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Abstract
Real-Time reliable multicast over a best-effort service network remains a challenging research problem. Most

protocols for reliable multicast use repair techniques that result in significant and variable delay, which can lead to
missed deadlines in real-time scenarios. This paper presents a repair technique that combines forward error correction
(FEC) with automatic repeat request (ARQ). The novel aspect of the technique is its ability to reduce delay in reliable
multicast delivery by sending repairs proactively (i.e., before they are required). The technique requires minimal
state at senders and receivers, and no additional active router functionality beyond what is required by the current
multicast service model. Furthermore, the technique uses only end-to-end mechanisms, where all data and repairs are
transmitted by the data-originating source, leaving receivers free from any burden of sending repairs. We simulate
a simple round-based version of a protocol embodying this technique to show its effectiveness in preventing repair
request implosion, reducing the expected time of reliable delivery of data, and keeping bandwidth usage for repairs
low. We show how a protocol using the technique can be adapted to provide delivery that is reliable before a real-time
deadline with probabilities extremely close to one. Finally, we develop several variations of the protocol that use the
technique in various fashions for high rate data streaming applications, and present results from additional simulations
that examine performance in a variety of Internet-like heterogeneous networks.

1 Introduction
Multicast has become an important component of the Internet within the past decade. Deering’s work [1] describes a
framework for distributing data to multiple receivers via multicast groups. When multicast groups grow large, simple
reliable multicast protocols suffer from a condition known as feedback implosion: an overload of network resources
due to the attempts of many receivers trying to send repair requests (henceforth referred to as NAKs) for a single
packet. A number of solutions exist to avoid this implosion effect, using techniques such as randomized timers, local
recovery (receivers can also send repair packets), and hierarchical recovery. While such techniques are effective in
providing reliability without implosion, they can result in significant and unpredictable delays, making them unsuitable
for applications that have stringent real-time constraints.

In this paper, we present a technique that uses a novel combination of forward error correction (FEC) and automatic
repeat request (ARQ) to reliably deliver data, with an emphasis on reducing delay and meeting real-time constraints
without using randomized delays, local recovery, or hierarchical recovery. We call this technique proactive FEC, be-
cause it forwards error correcting packets into the network prior to their necessity.1 It is this idea of having the data

This material was supported in part by the National Science Foundation under Grants NCR-95-08274, NCR-95-27163 and CDA-95-02639.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of the National Science Foundation or the University of Massachusetts.

1The term is actually somewhat redundant, since the F in FEC implies the sending of information before its necessity. However, FEC in a
multicast context commonly refers to sending encoded repair packets, as opposed to direct retransmission of the data, in response to NAKs.
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source forward repairs before they are required that differentiates our work from other reliable multicast protocols
that make use of FEC. Obtaining all repairs from the data source simplifies the protocol compared to schemes that
distribute the repairing source. The single source model also makes the protocol robust over large variations in multi-
cast group topology. Our results through simulation indicate that this technique 1) offers a significant decrease in the
expected time of reliable receipt of data, 2) can be used to meet hard real-time deadlines of reliable delivery of data
with probabilities extremely close to one, 3) reduces implosion, 4) competes well with other protocols in terms of net-
work bandwidth required, 5) can reduce bandwidth requirements for meeting real-time deadlines versus non-proactive
approaches, and 6) scales to groups containing thousands of members configured in various topologies with various
spatial and temporal loss characteristics. We also show that the technique functions well for high-rate data transfers
for networks containing large multicast groups, where receivers are at varying distances from the sender, with varying
end-to-end loss rates and latencies.

The focus of this paper is to demonstrate the effectiveness and simplicity of using the proactive FEC technique
on its own. For this reason we avoid examining protocols that combine proactive FEC with other techniques such as
local recovery, additional router support, or the use of multiple multicast groups that could potentially further improve
performance. We introduce a protocol that uses proactive FEC to deliver high rate data streams to large groups of
receivers with bounded loss for hard deadlines, and no loss for soft deadlines. These protocols are shown to require
little state at both sender and receiver, do not require additional router support, and can communicate over a single
multicast group. We use simulation to demonstrate the protocols’ effectiveness in heterogeneous environments for
large multicast groups.

The remainder of this paper is structured as follows. Section 2 gives an overview of related work, followed by
a brief description in Section 3 of the coding method used to provide forward error correction, and its application
within the domain of reliable multicast. The technique used to to reduce delay and provide hard real-time guarantees
is described and evaluated in Section 4, followed by a description and examination of low latency, reliable protocols
in section 5. Real-time, probabilistically reliable (i.e. resilient) protocols are presented later on in this section as well.
Section 6 further examines performance of our protocol as we vary a wide variety of network features. We conclude
the paper in Section 7. Further details are provided in the Appendices.

2 Related Work
In this section we discuss previous work that addresses various issues that arise when attempting to reliably multicast
data in the Internet. To reduce the impact of feedback implosion, reliable multicast protocols have incorporated
random delays to reduce redundant NAK and repair transmissions [7], but at the cost of increased latency. A variety
of approaches have been proposed that limit the bandwidth used by NAKs and repairs, including scoping [7], and
communicating via unicast to nearby receivers [10, 11] or designated repair servers [8]. Using such approaches,
repair latency and bandwidth depend heavily on the location of both the repair entity and the point of loss within the
network: the benefit is reduced as their distance to the receiver increases. A third approach restricts the number of
entities that provide immediate feedback. This is used in [15] with the data source periodically choosing a small set of
representative receivers that have priority in sending feedback. The protocol’s effectiveness depends on the source’s
ability to select a good set with its limited knowledge of the group topology and network loss characteristics.

There has also been a recent interest in providing resilient multicast service for real-time data, where retransmis-
sions occur only if data can be delivered before the real-time deadline. Data is not reliably delivered, but a higher
good-put can be achieved than without any retransmission. Two protocols that that are designed to provide resilient
multicast are STORM [10] and LVMR [12]. Both approaches form virtual trees with the source as the root and re-
ceivers as internal and leaf nodes. Recovery is implemented by sending all repair requests and retransmissions via
unicast along this tree. Repairs can be performed with low latency provided that they do not need to traverse numerous
links within the receiver-based tree. However, substantial delays can occur when losses occur close to the source.
In such cases, the transmission path to a receiver can be significantly longer than the multicast route direct from the
source, since repairs occur as a series of unicast transmissions between receivers. Having receivers substitute for
routers further increases latency.

Additional functionality within routers can also improve real-time reliable multicast performance. Several mech-
anisms have been suggested as a means of improving reliability [16, 9, 18]. However, this is at the cost of additional
router state and / or processing.

Forward error correction (FEC) [3] is a technique that reduces the bandwidth overhead of repairing errors or losses
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in bit streams. It has been shown in [6] that a hybrid approach combining FEC with ARQ can significantly reduce
bandwidth requirements of a large reliable multicast session over that which is consumed using stand-alone ARQ.

[17] presents a preliminary analysis that compares the benefits of combining local recovery with an FEC/ARQ
hybrid technique. [13] compares real-time performance of reliable Multicast techniques that use FEC to those using
ARQ techniques, but does not consider hybrid approaches. An interesting approach using FEC is presented in [14],
where data is delivered reliably through multicast group joins and leaves. However, present join-leave latencies for
multicast groups make the approach too bandwidth inefficient to support real-time applications.

3 Overview of Forward Error Correction (FEC)

P1 P2 P3 P4 P5

P1 P2 P3 P4 P5 R1

BLOCK ENCODER

DECODER

Sender
Receiver

R2 R3

Figure 1: A sample decoding using a block built from 5 packets.

Error correcting codes were initially applied in domains where bits could be erroneous or missing, but have more
recently been applied to repairing packet losses at the network layer. We do not present how the coding techniques
work, and the reader is referred to [4] for an excellent description of the mathematics behind the Reed-Solomon coding
techniques that we employ here. The following description is sufficient for an understanding of how systems, equipped
with Reed-Solomon encoders and decoders, can make use of repair packets to recover from loss. The sender forms
blocks, where each block consists of a subset of the data packets it wishes to deliver reliably. The number of data
packets that are used to form a block is commonly referred to as the block size, . The sender inputs the packets
into its encoder which then generates repair packets for that block. A receiver uses its decoder to recover the data
packets from any combination of distinct packets that are data packets from the block, and/or repairs generated for
the block.2 An example usage of the FEC encoder and decoder is shown via a unicast example in Figure 1, where
a sender groups 5 data packets into a block, encodes 3 repair packets from this block, and transmits all 8 packets to
the receiver. As soon as the receiver receives any 5 distinct packets related to the block (in the example, 3 data and 2
repair), it activates the decoder and recovers the lost data packets.

