In other words, is broadcast periodically starting at time via channel . For
example, the th time unit data of is broadcast at time via channel .

Reception schedule: a client arriving at time begins to receive and play it out at the earliest cycle that
is broadcast after time . Any other segment is received (either saved in the disk or displayed immediately)
during the latest broadcast cycle prior to its playback time. To be more precise, we define the following
notations.

: starting time of ’s reception given that the client arrives at time .
: finish time of ’s reception given that the client arrives at time .
: finish time of ’s playback given that the client arrives at time .

The first cycle that is broadcast after time is

Since the client plays out the video continuously, the client starts to play out at time

(1)

Therefore, the client must begin to receive segment at time

(2)

and complete its reception at time

(3)

under a disk-conserving broadcast scheme with partition function . Note that a disk-conserving broad-
casting scheme ensures that

(4)

5

This property of the disk-conserving broadcast scheme is the key in determining its client I/O bandwidth and
client storage space requirement as shown in Section 3.2 3.3.

To ensure that our reception strategy is non-workahead, we consider only the partition function that
satisfies

(5)

for any . It is easy to verify that this is the necessary and sufficient condition for for any
and , i.e.,

for any and .

3.1 The Number of Server Channels

Now, we analyze the number of server channels required for a disk-conserving scheme. Since a client waits at
most the length of the first segment to start the playback, the service latency guaranteed by a disk-conserving
broadcasting scheme with partition function is the length of the first segment, i.e., time units or

seconds. In order to guarantee a service latency , the server must dedicate channels
to the video, where is the smallest number that satisfies . Therefore, we have the
following theorem.

Theorem 3.1 A disk-conserving broadcasting scheme with partition function requires channels to
guarantee a service latency , where is the smallest number that satisfies .

Therefore, the “growth” of the partition function completely determines the required number of server
channels. We introduce the following relation between two partition functions, and .
iff for all . Let and denote the partition function of schemes
A and B respectively. We have the follow corollary.

Corollary 1 Given two disk-conserving broadcasting schemes A and B. If , then Scheme A needs
no more server channels than Scheme B does for guaranteeing the same service latency.

3.2 The Client I/O Bandwidth

We give a sufficient condition that the client I/O bandwidth does not exceed , i.e., a client to receive data
from at most channels at any time since a client requires an I/O bandwidth of to retrieve playback data
from the disk.

6

playback
 T n+1 Tn Tn+i-1

 f(n+2)+f(n+3)+...+f(n+i-1)

 Tn+i

T n+i-1

T n+i

earliest reception

earliest reception
 f(n+i)

 f(n+i-1)

 gcd(f(n+i),f(n+1))-1

 1

 gcd(f(n+i-1),f(n))-1

Tnlatest reception

 1

Figure 2: The reception periods of and

Theorem 3.2 The disk-conserving broadcasting scheme using partition function requires a client I/O
bandwidth of at most if for all .

The main idea of the proof as follows. During the playback period of any segment , only segments
might be received. In fact, segment is received after the playback period of seg-

ment . This is because we can bound the starting reception time of by Equation (4) as follows.

Figure 2 shows the earliest starting reception time of . By the same reasoning, for any , segment
is received after the playback period of , thus after the playback period of . Furthermore, and

’s reception periods do not overlap. If they do, they overlap for at least time
units because is broadcast every time units and is broadcast every time units.
From Figure 2, we see that the length of their overlapping period is at most
time units. Therefore, at most segments are received simultaneously. We prove the theorem formally
as follows.

First, we identify relationships between the reception and playback times for two different segments.

Lemma 3.1 Under any disk-conserving broadcasting scheme using partition function , a client arriving
at time has two properties. For any ,

(a) if , then the starting reception time of follows the time that the playback of
completes, i.e., ,

(b) if , then ’s reception period doe not overlap ’s, i.e.,
.

7

PROOF : Suppose that , we have

(from Equation (2))

(6)

(7)

Furthermore, the equality in inequality (6) is true only when is not equal
to zero. However, the equality in inequality (7) is true only when is
zero. Therefore, we have .

Part (a) follows from the case that . Now, we prove part (b). Since
, we have . Since is the finish playback time

of and is the finish reception time of , we know that . Therefore,
. Since both and by the reception

schedule, we have that both and .
Therefore, .

PROOF of Theorem 3.2: It is obvious that the client needs a bandwidth of at most for retrieving We prove
the theorem by arguing that at most segments are saved simultaneously at any playback time of a client.