A detailed discussion of packet-level FEC techniques can be found in [6]; implementation issues are considered in
[5, 6]. For our purposes here, we simply note that FEC techniques exist that can be used to generate as many repair
packets as needed, and that this can be done at data rates on the order of 8 Mbytes/sec on commodity PC’s.

4 A Proactive FEC+ARQ Technique
In this section, we present a proactive technique that delivers data reliably to a set of receivers through a combination
of ARQ and FEC, and examine the impact that proactivity has on the performance of reliable data transfer to large
multicast groups. Hybrid approaches that combine FEC and ARQ have been proposed and classified for repairing loss
and noise at the bit-level [21]. The type I hybrid approach suggests sending data and proactively sending FEC repairs,
but retransmitting data directly if these repairs are insufficient. Type II hybrid FEC uses FEC to send repairs based on
retransmission requests, and sends nothing proactively. Our transmission sends repairs proactively making it similar
to the type I approach, but repairs are also sent using FEC.

We will evaluate performance using three general criteria:

Delay. The manner in which delay will be examined will depend on the goal of the protocol. For protocols that do
not impose hard real-time deadlines, we will be interested in the expected delay of reliable delivery. For those that

2Requires a slight variation on the Reed-Solomon technique, which incorporates negligible amounts of additional processing.
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do impose hard deadlines, we will be interested in the expected percentage of blocks that can be received before the
deadline expires. We elaborate further on the way we measure delay later in the paper.

Implosion factor. Here, we will be interested in the expected number of NAKs a sender receives from the receivers
per block.

Forward bandwidth. This is the expected number of packets (repair and data) that are sent by the sender per block.
Because the sender multicasts each packet it sends, the bandwidth is linearly proportional to the number of packets
transmitted per block, barring internal packet losses.

We first examine the proactive FEC technique using an idealized round-based protocol. During each round, the
sender sends data and repairs and awaits feedback from all receivers needing additional repairs. The sender waits
for a response from the slowest responding receiver before proceeding to the next round. As a result, the protocol
introduces additional latencies in attempting to meet individual receivers’ real-time deadlines. We study protocols that
do not force receivers to perform according to the requirements of the slowest receiver in Section 5.

As in most protocols that use FEC, the sender packetizes its data for delivery, and builds blocks from these packets
of size . For simplicity of presentation, we assume a fixed block size for the entire data stream, and that blocks are
built from consecutive packets within the data stream.

j=4

i=0 i=1 i=2 i=3

j=0
j=1
j=2
j=3

Figure 2: Partitioning a data set into 4 blocks of size 5 so that repairs can be generated using FEC.

Each packet transmitted by the sender contains a pair of identifiers , where identifies the block, and the
position of the packet within the block. For the purposes of this paper, we assume that and are non-negative
integers. The data packets within a block are assigned values of though corresponding to their
ordering in the data stream. As repairs are required, the sender creates and sends them. For a block , repair packets
are assigned sequence numbers with . These sequence numbers are used by the decoder at the receivers’
end to determine the operations that must be used to retrieve lost data. The block identifier within a packet permits
the transmission of the various blocks to be interleaved, so that a transmission of a new block can commence before
other blocks have completed their reliable delivery. Figure 2 gives an example of a data stream that is partitioned into
4 blocks of size 5.

(a)

P1 P2 P3 P4 P5 RTT F1

Time
Issue

NAKs
! = 1.0

R1

R2

(b)

P1 P2 P3 P4 P5

! = 1.2

F1

R1

R2
Time

Figure 3: Illustration of possible savings in time and reduction of feedback through proactivity

Associated with the protocol is a proactivity factor, , which is a rational number larger than or equal to one.
For a block of size , the sender initially transmits packets,3 consisting of the data packets plus an additional

repair packets. No other repair packets are sent for the block unless receivers specifically request them.
Such requests are unicast by a receiver only when it fails to obtain the entire block of data, either through the reception
of the original block, or through application of its decoder. Otherwise, a receiver need not send any feedback to the
sender. In order to satisfy all receivers’ requests, the sender responds to the NAKs by sending out a number of repair
packets that satisfies the maximum from all of the receivers’ requests for that round.4 This process continues until

3The notation means round to the nearest integer.
4Encoders such as the one presented in [5] are capable of generating a single repair packet at a time (i.e. it is not necessary to know in advance

the number of repairs that need to be generated.)
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Figure 5: The round-based receiver algorithm

each receiver either obtains a sufficient number of packets to perform decoding or passes some deadline after which
there is no point in retrieving the block. Figure 3 demonstrates the potential benefits of setting the proactivity factor to
a value larger than one. In 3(a), two receivers, R1 and R2, are sent a block of five data packets, and each receiver loses
one of these data packets. If , then no repair packets are sent with the initial transmission, and the receivers
must NAK and wait for the sender to retransmit the data. Alternatively, in 3(b), if , then a repair packet is
transmitted with the data, and the receivers do not need to request repairs and wait a full round trip time for the sender
to transmit the repair. We point out that the round-based approach creates no interdependencies among the various
blocks being transmitted, and so the sender can deliver multiple blocks at a given time.

Sender and receiver state diagrams depicting the idealized round-based protocol are given in figures 4 and 5,
respectively.

By sending repairs proactively, more receivers will obtain at least packets in the initial round, resulting in fewer
repair requests being returned to the sender. Thus, the sender can effectively control NAK implosion by sending an
appropriate number of repairs proactively in the initial round. The sender benefits little from adding proactivity to
subsequent rounds because the number of repair requests is generally significantly smaller than what it is in the initial
round. On the other hand, receivers continue to benefit when proactivity is added in subsequent rounds, since it can
often reduce the number of rounds needed to reliably receive a block.

A receiver can itself control the amount of proactivity used in subsequent rounds by requesting more repair packets
than are needed. This allows each receiver to request a level of proactivity that best satisfies its own requirements.
The amount of needed proactivity can be determined in several ways. For instance, a receiver could apply the sender’s
proactivity factor to its own request, and if it needs packets, request packets. Alternatively, it could simply
request an additional packet so that it can tolerate the loss of one repair packet, or if it knows the loss rate from the
sender to itself, it can request a number of repairs such that it can obtain a sufficient number of repairs within some
fixed probability. In 4.1, we show how receiver-initiated proactivity can be used to allow each receiver to meet its own
hard deadline.
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4.1 Meeting hard deadlines
If a receiver can estimate the loss rate from the sender to itself, it can request more repairs than what it actually needs
in order to meet a deadline with probabilities that are extremely close to one. To do so, the receiver must be able
to calculate the probability of receiving at least packets out of a group of packets. We represent this value by

. If the loss is modeled as a temporally independent loss process with packet loss probability , then we have:

(1)

Since (a simple proof is presented in Appendix A), a receiver that needs packets can
guarantee that the packets are received with a probability larger than any by determining an appropriate
that satisfies . A search for an appropriate can be performed quickly, since satisfies the
recurrence relation:

(2)

with the initial condition . The computation of for a two-state loss model is presented in
Appendix A.

A receiver can use a conservative estimate of the length of a round to determine the last round by which it must
receive repairs in order to meet a deadline. If the receiver still needs more repairs upon entering this last round, it
makes a request for repairs, choosing large enough so that sufficient repairs arrive with a high enough probability.

We present two types of guarantees that receivers can make to meet a hard deadline:

Last round guarantee. Here, the receiver guarantees that if a last round is necessary, then enough repairs will be
delivered in that round to insure that the conditional probability of being able to decode all packets in the block, given
the number of packets still needed before starting the last round, is greater than . To make this guarantee, the receiver
simply needs to choose such that , where it needs packets going into the last round.