During ’s playback period, only can be received. This is because, for any segment ,
where , we know . According
to Lemma 3.1(a), . Since , we have . We conclude that

, i.e., is received after ’s finish playback time. Therefore, only can be
received during ’s playback period. Since we never save segment to the disk, at most segments
are saved during this period.

Now, consider ’s playback period for any . We claim that no segment other than
are received during this period. We prove the claim as follows. Obviously, for any ,

is received before ’s playback period. For any , we have

8

playback

T n

 Tn Tn+1

 p(n+1,t)

 T

Tn+1

Tn+2

T

....

f(n)-1

f(n+1)-1

f(n+2)-1

 p(m-1,t)

m

m
f(m)-1

f(m)-1-(f(m-1)+...+f(n+1)+f(n)-x)

x

f(n+2)-1-(f(n+1)+f(n)-x)

f(n+1)-1-(f(n)-x)

 p(n-1,t) p(n,t)

f(n)-x

Figure 3: The maximum time units of data saved at

. From Lemma 3.1(a), we conclude that
is received after ’s finish playback time. Furthermore, we see that ’s reception period does not

overlap that of from Lemma 3.1(b). Therefore, at most segments are received simultaneously at any
time during ’s playback period.

3.3 The Client Storage Requirement

We analyze the client storage requirement of a disk-conserving broadcasting scheme as follows. For a client
arriving at time , the earliest time that the client receives is according to Equation
(4). Therefore, we can bound the total storage space required for segment at any time. Figure 3 shows
the maximum time units of data saved for each segment at the th time unit of ’s playback period, i.e., at
time . Note that the figure shows only the case that , and that the client receives at most

time units of data from because the client saves at most time units of data and consumes
time units of data from . We can derive a similar bound for the case that . Summing the storage

space required for all segments, we conclude that the total data saved is no greater than time units
of data. Note that is the last segment whose data is received before time . Therefore, we
derive the following bound for the client storage size.

Theorem 3.3 A disk-conserving broadcasting scheme with partition function requires a client storage
space that can store time units of data, i.e.,

9

data.

First, we state a lemma that will be useful in performing the analysis of the storage requirement.

Lemma 3.2 For any , , where def

.

PROOF : We prove the lemma by induction on . It is obviously true when . Now, consider two cases.

Case 1. .

We have

by the induction hypothesis.

Case 2. .

We have

by the induction hypothesis.

PROOF of Theorem 3.3: We prove the theorem by analyzing the storage space needed during ’s playback
period. Let denote the arrival time of the client. Consider the th time unit during ’s playback, i.e. time

. First, we give a bound on the total data saved for segment . If , the client saves at
most time units of data from segment . If , the client saves at most time units
of data from segment . since is the maximum time units of data saved and is the consumed data.

10

Therefore, the client saves at most time units of data. Now we derive a bound on the
storage space requirement of segment at time for any . We know that
the client saves at most

(from inequality (4))

time units of data from segment at time . In other words, the client saves at most
time units of data from segment at time . The client saves at

most time units of data from segment at time .
.... The client saves at most time units of data from segment
at time . Therefore, a client saves at most

(8)

time units of data. Inequality (8) is derived from Lemma 3.2 by having and
for .

11

4 Greedy Disk-Conserving Broadcasting Scheme GDB(i)

In this section we introduce a greedy disk-conserving broadcast scheme, GDB(i), for a given client I/O band-
width of where is an integer and . GDB(i) selects its partition function “greedily” so as to minimize
the number of server channels for guaranteeing a given service latency. Corollary 1 tells us to select the parti-
tion function of GDB(i) to “grow” as fast as possible starting at . To constraint the client bandwidth
to be , we greedily choose to be the biggest number that satisfies the sufficient condition given in
Theorem 3.2 and the non-workahead requirement given in Equation (5). Specifically, for , is the
biggest number that satisfies . For the case that , is selected to be the
maximum number that satisfies . Therefore, we have
the following partition function, that guarantees a client I/O bandwidth of ,

The resulting partition series is

For example, when , the partition series is

Furthermore, the partition function is further constrained by the disk space requirement. We see from
Theorem 3.3 that the storage requirement of the GDB(i) scheme is determined by the largest segment size.
Therefore, if is the number of time units of data in the largest segment, we have the following partition
function determined by ,

if
if
if

where is the maximum number that satisfies and
. Note that we limit by for the case that in order

to satisfy the sufficient condition (in Theorem 3.2) for the client bandwidth being at most for any . For
example, when , the partition series for GDB(4) is

When , the partition series for GDB(4) is

12

4.1 The Client Resource Requirements

We can establish that the partition function satisfies the sufficient condition of a client I/O band-
width being at most . Furthermore, the sizes of the segments are monotonically increasing. Now, from
Theorem 3.2 and 3.3, we have the client resource requirement of GDB(i).