Block good-put guarantee. Alternatively, the receiver may wish to achieve some overall block good-put rate, such
that the probability that a block is received on or before the last round is . We show in Appendix A that if a receiver
needs packets going into the last round, it is sufficient to choose such that ,
where is the number of packets sent over all previous rounds, and is the block size. Simple algebra reveals this
to often be smaller and never larger than what is required to meet the last round guarantee. If , then no
attempt is made on the last round to retrieve the block. We emphasize that these results apply for both temporally
uncorrelated loss, as well as for loss that can be modeled using the two-state loss model. The receiver must simply use
the appropriate formulation of .

By attempting to meet a hard deadline, receivers will often send requests for more repairs than if no hard deadline
existed, thereby increasing the number of packets that the sender transmits. When a hard deadline condition exists,
added proactivity can reduce the expected delay of reliable receipt by receivers as well as the expected number of
packets that are transmitted by the sender. This is because additional proactivity makes it more likely that receivers
will have already obtained the entire block before entering the last round, thus obviating the need to request a large
number of repair packets in order to meet the guarantee probability, .

4.2 Examination: round-based protocol
We evaluate the performance of the round-based protocol through simulation for networks containing up to 10,000
receivers. Simulation allows us to examine a much richer set of network scenarios than we were able to accomplish
via a mathematical analysis, and makes it easier than it would be through experimentation to observe effects of large
multicast sessions. The analysis is restricted to a star topology network and is presented in Appendix F. Results
presented here are simulated over a tree topology, where nodes on the interior of the tree represent routers with
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Amortized cost to deliver a packet reliably
Multicast Group Size

Block size 1 10 100 1000 10000
1 1.09 1.62 2.49 3.35 4.21
5 1.14 1.36 1.60 1.82 2.04

10 1.16 1.29 1.43 1.56 1.70
15 1.11 1.25 1.37 1.46 1.56
20 1.12 1.23 1.34 1.41 1.48

Table 1: Comparison of the amortized, expected forward bandwidth used to transmit a packet reliably for various block sizes and
multicast group sizes over the sample tree topology used in the experiments for this paper. Note that a block size of 1 is identical to
having no FEC, where each multicast retransmission is the sole packet within the block.

downstream fan-outs of one, two and three, with loss probabilities at each outgoing link uniformly distributed between
0.00075 and 0.00125. Nodes on the leaves of the tree that connect to the sender or receivers had downstream fan-outs
ranging from 1 to 5 with loss probabilities uniformly distributed between .0375 and .0625. These loss rates are similar
to those observed in [19], and the fan-outs coincide roughly with what is observed within the Internet. These values
also provide for realistic end to end properties within the Internet: the number of hops from sender to receiver varies
from 3 to 28 with a mean hop-count of 15.75 and a mean end to end loss rate of .0896. The algorithm used to construct
the tree is presented in Appendix B. We note that an alternative means of building a realistic multicast tree is to first
generate a realistic network topology using a network generating tool, choose a sender, and construct the shortest path
tree within that network. We anticipate that the tree constructed via such a process would be similar to a tree produced
from our simple algorithm.

Once a tree has been created with 10,000 receivers, the number of receivers is varied by selecting a subset of
receivers in the tree of the desired size, and having only those receivers participate in the multicast session. For the
results in this section, we randomly constructed a single tree, and we fix the set of active receivers that are used to
examine a multicast group of a particular size. The set of receivers that are active in the smaller multicast groups
are proper subsets of those receivers that are active in the larger multicast groups. We model loss at each router as a
Bernoulli process, so that there is no temporal correlation between consecutive packets being forwarded. The block
size is fixed at 10. Other tree topologies, receiver placements, loss models, and block sizes are considered in Appendix
D

For each configuration described above, we performed several experiments on the same topology (around 20) and
computed the average values of our measuring criteria to generate a distribution that was close to normal, and then
used as many of these averaged values as needed to calculate 95% confidence interval widths that were within 5% of
the point value.

Before examining the benefits that can be obtained via proactivity, we examine how varying the block size affects
the expected forward bandwidth used by any protocol that multicasts repairs to an entire group. The normalized,
expected forward bandwidth gives the expected cost, in terms of packet transmissions, for delivering a single data
packet. The value can be obtained by taking the expected cost of delivering a block, and dividing this cost by the block
size. Table 1 gives the normalized, expected forward bandwidth needed to reliably deliver a packet to all receivers as a
function of receiver population and block size. The configuration used to compute the results for the table is the same
as that used to compute the results in the remainder of this section. An examination of the table reveals that for large
multicast groups, one obtains a significant reduction in expected forward bandwidth by increasing the block size. We
note that a protocol using a block size of one is equivalent to a protocol that does not use FEC, where each repair can
be used to repair a single loss. Thus, the top row represents the amount of forward bandwidth that would be used by
an ARQ-only protocol.

Figures 6(a), 6(b), and 6(c) respectively show the expected number of rounds, implosion factor, and forward band-
width for various multicast group-sizes as a function of the sender’s proactivity factor. An increase in the proactivity
factor decreases the expected number of rounds in a roughly linear manner. The implosion factor decreases exponen-
tially as a function of the proactivity factor, so that NAK implosion can be reduced significantly with small increases
in the proactivity factor. The most interesting result is the effect that the proactivity factor has on forward bandwidth.
For large multicast groups, increasing the proactivity factor up to a certain value has an insignificant effect on the
expected number of packets transmitted to reliably deliver data to all receivers. That is:
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Figure 6: Results from a round-based simulation on a tree topology of receivers. Note that the y-axis of (b) is plotted on a log-scale.

By using proactive FEC, we can can reliably deliver data sooner than with traditional ARQ and with considerably less
bandwidth. Furthermore, proactivity provides large decreases in repair bandwidth and delivers data reliably sooner
when compared to a non-proactive FEC-ARQ hybrid approach. The proactive approach achieves these gains without
using significantly more forward bandwidth than its non-proactive counterpart.

This is because with a large group, a certain number of repairs must be expected to be sent; with proactive FEC, these
repairs are simply sent before it is known for certain that they are needed. Note that after some point, however, the
bandwidth begins to increase along the asymptote , where is the block size. We note that for a block size of
10 and a receiver group-size of 10,000, if the sender’s proactivity factor is 1.6 then the mean number of rounds is 2, the
implosion factor is approximately 10 NAKs, and the forward bandwidth is 7 repair packets. This compares favorably
in every respect to an ARQ protocol without local recovery (i.e., a proactivity factor of 1.0), which would take close
to 4 rounds and require the transmission of around 40 packets. In addition, the need for randomized delays to prevent
NAK implosion would further increase the latencies associated with an ARQ protocol.

An alternate view of the data in Figure 6 is provided in Figure 7. Here, we directly plot the tradeoff between
forward bandwidth and implosion factor (Figure 7(a)) and forward bandwidth and rounds (Figure 7(b)). Each curve is
obtained by varying the proactivity factor. We see clearly from the flat portions of the curves that the proactivity factor
can be chosen so that the implosion factor and number of rounds (delay) are low, without significantly increasing the
amount of forward bandwidth required.

To summarize, the sender can increase the proactivity factor to a point where implosion is significantly reduced,
as well as reducing the expected delay of reliable delivery for a receiver, and that these improvements can often be
achieved using insignificant amounts of additional bandwidth.

We now examine the performance of the protocol in the presence of realtime constraints in the same network.
Recall that in section 4.1 we presented two ways in which receivers can use proactivity to guarantee a certain type of
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Figure 7: Tradeoff between forward bandwidth and NAK implosion and number of rounds.

deadline-driven reliability. Figure 8(a) and (b) respectively show the expected forward bandwidth needed to meet a
last round guarantee and a block good-put guarantee where with all receivers requiring the data in two
rounds. In other words, each receiver only participates in 2 rounds, sends at most a single NAK, and is able to meet
its desired guarantee with probability greater that .

It is interesting to note that adding proactivity can actually decrease the expected amount of bandwidth required
in order to make a last round guarantee. However, the total expected bandwidth is more than that typically used to
deliver data reliably over all rounds. In contrast, a block good-put guarantee uses the least amount of bandwidth when
the proactivity factor is 1.0, though the bandwidth increases slowly as a function of the proactivity factor until it starts
to increase along the asymptote . Another interesting fact is observed by comparing the expected forward
bandwidth in Figure 6(c) to Figure 8(b). We see that meeting a block good-put guarantee can actually reduce the
expected forward bandwidth used in a session, even when the guarantee is a rate as high as . This is due to the
fact that the receiver often chooses not to send a NAK, even when it has failed to complete the block. This apparently
more than compensates for the extra packets it sometimes requests in the last round when it does wish to continue to
attempt recovery.

In addition to the results described above, we have examined the performance of the round-based proactive FEC
protocol in a large variety of alternative network scenarios, including a variety of heterogeneous and homogeneous
network topologies to examine the effects of various spatial loss correlations among the receivers. In separate ex-
periments, we modeled each router as a mutually independent Bernoulli process, as well as by a two-state mutually
independent process. The latter experiments were done to examine the effects of losses that occur at routers in bursts.
The two-state loss model was set to an equilibrium state at the start of each round; furthermore we did not consider
any loss correlation between the various blocks of a data stream. Finally, we also examined variations on ways in
which receivers could add additional proactivity by sending NAKs requesting additional repairs beyond the minimum
that would be necessary to complete the block. The observations made from these additional experiments vary slightly
from the results presented in this section. Most noticeably, low loss rates, highly correlated (i.e. only upstream loss),
and bursty losses decrease the flattening effect observed in the forward bandwidth in Figure 6 for large receiver sets
and low levels of proactivity. Instead, forward bandwidth increases at a slow, but observable rate, even for low levels of
proactivity. However, this increase in forward bandwidth remains negligible when compared to the forward bandwidth
used in traditional ARQ approaches, such that conclusions drawn from the network model we present here are similar
to what one would conclude from observing these other models mentioned. Details are provided in Appendix D.
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Figure 8: Bandwidth usage to provide (a) last round and (b) block good-put guarantees of by the end of 2 rounds.

5 Asynchronous Protocol
In Section 4, we demonstrated the effectiveness of the proactive technique on a heterogeneous network using a round-
based protocol. Such a protocol adapts its reliable delivery rate to the requirements of the slowest receiver, reducing
the protocol’s effectiveness for faster receivers. We now examine a protocol that eliminates the synchronous behavior
imposed by the use of rounds. This allows each receiver to communicate with the sender at a rate that is independent of
the number or locations of other receivers. Doing so allows each receiver to maximize its own individual performance.

We use the packet sequencing format described in Section 4, where each data and repair packet contains two
sequence numbers , where indicates the block, and the packet’s its position within that block. NAKs also
contain two sequence numbers where represents the block to which the NAK pertains. However, rather than
indicating number of additional packets desired, it indicates to the sender that it should send all data and repair packets
for block with sequence number less than or equal to that it has not already sent. As we shall see below, performing
NAKs in this fashion allows for a simple sender algorithm.

In this paper, we assume that all receivers multicast their NAKs for the purposes of suppression. We examine the
impact on the protocols where all NAKs are unicast in Appendix E

5.1 Protocol: Sender’s algorithm
The sender’s actions are simple and the only aspect that depends on network conditions is the value it chooses for the
proactivity factor. A state diagram demonstrating the sender’s algorithm for a block is given in Figure 9. The algorithm
proceeds as follows: For each block , the sender sends the data and a number of repairs which is determined by the
proactivity factor. It keeps track of the sequence number for the packet it has sent with the largest value for . We
refer to this value of as the largest sent sequence number for block , or LSSN. If a NAK arrives with sequence
number , the sender sends all packets with sequence numbers up to , and becomes
the new value for the LSSN. It should be clear to the reader that multiple blocks can be transmitted in the same period
of time, as long as the sender maintains the LSSN for each block that it is in the process of transmitting.

There are several advantages to having a sender use this simple protocol. First, the sender maintains one item of
state per block: the LSSN. This makes it easy for the protocol to scale as the multicast group size grows, since the
sender’s state is constant with respect to the multicast group size. Second, the sender does not require any knowledge
of the group topology. This is important because topology information is difficult to obtain and can vary during a
session. Third, it operates in an event-driven manner, so that it doesn’t need to maintain timers, except perhaps a
single timer that expires when a block becomes stale and no longer requires buffering. Fourth, the sender always
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reacts to the repair request in a fashion that satisfies the request in the repair. Alternatively, if each NAK uses the
approach where it only specifies a number of repairs that are needed by the receiver, an additional burden is placed on
the sender: it must determine for each arriving NAK whether or not it has already satisfied or partially satisfied that
NAK’s request. The answer depends on loss rates and propagation delays to the receiver that transmitted the NAK. To
operate effectively, the sender must be made aware of specific receiver information, or use some heuristic to guess at
what should be done. It is likely that this approximation will cause the sender to ignore a request that should not have
been ignored.
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Figure 9: The sender protocol

5.2 Protocol: Receiver’s algorithm
The state diagram that demonstrates the receiver’s behavior in receiving a block is shown in Figure 10. Each receiver
reacts to three possible events: the arrival of a data or repair packet arrival, a NAK from another receiver, or a timeout.
The way in which the algorithm reacts to these events is determined by two functions: the function is
used to calculate the sequence number that should appear in a NAK that is about to be sent. The -

function calculates the point in time when the next timeout for a particular block should occur. After
a timeout, and possibly after a data or repair packet arrival, a receiver sends a NAK requesting additional repairs, using
the function. After processing an event, the receiver recalculates the time at which it should timeout
using the function. It then blocks until it receives another packet or another timeout
occurs, at which time it repeats the process. As with the sender, multiple blocks can be transmitted at the same time,
as long as the receiver maintains an independent set of states for each block that is in transmission.

The receiver algorithm is more complicated than that of the sender. However, we have found that the algorithm
operates effectively if its state maintains only the following pieces of information for each block actively being trans-
mitted: the time of arrival of the most recently arrived packet from the sender, the maximum sequence number over
all repairs received in the block, and the time of arrival and sequence number of the NAK received with the maximum
sequence number. This per-block state information can be obtained directly during the normal course of the algorithm.
Additionally, the receiver must maintain an upper bound on the round trip time to the sender. A conservative estimate
of this time is sufficient. To meet hard guarantees, an additional state is required: an upper bound on the loss rate from
the sender. It should be clear that, similar to the sender’s algorithm, the receiver state neither depends on the group
size nor on the topology of the other receivers in the network.

Because NAKs contain intra-block sequence numbers instead of the number of repairs requested, the receiver
must calculate the appropriate sequence number in order to have the sender send the appropriate number of repairs.
This sequence number can be computed at the receiver by determining the desired number of repairs the sender must
transmit to allow for decoding the block, and adding this value to the sender’s current LSSN for the block.

Due to loss and propagation delays, a receiver does not always accurately determine the sender’s current LSSN. An
overestimate or underestimate its value respectively causes an overestimate or underestimate in the desired sequence
number in the NAK. An overestimate can occur due to a previous NAK that was processed or sent by the receiver, but
was lost by the sender. It can also occur if repairs incur larger than expected delay so that the receiver prematurely
considers the repair lost. An underestimate can occur if the receiver loses a NAK from another receiver that reaches
the sender. We note that the receiver can adjust its estimate with each packet arrival, so that the estimates are not likely
to deviate dramatically. Also, there are several techniques that can be employed to reduce the damage that can occur
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due to inaccurate estimates. For instance, the sender can include adding burst bits in repair packets that specify the
number of packets that follow the current repair in the burst.

To prevent unnecessary NAK transmissions, after receiving a NAK, a receiver waits a conservative amount of time
before reacting to a loss. When a receiver receives a NAK from another receiver, , it must then give the sender
an appropriate amount of time to respond to the NAK. By waiting until time , where is the round trip time
from to the sender, gives the sender enough time to provide repairs based on the NAK from . The approach is
conservative, since often the sender’s repairs will arrive sooner than the estimate.
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Figure 10: Receiver protocol: the different variations are constructed using different functions for and -
.

P1 P2 P3 P4 P5 F1

Aggressive Rcvr NAKs here
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Figure 11: Patient vs. Aggressive Receiver: If the block size is 5 and the proactivity factor is 1.2, a patient receiver will allow time
for receipt of all 6 transmissions of the initial packets before sending a NAK, regardless of which packets are lost. An aggressive
receiver will NAK as soon as it detects 2 losses, since it knows it cannot recover the block with only 4 packets.