Theorem 4.1 GDB(i) requires a client disk bandwidth of and a client storage space of
.

4.2 Comparing the Resource Requirements of GDB(i) and SB

We compare the resource requirement of GDB(i) with the recently proposed broadcasting scheme, SB. The
SB scheme is a disk-conserving broadcasting scheme with the partition function

odd

We can generalize the partition function for any client storage space.

We show that GDB(i) requires no more resources than SB does. It can be easily verified that
. From Corollary 1 and Theorem 3.3, we conclude that GDB(i) requires no more server channels and no

more storage space than SB for guaranteeing the same service latency.

Figure 4 illustrates the client storage and the server channel requirement for SB, GDB(4), GDB(5), GDB(6).
We assume that the video is displayed at a rate of 1.5 Mb/s, the video length is 100 minutes and the guar-
anteed service latency is seconds. We select the range 100–750 MBytes for the client storage space and
10–20 for the number of server dedicated channels. From the figure, we can see that when the server dedi-
cates 16 channels, GDB(5) needs only 110MByte storage space while SB needs 220 MBytes, which is 50%
saving on the storage space. Even GDB(4) requires only 117 MByte storage space, which is close to 50%
saving. In addition, if the client storage space is 220 MBytes, GDB(5) needs only 11 dedicated broadcast
channels while SB requires 16, which is 31% saving on the server bandwidth. Furthermore, SB requires at
least 16 dedicated broadcast channels no matter how big the client storage space is, while GDB(5) needs only
11 dedicated broadcast channels when the client has only 330MByte storage space.

From Figure 4, we can see that GDB(4) gives the number of server channels and the client storage space
required when the client I/O bandwidth is . By further increasing the client disk bandwidth, the client
storage space and the number of server channels can be further reduced as shown by GDB(5). However, we
can see that GDB(5) and GDB(6) are very close to each other. In fact, GDB(5) and GDB(6) overlap when the

13

10

12

14

16

18

20

100 200 300 400 500 600 700

nu
m

be
r o

f s
er

ve
r c

ha
nn

el
s

client storage in MByte

D/l=1000

SB
GDB(4)
GDB(5)
GDB(6)

Figure 4: The tradeoff exhibited by SB, GDB(4), GDB(5) and GDB(6)

client storage space is greater than 330 MBytes. Therefore, this gain diminishes as the client I/O bandwidth
increases. Therefore, the performance gain by increasing client I/O bandwidth can be achieved when client
I/O bandwidth is reasonable small, such as or .

5 Broadcasting Scheme GDB3

In this section, we present a broadcasting scheme (referred to as GDB3) for the case that the client I/O band-
width is . GDB3 is a disk-conserving scheme that is different from GDB(3), since GDB(3) scheme uses a
linear growing partition function

Since it can be easily verified that , the disk-conserving broadcasting scheme with as the
partition function requires more resources than SB does. Therefore, we need to select an alternative partition
function for the case that the client I/O bandwidth is . The idea of selecting function
is to conserve the client I/O bandwidth by having two consecutively equal-length segments since the two
equal-length segments can be received consecutively. Therefore, the segment size can grow exponentially

14

without additional client I/O bandwidth. We have the following partition function for GDB3

The partition series generated by this function is

This partition function ensures that no more than two segments are simultaneously received.
Therefore, the GDB3 scheme requires a client I/O bandwidth of .

As with the GDB(i) scheme, we can limit the size of the largest segment by parameter , which indicates
that the largest segment contains time units of data. More precisely, we have a disk-conserving broadcast-
ing schemes, that uses the partition function as follows.

if and is odd
if and is odd
if and is odd
if is even

where is the maximum number that satisfies and .
Note that we limit by for the case that in order to satisfy the
sufficient condition for the client bandwidth of at most for any .

5.1 The Client Resource Requirement

In this section, we analyze the client disk bandwidth and storage space required by GDB3. First, we see that
the partition function satisfies the condition for ensuring that the client disk bandwidth required
is at most . Therefore, the theorem follows.

Theorem 5.1 GDB3 requires a client I/O bandwidth of and a client storage space of
.