We have experimented with two versions of the receiver algorithm that differ only in a variation of the -
function. The first variation we refer to as the patient receiver protocol. The patient receiver

only issues a NAK for a block when it believes that all repairs issued thus-far have already been received or lost, and
no NAKs are en route to the sender that will trigger additional transmissions. The second variation is referred to as the
aggressive receiver. The aggressive receiver sends a NAK whenever it believes that the sender’s current LSSN is not
large enough to send enough repair packets to permit decoding for the block. Figure 11 illustrates the difference in the
reaction rates of the patient and aggressive receivers.

These two versions of the receiver protocol can operate effectively with a state that contains seven fields per block
for the patient receiver, and eight fields for the aggressive receiver. For a block size of 10, this corresponds to less than
one field per packet in transmission.
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End Host processing rates used in simulation
Operation Time ( ) Performed by
Data Send 502 S
Data Process 487 R
NAK Send 87 R
NAK process 86 S & R
FEC code 180 * block size S (build)
1 packet R (decode)
Data rate 5208 S

Table 2: Processing rates used in the simulation. An ’S’ means the operation is performed by the sender, an ’R’ means by each
receiver.

5.3 Performance Evaluation
We now report results from simulation of the asynchronous protocol for multicast groups containing 500 receivers.
The simulation was written using the TeD network simulator [20]. The group size is restricted to 500 due to the
memory and time constraints imposed by the multicast group size on such a simulation.

The results presented here used a randomly constructed tree topology, where the minimum, average, maximum
hops to the sender were 7, 15.1, and 25 respectively. The topology was constructed in a similar manner to the trees
used in the round-by-round simulation in Section 4. We use a single tree for all multicast transmissions, including
receiver NAKs. This corresponds a routing protocol like CBT [2]. The results from our simulation can be considered
as pessimistic bounds for protocols that can construct multiple trees depending on the source of the multicast transmis-
sion. Such protocols would reduce the propagation delay of NAKs between receivers, and would reduce unnecessary
NAK transmissions.

We have experimented over a small set of such randomly generated topologies. With group sizes containing
hundreds of receivers, we have found results to be similar over the various random topologies. This is not surprising,
since distance to the sender is the factor that we expect to have the largest impact on performance. Since we randomly
select a large set of receivers within a randomly generated tree, their distances to the sender form a uniform distribution.
All results presented in the remainder of the paper are based on a single, randomly generated tree topology.

Here we compare the performance of the patient receiver and aggressive receiver protocols in a simulation where
the sender’s proactivity factor remains fixed for the entire session, and examine how the proactivity factor affects the
quality of the session. For the experiments presented here, there were 500 active receivers in a session. First and last
hop loss rates varied between 2% and 4% and backbone loss rates varied between 0.05% and 0.1% per router, giving
end-to-end loss rates between 4.4% and 10.4%. Each router added a delay to a packet passing through it, where this
delay fell in a range : was picked from a uniform distribution between 5 ms and 6 ms for backbone routers
and 0.5 ms and 3.5 ms for last hop routers. was then chosen by adding a uniformly distributed value to between
0 and 5 ms for backbone routers, and between 0 and 10 ms for last hop routers. To prevent out of order delivery of
packets, a packet would always be delayed beyond its chosen value to prevent its arrival on a link before a previously
injected packet. In other words, if packet arrives before packet at a router, and scheduled departure times are
respectively and with , then is rescheduled to depart at time plus 170 . This time corresponds roughly
to the minimum gap in arrival times between kilobyte packets over a 45 Mbs link, such as a T3. Preventing reordering
in this fashion leads to packet trains, which is a realistic phenomenon in networks. Maximum round trip times varied
between 74 ms and 294 ms for the various receivers.

Figure 12 gives results from 6 different runs of our simulation that run for 5 seconds of simulated time with a
data rate of 1.5 Mbs using packets of one kilobyte each (roughly 93 blocks, or 930 data packets are transmitted). In
each simulation, 500 receivers appear in an identical network configuration. In the first three simulations, all receivers
execute the patient protocol and the sender’s proactivity factor is fixed for each simulation at a level of 1.0, 1.3, and
1.6. For the last three simulations, all receivers execute the aggressive protocol, and the proactivity factor is again set
at a level of 1.0, 1.3 and 1.6. The protocols are run reliably, meaning that receivers continue to send NAKs until they
have received all of the data reliably. End-host processing rates are presented in Table 2.

We present results of how the proactivity factor affects delay, the implosion factor, and wasted forward bandwidth.
The delay in reliably receiving a block is computed by taking the time at which the data packets could be decoded,
and subtracting this from the latest time at which the packet with sequence number 0 could arrive, barring loss (i.e.
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Figure 12: Examination of 500 aggressive and patient receivers with sender proactivity factors of 1.0, 1.3, and 1.6 in terms of (a)
likelihood of failure to obtain an entire block vs. delay buffer, (b) Number of NAKs transmitted per block, and (c) packets sent per
block that weren’t needed by any receivers (wasted bandwidth)

the longest time it could take to arrive given its latency distribution in the model). We refer to this amount of time as
the delay buffer. Figure 12(a) plots the fraction of blocks that cannot be recovered given the delay buffer. We see that
additional sender proactivity decreases the rate at which blocks fail to be decoded for a fixed amount of buffer. We also
see that for a fixed proactivity factor, the fraction of blocks that can’t be decoded given a fixed delay buffer is slightly
smaller for the aggressive receiver than for the patient receiver. Figure 12(b) shows the number of NAKs received per
block for proactivity factors of 1.0 and 1.3. We see that increasing proactivity has a dramatic effect on the number
of NAKs received. Regardless of whether the aggressive or patient protocol was used, between 100 and 200 NAKs
were received per block when the proactivity was set to 1.0. For a proactivity factor of 1.3, the number of NAKs lies
between 1 and 20 for the patient protocol. The aggressive receiver protocol has roughly the same performance for this
level of proactivity, except that occasionally, on the order of 50 NAKs occur for a block. We omit plotting results from
the cases when the proactivity factor was 1.6, since for most blocks the number of NAKs sent was 0, and never rose
above 2.

Figure 12(c) shows the number of packets that were sent by the sender beyond what was needed by any receiver.
This shows the amount of wasted forward bandwidth, since these packets could have been omitted from transit and
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all receivers would still be able to obtain reliable delivery of the block. For purposes of clarity, we illustrate the
unnecessary packets for only the experiment when the proactivity factor is set to 1.6 and the receivers are aggressive.
We see that even with such a high proactivity factor, the expected number of unnecessary transmissions per block
remains quite low. We also note that the number of unnecessary transmissions is roughly the same for the patient
and receiver protocols, since the extra packets are due to the proactivity factor being set higher than is most often
necessary. For lower levels of proactivity, the number of blocks for which the sender transmits unnecessary packets is
negligible.

5.4 Meeting real-time deadlines
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Figure 13: Block failure rates for meeting hard deadline with the block good-put guarantee set to a failure rate of .9999, where all
receivers allow identical latency for retransmission. 10,000 blocks were transmitted.

Receivers can meet real-time deadlines with a high probability by determining a point in time before its deadline
that gives a sufficient amount of time for it to send its NAK and receive the repairs before its deadline expires. We
use a simple computation to determine what this time is. The computation is performed by subtracting from the time
of the deadline a pessimistic estimate of the time that allows delivery of all packets to be requested, as well as a
sufficient amount of time for decoding. This computation’s details are presented in Appendix C. Both aggressive and
patient receiver protocols can be adapted to meet hard real-time deadlines by altering the -

function to always perform a timeout when this last transmission can take place. At that time, the receiver sends
its final NAK, where uses the hard deadline formulas presented in section 4.1 to determine the number
of additional packets it requires the sender to transmit. We have added a requirement that the receiver not send its final
NAK until after all the original data packets have been given ample time to arrive. This is to prevent a receiver with a
very short delay buffer from sending a large NAK for every block.

Results of applying the real-time algorithms are shown over the same topology of 500 receivers, with the sender
using a fixed proactivity factor of 1.4. Figures 13(a) and 13(b) demonstrate the reliability rates for patient and ag-
gressive receivers respectively in terms of the fraction of blocks that a particular receiver fails to decode, where each
receiver employs an identical delay buffer. The plot labeled Min plots the fraction of lost blocks in each experiment
by the receiver that observed the lowest rate of loss. The plot labeled Max plots the loss rate as seen by the receiver
with the highest rate of loss, and the others plot the loss rate observed by receivers whose rates of loss lie at the 25%,
50%, and 75% quartiles when compared with the loss rates of the remaining receivers.

Plots 14(a) and (b) are similar to 13(a) and (b), except that each point compares failure rates where the ratio of each
receiver’s delay buffer to its round trip time to the sender is identical. In all plots, the block good-put guarantee rate is
set to .9999, such that the probability of failing to receive a sufficient number of packets to decode a block is desired
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Figure 14: Block failure rates for meeting hard deadline with with the block good-put guarantee set to a failure rate of .9999,
where each receivers’ allowed latency is a multiple of its RTT to the sender. 10,000 blocks were transmitted.
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Figure 15: Block failure rates for meeting hard realtime deadlines.

to be .9999. For each point, we only transmit 10,000 blocks due to the time such an experiment takes to run on such
a large scale simulation. Figure 15 displays the round trip time delays that can occur for the various receivers to and
from the sender. The delay for each receiver is uniformly distributed along its vertical strip of the darkened interval.
The delay shown here accounts only for the propagation time, and does not include any processing that might occur at
end-hosts.

We observe from the graphs that given identical delay buffers, aggressive receivers typically reduce failure rates
beyond their patient receiver counterparts. Figure 14 shows that for block good put guarantees to be successful,
receivers require at least a round trip time in order to be able to meet the guarantee. This is clearly due to the fact that
any time less than a round trip time does not give a receiver enough time to send a NAK and illicit a response. We
observe from Figure 13 that receivers with larger round trip times can expect some improvement in the ability to meet
their block good put guarantees a result of receivers with smaller round trip times imposing their own block good put
guarantees.

6 Adapting to network conditions
So far, we have demonstrated the performance of our protocol in a heterogeneous, but controlled environment. We
now examine how certain variations in this environment affect performance.

We begin by reexamining two assumptions that were made within our model. All previous experiments assumed
that NAKs sent by receivers were never lost. We considered what happens if NAKs are dropped at a router according
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Figure 16: How results change as we add features of a more realistic network in terms of (a) good-put failure rate vs. buffer
latency, (b) NAKs received per block, (c) packets sent by the sender that weren’t needed by any receivers (i.e. wasted forward
bandwidth), and (d) Total number of packets sent per block.

to a Bernoulli process identical to that used to describe data and repair packet losses. We found that for large multicast
groups, such loss had no noticeable impact. We believe this is due to the fact that the protocol limits, but does not
suppress all redundant loss requests. Therefore, there is a high probability that even when NAKs can be lost, there is
a sufficient amount of redundancy such that at least one NAK will still reach the sender.

We also consider the impact of bursty loss at each router has through the use of a continuous two-state loss model,
where the expected length of a burst is 6 ms, while keeping the overall probability of dropping a packet fixed. Our
algorithm that prevents reordering creates packet trains where the time lag between packets is 1.7 ms, thus the expected
burst length can cover 4 packets passing through a router.

Figure 16 demonstrates the impact that bursty loss has on protocol performance with all other network features
identical to those used in Section 5. Each plot here is for the case that all receivers use the aggressive receiver
algorithm, and the proactivity factor of 1.3. In each figure, plots labeled ORIG assume a Bernoulli process for data /
repair loss, whereas those labeled Bursty use the bursty loss model. As in Figures 12(a) and 12(b), Figures 16(a) and
16(b) plot performance in terms of block receipt failure rate and total NAKs transmitted, respectively. Figure 16(c)
plots the total number of packets that were transmitted for a block.

We observe that a network that exhibits high amounts of bursty loss can alter the performance substantially. We
see that much of the time, an increasing number of repairs must be sent to satisfy all receivers. Also, latencies and the
number of NAKs transmitted increases. Similar results hold for the patient receiver algorithm.
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6.1 Intra-session group membership changes
As we have observed in Section 4, an appropriate value for the sender’s proactivity factor depends on the group-size.
We have developed and experimented with an adaptive mechanism that is executed by the sender which varies the its
proactivity factor with a constant increase in state per block, such that the state for a protocol using this mechanism
remains independent of multicast group size and topology. The mechanism works well for the network conditions that
we model in this paper. However, we are exploring alternative mechanisms that are simpler and more intuitive. For
this reason, we do not present an adaptive mechanism at this time.

6.2 Congestion Control
We do not examine mechanisms for congestion control in this paper. However, we point out that:

1. FEC combined with ARQ reduces repair overhead compared to traditional ARQ approaches,

2. one can easily incorporate known methods to perform congestion control in the case of soft real-time traffic,

3. congestion control for reliable multicast with hard realtime deadlines is still an open issue.

6.3 Preliminary Experimental Results
We have developed a prototype implementation, with which we have begun to perform experiments on the MBone.
The current prototype transfers 33 byte data packets with a period of .03 seconds between transmissions. Repairs are
also 33 byte packets, and in the current version of the implementation, no FEC encoding or decoding is performed:
the byte stream in the repair has no relevance, other than the sequence number. When the sender issues a repair, it is
sent immediately into the network.

We ran several experiments at several different times over the Internet using small multicast sessions containing
fewer than 10 receivers. Because the protocol was designed for large multicast groups, these experiments were only
meant to show proof of concept. However, we observed patterns of loss on the MBone that would hinder performance
of any protocol that relies solely on multicast transmissions. We observed loss between the sender and some of the
receivers that were periodic and lasted for periods of time close to a second. As a result, all transmissions and proactive
repairs were lost, as well as the NAKs that were multicast to notify the sender of the loss. We are considering ways in
which the protocol can be adapted so that it that might provide more suitable performance over the MBone.

7 Conclusion
We have presented a technique that uses a hybrid of FEC and ARQ approaches that can repair data extremely in an
extremely efficient manner. Furthermore, the technique can be used to reduce two critical issues in reliable delivery
of data: expected time of reliable delivery, or probability of reliable delivery before a fixed deadline. We show that
it is possible to make significant improvements over current commonly used techniques, and that FEC can be used to
keep bandwidth requirements and NAK implosion to a minimum. We show that efficient support for large multicast
groups can be performed in an end-to-end, unscoped manner, without significantly increasing bandwidth utilization
over other unscoped FEC techniques, and uses considerably less bandwidth than unscoped ARQ approaches such as
SRM. Also, we show that through minor bandwidth increases, receivers can improve upon the performance in terms
of expected time or reliability and rate of failure to meet their deadlines. We present a variety of protocols that use the
technique and show their success in medium-sized multicast groups in heterogeneous networks through simulation.
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Appendix

A Real-Time delivery requirements
Lemma 1 Given a packet loss probability of , then for any , it is possible to send a number of packets
such that at least of packets are received with probability greater than .

Proof: Equations 2 and 5 through 6 present recursive solutions for computing . These functions are clearly
monotonically increasing with increasing , and since they represent probability functions, they must be bounded
by 1. It must be shown that the function does not converge to a value less than 1 with increasing . We prove
this by contradiction. Assume it does converge to a value of less than 1. Then because this is a Cauchy sequence,
there is some where . Since this is the limit of a monotonically non-decreasing
sequence, for any where where , there is an where . If we choose such that

, and let be a satisfactory value such that . Then , which is the
probability of getting at least out of packets, is greater than the probability of getting packets in the the
first set of packets, or getting packets in the second set of packets. This can be written mathematically as

. Thus, cannot
be the limit of this monotonically non-decreasing sequence. Since the limit cannot be less than 1, it must be equal to
1.

A.1 A bound for a block good put rate
The following lemma applies for generating block good put rates within hard deadlines. If is the event that a block
is decodable, then ensuring that gives a block good put rate of at least . In Section 4.1, we propose that
a receiver wait until the last possible moment to send a final NAK for that block. At this point, the receiver knows the
number of packets, , that it still needs to recover the block. Regardless of the number of packets received from this
final request, a receiver does not request any further NAKs.

Lemma 2 If the receiver chooses such that , then .