5.2 Comparing the Resource Requirements of GDB3 and SB

We prove that GDB3 requires no more resources than SB does. It can be easily verified that .
From Corollary 1 and Theorem 3.3, we conclude that GDB3 requires no more server channels and no more
storage space than SB does for guaranteeing the same service latency.

Figure 5 compares the resource requirements of SB and GDB3. We assume that the video is displayed
at a rate of 1.5 Mb/s, the video length is 100 minutes, and the guaranteed service latency of 6 seconds.

15

14

15

16

17

18

19

20

100 200 300 400 500 600 700

nu
m

be
r o

f s
er

ve
r c

ha
nn

el
s

client storage in MByte

D/l=1000

SB
GDB3

Figure 5: The tradeoff exhibited by GDB3 and SB.

The figure shows that GDB3 decreases the client storage space requirement and the number of dedicated
server channels without additional client I/O bandwidth. For example, when the server dedicates 16 channels,
GDB3 requires only 160 MBytes storage space while SB requires 230 MBytes, which is 30% reduction.
Furthermore, when the client has 230 MBytes storage space, GDB3 needs to dedicate only 15 server channels
while SB requires 16 server channels, which results one channel saving per video.

6 Greedy Disk-Conserving Broadcasting Scheme GDB(K)

In Section 4, we see that as the client I/O bandwidth grows, the client storage space and the number of server
channels required are reduced. However, the client I/O bandwidth requirement never exceeds in a disk-
conserving scheme, since the client does not receive data from more than channels. Now, we present a
disk-conserving broadcast scheme (referred to as GDB(K)) that assumes the client I/O bandwidth is at least

. Since the only constraint on the partition function is the non-workahead condition, the partition function
for GDB(K) is

Limiting the size of the largest segment, we have a family of disk-conserving broadcasting schemes each of
which depends on parameter .

16

10

12

14

16

18

20

100 200 300 400 500 600 700

nu
m

be
r o

f s
er

ve
r c

ha
nn

el
s

client storage in MByte

D/l=1000

SB
GDB3

GDB(4)
GDB(5)
GDB(6)
GDB(K)

Figure 6: The tradeoff exhibited by GDB(i) and GDB(K)

In fact, GDB(K) is an optimal disk-conserving scheme. That is, given the client storage size, GDB(K) re-
quires the smallest number of server channels among all disk-conserving schemes. This is because its par-
tition function is the fastest growing partition function that satisfies the non-workahead condition and the
storage size constraint. It follows from Theorem 3.2 that GDB(K) requires a client I/O bandwidth of at most

. Therefore, GDB(K) requires a client I/O bandwidth of , and stor-
age space of .

Figure 6 illustrates the client storage requirement and the number of server channels for Scheme SB,
GDB3, GDB(4), GDB(5), GDB(6), GDB(K). From the figure, we can see that by increasing the client I/O
bandwidth by , GDB(4) reduces both the client storage space and the number of dedicated channels signifi-
cantly comparing to GDB(3). For example, when the number of dedicated channels is 15, GDB(4) needs only
60% of the client storage space required by GDB(3). When the client storage space is 290 MBytes, GDB(4)
needs to dedicate 3 less server channels than GDB(3) does. Furthermore, GDB(5)’s resource requirement is
close to GDB(K)’s, which means that we can achieve close to optimal performance with a client I/O band-
width of only .

17

6.1 The Minimum Number of Server Channels Required by GDB(K)

We see from the previous section that GDB(K) requires the minimum number of server channels when the
client storage is only 550 MBytes. One natural question to ask is whether the minimum number of server
channels required by GDB(K) is close to the optimal achievable by any broadcasting scheme. In this sec-
tion, we show that the minimum number of server channels required by GDB(K) is only times the min-
imum number of server channels required by any broadcasting scheme. We first determine the minimum
server bandwidth required to achieve a given latency for any broadcasting scheme. Using an argument on
the broadcast frequency of a video data for any non-workahead broadcasting scheme, we show that the server
needs to dedicated at least channels, for a -second video.

Theorem 6.1 Any broadcasting scheme needs to dedicate at least server channels in order to
guarantee a service latency of for a -second video.

PROOF : Consider the video data between the th and th seconds of the video. A client arriving at
time has to receive the data between time and in order to ensure the jitter-free playback, since
the client has to begin to play out this data at time . Therefore, the server needs to broadcast the data
at least once between time and . Moreover, since a client can arrive at any time, the server needs
to broadcast the data at least once between time and , for any . We conclude that the data has to
be broadcast every seconds.