Proof: Let be an R.V. that equals the number of packets from the block sent by the sender prior to the final NAK
transmission, and be an R.V. that equals the number of packets required by the receiver at this time. Then:

(3)

If , then is guaranteed to hold, since the receiver needs no further packets to complete the block. Thus,
. It is also the case that if the final NAK requests

packets, then . Selecting as stated in the lemma therefore gives us that
. Thus:
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(4)

It follows that .

A.2 Two-state model calculation of loss
Since today’s routers currently perform drop-tail routing, losses in the network occur in a bursty fashion. The previous
results assume that losses are not temporally correlated, and will produce inaccurate calculations for networks with
burst loss. It has been shown that burst losses in the Internet can be accurately modeled using a 2-state loss model
[22]. If a receiver is able to formulate its end-to-end loss characteristics using such a model, then the following should
be used to compute the number of packets in the last round.

The loss model used by the receiver to represent end-to-end bursty loss contains states R and L. State R represents
receipt of a packet, and state L represents loss. If in state R, the probability of getting a packet and staying in state R
is , and moving to state L is . If in state L, the probability of losing a packet and staying in state L is , and
getting a packet and moving to state R is .

Let be the probability of sending packets, and receiving at least and winding up in state L, and
be the similar probability of receipt, but that one winds up in state . It follows that:

(5)
(6)

The recursive equation can make use of base conditions:

(7)
(8)
(9)

(10)

where , , is the probability of the system initially residing in state R, and is the probability that it
initially resides in state L. Because the gaps between rounds tends to be large, it is probably most appropriate to use a
steady state distribution for these values. Namely, , and .

Conditional and unconditional bounds can be computed using the same methods used to compute the bounds in
the single state models by simply replacing the single state computation of with the 2-state version.

B Random Tree Topology Generation Algorithm
A random tree topology is generated as follows:
1. Put all receivers in a bin
2. While there are still receivers in bin
3. pick a random number between 1 and
4. choose receivers from bin (or all receivers if there are less than ) and remove them from the bin
5. Construct a new node, attach the removed receivers to the node, put the node in bin
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6. end while
7. While there are still nodes in bin
8. pick a random number between 1 and
9. choose nodes from bin (or all the nodes if there are less than and remove them from the bin)

10. Construct a new node, attach the removed nodes to the new node, and put the new node in bin .
11. end while
12. Make the last node constructed the sender.

C Computing The Final Timeout before a Hard Deadline

The block size
The rate at which the sender can inject packets into the network (includes encoding time).
The number of data packets that are lost, which equals the number of data packets that must be obtained through decoding.

The time it takes to decode and recover packets for a block size of size . Here, we assume the use of Reed-Solomon
encoding, where the decoding time is linear with the increase in block size per packet that requires decoding. Thus, the
decode time can be written as .

The time of the earliest deadline for any data packet in the block that has not yet been received.
Estimated (upper bound on) round trip time to / from sender. We also assume that the time from the sender to receiver is .

Number of additional packets that the receiver is requesting that the sender transmit.

Table 3: How to compute when to send the final NAK

Our approach to allowing a receiver to meet a real-time deadline with a high probability requires that the receiver send some
final NAK. The repairs from the sender must be received and decoded by the receiver before the deadline.

The NAK must be issued in advance of the hard deadline so that it allows time for the receiver to build and send the NAK, the
sender to build and send repairs, the receiver to receive and decode the necessary repairs, and for all propagation delays that occur
between sender and receiver events. Table 3 contains the parameters that we use within the computation. The time by which a NAK
should be issued is:

(11)

D Additional Examination of the Round Based Protocol
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Figure 17: Block size of 20

Section 4 described a round-based protocol that uses proactive FEC. The performance of this protocol was demonstrated in
Section 4.2, using a block size of 10 over a tree network topology, where loss at each router was modeled using a Bernoulli loss
process. Furthermore, receivers’ NAKs always requested exactly the number of packets needed by the receiver (unless meeting a
hard real-time guarantee). We now examine how changing various aspects of the model affects the performance of the protocol by
considering a set of alternative models. We consider how these variations affect the expected number of rounds, implosion factor,
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Figure 18: Block size of 5
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Figure 19: Star topology.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 1.2 1.4 1.6 1.8 2

Ro
un

ds

Proactive Factor

ModStar-N, el 0.051, bl 0.010, bs 10, lr 100, pl 1e-10

1 rcvr
10 rcvrs

100 rcvrs
1,000 rcvrs

10,000 rcvrs

0.1

1

10

100

1000

10000

1 1.2 1.4 1.6 1.8 2

NA
Ks

Proactive Factor

ModStar-N, el 0.051, bl 0.010, bs 10, lr 100, pl 1e-10

1 rcvr
10 rcvrs

100 rcvrs
1,000 rcvrs

10,000 rcvrs

11

12

13

14

15

16

17

18

19

20

1 1.2 1.4 1.6 1.8 2

Fo
rw

ar
d 

Ba
nd

wi
dt

h 
(P

kt
s 

fro
m

 s
en

de
r)

Proactive Factor

ModStar-N, el 0.051, bl 0.010, bs 10, lr 100, pl 1e-10

1 rcvr
10 rcvrs

100 rcvrs
1,000 rcvrs

10,000 rcvrs

(a) (b) (c)

Figure 20: Modified star topology.
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Figure 21: A two-level topology

and forward bandwidth to perform a reliable delivery of a block of data. Each alternative model is identical to the model used in
Section 4.2, except for those aspects that are specified as being different.
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Figures 17 and 18 examine performance when the model is altered to use block sizes of 20 and 5 respectively. We see that
proactive factor has a larger impact on the expected number of rounds, implosion factor, and forward bandwidth when the block
size is large.

We next consider the impact that topology has on the performance of the protocol. Figure 19 considers a star topology, where
there is no spatially shared loss among receivers. Figure 20 considers a modified star topology where the sender connects to a
single central router which then connects to the receivers via a star topology. Loss rates are identical on the links from sender to
the central router and on the link from the central router to the receivers. Figure 21 considers a bi-level topology similar to that
proposed in [16], except that we do not attach repair servers to the network. The sender is connected to a single, central node, which
then connects to intermediate nodes. The network contains ten intermediate nodes, and each intermediate node connects to either

or receivers. The loss rate on the end-links (connecting to sender or receiver) is 0.04. The loss on the backbone
link (between central node and an intermediate node) is approximately .023. The loss rates were chosen so that the end-to-end loss
rate from the sender to the receiver in each topology was .1. We observe that adding proactivity becomes slightly less effective over
networks with more spatial correlation in loss. This is intuitive, since an increase in spatial correlation should have the same impact
as reducing the size of the multicast group on a network with no spatial correlation.
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Figure 22: Modified star topology with an end to end loss rate of .25
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Figure 23: Modified star topology with an end to end loss rate of .05

Figure 22 examines protocol performance over a modified star topology as in Figure 20, except that end-to-end loss rates to
receivers are .25 instead of .1. Figure 23 shows results for the same topology with end-to-end loss rates of .05. We see that the
amount of proactivity that should be used increases with an increasing loss rate.

Figures 24 and 25 consider the impact of bursty loss. Each router uses a two-state loss model. The router enters a state of
the process with a probability equal to the stationary probability for that state at the start of each round (i.e. there is no temporal
dependence across rounds). The probability of loss at each router is chosen in a manner similar to what is described in Section 4.2.
The parameters of the loss model can be chosen so that the expected loss burst length is larger than the expected loss burst for a
single state model with an identical loss rate. For the plots in Figure 24, the length of the burst is double what it is for the single
state model, and is tripled in Figure 25. Bursty loss has an overall negative impact on protocols that use forward error correction.
It follows that it would also negatively impact the effectiveness of the proactivity factor. We see that adding proactivity becomes
less effective at reducing the number of expected rounds, as well as the number of NAKs. Furthermore, there is always a cost to
increasing in terms of bandwidth for increasing the proactivity factor. However, this increase is a small percentage of the overall
bandwidth that is used to deliver the data.

Finally, we examine the impact of having each receiver request an additional repair in its NAK. For instance, a receiver that
needs 3 additional repairs at the end of a round would request 4 repairs. This allows the receiver to tolerate the loss of a single
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Figure 24: Bursty loss at each router: The expected burst length is two times the length of the expected burst in a temporally
independent loss model
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Figure 25: Bursty loss at each router: The expected burst length is three times the length of the expected burst in a temporally
independent loss model
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Figure 26: Receivers request an additional repair in each NAK

repair during each round. We see that such an approach causes a significant reduction in the number of expected rounds. It has a
small impact on the number of NAKs, since the majority of NAKs occur at the end of the initial round, before the increase in the
NAK has any impact. Finally, there is an increase in the expected bandwidth consumed. This increase is approximately equal to an
additional repair packet. This is due to the fact that the expected number of packets to allow all receivers to decode the block stays
the same, but most of the time, the request for an additional packet results in an additional, unnecessary repair transmission.
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E Unicasting NAKs
Results reported in section 5 assume that all NAKs sent by receivers are multicast. We now consider the affect of having all
receivers unicast their NAKs while leaving all other aspects of the protocol unchanged. This is the only modification that is made
to the protocol. Figure 27 plots the performance of the unicast NAK model as Figure 12 did for the multicast NAK model. We
observe negligible effects on performance, which indicates that there is little benefit to having receivers perform NAK suppression
in such protocols.
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Figure 27: Examination of 500 aggressive and patient receivers with sender proactivity factors of 1.0, 1.3, and 1.6 who unicast all
NAKs.

F A mathematical analysis
We now consider a mathematical analysis of the round-based protocol. In Section F.1, we consider the case where receivers use
no proactivity in their NAKs and give equations for the expected number of packets transmitted and NAKs sent by receivers in the
initial round. In Section F.2, we perform an analysis of a single receiver where the receiver can add proactivity to its NAK, and
extend these results to the multiple receiver case in Section F.3. All analyses are performed over a star topology using a Bernoulli
loss process (there is no spatial or temporal correlation among loss), and loss of a packet occurs with probability for each receiver.
Feedback from receivers (NAKs) are not lost, We use to represent the block size and to represent the number of receivers in the
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multicast group.
We number the rounds starting with round 0, which is the round where the sender makes the initial transmission of the block

and the receivers send their initial NAKs. In each round, , the sender reacts to the feedback from what we define as the
lossiest receiver for round . This is the receiver whose NAK requests the maximal number of packets in the previous round. We
also define the function for to be the number of packets requested by the lossiest receiver, given that the receiver
needs packets to complete the block at the end of round . For , , the number of packets sent by the
sender in the initial round. We refer to this function as the policy, and assume that all receivers use the same policy.

F.1 No Receiver Proactivity
Let be the number of repair packets that are sent after the initial round to satisfy a single receiver, . Let be the number of
repairs sent by the sender after the initial round to transmit a single block to all receivers. If the sender uses a proactive factor of
and receivers do not perform any proactivity, then for any and any . Using the analysis in [6], we can compute

as follows:

(12)

(13)

(14)

(15)

(16)

It follows that the expected number of packet transmissions is .
To compute the number of NAKs in the initial round, we define to be a random variable which equals 1 when receiver

sends a NAK, and 0 when it does not. Let be the random variable that equals the total number of NAKs transmitted by all
receivers in the first round.

(17)
(18)
(19)

(20)

Computing the total number of NAKs for a block (i.e. not just limited to those in the initial round) is dependent on the number
of rounds it takes to deliver the entire block to all receivers. This calculation is formulated in the following sections.

F.2 Receivers with proactivity: Single Receiver Case
We now consider a session with a single receiver, where the receiver proactively requests repairs in its NAK. Define to
be the probability that after rounds using policy , the receiver still needs packets for . We construct a recursive
solution for which recurses over and :

(21)

iterates over the number of packets that the receiver receives during the transmission in round . Equation 21 gives a
probability distribution for when : the receiver will still need further transmissions after round . We define
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to be the probability that given the blocksize of and policy , a receiver receives all packets in round , and in this round, the
th packet received is followed by subsequent packets from the sender which may or may not be lost en route to the receiver.

Then

(22)

In equation 22, iterates over the number of packets that the receiver needs to decode the block at the end of round .
We define to be the probability that round is the last round needed by any receiver to obtain repairs. Then

(23)

F.2.1 Expected number of packets sent
We now compute the expected number of packets that are sent over rounds given a block size of and a particular policy .
Define the variable to be the number of packets sent in the th round. Thus, the expected value we wish to compute can be
written as:

(24)

It therefore suffices to determine each . We know that for is always , so it is always the case that
. We now calculate for . If is defined to be the number of packets that must still be received

by the receiver after round , then . Thus, . Since
must be a value from the set , we have:

(25)

Note that we use the fact that to allow the sum to start at .

F.3 Multiple Receivers
We now consider a multicast group that contains multiple receivers that proactively request repairs.

We make two assumptions about the proactive policy used by receivers:

All receivers use the same policy, .
. In other words, for each round, is a monotonically non-decreasing function of the

number of packets needed.

Define to be the probability that given a blocksize of , a policy , and receivers that after rounds, the
lossiest receiver for round needs more packets. We are unable to compute this value recursively as was done for the single-
receiver case. The difficulty is due to the fact that the lossiest receiver for round might differ from the lossiest receiver for round

.
To enable a recursive computation, we define to equal to the probability as stated for with the

added condition that after the th round, a total of packets have been sent. Thus,
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(26)

must be chosen large enough such that for all . Since is a monotonically non-
decreasing function, the largest total number of packets that can be sent by round is . It is therefore sufficient to set

to this value.
We define 2 random variables:

is the maximum number of packets needed by any receiver to complete the block of packets after packets have
been sent.

is a random variable equal to the total number of packets that are sent by the end of the th round.

For example, implies that there are 50 receivers, and after 15 packets have been sent, there is at least one
receiver that still needs 3 packets to decode the FEC block, and no receiver needs more than 3 packets. For another example, if
there are 50 receivers, and 10 packets are sent the zeroth round, 8 packets the first round, and 7 packets the second round, then

and .
Then the following holds:

(27)

(28)

Here, iterates over the possible number of packets received on the th round.
The equality of equations (27) and (28) is given by the following lemma:

Lemma 3

Proof: It is always the case that . Thus, if and ,
then it follows that . Thus,

Next, we note that is independent of the points at which rounds end. It simply depends on the packet loss up to the th
packet. Thus,

(29)
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This gives a recursive solution for given that we can solve for . We
show how to compute where in Section F.5.

For the case where , we have that:

(30)

We also extend the definition of for to mean that after packets, the receiver that has received the fewest
packets has received (essentially, the receiver could be thought of as needing packets). Similar to lemma 3, we have for

:

Lemma 4

Proof: Similar to that of lemma 3.

F.3.1 Probability that all packets are received round
Let extend the definition of to that of multiple receivers in the same way that extends
the definition of . Also define (this is similar to how

is defined). Then:

for (31)

(32)

(33)

F.3.2 Expected # of packets sent
Equation 24 holds for the multiple-receiver case as well. To compute the expected number of packets sent, we modify equation 25
to:

(34)

F.3.3 Expected # of rounds
Define to be the probability that the last receiver to receive packets does so on round . Then

(35)

Again, we point out that the bounds for can be restricted to the finite interval . The
expected number of rounds can be computed as:

(36)
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F.4 NAKs sent
We assume that a receiver will send a NAK after any round for which it has not received the entire block. The NAK includes the
number of packets that the receiver still needs.

Let be a random variable that equals the number of NAKs that are sent out after round given that there are receivers
participating in the multicast session. Then

(37)

The two probabilities in equation (37) can be solved separately as follows:

(38)

(39)

(40)

Here is the probability that out of packets, fewer than have been received by a single receiver.
The expected number of NAKs sent in round is:

(41)

As in equation (26), it is possible to restrict to a finite number the number of values that must iterate over. To compute the
expected number of NAKs sent up to and including the round , we can simply sum over the expected number of NAKs computed
in each round.

F.5 Computations
Here, we present a method for computing . Given ,

(42)

Thus, we wish to compute:

, where .
.
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(43)

(44)

Above, iterates over the number of packets received out of sent packets. iterates over the number of packets received out
of the the first packets sent.

is computed in a similar fashion:

(45)

(46)
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