To broadcast the data of length every seconds, the server needs a bandwidth of at least
. Since the server has to broadcast data between the th and th second for all , the total

bandwidth required to broadcast the whole video is

The minimum number of server channels required by GDB(K) is for achieving a service
latency . This is because in GDB(K), to achieve a service latency , the first segment is of length at least ,
the second segment is of length at least , Therefore, we need at least segments or server
channels to cover -second video. From the above theorem, the minimum number of channel required by
GDB(K) is only times of the minimum number of server channels required by any broadcasting scheme.
From the previous section, we see that GDB(5)’s resource requirement is close to GDB(K). Therefore, with
a reasonable client I/O bandwidth of only or 0.94MBytes/s, the minimum number of server channels re-
quired by GDB is close to times the minimum server resource requirement of any broadcasting scheme.

7 Summary

In this paper, we have considered the problem of broadcasting popular videos from a video-on-demand server
to a large number of clients across a high-speed network. We proposed a formal framework for studying

18

broadcasting schemes and design a family of schemes, Greedy Disk-conserving Broadcasting (GDB). GDB
gives a partition strategy, broadcasting schedule, and reception schedule according to the size of the client
resources (including client I/O bandwidth, client storage space). We show analytically that GDB requires
less resources than the latest proposed scheme, Skyscraper Broadcasting (SB), for guaranteeing the same
service latency. Furthermore, our performance study illustrates that GDB significantly reduces the resource
requirement. Finally, we show that with reasonable client I/O bandwidth, both the server resource and the
client storage space required by GDB is close to the minimum achievable by any disk-conserving broadcast-
ing scheme.

References

[1] C.C. Aggarwal and J.L. Wolf and P.S. Yu. A Permutation-Based Pyramid Broadcasting Scheme for
Video-on-Demand Systems. Proc. of the IEEE Int’l Conf. on Multimedia Systems. June 1996.

[2] C.C. Aggarwal and J.L. Wolf and P.S. Yu. On Optimal Batching Policies for Video-on-Demand Storage
Server. Proc. of the IEEE Int’l Conf. on Multimedia Systems. June 1996.

[3] P.W. Agnew and A.S. Kellerman. Distributed Multimedia. Addison Wesley, ACM Press.

[4] K.C. Almeroth and M.H. Ammar. The use of multicast delivery to provide a scalable and interactive
video-on-demand service. IEEE Journal on Selected Areas in Communications, 14(6):1110-1122, Au-
gust 1996.

[5] D. Comer. Internetworking with TCP/IP. Prentice Hall, pages 289-300, 1995.

[6] A. Dan and D. Sitaram and P. Shahabuddin. Scheduling Policies for an On-Demand Video Server with
Batching. Proc. of ACM Multimedia, pages 15-23, Oct. 1994.

[7] A. Dan and D. Sitaram and P. Shahabuddin. Dynamic Batching Policies for an On-Demand Video
Server. Multimedia Systems, 4(3):112-121, Jun. 1996.

[8] A. Dan and P. Shahabuddin and Dinkar Sitaram and D. Towsley. Channel allocation under batching and
VCR control in movie-on-demand servers, IBM Research Report, 1994.

[9] S. Deering. RFC 1112.

[10] L. Gao and J. Kurose and D. Towsley. Efficient schemes for broadcasting popular videos.
http://cs.smith.edu/˜ gao/bc.ps.

[11] K.A. Hua and S. Sheu. Skyscraper Broadcasting: A New Broadcasting Scheme for Metropolitan Video-
on-Demand Systems. ACM SIGCOMM. Sept. 1997.

[12] V.O.K. Li and W.Liao and X. Qiu and E.W.M. Wong. Performance model of interactive video-on-
demand systems. IEEE Journal on Selected Areas in Communications, 14(6):1099-1109, August 1996.

[13] W. Liao and V.O.K. Li. The Split and Merge (SAM) protocol for interactive Video-on-demand Systems.
IEEE INFOCOM, April 1997.

19

[14] W. Shi and S. Ghandeharizadeh. Trading Memory for Disk Bandwidth in Video-on-Demand Servers.
Tech Report, USC, 1997.

[15] S. Viswanathan and T. Imielinski. Metropolitan area video-on-demand service using Pyramid Broad-
casting. IEEE Multimedia Systems. 4:197-208, 1996.

[16] P.S. Yu and J.L. Wolf and H. Shachnai. Design and analysis of a look-ahead scheduling scheme to sup-
port pause-resume for video-on-demand application. Multimedia Systems, 3(4):137-150, 1995.

20

